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1 Introduction 

In [4, Sect. 21.5] we discussed the symplectic classification of quadratic forms 
which occur in the study of hyperbolic or hypoelliptic differential equations. 
However, no general classification was given. In particular, the results in [4] do 
not answer a question raised in a recent preprint by Derezinski in connection with 
the Weyl calculus. (In a revised version [3] of the preprint an answer given in an 
early version of this paper has been added.) The question raised by Derezinski has 
spurred us to write down a complete discussion supplementing [4], along similar 
lines as there, for the complex case in Sect. 2 and for the real case in Sect. 3. The 
result is not new, for a complete classification was already given by Will iamson 
[6] for arbitrary fields of characteristic 0. However, because of the generality, 
the results in [6] are less explicit and the proofs are less elementary than those in 
Sects. 2 and 3. Explicit canonical forms were given by Laub and Meyer  [8], 1 but 
in the case of purely imaginary eigenvalues they listed one decomposable case 
and two other cases can be simplified to one. A closely related classification of 
symplectic linear maps was given by Cushman and Duistermaat [2]. They listed 
a complete set of  invariants but no explicit normal forms. 2 

In [3] Derezinski also determined the quadratic forms Q such that the Weyl 
symbol of  the exponential of the corresponding Weyl operator QW is a function 
of the quadratic form. In Sect. 4 we shall discuss the symbol of the exponential 

quite generally, at first in a formal sense. When Re Q _< 0 so that exp QW is 
defined in the sense of operator theory we prove that the Weyl symbol of exp Q'~' 
is a continuous function of Q with values in . 7 "  and give it explicitly first when 

Re Q is negative definite or more generally the Hamilton map F of Q (see 
Sect. 2) has no eigenvalue A with cos A -- 0. Mehler 's  formula is a very special 

We owe this reference to the referee. Further references are given in [8]. 
+ We are grateful to J. J. Duistermaat for calling the references [2] and [6] to otlr attention. 
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case. Finally we determine the Weyl symbol of exp QW for a general Q with 
Re Q < 0; it is given by a Gaussian on the subspace symplectically orthogonal 
to the kernel of cos F. The normal forms in Sect. 3 are essential in the proof and 
give very explicit formulas when Re Q = 0. 

In Sect. 5 we reinterpret the results in terms of the infinitesimal version of 
Fourier integral operators, that is, the calculus based on Gaussian kernels. We 
give an essentially selfcontained exposition of this technique. The well known 
connection between the metaplectic group and the exponentials of  Weyl operators 
iQ w where Q is a real quadratic form is extended to the semigroup corresponding 
to forms with Im Q > 0. 

2 T h e  c o m p l e x  case  

Let S be a finite dimensional complex symplectic vector space with symplectic 
form ~r, and let Q be a quadratic form in S. Denote by F the Hamilton map of 
Q defined by 

o ' (Y ,FX)=Q(Y,X) ,  X , Y  E S, 

where the right-hand side contains the polarized form of Q. Then F is skew 
symmetric with respect to a. If V;, denotes the space of generalized eigenvectors 
of  F belonging to the eigenvalue A c C, then ([4, Lemma 21.5.2]) 

cr(V;~, Vu)= 0 , i f A + # r  

Hence V~, and V_;~ are isotropic spaces dual with respect to the symplectic form 
and V;~ O V_;~ is symplectic if A r 0, while Vo is a symplectic vector space. Thus 
we obtain a decomposition of S in a direct sum of symplectic subspaces which 
are mutually cr orthogonal and also Q orthogonal, since.they are F invariant. To 
determine the structure of Q it suffices therefore to consider two cases: 

i) S = V~ | V_;~ where A r 0. 
ii) S = V0. 

In case ii) F is any skew symmetric nilpotent map in the symplectic vector 
space S. In case i) F restricts to a map T in W = V~, such that T - AI is 
nilpotent; V_~, is isomorphic to W', and if the duality is denoted - ( x , ( )  for 
x C W, ~ C W', then S is identified with W | W ~ = T*W with the symplectic 
form 

o-((x,~),(y,r/)) = (y , ( )  - (xT/), i f x , y  E W, (,zl C W'. (2.1) 

A Jordan decomposition of  W with respect to T yields a decomposition of  S, so 
we may assume that T with suitable coordinates x = (x l , . . .  ,xn) in W has the 
form 

Tx = Ax + (x2 , . . . ,  xn, 0). 

