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1 Introduction

In [4, Sect.21.5] we discussed the symplectic classification of quadratic forms
which occur in the study of hyperbolic or hypoelliptic differential equations.
However, no general classification was given. In particular, the results in [4] do
not answer a question raised in a recent preprint by Derezinski in connection with
the Weyl calculus. (In a revised version [3] of the preprint an answer given in an
early version of this paper has been added.) The question raised by Derezinski has
spurred us to write down a complete discussion supplementing [4], along similar
lines as there, for the complex case in Sect. 2 and for the real case in Sect. 3. The
result is not new, for a complete classification was already given by Williamson
[6] for arbitrary fields of characteristic 0. However, because of the generality,
the results in [6] are less explicit and the proofs are less elementary than those in
Sects. 2 and 3. Explicit canonical forms were given by Laub and Meyer [8],' but
in the case of purely imaginary eigenvalues they listed one decomposable case
and two other cases can be simplified to one. A closely related classification of
symplectic linear maps was given by Cushman and Duistermaat [2]. They listed
a complete set of invariants but no explicit normal forms.?

In [3] Derezinski also determined the quadratic forms Q such that the Weyl
symbol of the exponential of the corresponding Weyl operator Q™ is a function
of the quadratic form. In Sect.4 we shall discuss the symbol of the exponential
quite generally, at first in a formal sense. When Re Q < 0 so that exp Q™ is
defined in the sense of operator theory we prove that the Weyl symbol of exp O™
is a continuous function of Q with values in .’ and give it explicitly first when
Re O is negative definite or more generally the Hamilton map F of Q (see
Sect. 2) has no eigenvalue A with cos A = 0. Mehler’s formula is a very special

! We owe this reference to the referee. Further references are given in {8].
2 We are grateful to J. J. Duistermaat for calling the references {2] and [6] to our attention.
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case. Finally we determine the Weyl symbol of exp Q% for a general Q with
Re O < 05 it is given by a Gaussian on the subspace symplectically orthogonal
to the kernel of cos F'. The normal forms in Sect. 3 are essential in the proof and
give very explicit formulas when Re Q = 0.

In Sect.5 we reinterpret the results in terms of the infinitesimal version of
Fourler integral operators, that is, the calculus based on Gaussian kernels. We
give an essentially selfcontained exposition of this technique. The well known
connection between the metaplectic group and the exponentials of Weyl operators
iQ™ where Q is a real quadratic form is extended to the semigroup corresponding
to forms with Im Q0 > 0.

2 The complex case

Let § be a finite dimensional complex symplectic vector space with symplectic
form ¢, and let Q be a quadratic form in S. Denote by F the Hamilton map of
Q defined by

o(Y,FX)=0(Y,X), X,Y €S,

where the right-hand side contains the polarized form of Q. Then F is skew
symmetric with respect to o. If V), denotes the space of generalized eigenvectors
of F belonging to the eigenvalue A € C, then ([4, Lemma 21.5.2])

o(Va, V) =0, if A+p#0.

Hence V) and V_) are isotropic spaces dual with respect to the symplectic form
and V, ®V_j is symplectic if A # 0, while V; is a symplectic vector space. Thus
we obtain a decomposition of S in a direct sum of symplectic subspaces which
are mutually o orthogonal and also Q orthogonal, since they are F invariant. To
determine the structure of Q it suffices therefore to consider two cases:

DS =Vy@V_, where A #£0.

i) § = V.

In case ii) F is any skew symmetric nilpotent map in the symplectic vector
space §. In case i) F restricts to a map 7 in W = Vy such that T ~ X is
nilpotent; V_ ) is isomorphic to W', and if the duality is denoted —(x,&) for
x € W, & e W then S is identified with W @& W’ = T*W with the symplectic
form

a((x,8,0,m) =(y,&) — (xn), ifx,yeW, {ne W' 2.1

A Jordan decomposition of W with respect to T yields a decomposition of S, so
we may assume that T with suitable coordinates x = (xy,...,x,) in W has the
form

Tx = Ax +(x2,...,x,,0).

By the skew symmetry we obtain F(x, &) = (Ax+(xz,...,x,,0), = A6 —(0, &, .- -
€n-1)), hence Q(x,€) =2A 37 x;€; +2ZT_] X

Case ii) is harder. Before examining it we state the general result:
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Theorem 2.1 Let § be a complex svmplectic vector space with symplectic form
a, and let Q be a quadratic form in S. Then S is a direct sum of subspaces
orthogonal with respect to Q and with respect to o of one of the following types:

a) S =T"C" and with A # 0

n—1

oW.&) = 2/\Z~",/5/ +22x,+1£j.
1 1

Then the Jordan decomposition has one n X n box for each of the eigenvalues
Aand — A

b) S=T*Cand Q =0.

¢) § = T*C with coordinates (x.€), and Q(&) = €%, then F2 = 0.

d) S=T"C" withn > 2 and

n—1

Q. =2 € +(=1)'x};
1

then F>' =0 but F**~! &£ 0, so the Jordan decomposition of F has just one
2n % 2n box.
e) S =T*C" withn odd > 3 and

n—1
Q0,6 =2 x&jm;
i

then F" = 0 but F*~ has rank 2, so there are two n x n boxes in the Jordan
decomposition of F.

Proof. What remains is to study the nilpotent case, so assume that F¥ = 0 but
that F¥=' # 0. If N = 1, then Q =0 and we have case b). If N =2 then Im F
is isotropic and the ¢ orthogonal space Ker F, the radical of @, is involutive.
Hence we can choose symplectic coordinates so that Q is a quadratic form in £
only, so we have just cases b) and c¢). From now on we assume that N > 3.
Set
BX.Y)=o(F¥7'X,Y), X,Y €S.

We have
BX,Y)=(—1)""ToX. F¥ 'Yy = (1) a(F" Y, X) = (- DVB(Y,X),

so B is symmetric (skew symmetric) if N is even (odd). The bilinear form B
induces a non-degenerate bilinear form B on S /Ker F¥—!, which is mapped
bijectively on Im FNY~! by FN-1.

1) Assume first that N is even, and choose X € S with B(X,X) = 1. Then

X,FX,...,FN-'x (2.2)

span a symplectic F invariant space of dimension N. In fact, if Zj<N aFiX
is o orthogonal to all the vectors (2.2), we first obtain ao = 0 by orthogonality
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to F¥~1X, then a; = 0 by orthogonality to F¥~=2X ..., and finally ay_, = 0 by
orthogonality to X. To obtain a symplectic basis where Q is given as in d) we
must consider all the scalar products

o(F/X,F¥X)y= (—1D)*o(F/*X X);

they vanish if j + k > N or if j + k is even, and they are equal to (—1)¥ when
j +k =N — 1. Without changing the space spanned by the vectors F/X we can
add to X any linear combination of F/X with j # 0, and we shall use this to
make o(F/X,X) =0 for odd j < N — 1. First set X=X + aF?X, and note that

o(FIX,X)=0(FIX,X)+2a0(F 12X, X) + o2a(F X, X).

The last term vanishes if j +2 = N — 1, and we can then choose « so that
o(FIX,X) = 0. Replacing X by X we have achieved that o(FY 73X X) = 0.
Suppose that we have already achieved that

o(FN 73X, X)=...=o(FN'"%X X)=0 (2.3)

for some k > 2 where 2k +1 < N. Set X = X +aF%*X. Then the conditions
(2.3) remain valid with X replaced by X, and

o(FN=1=2%x X)y=g(F¥'"%X X)+2a0(FV7'X,X)

is also O for a suitable choice of a. Replacing X by X we have then increased k
by 1 in (2.3) and conclude by induction that we may choose X so that

o(F/X,X)=0,j <N —-1; oF'"7'X,X)=1.
Now a symplectic basis in the space spanned by the vectors (2.2) is given by
ef=F/7'X,g;=(-1)/7'F¥7X, 1<j<n=N/2
IfZ =3 xe +Y )& then

n—1

FZ = ijejﬂ +(= 1" xe, — Z@fj—l,
1 2

and since Q(Z) = o(Z, FZ), it follows that

n—1

n—1 n
QZ) = 5l +(=1Vx7+ > Gx; 1 =2 5Ejm + (=)'}
1 2 1

as claimed in d). Note that for this form F(x,£) = (x’,£") where

xl = (Oﬂ‘xl7 e 7xll—|)7 €/ = (_627 ety #gn’(_])'l*'lxn)’

so application of the powers of F starting with x = (1,0,...,0), £ =0, gives all
the basis vectors. — We can continue splitting off such spaces until we are left
with a space where FY~! = 0.
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2) Assume now that N is odd. Then B is skew symmetric and non-degenerate,
so we can choose two vectors X and Y such that B(X,Y)=o(F¥1X,Y)=1.
We claim that the 2N vectors

FIX FiY, 0<j<N (2.4)

span a symplectic F invariant space of dimension 2N . (In this space the Jordan
form of F has two N x N boxes.) As before we prove that if

J<N j<N

is o orthogonal to all vectors (2.4), it follows successively for increasing j that
a; = bj = 0 by taking the o scalar product with F¥~'/X and F¥~'7Y. To
obtain a suitable symplectic basis we would like to know that

o(FiX,X)=0, o(F/Y,Y)=0, o(F/X,¥Y)=0, 0<j<N-—1. (2.5)

The first two conditions are automatically fulfilled when j is even. To achieve
this is slightly more complicated than in case 1). We begin by making (2.5) valid
forj = N — 2. To do so we set

X=X +aFY +yFX, Y =Y +3FX.
Then
o(F¥=2X Xy = o(FY 72X, X) = 2a0(F¥ X, V),

o(F¥=2Y,Y) = o(F¥ %Y, Y)+280(FVN X, Y),
o(FN 72X Y)Y = ao(F¥2X,Y) +yo(F¥ 7'X,Y).

1

We choose «, 3, v so that these scalar products vanish and replace X, Y by X.Y.
Then we have achieved that (2.5) holds when j = N — 2. To make this true also
when j = N — 3 we consider X = X +6F2X. Since F¥X = 0 this does not affect
the part of (2.5) already attained, and we get

o(F¥ 73X Yy =c(FV 73X, Y) + 60(FN X, Y).

We choose 6 so that this is equal to 0. Next we make (2.5) valid forj =N — 4
by arguing as for j = N — 2 but with F replaced by F3, then we deal with the
case j =N — 5 as the case j = N — 3 replacing F2X by F*X. Proceeding in this
way we make (2.5) valid without restriction.

Now we define a symplectic basis by

e =FI7'X, g=(-D)"7'"FNJy, j=1,...,N.

With Z = ZIIV xje + lev € j&j we obtain

N1 N
FZ = E Xj€ v — E Eigi-1;
] 2



418 L. Hormander

hence Q(Z) = o(Z.FZ) = 3V '€ + 5 §xjo1 = 2527 7' €41, This
agrees with e). Note that for this form F(x,§) = (x’, £’) where

.\":(0..\”] ...... X, ,,kl), 512(52,..,,5,,,0).

We split off such spaces until in the remaining symplectic subspace we have
F¥=1=0. and then the claim follows by induction with respect to N.

3 The real case

Now assume that Q is a real quadratic form in a real symplectic vector space
S. We can then apply the results of Sect. 2 to the complexification S¢c of S. We
keep the notation V) for the generalized eigenspaces of the complexification F¢
of F in S¢.

The space Vj is invariant under conjugation, hence generated by its real part
VR, and we can examine F there by the arguments used in the nilpotent case
in Sect.2. The only difference is that we must now distinguish two kinds of
non-zero values of a quadratic form, positive and negative ones. This means that
in addition to cases c) and d) there appear two other cases with a change of sign.
These are not equivalent for the signatures are different.

If 0 # A € R then V, is also generated by its real elements V&, so the
discussion in Sect. 2 requires no further modification. However, when A € C\ R
a new situation is encountered. Then there is no real element # 0 in V), for if
x € Vy then £ € Vj, and V\,NVy = {0}. Thus the projection V5 3 X ~— Re X ¢
Re V, is a bijection defining an analytic structure in Re V. If Re A = 0, this
is a symplectic vector space but if Re A # 0 it is isotropic, so we are led to
distinguish two different cases.

a) First assume that XA = A;+i\; where A\j Ay # 0. Then Re V), and Re V_, are
isotropic F invariant spaces which are dual with respect to the symplectic form
and o orthogonal to all spaces V,, with u # £, 2. It is therefore enough to study
the case where F¢ has just the four eigenvalues +) and £, Thus S ~ W & W'
where W = Re V), is F invariant and the complexification T of the restriction
of F to W has the two complex eigenvalues A, X. By a Jordan decomposition
we can reduce further to the case where there is just one Jordan box for each

eigenvalue. Choose e € W so that e,...,(T — A" le is a complex basis for
the generalized eigenvectors belonging to the eigenvalue ), and introduce real
coordinates in W with the basis vectors Re ¢, Ime, ..., Im (T — A\)*~'e. Then

we have with the corresponding complex coordinates in W¢

n

i —1 . . .
ij(T—/\)f €= (Xy,0X1, X2, 06X, . . -y X, IXp)-
1

Applying T — A just shifts the coordinates to the right two steps, so

(T — AD(xy, ixy, X, 0%, -, ) = (0,0, 00, i1, ooy iXg—1) + EAp(x, iXy, .y BXR)-
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Separating real and imaginary parts and changing notation we conclude that
(T = AD)x1, %2, 5 X20) = (0,0, 31, X2, . .+, Xon—2) + Aa(X2, = X1, ..., Xon, —X2u—1)-

This allows us to compute 2(£, Tx), and we conclude that S is symplectically
equivalent to T*R% with the usual symplectic coordinates and

2n-2 2n

O, 8= 2( Z EjaaXi + A ijfj + A Z(xzjfzj—l - x:y—lﬁzﬂ)- (3.1)
1 1 1

The form is non-degenerate since Vo = {0}, and the signature is 2n,2n since it
vanishes in a space of dimension 2n. For this form F(x,£) = (x’,¢’) where

X' =(0,0,x1,. . Kono2) + Aix + Aalxg, X1, <oy Xon, —X20- 1),
€ = —(&,&, -, &n,0,0) = M€+ X6, =&y, €20y —Eanm1).
When Xop = iX2k_.1 for k = 1,..‘,71, then x’ —()\1 +i)\2))( = (0,0,x;,.. . ,Xz,,_z),

and since this shift operator is nilpotent we recognize the generalized eigenspace
for the eigenvalue A; +i);. Similarly we recognize the other eigenspaces.

b) What remains is the case where S¢ = V;, ® V_;,, for some p > 0. Choose
N > 0so that (Fc —ip)¥ Vi, = {0} but (Fc — i)V =1V, # {0}. The sesquilinear
form

o((Fc+ /X, V)/i, X,Y €V,

is Hermitian symmetric for every j. If j < N it cannot vanish identically, for
then we would have (iFc +p)/X =0 for all X € V;, since V_i, = Vi, is dual
to V;,. Thus we can choose X so that

o((iFc + )" 7'X,X) =2vi, where y==+1. (3.2)

This implies that X; = (iF¢ + w)/ X and )7], 0 < j < N, span a symplectic
space. It is F invariant so the real part can be split off from §. Hence it is no
restriction to assume that it is equal to Sc. Then V;, is spanned by the vectors
Xo,...,Xy_1. We may replace X =X, by X + Z’IV_] a;X; for arbitrary a;, and
this can be used to achieve that

o(Xk, X0)=0, 0<k <N —1. (3.3)

In fact, o(Xy,Xo) is purely imaginary and is not affected by the coefficients a;
with k+j > N if we make such a change of X. The coefficient ay ., only enters
then in the term 20(Xy_1,Xo)Re ay_i_x. Thus we can successively achieve the
desired goal (3.3) for k =N —2,...,0. We shall now extract a symplectic basis
from the real and imaginary parts of Xo, ..., Xy_).

Set X = X, +iX,'. Then

oXy, X)) =oX{', X/, oX,,X/)+o(X{',X)=0, j,k=0,...,N —1,
(3.4)
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for V;,, is Lagrangean. Since a(Xk,Yj) =0 when k +j # N — 1 by (3.3), we get
additional equations which prove that

U(X[,Xj') = a(X,(”,Xj”) = o(ka,Xj”) =0, ifj+k#N -1 (3.5)
Using (3.2) we obtain
oXy ko1, XD+ 0Ky 1, XD =0, —o(Xy g1, XV + o(Xy 1, X0) = 27,
which in view of (3.4) implies

Xy k1, X)) =0Xy 1, XN =0, oXy__1, XD =1. (3.6)
By (3.5) and (3.6) we obtain a symplectic basis by setting

=X/ 1, ¢=Xy_;/v. j=1,...,N.

To calculate Q in the corresponding coordinates we just have to find Fe; and
Fe;j. By definition

(iFe+ X/ +iX[) =X\, +iX],,, j=0,...,N -1
where we define X, = X{/ = 0. Thus
FX/ = —pX + X, FX = pX] - X',
which means that
Fej =y(uensi—j —en—j), Fej =y~ (—pens—j +ensaj).

(We interpret ep and ey, as 0.) The polynomial @ is given by

o (Zxkek +Z§k5k1 ZXijj + Zﬁjpgj)
= ijxka(ek,Fej)+ Z{jka(Ekny?j)

Thus we obtain

N N
Q(x, 6 =~7" <N ij'xNHAj - ijxN+2-j>
1 2
N N1
+v (NZ€j§N+l—j - ijEN—j) .
1 I

Recall that v = £1, so the two alternatives differ just by the sign. For this form
F(x,8=(x',£) where

=y, D)= Enory 6,00, € = (- X)) =0,y -, X2))-
When x = (0,...,0,v) and £ = (¢,0,...,0) then

x'—ipx=~(0,...,0,7,0), & —iuf=(0,1,0,...,0)
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which apart from a factor —i means a left or right shift of the coordinates.
Repetition confirms the nilpotent structure.

To determine the signature when v = 1 we note that it must be independent
of p, for @ is always non-degenerate since Vy = {0}. For large u we have
essentially two copies of the form

N

E XjXN+1—f TX AN + XX ..
1

If N is even the signature is N/2,N /2 but when N is odd we have a middle
term x(%\m)/z which makes the signature equal to (¥ + 1)/2,(N — 1)/2. For the
full form @ the signature is therefore N,N and N + 1,N — 1 in the two cases
when v = 1. Thus the signature distinguishes between the cases v = +1 when N
is odd, but when N is even the signatures are the same although we know from
(3.2) that the sign is determined.

We are now ready to sum up the results as a complete classification theorem.

Theorem 3.1 Let S be a real symplectic vector space with symplectic form o,
and let Q be a real quadratic form in S. Then S is a direct sum of subspaces
orthogonal with respect to ( and o of one of the following types, and the number
of spaces of each type is uniquely determined:

a) S=T*R" and with A >0

n—1

0, =20 x&;+2> xn§.
1 1

Then the Jordan decomposition of F has one n x n box for each of the eigen-
values A and —\. The signature of Q is n,n.
by § =T*R™ and with A\; > 0, A >0

2n--2 2n

g, )= 2( Z Ejnxj + Al ijfj + X2 Z(x2j§2j—l “x2j—1§2j))~
0 ) 1

The Jordan decomposition has one n x n box for each of the eigenvalues
+A; + i\ The signature of Q is 2n,2n.
¢) S=T*R" and with u > 0, v = 1,

n

n n n—1
00, & =713 Kwniei = 2 Hwsamy + 1Y iy = 9 Ein ).
2 1 1

The Jordan decomposition of F has one n x n box for each of the eigenvalues
+ip. The signature of Q isn,n if n is even and n +y,n — -y when n is odd.
d) S=T*Rand Q =0, thus F =0.
e) S =T*Rand Q = +¢£*; then F* = 0.
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H S=T*R" withn > 2, and

n—1

0,0 =% (2 x&m + (-1753);
1

then F?* = 0 but F?"~1 4 0, so the Jordan decomposition of F has just one
2n x 2n box. The signature of Q isn,n — 1 orn — 1,n.
g) § =T*R" withn odd > 3 and

n—1

Q(x,6)=2) x5
1

then F™ = 0 but F"~! has rank 2 so there are two n x n boxes in the Jordan
decomposition. The signature of Q isn — 1,n — 1.

Williamson [6] lists the possibilities which can occur when S is of dimension
4 and Q is non-degenerate.We may then have case b) with n = 1, cases a) or
¢) with n = 2 or a direct sum of cases a) and/or ¢) with n = 1, altogether 6
possibilities. No explicit conclusions are given otherwise but Theorem 3.1 is
contained in principle in the results of [6]. The explicit normal forms given in
[8] agree with Theorem 3.1 apart from case c) where in [8] there appear two
cases depending on the parity of n, due to another choice of symplectic bases,
and one case which is decomposable into two spaces of type c).

4 General Mehler formulas

Let Q be a quadratic form in 7*R", and let Q% be the corresponding Weyl
operator (see [4, Sect. 18.5]). Assuming that ¢’¢” makes sense we want to de-
termine the Weyl symbol which we denote by e, so that (exp g,)* = exp(tQ"¥).
Differentiation with respect to ¢ should give

(0q:/0texpgq,)” = Q" exp(tQ™) = Q" (expq1)"”,
which by the calculus (see [4, (18.5.6)]) means that
g, /0t exp g, = €27 PELLIO(x ) exp g, (v, M)ix e1=r,m)

=Qexpg + {0, expqi} — %( 3" 870 /0¢ 06,6 |90,

j k=1
+ " 820 /0% 0%, 0% /06,06 ~ 2 Y 02Q /0x;06,0% /¢ j(‘}xk) expgs
Jok=1 jok=t

or if the differentiation is carried out,
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0g: /01 = 0 + £10.a} - §( Y 9°0/0¢,060%, /0% 0%,

Jk=1

+ > 020 /0n0x P9,/ 08,06 ~ 2 Y 970/ 065%q, /9 ;04 )

7.k=] J k=1

~3(1 3 90 /o 950g. /0 09, /o

Ik=1

+ 3" 070 /0% 0x09,/0€ 0,/ Ok ~2 Y 0°Q /00609, /06 10q /O ).