By the skew symmetry we obtain F(x, ~) = (Ax + (xz , . . . ,  x,, 0), - A ~ - ( 0 ,  ~l,. �9 -, 
n 2 ~"~n -- 1 ~,-1)), hence Q(x,~) = 2A ~-]4 xj~j + z..,1 xj+l~j.  

Case ii) is harder. Before examining it we state the general result: 
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Theorem 2.1 Let S be a complex s3'mplectic vector space with symplectic form 

or. amt let Q be a quadratic fornt in S. Then S is a direct sum o f  subspaces 

orthogonal with respect to Q trod with respect to (r o f  one o f  the following types: 

a) S : T*C" and with A r 0 

n n--I 

1 1 

Then the Jordatl decomposition has one n x n box for  each o f  the eigenvalues 
X and - A .  

b) S = T * C a n d Q  =0. 
e) S = T*C with coordinates (x, ~), and Q(( )  = ~2; then F 2 = O. 

d) S = T*C" with n > 2 a n d  

n I 

O(x,  ~) = 2 ~-~ xj~ j+l + ( -  1)"x~; 
1 

then F 2~ = 0 but F 2~ 1 7~ O, so the Jordan decomposition o f F  has jus t  one 

2n • 2n box. 
e) S = T*C n with n odd >_ 3 and 

n 1 

Q(x,~)  = 2 Z xj~ )+l  
l 

then F ~ = 0 but F ~- 1 has rank 2, so there are two n x n boxes in the Jordan 

decomposition o f  F. 

Proof What remains is to study the nilpotent case, so assume that F N = 0 but 
that F N-I  }~ 0. If N = 1, then Q = 0 and we have case b). If N = 2 then Im F 

is isotropic and the cr orthogonal space Ker F,  the radical of Q, is involutive. 

Hence we can choose symplectic coordinates so that Q is a quadratic form in 
only, so we have just cases b) and c). From now on we assume that N > 3. 

Set 
B ( X , Y ) = c y ( F u - I X ,  Y), X , Y  r S 

We have 

B ( X ,  Y) = ( 1 ) N - I o - ( X ,  F N - I y )  = ( - -1 )No ' (F  N - I  Y , X )  = ( - 1 ) u B ( Y , X ) ,  

so B is symmetric (skew symmetric) if N is even (odd). The bilinear form B 

induces a non-degenerate bilinear form B on S /Ker  F N- I ,  which is mapped 
bijectively on Im F N-I  by F N- I .  

1) Assume first that N is even, and choose X r S with B ( X , X )  = 1. Then 

X , F X , . . .  , F N - I x  (2.2) 

span a symplectic F invariant space of dimension N. In fact, if ~ ] j<u  a j F J X  

is ~r orthogonat to all the vectors (2.2), we first obtain a0 = 0 by orthogonality 
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tO FN-Ix, then al = 0 by orthogonality t o  FN-2x,... ,  and finally aN_ 1 = 0 by 

orthogonality to X. To obtain a symplectic basis where Q is given as in d) we 

must consider all the scalar products 

a(F iX, FI:X ) = (-- 1 )kcr(F J+kx, X); 

they vanish i f j  + k >_ N or i f j  + k 
j + k = N - 1. Without changing the 
add to X any linear combination of 
make a(FJX,X)  = 0 for o d d j  < N 

is even, and they are equal to ( - 1 )  k when 
space spanned by the vectors F JX we can 
F Jx with j # 0 ,  and we shall use this to 

- 1. First set X = X + olFZX, and note that 

cr(F J X , X )  = or(FiX,X) + 2otcr(F J+2x,x ) + &2o(F J+4x,x). 

The last term vanishes if j + 2 = N - 1, and we can then choose c~ so that 
a(FJX,X)  = 0. Replacing X by ~" we have achieved that a ( F N - S x , x )  = O. 
Suppose that we have already achieved that 

a(FN-SX,X)  . . . . .  cr(FN+I-2kX,X) = 0 (2.3) 

for some k > 2 where 2k + 1 < N. Set X = X + aF2kX. Then the conditions 
(2.3) remain valid with X replaced by X, and 

G.(FN-I-2kx,x) = f f(FN-I-2kX,X) + 2&cr(FN-1x,x) 

is also 0 for a suitable choice of c~. Replacing X by X we have then increased k 
by 1 in (2.3) and conclude by induction that we may choose X so that 

a(FJX,X)=O,  j < N -  1; a(FN-nX,X)= 1. 