J k=1 Jok=1

We claim that there is a solution of the form

qr =g +h(t)

where g, is a quadratic form in (x, ). Separating terms of degree 2 and 0 with
respect to (x,£) gives the equations

0g, /0t = Q + % {Q, g} - % (E’}J(:] 32Q/3§ja§kag,/ax}3g,/3xk
43 4 870 /0x;0x, 09, /06 ;01 |08k — 23 4oy BQ /006D, /IE ; By /axk),
W)= -1 ( Y o 070 /06 ;06.0%g, [ Ox; 0

+ an,kzl BZQ/ijaxk Bzg, /f)é,@{k — 2 Zj’,k:l aZQ/an (‘)5,( 82g,/8§j Bxk) .

4.1)
This can be regarded as a system of non-linear ordinary differential equations for
h and the n(2n + 1) coefficients of g,, so for small ¢ there is a unique solution
with go = 0, that is, go = 0 and h(0) = 0. We want to examine if there is a global
solution. In doing so we can clearly work over the complex numbers since the
preceding equations are valid over C, and we look for g, and A(¢) as analytic
functions of t.

First consider the non-degenerate case with one degree of freedom. It is then
enough to study the case Q(x,&) = 2Xx¢ for some A € C\ {0}. The equation
for g, is

09, /0t = 2M(x€ + 5 {x€, 91} + 09,/ 9EDgs /0%,

which is solved by g, = y{1)x§ where
Y (1) = 2A(1 + 397, 7(0)=0; thus (1) = 2Ztan(Ar).

The equation h'(t) = Ay(t)/2 = A tan(Ar) has the solution h(t) = —log cos(At) so
er{tan(/\t)
expqi(x,&) = “eosOn)

which is analytic except at the zeros of cos(Ar).
Suppose now that we have n degrees of freedom and that
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n
Q(x,0) =Y 2X\x€;.
1
A generic form is symplectically equivalent to such a form. Then we have
9:x, &) =2 x&;tan(\n), K= tan(h),
1 1
thus exp(—h(t)) = H cos(Ajt).
1

The Hamilton map of Q is

AD .
F = (O —A) A =diag(Ay, ..., ).

If X = (x,&) then o(X, tan(tF)X) = 2(€, tan(t A)) = g,(X), so we obtain
9:(X) = a(X , @n(tF)X), exp(—h(t)) = [ ] cos(yn), (4.2)
1

except at the zeros of the product.

For an arbitrary quadratic form Q in 7*C", with Hamilton map F, it is
clear that sin F and cos F are entire analytic functions of (the coefficients of)
F, and det(cos F) = Hf” cos A; where ); are all the 2n cigenvalues of F with
multiple ones repeated. Now the secular equation det(F — Al) = O is even in
A, for in the generic special case above it is equal to the product [J(A? — A2),
taken over one half of the zeros. Let pu;,...,u, be the zeros of det(F — AI)
as a polynomial in g = A% Then det(cos F) = []](cos \/ﬁj)z, and the square
root /det(cosF) = [[} cos \/p; is an analytic function of py,...,u, which
i1s symmetric under permutations, hence an entire function of the elementary
symmetric functions which are polynomials in F. Thus /det(cos F) is an entire
analytic function of F. Outside the zeros it is clear that tan F = sin F(cos F)™!
is analytic.

Theorem 4.1 For every quadratic form Q in T*C" the system of differential
equations (4.1) for a quadratic form ¢,(x,€) and a scalar function h(t) has a
unique solution with vanishing initial values such that g, and exp h(t) are mero-
morphic functions,

exp(g. (X)) = exp(g,(X) + h(1)) = exp(c(X ,tan(tF)X))/y/det(cos tF)  (4.3)

where F is the Hamilton map of Q. It is analytic in t and F except at the zeros of
the denominator, that is, where t); = %71' +km for some eigenvalue A; of F and
some k € L.
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If we have a symplectic'decomposition of the whole space such that Q has
a corresponding splitting, then we can compute g, separately for the different
factors. This makes it easy to make explicit computations by using the normal
forms for F.

Derezinski {3, Theorem 3.2] proved that the symbol of every operator of
the form f(Q™) is a function of Q precisely when F*? = ¢F for some c. This
is an immediate consequence of Theorem 4.1, for if tan(tF) is a multiple of F
for every t then F* must be a multiple cF of F. Conversely, if 3 = ¢F then
tan(tF) = F tan(z\/c)//c, interpreted as Ft when ¢ = 0.

As an example consider the quadratic form Q(x,£) = —x2 — &2 for (x,&) €
T*R. Then F(x,£) = (=&, x) so F* = —F, A = +i, and tan(tF) = Fan(ti)/i =
F tanht. Thus

18 = e“(xz*gz)"’“h’/ cosht. 4.4)

It is well known (and will be proved more generally below) that Q® = —x? — D?
defines a self-adjoint operator < 0 in L*(R), so e'?" is a well defined self-adjoint
semigroup of contractions in L2(R) when ¢ > 0. We claim that the Weyl symbol
is given by (4.4) when t > 0; this is a function in .¥”"(R?). To prove this we
recall that if .., is the Weyl operator corresponding to (4.4) we have by the
derivation of (4.1)

0
QY. Au = Fr Zu, u€.Y(R), hence
g‘@(’-»")ﬁ’“l Au) =R (-QV 4+ Q¥). 4u =0, ue SR,
A

for 0 < s < t, which proves that . 4,u = ¢'¢" u as claimed.
The kernel of the operator . -, is (cf. [4, (18.5.4)])

Ax,y) = 51; /exp( —((x +y)?/4+ € tanht +i(x ~y)§) d€/cosht,

and evaluation of the Gaussian integral gives the classical Mehler formula:

Corollary 4.2 The Weyl symbol of the self-adjoint contraction exp(—t(x% + D?))
in L2(R), t > 0, is given by (4.4), and the kernel is given by Mehler’s formula

(x,y) — exp ( — $((x* + y?) cosh(2r) ~ 2xy)/ sinh(21)) //27 sinh(2t).  (4.5)

The formula (4.4) for the Weyl symbol is so much simpler since it respects
the orthogonal invariance of x* + £2.

For any quadratic form Q in T*R" we denote by Mg the maximal operator
defined by 0% in L%(R"); the domain consists of all ¥ € L?*(R") such that
Mgu = Q%u, defined in the distribution sense, is in L*(R"). The continuity of
Q% in Z'(R") proves that My is a closed operator. It is the closure of the
restriction to .%°(R"). In fact, if x € C(?O(RZ") is equal to 1 in a neighborhood
of 0, and x.(£,7n) = x(£€,en), then

0¥xY - XPQY = —i{Q, X} + WY
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where ¢ 1s defined as \. with another function ) € Cg°. Since

{0 X} ©) = ) (90 (x.€)/08 Ox(ex, €€ ;) [ dx;
1

—00Q(x.&£)/0x;Ox(ex, €€)/ 0 )

is uniformly bounded in the symbol space S(1,(dx? + d&2)/(1 + |x|*> + |£]?)
as 0 < ¢ < 1 and vanishes on any compact set for small ¢, it follows that
@Y =& m — 0 L>RYase — 0, if u € LXR™). If u is in the domain
of My it follows that x.u € . converges to u in the graph norm of M. (Since
translation of Q yields a unitarily equivalent Weyl operator it is also obvious that
Re O < 0 if Mg ¢ is bounded above.) Thus M, is the closure of the restriction
to . or C§°, which proves that the adjoint is equal to M.
If Re Q@ <0 then

Re (Mquu) =(MRC Quyu) S 0

when u is in the domain of My. This follows from the metaplectic invariance
of the Weyl calculus (cf. [4, Theorem 18.5.9]) since Re Q is symplectically
equivalent to a sum of (possibly degenerate) harmonic oscillators ([3, Theorem
21.5.3] or Theorem 3.1, cases c) with n = 1, d), e)). Thus My and its adjoint
are both dissipative, so My generates a contraction semigroup (cf. Yosida [7, p.
251]) which we shall denote by exp(rQ%), t > 0.

Theorem 4.2 If Re Q is negative definite, then the Weyl symbol A, of exp(tQ™)
is for t > 0 a function in ¥ (T*R") given by (4.3) where the quadratic form g,
and exp(h(1)) are always finite, and g, has negative definite real part. When Re
is just negative semidefinite, the map Q — exp(Q™)u is a continuous function
{resp. C* function) of Q with values in LR (resp. " (RY)) ifu € LR
(resp. u € . (R")), and the Weyl symbol of exp(Q™) is a continuous function of
Q with values in %' (R*) given by (4.3) when det(cos F) # 0.

Proof. If Re Q is negative definite, then no eigenvalue A; of F is real (cf. [4,
Theorem 21.5.4]). Hence Hcos(t)\j) #0 when t > 0, so A, is well defined and
analytic in ¢ then. When ¢ > 0 is small enough then Re g, = tRe Q@ +O(+*)(jx|>+
|€]%) is negative definite. Thus A, is then in .%", and we can prove just as for the
harmonic oscillator above that A}’ is equal to exp(r@™) when 0 < ¢t < 19, say.
By the semigroup property it follows that if ¢t =7, +... +ty where 0 < #; <1
forj =1,...,N, then exp(tQ™) is the composition of the operators A}’ They
have kernels in . which are real analytic in ¢;, so it follows that exp(rQ*) for
every t > 0 has a Weyl symbol in . and that it is analytic in f. Hence it must
always be equal to A,, and A, must be in .%*, which proves that Re g, is negative
definite. If u € . it follows that u(r) = exp(tQ*¥)u is a C*° function of ¢ and
O with values in .% when t > 0 and Re @ is negative definite. We can estimate
the L? norms of the derivatives u,g = D®x?u by noting that for any N > 0

8“(16/61 = Da)CBQwu = Qwuug + Z Caf,a’' " Ua' 3 re +08] <N
la/+8'| <N
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where cog o/ are linear forms in the coefficients of Q. Hence

d
7 2 luasl®=2 37 Re(Ouap/0tuap) < Cug > luasll®

lo+B{<N la+BI<N [a+B|<N

Integration gives a bound for memgN lluasll* when t > O depending only on
upper bounds for ¢, the coefficients of Q and the values when t = 0. When Re Q
is negative semidefinite, and u is a C™ function of ¢ > 0 with values in .% such
that Ou /8t = Q™ u for t > 0, then u(t) = exp(tQ*)u(0), t > 0, so the bounds
just obtained in the negative definite case extend to the negative semidefinite
case. Since .¥ is dense in L? the continuity with values in L? for u € L2 follows
in view of the contraction property.