Now a symplectic basis in the space spanned by the vectors (2.2) is given by 

ej =FJ-Ix,ej---(-I)J-IFN-Jx,  1 < j  <_n=N/2 .  

tl II 
If Z = E l  xjej + E l  ~JEJ then 

n--I 

FZ = ~-~xjej+ I + (-- l)n+lXnEn --  ~ je  j - I ,  

1 2 

and since Q(Z) = or(Z, FZ), it follows that 

n - I  n n-1 

o ( g ) =  Z X j ~ j + I  + ( - - l ) n x  2 + Z ~jXj--I-~" 2 Z X j ~ j + I  + ( - -  I )nx  2 

1 2 1 

as claimed in d). Note that for this form F(x, ~) = (x', ~') where 

x '  = ( 0 , x l , . . .  , x , - l ) ,  ~' = ( - ~ 2 , . . . , - ~ , ,  ( - l ) "+~x , ) ,  

so application of the powers of F starting with x = ( 1 , 0 , . . .  ,0), ~ = 0, gives all 
the basis vectors. - -  We can continue splitting off such spaces until we are left 

with a space where F u-x = O. 
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2) Assume now that N is odd. Then B is skew symmetric and non-degenerate, 
so we can choose two vectors X and Y such that B(X, Y) = cr(FN-1x, Y) = 1. 
We claim that the 2N vectors 

FJX,FJY~ O < j  < N  (2.4) 

span a symplectic F invariant space of dimension 2N. (In this space the Jordan 

form of F has two N • N boxes.) As before we prove that if 

~-~ aj F J X + ~j-~ bj F J Y 
j < U  j < U  

is ~r orthogonal to all vectors (2.4), it follows successively for increasing j that 
aj = bj = 0 by taking the (7 scalar product with FN-I-JX and FN-I-JY.  To 

obtain a suitable symplectic basis we would like to know that 

cr(F)X,X)=O, a ( F J Y , Y ) = O ,  o-(F)X,Y)=O, 0 < j  < N -  1. (2.5) 

The first two conditions are automatically fulfilled when j is even. To achieve 

this is slightly more complicated than in case 1). We begin by making (2.5) valid 

fo r j  = N - 2 .  To do so we set 

= X + c~FY + TFX, Y = Y + /3FX. 

Then 

o ' (FN-2~ ' ,~  ')  = o'(FN-2x,x)  - 2aa (Fu- I x ,  Y), 

o-(FN-2Y, Y) = o-(FN-2y , Y) + 2/3o(FN-1x, Y), 

a(FN-Zx, Y) = G(FN-2x, Y)+ .,fa(FN-Ix, Y). 

We choose ~,/3, q' so that these scalar products vanish and replace X, Y by X, Y. 

Then we have achieved that (2.5) holds when j = N - 2. To make this true also 
when j = N - 3 we consider X = X + 6F2X. Since FNx = 0 this does not affect 

the part of (2.5) already attained, and we get 

o-(FN-3x, Y) = o-(FN-3x, Y) + tSa(FN-1x, Y). 

We choose ~ so that this is equal to 0. Next we make (2.5) valid for j = N - 4 
by arguing as for j = N - 2 but with F replaced by F 3, then we deal with the 

case j  = N - 5  as the case j  - -N - 3  replacing F2X by F4X. Proceeding in this 

way we make (2.5) valid without restriction. 

Now we define a symplectic basis by 

ej = F J - I x ,  •j = ( - 1 )  N-j 1FN-JY, j = I , . . . , N .  

N With Z = ~-~, xjej + Z N ~jCj we obtain 

N - 1  N 

FZ= Z x j e j + l -  ~-~js 
1 2 
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hence Q(Z) = cr(Z.bZ) = ~ U - ' x j 4 j + ,  + ~ 4 jx j - ,  = 2 ~ N - ' x j 4 j + , .  This 

agrees with e). Note that for this form F(x,  4) = (x', 4') where 

x' = (O,-n . . . . .  x,,-1), 4' = ( & , . . , , 4 . , O ) .  