By the Schwartz kernel theorem and the continuity just proved it follows that
the kernel of exp(Q¥) is a continuous function of Q with values in .¥"/, so this
is also true for the Weyl symbol (see [4, (18.5.4)"]).

When Re Q is negative semidefinite, it follows from Theorem 4.3 that the
Weyl symbol of exp(Q™) is given by (4.3) with r = 1 provided that the denomi-
nator is not 0, that is, if F has no eigenvalue of the form %7( +km with integer k.
To prepare for the discussion of the remaining case it is instructive to examine
the harmonic oscillator in detail. We know already that the Weyl symbol of the
operator exp(—t(x? + D?)) in L?(R) is given by

(x,€) > exp(—(x” + &) tanh 1)/ cosht, (4.6)

when Re 1 > 0 and coshr # 0. In particular, if ¢ = /s with s'¢ R and coss # 0
it is given by
(x, &) > exp(—i(x? + ¥ tans)/ coss. 4.7

If s = m/2+kn for some integer k, then the Wey! symbol is the limit in .% ' (R?)
as € — +0 of the symbol for t = is + ¢,

(x,€) — exp(—(x? + %)/ tanh €)i (— 1)**! / sinh e,

that is, i(—1)**!'78y. The corresponding Weyl operator has the kernel i (— 1)t+*!
X0g(x +y), which defines a reflection operator. When sins = 0 then the Weyl
symbol (4.7) is *1, and the corresponding kernel is £8p(x — y), so we have £
the identity operator. When 2sins coss = sin(2s) # O the kernel of e =5 D" jg
easily obtained from (4.5); it is

(x,y) — exp (%((x2 +y?)cos(2s) — 2xy)/sin(2s)) //2mi sin(2s).  (4.8)

Since /2w sinh(21) = coshtv/4rtanht and Re tanht > O when Re ¢ > 0, the
square root in (4.8) should be taken in the right (left) half plane when coss > 0
(coss < 0). When cos(2s) = 0, hence sin(2s) = %1, the exponential reduces to
exp(Fixy), so ¢~ 56°+D) hecomes the (inverse) Fourier transformation apart from
a factor +¢*™/4 In particular, when s = 7/4 then the operator is e ~™/* times
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the Fourier transformation, and from the group property and Fourier’s inversion
formula we obtain the values at s = vrr/4 for any integer v which we have
already given. (Anders Melin has pointed out that this follows from the expansion
in Hermite functions which are eigenfunctions of the Fourier transformation.)

We turn now to the case of a general quadratic form @ in T*R” with Re Q <
0. First we shall rewrite the result already proved when detcos F # 0. Then
sec F = (cos F)~! is defined, and

or(X,Y)=0(X,(sec F)Y) 4.9

is also a symplectic form in 7*(C"). The corresponding measure vol,,, defined
by the nth power of o and the standard orientation, is equal to vol, /v/detcos F
where vol, is defined by the standard symplectic form. That or is skew sym-
metric is obvious since cos F is even in F, and it is non-degenerate since sec F

is bijective. When F = ((/)1 (1/1) with A = diag(Ay, ..., A,) then

oF =Zd§j Adx; [ cos
1

which proves that vol,, = vol,/[]} cos); as claimed. Since this situation is
symplectically equivalent to the generic case, the statement follows. The result
of Theorem 4.3 is now that

A;(X)vol, = exp(o(X, (tan F)X))vol,,. (4.10)

Our next goal is to give a sense to the two factors in the right-hand side when
detcos F = 0. As suggested by the example of the harmonic oscillator vol,,
will be replaced by a translation invariant measure on the range of cos F, and
the quadratic form in the exponential will only be defined there. We need some
preliminaries:

Proposition 4.4 If Q = Q) +iQ; where Q1 < 0, then Ker (F — X) is the complex
conjugate of Ker (F +)) for every A € R, and if F = F1+iF;, then F1Ker (F £ ) =
0. Thus Ker (F — X) @ Ker (F +X), 0 # A € R, is the complexification of its
intersection with T*R", and so is Ker F.

Proof. Assume that X € T*C" and that (F — A)X = 0. This means that
QY. X)=0c(Y,FX)=Ao(Y,X)
for every ¥, thus
Q(X,X)=Xo(X,X)=2Xio(Re X,Im X),

so O01(X,X) = 0. Since Q; is semidefinite it follows that Q;(Y,X) = 0 for
arbitrary Y, that is, F;X = 0. Thus (iF; — M)X = 0 so (-iF, — A)X = 0, and
(F + M)X = 0. The proof is complete.
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Remark. The generalized eigenspaces need not be complex conjugates. For
example, if O = —& — & ~ x2 ~ 2i&ix; then F(x,&) = (x',€') where
x' = (=& —ixg,~&) and & = (0,x; + i&). The kernel of F is the x; axis
and the kernel of F2 is defined by & = 0 and x, = —i£,. The kernel of F~ is

defined by & = 0 and x, = i€, so the intersection of the kernels of 2 and F~
is the kernel of F.

Proposition 4.5 If Re Q < O then the kernel (resp. range) of cos F is the com-
plexification of its intersection K(F) (resp. W (F)) with T*R". The restriction of
(sinF)/i to K(F) is a bijection with square equal to minus the identity, so it
defines a complex vector space structure in K (F) and the determinant is equal to
1. The corresponding orientation induces an orientation in W (F).

Proof. The kernel of cos F is the direct sum of the kernels of F — X for all A
with cos A = 0. In fact, the restriction of F to V) is equal to A + T where T
is nilpotent. Hence cos F' — cos A = cos(A + T) — cos A is nilpotent and cos F is
invertible if cos A # 0. If cos A = 0 then cos F = cos(A+T) = —sin Asin 7. Since
(sinT)/T — 1 is nilpotent the operator (sinT)/T is invertible so the kernel of
sinT is equal to that of T. From Proposition 4.4 it follows now that the kernel
is the complexification of its intersection with 7*R", and since the range is the
o orthogonal space it has the same property.

The restriction of sin F' to Ker (F — A) @ Ker (F + A) is equal to sin A and
—sin A in the two factors. Hence (sin F)? is equal to the identity in Ker cos F.
If X € Ker (F — A) and A € R, it follows from Proposition 4.4 that F;X = 0
and i/F,X = AX, hence (sin F)X = (sin(iF»))X = i(sinh F3)X, so (sin F)/i defines
a bijection in K(F), with square equal to minus the identity. It makes K(F) a
complex vector space, so it defines a natural orientation which gives rise to an
orientation in 7*R"/W (F), which is dual with respect to the symplectic form.
Since T*R" has a natural orientation as a real symplectic vector space and the
real dimension of K(F) is even, this defines an orientation in W (F).

We can define a symplectic form in the complex vector space W (F)c by
or((cos F)X,(cos F)Y)=o((cos F)X,Y), X,Y eT*C". 4.9

This agrees with (4.9) when detcos F # 0. The definition (4.9) is unique, for
cos F is even in F so the right-hand side is equal to o(X, (cos F)Y ), hence equal
to 0 if (cos F)X = 0 or (cos F)Y = 0. It is obvious that o is skew symmetric. If
the right-hand side of (4.9)’ vanishes for every Y then (cos F)X = 0 which proves
that the form is non-degenerate. Thus we have a symplectic form defined in the
range W (F)¢ of cos F, and the corresponding volume form defines a translation
invariant measure voloy # 0in W (F) when combined with the orientation defined
in Proposition 4.5.

We define the quadratic form similarly. The quadratic form in (4.10) corre-
sponds to the symmetric bilinear form

Ep(X,Y)=0(X,(tanF)Y),
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and we extend the definition to the case where detcos F = 0 by
Er((cos F)X . (cos F)Y) = o((cos F)X,(sinF)Y), X,Y e T*'C". 4.11)

Since cos F is symmetric and sinF is skew symmetric with respect to o the
right-hand side is equal to o((cos F)Y , (sin F)X), which proves that the form is
uniquely defined and symmetric. We can now state the main result of this section:

Theorem 4.6 If Re Q < O then (4.9) defines a symplectic form in the range
W(F)c of cos F where F is the Hamilton map of Q, and (4.11) defines a symmetric
bilinear form with

Re Er(X,X) <0 when X € W(F).

The product of the Weyl symbol of exp(Q™) and vol, is equal to (i) exp(Eg)vol,,
where 2v is the dimension of the kernel K (F) of cos F. Here vol, is the positive
measure defined by the symplectic form, and vol,,. is the measure in W (F) defined
by the form o and the orientation of W (F) in Proposition 4.5.

Proof. If u, € ' and u, — u in ¥’ then (u,,e®) — (u,e%) for every
quadratic form G with negative definite real part. If #,, is even then u is even and
this determines u. In fact, if v € . and (v, %) = 0 for all such forms G, then
differentiation with respect to the coefficients of G shows that (v,X*G) =0 for
every monomial X of even degree, hence for every « if v is even. The Fourier-
Laplace transform of ve€ is then an entire function with all derivatives equal to
0 at the origin so v = 0. We can therefore prove the theorem by examining only
scalar products with Gaussians.

Let us first recall some well known facts on integrals of Gaussians. If A is a
symmetric N x N matrix with Re A positive definite then

/ e~ WX gx = 7V/2 \/det A. (4.12)
RN

Here dX is the Lebesgue measure in RY and v/detA is defined so that it is an
analytic function of A in the convex set of matrices with Re A positive definite,
and equal to 1 at the identity matrix. If Q is a complex valued quadratic form in
a real symplectic vector space S of dimension 2n and Re Q is negative definite,
we write as before Q(X,Y) = o(X, FY) where F is the Hamilton map and claim
that

/erol, = 7" /vdet F (4.13)

s

with vdet F = ,/Hf" Aj defined analytically so that it is positive when @ is real,
thus the eigenvalues A; occur in complex conjugate pairs. To prove (4.13) we
may assume that § = T*R" with standard coordinates X = (x,£) and we write

0 I
o(X,Y)=(EX,Y), E= (_1 o)’
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where (-, -} is the standard scalar product in R** = T*R". Then
Q(X,Y)=o(X,FY) = (EX,FY) = —(X,EFY),

so EF is symmetric and we can apply (4.12) with A = EF. Since detE =1 this
proves (4.13).

If M : S¢ — Sc is an invertible complex linear map which is symmetric
with respect to o, then 5(X,Y)=o(X,M 'Y )is a complex symplectic form in
Sc, and every complex symplectic form there has such a representation. Since
o(X,FY )= 6(X,MFY) the Hamilton map F of Q with respect to & is equal to
MF . Since vol, = v/detMvol; if we keep the orientation in S defined by o, it
follows from (4.13) that

/erolé =7"/(VdetFVdetM)=x"/V det F
s

for a suitable choice of the square root. Thus (4.13) remains valid with such an
uncertainty of the sign if ¢ is any complex symplectic form in Sc.

If F is the Hamilton map of the quadratic form Q in the theorem, then the
zeros t € R of the entire analytic function detcos(tF) are isolated. For t # 1 in
some neighborhood of 1 it follows from Theorem 4.3 that the Weyl symbol A,
of exp(tQ™) is equal to

exp(o(X, tan(tF)X)/vdetcos tF,

and that A, — A; in .Y’ as t — 1. Since Re o(X,tan(tF)X) < 0 when
detcos(¢F) # 0, by Theorem 4.3, we have

0 > Re a(cos(tF)X , tan(tF ) cos(tF)X) = Re o(cos(tF)X, sin(tF)X)
— Re o((cos F)X, (sin F)X)as 1 — 1.

On the other hand, since the range of cos F is invariant under conjugation by
Propaosition 4.5, we may replace (cos F)X by (cos F)Y in (4.11) which gives

Re Ep((cos F)Y,(cos F)Y)=Re o((cos F)Y ,(sin F)Y) < 0,

and proves that Re Er(X,X) < 0 when X is real and in the range of cos F.
Let G be a quadratic form with negative definite real part and denote its
Hamilton map by &. Then for ¢ # I real and close to 1

(AtveG>

i

/exp(a(X, (tan(tF) + $)X ))vol, /+/det cos(tF)
ﬂ"/\/ael cos(tF) det(tan(tF) + D)
ﬂ"/\/ael(sin(tF) + cos(tF)d)

— " /y/det(sin F + (cos F)®), whent — 1.

I

It

(We postpone discussing the choice of the square root.) To calculate the deter-
minant we note that sin F + (cos F)® maps the range W(F)¢ of cos F to itself
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since sin ' commutes with cos . The determinant is therefore equal to the prod-
uct of the determinant of the restriction to W(F)c and the determinant of the
map induced in the quotient of 7*C" and W (F)c. Now the o orthogonal space
Ker cos F of W(F)c is dual to this quotient space and the adjoint of the map
induced in the quotient is the restriction of the adjoint —sinF — dcos F to
Ker cosF, hence equal to —sin F. With 2v = dimKer cos F it follows from
Proposition 4.5 that the determinant of sin F + (cos F)® is (—1)" times the de-
terminant D of the restriction to W(F)c. Thus for some choice of the square
root

(A1,e%) = 7"i*/VD. (4.14)

The theorem will be proved if we show that the right-hand side is equal to
7r”i"/ exp(Er (X, X)+ G(X))volor. (4.15)
W(F)

By the remarks made on (4.13) we can evaluate the integral in (4.15) using (4.13)
in spite of the fact that oF is a complex valued symplectic form. By (4.9) we
have

o((cos F)X,P(cos F)Y) = op((cos F)X, (cos FYD(cos F)Y),

which proves that with respect to or the Hamilton map of the restriction of G
to W is equal to (cos F)®. By (4.11) and (4.9)

Er((cos F)X,(cos F)Y) = o((cos F)X, (sin F)Y)
=ogr((cos F)X,(cos F sin F)Y ) = ogg((cos F)X, (sin F)((cos F)Y)),

which proves that with respect to o5 the Hamilton map of Er is defined by sin F.
Hence the integral in (4.15) is equal to 7" ~¥/+/D, and we have proved that

(Al,eG> = +(mi)” exp(Er(X,X)+ G(X))volor.
W(F)

The sign must be independent of G since both sides are continuous functions of
G, so we have proved the statement except for the uncertainty of the sign, which
we have not kept track of in the choice of square roots above.

To verify that the sign is correct in Theorem 4.6 we shall use a continuity
method connecting to the case where Q is purely imaginary so that we can use
the classification in Theorem 3.1. This argument will be postponed until we have
made an explicit calculation in that case.

Thus assume now that Q /i is a real valued symplectic form in T*R". By the
metaplectic invariance of the Weyl calculus we may assume that Q /i is a sum
of polynomials as listed in Theorem 3.1 in different groups of variables. The
formula for the Weyl symbol of exp(Q¥) is immediately given by Theorem 4.3
in all cases except case ¢) in Theorem 3.1 when cosu = 0 so we assume now
that
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Q(x,8) =i (“’ijxn+l~j - ij-xn+2—j +NZ€j§n+1-,
1 2 1
n—1
_Zgjgn—j) ) 4.16)
1

where v = 1 and cosu = 0. Then F(x,£) = (x', &) where

xl

/

i

’Yl(ﬂ(gnyvgl)“ (571-]7"'75]10))7
i (1t 31 = O, -, 32)).

H

If€=(&,....&) = —ix/y it follows that
x'—px = -Lx, €& —pf=-RE

where Lx = (x3,...,x,,0) is a left shift and R€ = (0,£;,...,&,—1) is a right shift.
This proves again that this is the space of generalized eigenvectors belonging to
the eigenvalue g. Similarly, when € = ix /v then

x'+px=Lx, & +pf=RE

and we obtain the other generalized eigenspace. K (F) is the x;&, plane and W (F)
is defined by & = x, = 0. In the kernel of F T 11 we have sin F = & sin . Writing

X :(leov"'ﬁoﬂgn):(yl’ov'-'voa ’i}’I/'Y)'*’(Zl»Ow--707iZl/'Y)
we obtain
(sinF)X =sinp(y —21,0,...,0,—i(y +z1)/v) = iysinpu(&,,0,...,0,—x).

Thus the analytic structure defined in K (F) by (sin F)/i makes , £ix; an analytic
coordinate if vsin = £1, so K(F) is oriented by the form - sin ud§, Adx,. The
quotient space T*R" /W (F) is parametrized by x,, £, and the duality with X (F)
is given by

U((Ov"'707xn7§1707"'70)701707"'70777n))=£1yl — XpTn

so the orientation as a dual space of K(F) is given by the orientation form
vsin ud&, A dx,. Since T*R" is oriented as a symplectic vector space by d&; A
dxy A ... AdE, N dx, where we can move dx, to the right of d§; without
changing the sign, it follows that W (F), with coordinates x1, . .., Xy 1,82, - .-, &x,
is oriented by the form

'ysinpdxl /\dfz/\.../\dx,,-1 /\df,,. (417)

Next we must calculate o using (4.9). To find (cos F)X we decompose X
into its components in the two generalized eigenspaces

X =0x,80=0,—iy/7)+,iZ/7).
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In the space of generalized eigenvectors belonging to the eigenvalue p we write
cos F = cos(F — p+ p) = —sinpsin(F — y), which acts on the x coordinates
as (sin u) sin L. For the other eigenvalue we find that cos F = cos(F + u — p) =
sin u sin(F + ) also acts as (sin g} sinL in the x coordinates. Hence

(cos F)X = sin u((sin L)x, (sin R)§),

SO
or((cos F)X,(cos F)Y) = (sin w)o(((sin L)x, (sin R)E}, (v, 17)).

This means that for X, Y € W(F) and ¥ =(y,n)
or(X,Y) = (sinwo(X, (sin L)y, (sin R) ™ 'n)).

The right-hand side is defined since y is in the range of L and 7 is in the range
of R, for L/sinL and R/sinR are equal to the identity plus nilpotent maps, so
the right argument in the scalar product is defined modulo an element in K(F)
which is ¢ orthogonal to X. When we take the n — 1st power of o regarded
as a differential form we can replace (sinL)™! and (sinR)~! by L=! and R~!
for the determinant of the identity plus a nilpotent matrix is equal to 1. Now the
n — 1st power of the differential form

sinpu(dé ANdxy + ... +dé, Ndx,_y)

is equal to (sin )" ~'d& Adxy A ... Ad€, Adx, 1 which differs from (4.17) by
the factor y(sin u)"(—1)"~!. Thus vol,, is equal to y(sin u)"(—1)""! times the
Lebesgue measure in the coordinates in W (F).

To check Theorem 4.6 for this case we must also calculate the Weyl symbol
of exp(@") explicitly as the limit of that of exp(tQ*) as r = 1 +s/u — 1. Then
Vdetcos(tF) = (cos(p + 5))* = (— sin usins)". We have

tan(tF) = tan(t(F F u) £ (u+5)) = —cot(t(F ¥ n) £ s5).

Recalling the Taylor expansion

b
-1 _ 2k A2k k., 2k—1 )
cotz =z +G(), G(2)= ]Z m2 (-1)z y fz] < 5m,

where by, are the Bernoulli numbers, we obtain in the eigenspaces where F F
is nilpotent

tan(tF)X = IF(Zs’jtj_l(,u FFY 4 G(s — t(u T F)))X.
I

If X = (x,€) then u F F acts as the left shift L on the x coordinates and we
obtain as in the discussion of sin F above, when s — 0,



Classification of quadratic forms, and Mehler formulas 435

n

o(X. tan(tF)YX) = _7,'<Zs~jtj—l<§~LjAlg>

1

_ _bZk %, ik U-1g
2 G enerry)

1<k<n/2

| .

1<k<n/2

Here (€.L77'€) =3, cpsa—; &v€u 50 the first sum can be written

S_"t"Al(if,,(S/t)u_l)z B Z su+u‘2wntn+l—u~u£l’€“'
1

v+u>2+n

The second sum here converges to Zv+u=2+n £,€u- The function R 3 7
e~ "7 is asymptotic in .¥ '(R) to 8o//iys "/ as s — 0, with a suitable
choice of the square root. The same square root appears when we take the limit
of the factors involving x, so a change of variables yields the limit

lirr} exp(o(X, tan(tF)X)/~/det(cos tF ) = —myi(— sin u)" 6o (x, )80 (€1) exp(E),
. by
E=iv 3 (2—k)—!22"(—1)"( oGkt Y ma). (4.18)

0<k<n/2 v+p=n+2—2k v+p=n+2k

Here we have used that by = 1. Since —myi(—sinp)® = wiy(sin p)*(—=1)*~1
this corapletes the verification of Theorem 4.6 for the quadratic form (4.16) and
provides in addition the completely explicit formula (4.18).

End of proof of Theorem 4.6. Let Q = Q) +iQ; be any quadratic form in T*R"
with Q) = Re Q < 0, and denote the Hamilton map by F = F; + iF,. We can
choose a purely imaginary quadratic form iQg, with Hamilton map iFy, such that
the kernel of F — X is equal to the kernel of iFp — A when cos A = 0. In fact,

My = T*R" N (Ker (F — \) @ Ker (F — )

is symplectically orthogonal to M, if p # X and cosp = 0. We can find a
symplectic decomposition T*R" = So & @5 =0 10 Su Such that M, C S, for
every u > 0 with cosp = 0. Using the forms c) in Theorem 3.1 with n = 1
or n = 2 when g > 0 and the forms a) with n = 1 when u = 0 we obtain
a polynomial Q, with the required properties as a sum of polynomials in the
different spaces in the decomposition.