We split off such spaces until in the remaining symplectic subspace we have 
F N - I  .= O. and then the claim follows by induction with respect to N. 

3 The real case  

Now assume that Q is a real quadratic form in a real symplectic vector space 
S. We can then apply the results of Sect. 2 to the complexification Sc of S. We 
keep the notation V;~ for the generalized eigenspaces of  the complexification Fc  
of F in Sc. 

The space V0 is invariant under conjugation, hence generated by its real part 
Vo R, and we can examine F there by the arguments used in the nilpotent case 
in Sect. 2. The only difference is that we must now distinguish two kinds of 
non-zero values of a quadratic form, positive and negative ones. This means that 
in addition to cases c) and d) there appear two other cases with a change of sign. 
These are not equivalent for the signatures are different. 

If 0 r A E R then V;~ is also generated by its real elements Vff, so the 
discussion in Sect. 2 requires no further modification. However, when A C C \ R 
a new situation is encountered. Then there is no real element r 0 in V;~, for if 
x C V,x then s C V~, and V,x N V~ = {0}. Thus the projection V;~ 9 X ~ Re X E 
Re V;, is a bijection defining an analytic structure in Re V~,. If Re A = 0, this 
is a symplectic vector space but if Re A r 0 it is isotropic, so we are led to 
distinguish two different cases. 

a) First assume that A = .~1 + i , ~  2 where AjA2 r 0. Then Re V;~ and Re V_;~ are 
isotropic F invariant spaces which are dual with respect to the symplectic form 
and ~r orthogonal to all spaces V u with # r :[:A, :tzA. It is therefore enough to study 
the case where Fc  has just  the four eigenvalues -+-A and +A. Thus S ~ W �9 W'  
where W = Re V;, is F invariant and the complexification T of the restriction 
of  F to W has the two complex eigen.values A, A. By a Jordan decomposition 
we can reduce further to the case where there is just one Jordan box for each 
eigenvalue. Choose e C Wc so that e , . . . ,  (T - A)~- le  is a complex basis for 
the generalized eigenvectors belonging to the eigenvalue A, and introduce real 
coordinates in W with the basis vectors Re e, Im e . . . . .  Im (T - A)~-le .  Then 
we have with the corresponding complex coordinates in Wc 

~-~ xj(T - A ) J - l e  = (xl, ixl ,x2, i x2 , . . .  ,Xn, iXn). 
1 

Applying T - A just shifts the coordinates to the right two steps, so 

(T - .~l)(Xl, ixl ,x2,  i x 2 , . . .  , iXn) = (0, 0, Xl, i x l , . . . , / x  n - l )  + i/~2(Xl, i x l , . . .  , iXn). 
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Separating real and imaginary parts and changing notation we conclude that 

(T - "~1 )(Xl, x2, �9 �9  x2,) = (0, 0, Xl, x2, �9 �9 �9 xz , -  2) +/~2 (x2, - x l , . . . ,  x2n, - x 2 n -  l ). 

This allows us to compute 2(G Tx),  and we conclude that S is symplectically 
equivalent to T*R 2n with the usual symplectic coordinates and 

2n - 2 2n n 

1 1 1 

The form is non-degenerate since V0 = {0}, and the signature is 2n, 2n since it 
vanishes in a space of dimension 2n. For this form F ( x ,  ~) --- (x ' ,  ~') where 

/ 
x = (0, 0 , x l , . . .  ,xzn-2)  + )~jx + Az(x2, - x ~ , . . .  ,x2~, - x 2 ~ - i ) ,  

~!  ---- - - ( ~ 3 , ~ 4 , - ' - , ~ 2 n , 0 , 0 ) - -  -'~1~ a t ' - ~ 2 ( ~ 2 , - - ~ l , . . . , ~ 2 n , - ~ 2 n - 1 ) -  

When x2k = ix2k-1 for k = 1 , . . . , n ,  then x '  - (,kl + iA2)x  --- ( 0 , 0 , x l , . . . , x 2 , _ 2 ) ,  
and since this shift operator is nilpotent we recognize the generalized eigenspace 
for the eigenvalue Al + iA2. Similarly we recognize the other eigenspaces. 