If £ > 0 is sufficiently small, then the kernel of Fy +i((1 — 7)F> + 7Fp) — A
is independent of + when 0 < 7 < € and cos A = 0, for it contains the kernel of
F — X and the dimension is upper semicontinuous. Also i((1 — 7)Fy + 7Fp) — A
has the same kernel except for finitely many values of 7, for the kernel cannot be
smaller than that of F — A and is equal to it except at the zeros of a determinant
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which is a polynomial in 7 and # 0 when 7 = 1. For such a value of 75 € (0,¢]
we define

FT__{F1+1‘((1AT)F2+TF0), if0<7 <7,

2~ 7/10)F\ +i((1 = T0)F2 + 1oFo), if 7o < 7 < 279 (4.19)

It follows from Proposition 4.4 that the kernel of cos(#7) is independent of
7 when 19 < 7 < 279, and since it contains the kernel when 7 = 27y the
semicontinuity of the dimension of the kernel completes the proof that the kernel
is independent of 7.

Now our definitions of or and Er in (4.9) and (4.11) are continuous in F
when Ker cos F is fixed. If Q7 is the quadratic form with Hamilton map F7
obtained when F; is replaced by (J; in (4.19) then the Weyl symbol for exp(Q ™)
is as stated in Theorem 4.6 for all 7 € [0, 27p] since this is true when 7 = 27.
In particular this is true for exp(Q°%) = exp(Q¥), which completes the proof.

The literature also contains some formulas for the symbol of exp(itQ¥(x, D))
when @ is an inhomogeneous quadratic polynomial. An example is the formula
of Avron and Herbst [1] for Q(x,£) = €2 + x in T*R. We shall now show how
such formulas can be derived from the results in this section.

First assume that Q(X), where X = (x,£) € T*R", is a quadratic polynomial
with real coefficients, and that the principal part g(x,&) is non-singular. We
denote the Hamilton map of ¢ by F and write

O0X)=qX)+20(X,a)+b =0(X,FX)+20(X,a)+Db. (4.20)
Then we have
QX)=qgX +8)+c, where 8=F la, c=b—q@®)=b —o(b,F8).

There is a unitary operator, the composition of a translation and multiplication
by an exponential, such that

UT'AYU =BY if B(X)= 4Y +0).
Hence
QY =U""q¥U +¢c, expit@¥) = U ~"explitg”)U exp(itc),
so it follows from Theorem 4.3 that the Weyl symbol of exp(itQ") is equal to
exp(io(X + 6, tanh(tF )X + 6)) + itc)/\/det cosh(tF)
when the denominator is not equal to 0. Here

o(X + 8, tanh(tF)(X + 8)) + tc
= (X, tanh(tF)X) + 20(X, F ~ ' tanh(tF)a) — o(a, F ~X(tanh(tF) — tF))a) + th.
The right-hand side is welil defined even if F is not invertible, provided that

detcosh(tF) # 0. For reasons of continuity we conclude that the symbol of
exp(iQ™) is then equal to the product of the symbol of exp(itqg™) by
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exp (i(ZU(X, F~'tanh(tF)a) — o(a, F ~*(tanh(tF) — tFya) + tb)) 4.21)

if detcosh(tF) # 0, even if F is not invertible.

The preceding result means that we have solved the equations analogous to
(4.1) for an inhomogeneous @ when Q has real coefficients, and the analyticity of
the result shows that the solution is also valid when the coefficients are complex.
We can therefore apply the proof of Theorem 4.3 again, which gives:

Theorem 4.7 Let Q be a quadratic polynomial in T*R" such that Im @ is
bounded below. Write Q in the form (4.20) with q homogeneous, and let F be
the Hamilton map of q. Then the Weyl symbol of exp(itQ™) is equal to that of
exp(itq™), described in Theorem 4.3, multiplied by (4.21), provided that t > 0
and that det cosh(tF) # 0.

We shall not discuss the case where detcosh(tF) = O but content ourselves
with the example where F? = cF as in Derezinski [3]. As observed above,
tanh(tF) = F tanh(t\/¢)/+/c then, and similarly

F~?(tanh(tF) — tF) = F (tanh(t/¢) — t/¢)/(c /<),

so the symbol of exp(irQ™) is equal to

exp (i(tanh(t/c)//c(g(X) + 20(X,a))) K,
_exp (i (g(a)t\/c — tanh(t\/C))/(c\/c) + th))

K ;
Vdetcosh(tF)

or equivalently,

. 20 h
exp (i(tanh 11/¢)/V/c(q(X) + 20(X ,a) — q(a)/c)) exp (it{g(a)/c* + b))

/detcosh(tF)
when ¢ # 0,
exp (i(1Q(X) +q(a)*/3)),
when ¢ = 0.

When Q(X) = €2 +x, X = (x,£) € T*R, we obtain the Weyl symbol

a(x, &) = exp(i(t€* +1x +17 /12)). (4.22)
By [4, Theorem 18.5.10] we have a¥(x, D) = b(x, D), where b(x, D) is defined
by the standard calculus, if 5(x,£) = exp(%ii)‘ Dg)a(x ), that 1s,

b(x,8) = ! //a(x ~y,& = mexp(=2iyn)dy di).
s
Evaluation of this Gaussian integral gives
blx,£) = expli(tE> + 1€+ tx + 17 /3)), (4.23)

which is the formula of Avron and Herbst. Again we notice that the Weyl symbol
(4.22) is simpler than the standard symbol (4.23); the lack of commutativity only
affects the constant term in (4.22).
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5 Gaussian calculus

In this section we shall put the results of Sect.4 in the framework of general
Gaussians studied as infinitesimal Fourier integral distributions (operators). We
start with recalling some essentially well known facts on Gaussian distributions.
(See [4, Sect.21.6] for the case of real Lagrangians.)

Let 0 £ u € Z'(R") and set

S = {L;L(x,D)u =0},
where L(x, D)= > _a;D; + Y _ bjx;. 5.1
1 i

One calls u a Gaussian if every v € Z/(R") such that L(x,D)v = 0 for all
L e ¥, is amultiple of u. If L, L, € ¥, then the commutator [L;, L,} is equal
to 0, for it is a constant and [L;, L,]u = 0. Hence

A ={(x,&) e T*C"; L(x,6)=0V L e ¥4,} (5.2)
is an involutive subspace.

Proposition 5.1 If u is a Gaussian then (5.1), (5.2) define a complex Lagrangian
plane such that V = {£;(0,€) € \,} is invariant under conjugation, hence gen-
erated by its intersection with R". Conversely, for every such Lagrangian plane
A a distribution u such that L(x, D)u = 0 for every L which vanishes on X is a
Gaussian, and u = ce?d where d is a é-function on a linear subspace and q is a
quadratic form there, both determined by X\, and ¢ € C\ {0}.

Proof. We introduce new coordinates by first taking a basis e,...,e; for
W NR" where W = {L(0,0/0x);L € ¥,}, and then extending it o a basis
in Re W by taking real and imaginary parts of elements e,;,..., €4 such
that ey,..., e, €x+1,---, €k 1S @ complex basis in W. Then we can write the

equations L{x,D)v =0, L € ¥,, in the form

(0/0x; +ai(x)v =0, 1 <j <k; (8/0Z +bj(x)v=0, 1 <j <I;
g =0,1<j<m.

Here 8/0z; = %(B/ka,,zjml +10/0xy49)). Since the operators commute we have
aaj/ax,- = aai/ax,-, Baj/aii = ab,'/an, db,/(‘?Z, = Ob,/()Z,,

and ¢y, ..., c, are independent of x;, ..., x; and analytic in z;, .. ., z;. This means

that if . 1
Q(_x) = -% (Z aj(x)xj + ij(X)Z—J)
1 1

then

a;j(x)=aj(x) — 9Q(x)/0x;, j=1,... k,
Bi(x) = bj(x) — 3Q(x)/0Z;, j=1,...,1,
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are independent of x;...... v, and analytic in z;,...,z. With v = e Qw the
equations reduce to

Ow/ox;+oyw =0, j=1,... k; w0z + Bw=0,j=1,...,1;
cixyw=0,j=1, ..., m.

Thus W(x) = w(x)exp(Zf o () + le % B;(x)) is independent of xi,...,x
and analytic in zy,...,z so the support is invariant under translation in the
directions of the xy,....xx4 plane. The product of a solution by any analytic
function of zy, ..., z; is another solution, and since all solutions are supposed to be
proportional it follows that [ = 0. The forms ¢; must be independent of x;, ..., x;
for otherwise W would have to be equal to O by the translation invariance in
these variables. As at the beginning of the proof we can change the coordinates
Xk4l.- - -, Xy SO that the linear combinations of the forms ¢; are precisely the linear
combinations of xgy1 + g4, - .-, Xea2p—1 +iXk12u, Xk42p+15 - - -, Xy for some p > 0
and N < n. Since the solution W is supposed to be unique it is clear that N = n.
Then we have x;; = ... = x, = 0 for every solution W. However, if we apply
0/0xk41 +i0/0xis2 to a solution we obtain a new solution, so the uniqueness
also implies that g = 0. Thus A, is defined by

£ —ig(x)=0,j=1,....k, x=0j=k+1,...,n,

which is a complex Lagrangian such that V is defined by & = 0, j < k, hence
invariant under conjugation. We have u(x) = ce ™ 786(xg41, . .. ,X,) where g(x) =
%Zf x;a;(x) can be taken as a quadratic form in (xy,...,x;) only.

Now assume that we are given a complex Lagrangian A C T*C" such that
V = {£(0,6) € A} is generated by V NR”". By a change of coordinates we may
assume that this is the &4y,...,&, plane. Then x4y = ... = x, =0 in A, and
&1,-..,& are there linear functions of x’ = (x1,...,x¢), so A is defined by

Ei=a;(x"), j=1,... 0k, x=0,j=k+1,...,n.
which is precisely the situation just discussed since Z']( a;(x"y; = Z’; aj(y")x;.

The condition on A in Proposition 5.1 is not invariant under the linear symplectic
group in T*R". The following result shows how it must be strengthened to
become invariant. Note that

io(Y.X), X,Y eT*C",
is a Hermitian symmetric form.

Proposition 5.2 If A C T*C" is a complex Lagrangian plane, then the following
properties are equivalent:

(i) For every real Lagrangian plane n C T*R", with complexification uc, the
intersection A N yc is invariant under complex conjugation.
(i) io(X,X) is semidefinite when X € .
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Proof. Assume that (ii) is valid and let X € ANpyc¢. Then X e Uc, SO ocX,X)=0,
and it follows from (ii) that io(X,Y) =0 for every ¥ € X. Hence X € A since
A is Lagrangian, so (i) is valid. Now assume that (ii) is not fulfilled. Then we
can find X € A with io(X,X) = 0 such that io(X,Y) # 0 for some Y € A. Thus
o(Re X,Im X) = 0, so we can choose a real Lagrangian u containing the vectors
Re X and Im X. Then X € AN puc but X ¢ A since ) is isotropic and Y € \.
Hence (i) is not fulfilled.

Definition 5.3 If S is a real symplectic vector space with complexification Sc,
then a Lagrangian X C Sc is said to be positive if ic(X,X) > 0, X € ), and
strictly positive if io(X,X) > 0 when 0 # X € A The set of strictly positive
Lagrangian planes will be denoted by A*.

It is obvious that the closure of A* consists of positive Lagrangian planes. To
prove that every positive Lagrangian plane A is in the closure we represent A in
the form {(x’,0,8Q/0x’,€")} as in the proof of Proposition 5.1, where Q is a
quadratic form in x” = (x1,...,x;) and x” = (xx41, - . -, x,). The positivity means
that

i(BQN/0x",x') — (x', 0Q(x")/8x')) = 4Im Q(Re x') + 4Im Q(Im x'),

that is, that Im Q 1s positive semidefinite in R, It is now clear that X is the limit
as € — 0 of the strictly positive Lagrangians

{(x",ex",00/0x" +iex’,ix")}.

Let % be the set of all Gaussians in R* such that the associated complex
Lagrangian is positive. By Proposition 5.1 and the preceding discussion these
are precisely the Gaussians which are temperate distributions, and the map & 2
u — A, to the corresponding positive Lagrangian has complex lines with the
origin removed as fibers.

Proposition 5.4 With the topology induced by %"’ and the projection just defined,
the temperate Gaussians % form a complex line bundle over A, with the zero
section removed.

Proof. The Gaussian in the proof of Proposition 5.1 can be written as a Fourier
transform

u=c /exp(iq(x') +ilx" £"NHde"”

in the sense of distribution theory, where ¢ € C\ {0} and Im g > 0 in R* if and
only if u is temperate. If Q(x’, £’) is an arbitrary quadratic form with Im Q >0
in R", then

Ueg = C/CXP(iQ(x’,é”)Jri(x”,g”))dg" (5.3)

is an injective continuous function of ¢ # 0 and Q with values in .%"’ and is a
Gaussian associated with the positive Lagrangian
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{(", —0Q(x",€")/0¢",0Q(x", ") [ox",&")}. (5.4)

The integral in (5.3) is defined in the sense of distribution theory. That (5.4)
defines a Lagrangian is clear since

k n
(€.dx) =) 00 /0xdy; - 6d0Q /0,
1

k+1

has the differential
N 0’0 /0goxde Adxy — Y dE; A PQ /060x,dy = 0.

Every Lagrangian X close to the given Lagrangian {(x’,0,0q(x’) /Ox’,£")} is
of the form (5.4), for the projection A 3 (x,&) = (x/,£”) is then surjective so
we can write x” = @(x’,£”) and £ = (x’,£"") on A. That X is Lagrangian means
then that 0 = d((&',dx") — (x",d&")) = d({¥,dx") — {(¢,d€")), so there is a
quadratic form Q(x’,¢"") with ¢ = Q /0x’ and ¢ = —0Q/3¢". The statement
is now a consequence of the following more general result:

Proposition 5.5 Let Q(x,0) be a complex valued quadratic form in R" @ RY
such that Im Q > 0 and the linear forms 8Q/06;, j = 1,...,N, are linearly
independent over C. Then

u= /e’Q‘*-"’da (5.5)
can be interpreted as a Gaussian belonging 10 the positive Lagrangian
A ={(x,00(x,8)/0x); 80 (x,6)/08 = 0}. (5.6)
Proof. First note that the equations
£=0Q(x,8)/0x, 0=0Q(x,0)/00

for (x,£,0) € C" ® C" & CV define a linear space of dimension n since the
equations are linearly independent. The projection (x,&,8) — (x, &) is injective
there, for if Q(x,6)/0x =0, OQ(x,6)/06 = 0 and x = 0 then

N

Zejazg/axkaoj =0, k=1,...,n;
j=1

N

> " 6,0°%0/06,86,=0, k=1,...,N;
j=l

which implies 4 = 0 by the assumed linear independence of 0Q/96;, j =
I,...,N. Thus (5.6) defines a linear space of complex dimension n, and since
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D de; ndy = d(0Q/0x) Ady
j=1

j=1

n N N
= >N " 0°0/0x506:d0, Adx; = > dby AdOQ /96

=t k=1 k=1

vanishes on the manifold where 80 /86 = 0, it follows that X is Lagrangian. If
X = (x,00(x,6)/0x) and 0Q(x,6)/36 = 0, then

I

io(X,X) = i((0Q/0x,x) ~ (¥,80/0x))

2Im ((8Q/0x,X) + (9Q /56, 6) = 4Im Q(x, 6;%, §))

It

where Q(-;-) is the polarized symmetric bilinear form defined by Q. Hence X is
positive.

The integral (5.5) can be defined in the sense of distribution theory: If ¢ € .%
we shall prove that

(u,0) = /@(X)eiQ<”9’dxd6 (5.5)

exists as an oscillatory integral. If Im Q is positive definite the integral is ab-
solutely convergent. Since we have just seen that x = 90 /9x = 0, 3Q /86 =0
imply 8 = 0 we can write

6= apx+Y bydQ/0x+ Y cpdQ/00

and obtain in the strictly positive case for any integer v > 0 by partial integration
after multiplication by (1 — i6;)(1 —i6;)™"

N
(u,0) = /eiQ(x'o)H ((1 —iY apx+ bud/ox
j=1
+3c8/96,)(1 — i9j)‘])ugp(x)dx do.

When v > N this defines a distribution in .%”’ also when Im Q is just positive
semidefinite, so (5.5) defines a temperate distribution depending continuously
on Q. It suffices to verify that it is Gaussian in the strictly positive case. If
L(x,£) = 0 on the Lagrangian (5.6), then L(x,0Q /0x)= Z’lv 1,00 /06; for some
t;, and we obtain

L(x,Du = /L(X,BQ/ax)eiQ(x’e)dQ

N
= th /GQ/(‘)()jeiQ(x’g) de =0,
1

which completes the proof.
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Proposition 5.6 If Q is a quadratic form satisfying the hypotheses of Proposition
1.5 and ¢ = 9*Q /06? # 0, then

Q(x,0) = §c(B) +L(x, 002 + Q1(x,6"), 6 =(6s,....0y), (5.7

where L is a linear form, Q is a quadratic form satisfying the hypotheses of
Proposition 5.5 with N replaced by N — 1, and

/eiQ(xag)dH: W/e'g‘(x’o’)dgl (5-8)

with the square root in the right half plane.

Proof. By completion of squares we can write Q in the form (5.7). If 3 € R then
{(a+iB)* a € R} is a parabola surrounding the circle {z;1z] = 8%}, so we have

—1le||Im L(x, 8")*+Im Oy (x,6') > infIm Q(x,6,,0)>0, xecR" § ¢RV!
1

which proves that Q; satisfies the hypotheses of Proposition 5.5. When Im ¢ > 0
we obtain (5.8) immediately by integration and the general case follows by
continuity.

By repeated use of Proposition 5.6 we can reduce the number of 8 variables
in (5.5) until we are left with a quadratic form Q(x,8) which is linear in 8. It is
then essentially uniquely determined by A:

Proposition 5.7 If Q(x, 0) is a quadratic form satisfying the hypotheses in Propo-
sition 5.5 and Q is linear in 0, then

Ox,0)={L8,x)+qgx), (5.9)

where L is an injective linear transformation R — R" and Im g > 0. The
corresponding Lagrangian is

A={(x,q'(x) +LO);x € C",0 € C",'Lx = 0}.

The Gaussian distribution (5.5) is 2m)¥ 6 Lx)e¥®. If Q(x.8) = (L8, x) + G(x)
defines the same Lagrangian then L = LT where T is a linear bijection in RY,
and G = q when ' Lx = 0, which is equivalent to 'Lx = 0.

Proof. Since Im Q(x,6) > 0 in R" & RY we must have Im (L§,x) = 0 there, so
L maps R¥ 1o R". The linear independence of 80 /06;,j = 1,...,N, means that
L is injective. The range of L is {£;(0,£) € A}, which proves that L is uniquely
determined by A apart from an invertible factor to the right. This completes the
proof,
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For the sake of brevity we shall not discuss here the definition of symbols of
general Gaussian distributions but pass to a study of those which are related to
symplectic linear maps. If A C T*C" @ T*C" = T*C? is a positive Lagrangian
with injective projection in each of the two factors, then the projections are
bijective. In fact, if A 2 (X,Y) — X € T*C”" is not surjecive, then one can find
Xo € T*C"\ {0} such that o(X, Xp) = 0 for all (X,Y) € A. Since X is Lagrangian
this means that (Xg, 0) € A so the projection to the second factor is not injective.
~— When the projections are bijective we introduce the twisted Lagrangian

C=XN={X,Y)X,Y)e A},

where Y/ = (y, —n) if Y = (y,n). We regard C as the graph {(TY,Y);Y € T*C"}
of a symplectic linear bijection 7*C" — T*C", that is, o(TX,TY) = o(X,Y) for
all X, Y € T*C". We shall say that T is positive if the corresponding Lagrangian
A is positive, that is,

i(cTY, TY)—o(Y,Y) >0, Y eT*C". (5.10)

With T we associate the Gaussian distribution

Ky = (m)- @2 \/;et(Qé:g/i o, ) [eoeroag
x8 xy

€ .%'(R" x RY), (5.11)

where Q is a quadratic form defining A = C’ according to Proposition 5.5. We
do not prescribe the sign of the square root so K7 is only determined up to the
sign. Apart from that Kr is uniquely determined, independently of the choice of
Q. To prove this we first observe that if the hypotheses of Proposition 5.6 are
fulfilled, then the definitions using the two quadratic forms Q and Q; (with x
replaced by (x,y)) agree. We just have to prove that

03y 0y o Ol
det Y | =cdet{ Z19'0" <1 ’>'> . 5.12)
(Q;'o Q;;.> ( vy Ol (

Let O, be the form obtained when L is replaced by 0 in (5.7). Then the matrix in
the left-hand side of (5.12) is equal to the corresponding matrix with Q replaced
by @, multiplied right and left by 8((8; + L), ¢’,y)/3(8,y) and the transpose of
O((6,+L), ¢, x)/8(8, x), which have determinant 1. This proves (5.12), and it just
remains to discuss the case where Q is linear in . By Proposition 5.6 two such
forms Q can only differ by a substitution of T@ for 8 where T is an invertible
linear transformation in RY, and this does not affect (5.11).

Before discussing the composition of two operators with kernels of the form
(5.11) we have to prove a continuity property making it well defined.

Proposition 5.8 If T is a positive symplectic linear bijection in T*C", then the
map Fer SR — F'(R") with kernel (5.11) is a continuous map in ¥ (R")
and extends to a continuous map in ' (R").