b) What  remains is the case where Sc = Vit, | V-i~, for some # > 0. Choose 
N > 0 so that (Fc--i l .z)Nvoz = { 0 }  but (Fc -- i#)N-1Vi~,  r (0}. The sesquilinear 
form 

cr((iFc + # ) ) X , Y ) / i ,  X , Y  c Viu, 

is Hermitian symmetric for every j .  If j < N it cannot vanish identically, for 
then we would have ( iFc + # ) i X  = 0 for all X E V; t, since V- iu  = Vi---~ is dual 
to Viu. Thus we can choose X so that 

~( ( iFc  + # ) U - l x , ~ - )  = 2"fi, where "), = •  (3.2) 

This implies that Xj = (iFc + l z ) J x  and X-j, 0 _< j < N,  span a symplectic 
space. It is F invariant so the real part can be split off from S. Hence it is no 

restriction to assume that it is equal to Sc. Then Viu is spanned by the vectors 

X0, . . .  ,XN-1. We may replace X = X0 by X + y-iN-1 ajXj for arbitrary aj, and 
this can be used to achieve that 

a(Xk,X-0) = 0 ,  0 < k  < N - I .  (3.3) 

In fact, r Xo) is purely imaginary and is not affected by the coefficients aj 
with k +j > N if we make such a change of X. The coefficient a N -  l--k only enters 
then in the term 2cr(X N_ 1, Xo)Re a u - l - k .  Thus we can successively achieve the 
desired goal (3.3) for k = N - 2 , . . . ,  0. We shall now extract a symplectic basis 
from the real and imaginary parts of X o , . . .  , X N - I .  

�9 II Set Xk = X[ + iX k . Then 

O" l l I I  t /  l l /  I t  o - ( X k , X j  ) + o-(X k , X j  t) --- 0 ,  j ,  k 0 , .  , N (Xk,Xj) = a ( X  k ,Xj ), -- .. - l ,  
(3.4) 
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for Vii, is Lagrangean. Since a ( X ~ , X j )  = 0 when k + j  r N - 1 by (3.3), we get 
additional equations which prove that 

' ' " X j " )=  ' " i f j + k  C N -  I (3.5) ~r(Xk, Xj ) = a(Xk, ~(Xk, Xj ) = O, 

Using (3.2) we obtain 

l l It l II ll 
o - ( X N _ k _  ] X k  ) + o ' ( X A l _ k _  1 , X k  t) = 0,  , - o ' ( X ~ ! _ k _ l , X  k ) + o ( X u _ k _  1 , X ; )  = 27, 

which in view of (3.4) implies 

' ,X[ )  " " O, " ' a (X /v - k_ l  = o ' (X~_k_ l ,Xk  ) = (3.6) cr (Xu_k-  i , Xk ) = "7. 

By (3.5) and (3.6) we obtain a symplectic basis by setting 

r I ej = X j _  l, ej = X N _ j / ' 7 ,  j =  1 . . . .  , N .  

To calculate Q in the corresponding coordinates we just have to find Fej  and 
Fej.  By definition 

( i F c + # ) ( X j + i X / ' ) = X ~ +  l + i X ~ l ,  j - - 0 , . . . , N -  1 

where we define X~ = X/v' = 0. Thus 

FXj'= - Xj' + x "  " ' j+,, FXj = ItX/ - X j+l, 

which means that 

Fej  = '7(#eN+l - j  -- eN- j  ), Fej = '7--I (_~E.N+ 1 --J "F EN+2_  ) ). 

(We interpret e0 and ~N+! as 0.) The polynomial Q is given by 

cr ( Z x k e k  + ~ ~kek, ~ ' ~ x j F e j  + Z ~ jFej  ) 

= ~ - '~x j x ,~r (e , ,Fe j )+  Z ~ j~ ,~r(c , ,Fc j ) .  