Classification of quadratic forms, and Mehler formulas 445

Proof. By duality it suffices to prove the statement on .&". If (xp, &) = T (vo, 10)
then (xo, &0, Y0, —Mo) € A = C’, which means that

<€7X0> - <X,§()> + (%)’0) + <yv770> =0, (X,&Y»T)) €A

Thus the corresponding differential operator annihilates Ky which means that
Ly = ZyLif L= (D¢, yo) — (y,n0) and Ly = (Dy,x) — (x, &). Any product
of F T to the left by such operators is therefore equal to a preduct to the right.
Since (1 +|D}? +|x|*)~".Zf is a bounded continuous function for all f € .7
if N is large enough, it follows that

xDAFGf = (1 + D+ x Py N+ D) + x| DV x DB 7 f
is a bounded continuous function for arbitrary «, 3. This proves the statement,
and the proof shows that A#7f depends continuously on T also.
Proposition 5.9 If T\ and T, are two positive symplectic bijections in T*C", then
T\T, is also a positive symplectic bijection and 71,1, = £. 707, 7T,

Proof. We write

= (27r)_(’l+Nl)/2 det ( 190/1 QIO\ ) /ein(,r,)',G) dg7
leG lle‘

Kr, = (271')“("“\,:)/2 det( 3/1-7/1 QZTZ ) /ein(,\',z,r)dT’
2vT lQZ‘Z

and let Q(x,z,y,08,7) = Q1(x,y, )+ Q2(y,z,7) with x = (v, 8, T) considered as
the fiber variables, with dimension v =n+N;+N,. Since n+N;+n+N; =n+v,
this gives the right power of (27) in the composition. The corresponding twisted
Lagrangian is defined by

{(X,Q;,Z,~—QZI),Q‘/ IO,Qé =O7Q;_ :O}

Then we have

Tz, —0Qx(y,2,7)/02) = (y,002(y. 2, T)/0y) = (v, — 9Qi(x, y,8)/0y),

thus TyTy(z, —0Q:(y,2,7)/02) = (x,00;(x,y,8)/0x), so it will follow that
F,1, 18 equal to Ay, 70, if we prove that

n . 1
L Q,,> ( 199/ Qle ) ( /i Qz >
det XAl XL = det Y] det 7T Tz
( Qxx { x/z leo Qlu QZ\-r QZ\z

for this will prove at the same time that the components of 9Q /0y are linearly
independent. For reasons of continuity it suffices to prove this algebraic identity
when the number of @ and 7 variables can be reduced to 0, and when these
variables are absent it reduces to

det((QQ“‘ @)/ QZ”) det(iQy,, ) det(iQy;,)
Txy

which is obvious.
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The kernel of the adjoint of . %/} is defined by —O(y, x, 6), and the corresponding
symplectic transformation is Y + T-!Y, which we shall denote by 7' In
particular, this is the inverse of T when T is real. The structure of a general
positive symplectic hinear map is clarified by the following analogue of the polar
decomposition:

Proposition 5.10 Every positive symplectic linear map in T*C" can be factored
as T1T,T; where T\ and T are real linear symplectic maps and Tr(x,&) = (x', &)
where for j = 1,...,n either

(1], &) = (x; cosh 1; — & sinh 7;, ix; sinh 7; + & cosh 7;)

or (x/,&)=(x,ix; +§),
with 7; > 0. The map T, is defined by the sum of the quadratic forms

(x; 6, + lzi(xjZ + 0]-2) sinh 13}/ cosh7; —y;68; or x6, + %isz ~y;0;.

Proof. This is contained in Theorem 4.1 of Hormander [5] where it was proved

by studying 7T

We shall now connect the preceding facts with the Weyl calculus. First we
consider the Weyl operator in R” with symbol ¢?*%) where Q is a quadratic
form with Im Q@ > 0 in T*R". The kernel of the operator is

K(x,y)=Q2m)™" /eiQ(%“*")"”*i<"”"") de (5.13)

which is well defined since the derivatives of the exponent with respect to
61,...,0, are obviously linearly independent. The corresponding twisted La-
grangian contains (x,&,y,n) if with z = %(x +7y) and some 6

Qiz.0)+x —y=0, 30Uz, O)+0=€ 10/, 6)+0=n,

which is equivalent to

x=2—30(z,0), E=0+30/(z,0), y =2 +304(z,0),
77:9_ %Qzl(zve)

If F is the Hamilton map corresponding to Q this means that

(x,O=U-F)z,0), @,n=U+F)z,0). (5.14)

If F does not have the eigenvalue 1, hence not the eigenvalue —1 either, we
obtain a symplectic linear map T = (I — F)(I + F)~'. (The passage from F to T
is an analogue of the Cayley transformation.) The kernel (5.13) is then a constant
times K7, defined by (5.11). To determine the constant we must evaluate

A 1y _ a4 1w _
der (Pl 121 ) <o (1080 12T,
3Q+1 310 3@ +1 397



Classification of quadratic forms. and Mehler formulas 447

Multiplication to the right by (O_l {)) which has determinant 1, shows that

this determinant is equal to

] - lQ” l_Q/l
det( 26 2360 =det(] — F).
-30%  1+30

Hence we have proved:

Proposition 5.11 If Q is a quadratic form in T*R"* with Im Q > 0 and the
Hamilton map F of Q does not have the eigenvalues +1, then

Vet — F)e©) = .75 _ryasrs, (5.15)
where ./ is the operator with kernel Kt defined in (5.11).

We shall apply this result to ¢’¢” where Q is a quadratic form with Hamilton
map F and Im Q > 0. When det cosh F # O we know from Theorem 4.3 that the
Weyl symbol is equal to exp(iQ)/v/detcosh F where Q(X) = o(X, (tanh F)X).
Thus the Hamilton map of Q is tanh F, which according to Proposition 5.11 is
associated with the linear symplectic map

(I —tanh FY{J +tanh F)~ ' = ¢ =%,

We have det(I — tanh F') = det(cosh F — sinh F)/ detcosh F = 1/ detcosh F, for
the determinant of e ~F is equal to 1 since it is a symplectic map. Now it follows
from Proposition 5.11 that the Weyl operator defined by exp(iQ)/v/detcosh F
is equal to .Aexp—2r), which means that e?" is equal to Foexp(—2F). We can
therefore give another interpretation of the Mehler formulas of Sect. 4:

Theorem 5.12 If O is a quadratic form in T*R" withlm Q > 0, then exp(iQ¥) =
Foexp(—2Fy Where . Fiy is the operator with kernel Ky defined by (5.11) when T
belongs to the semigroup €, of positive symplectic linear maps in T*C". The
semigroup generated by the contraction operators exp(iQY) consists of all op-
erators .7y with T € ¢,; it is a double cover of €. The invertible elements
in the semigroup are those with T € €y C €., where ¢ is the real symplectic
group. They form a double cover of €y, generated by exp(iQ*™) when Q is a real
quadratic form.

Proof. If cosh A # 0 when A is an eigenvalue of F, we have already seen that
exp(iQ™) = Alexp(—2¢). Otherwise we write 1 = s + 1 where 0 < 5 < ¢ and
coshAs # 0, coshAr # 0 when X is an eigenvalue of F. Then exp(irfQ%) =
Fexp(—ury and exp(isQ™) = . Hexp(~24F), and using Proposition 5.9 we conclude
that exp(iQ"™) = - Flexp(—2F)-

If T is a real symplectic map close to the identity, then the equation e "2 = T
has a skew synfmetric solution F close to O given by the Taylor expansion of
F= —% log(I +(T —1)); the skew symmetry follows since 7! is the adjoint of T
with respect to the symplectic form. Thus . %7 = exp(iQ¥) if Q is the quadratic
form with Hamilton map F.
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Let G be the subgroup of the unitary group generated by exp(iQ*) with real
quadratic forms Q, and let G be the group consisting of the operators with kernel
(5.11) where T € &. We have G C G, and G is a double cover of %. Since
the range of the composition G — G — & contains a neighborhood of the
identity we have either G = G or G = &, for % is connected. Now we know
from the Mehler formula (4.7) that if Q(x,&) = Z'l' 5 (sz + 53.) where sins; =0,
J=1,...,n, then exp(iQ¥)=1/ I_['l' cos(s;), which is ~I if we take 5, = m and
s;=0forj #1. Hence G = G.

In the complex case the surjectivity is now a consequence of Proposition
5.10, for the map T there is equal to e ~2F where F(x,£) = (x’,£’) means that

I_]~‘ ) I__l r l__l-A
xj = 3im€;, & =—3iTix; or x =0, & = —5ix.

The corresponding quadratic form is Q(x, &) = Z'; Qi{x;, € ;) where
0;(5,€)) = 3iT(x +€5) or Qi(x;,€)) = 3ix}.

The corresponding operator is therefore a classical Mehler operator. It is a con-
traction operator, and it is not unitary unless Q = 0. If T = T, 7,73 as in Propo-
sition 5.10 it follows that T has an inverse which is a contraction operator if and
only if T3 is the identity which means that T is a real symplectic map.

The group of operators {77} with T € ¢ is isomorphic to the metaplectic
group, and it seems natural to call the semigroup of operators { # 7} with T € 7,
the metaplectic semigroup. If U = . A7 with T € 3 and if Im Q > 0, then the
metaplectic invariance of the Weyl calculus (see [4, Theorem 18.5.9]) implies
that

U—l(eiQ)wU - (el'a)w’

where Q(X) = Q(TX) has the Hamilton map F = T—'FT, if F is the Hamilton
map of Q. This is also a consequence of Proposition 5.11, but the full metaplectic
invariance does not follow from Proposition 5.11 since all Gaussian symbols are
even.

Remark. The exponential map Q + exp(iQ™), defined when Q is a quadratic
form in R" with Im @ > O, is not a surjection of a neighborhood of 0 on a
neighborhood of the identity in {&7;T € ¢,}. In fact, assume that n = 1 and
that Q is small; let F be the Hamilton map of Q and set F = tanh F, thus
F = arctanh F. Suppose that (X, FX)= ax? +ib&? for some small a € R\ 0 and
b > 0, which is a form with non-negative imaginary part. Then the eigenvalues
Aof F = (O ib

. 2 . —
a0 ) are given by A* +iab =0, so

1 1 .9
~ o~ dt 1 — iabt
s /P = e 0/ = 1355 = [0

which proves that
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I

Im Q(X) = Im ((ax” +ib&*)(arctanh A)/X)

1 1 2
dt tedt
pe? -  _ _a% 2/ =
£/1 T+ab2t % o 1 +a?b2t?’

which is not non-negative. Hence the element .7 obtained by normalizing the
Weyl operator with symbol exp(i (ax?+ib&?)) as in (5.15) is not in the local range
of the exponential map. However, the factorisation in Theorem 5.12 is given
explicitly by .#7 = exp(jiax?) exp(icD?) exp(3iax?) where ¢ = ib/(1 + iab)™",
thus Im ¢ = b/(1 +a’h?) > 0.
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