Thus we obtain 

Q ( x , ~ )  = 7 -1 # xj'XN+I_ j - -  Z XjXN+2_j 
2 

+'7 # ~j(N+~-j- Q~N-j 
I 

Recall that "7 = +1, so the two alternatives differ just by the sign. For this tbrm 
F(x ,  ~) = (x ' ,  ~') where 

X '  = " 7 ( # ( ~ N , "  ' '  , ~1 ) - - ' (~N - 1 , ' ' ' ,  E l ,  0 ) ) ,  ~ '  = - - ' 7 ( # ( X N , .  . . , X 1 ) - - ( 0 ,  X N , .  . .  , X2) )- 

W h e n  x = (0 , . . . , 0 , , 7 )  and ~ = ( i , 0 , . . . , 0 )  then 

x '  - i # x  = - (O,  . . . , O, ,7i , O), ~ ' - i / z ~ = ( 0 , 1 , 0 , . . . , 0 )  
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which apart from a factor - i  means a left or right shift of  the coordinates. 
Repetition confirms the nilpotent structure. 

To determine the signature when 7 = 1 we note that it must be independent  

of #, for Q is always non-degenerate since V0 = {0}. For large # we have 
essentially two copies of the form 

N 

E X j X N + i - . /  = X l X N  + X 2 X N -  | + . . . .  

1 

If N is even the signature is N / 2 , N / 2  but when N is odd we have a middle 
2 which makes the signature equal to (N + I ) / 2 , ( N  - 1)/2. For the t e r m  X(N+I)/2 

full form Q the signature is therefore N , N  and N + 1 ,N - 1 in the two cases 
when %, = 1. Thus the signature distinguishes between the cases "7 = • 1 when N 
is odd, but when N is even the signatures are the same although we know from 
(3.2) that the sign is determined. 

We are now ready to sum up the results as a complete classification theorem. 

T h e o r e m  3.1 Let S be a real symplectic vector space with symplectic form ~, 
and let Q be a real quadratic form in S. Then S is a direct sum of subspaces 
orthogonal with respect to Q and cr of one of the following types, and the number 
of spaces of each type is uniquely determined: 

a) S = T * R  n and with A > O 

n - - I  

Q(x , ( )  = 2A xj ( j  + 2 E X j + l (  j. 
1 1 

Then the Jordan decomposition o fF  has one n x n box for each of the eigen- 
values A and -A. The signature of Q is n,n. 

b) S = T*R z" and with A~ > O, A2 > 0 

2n - 2 2n n 

0 I I 

The Jordan decomposition has one n x n box for each of the eigenvalues 
• • iA2. The signature of Q is 2n,2n. 

c) S.=  T*R n and with # > 0, %, = 4-1, 

n n n n - - I  

I 2 1 1 

The Jordan decomposition o f f  has one n x n box for each of the eigenvalues 
! i # .  The signature of Q is n, n if n is even and n + %,, n - 01 when n is odd. 

d) S = T * R a n d Q = 0 ,  t h u s F = 0 .  

e) S -- T*R and Q = ~ 2 ,  then F 2 = O. 
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f)  S = T*R ~ with n > 2, and 

n-I 
Q ( x , ~ ) : •  

1 

then F 2n = 0 but F 2n-I ~ O, so the Jordan decomposaion 

2n x 2n box. The signature o f  Q is n, n - 1 or n - 1, n. 

g) S = T*R n with n odd > 3 and 

o f  F has jus t  one 

n--I 

Q ( x , ~ )  = 2 ~ xj~ j+l; 
1 

then F n = 0 but F n - l  has rank 2 so there are two n x n boxes in the Jordan 

decomposition. The signature o f  Q is n - 1, n - 1. 

Williamson [6] lists the possibilities which can occur when S is of dimension 
4 and Q is non-degenerate.We may then have case b) with n = 1, cases a) or 
c) with n = 2 or a direct sum of  cases a) and/or c) with n = 1, altogether 6 
possibilities. No explicit  conclusions are given otherwise but Theorem 3.1 is 
contained in principle in the results of [6]. The explicit normal forms given in 
[8] agree with Theorem 3.1 apart from case c) where in [8] there appear two 

cases depending on the parity of  n, due to another choice of symplectic bases, 
and one case which is decomposable into two spaces of  type c). 

4 General Mehler formulas 

Let Q be a quadratic form in T*R n, and let QW be the corresponding Weyl 
operator (see [4, Sect. 18.5]). Assuming that e tQ'' makes sense we want to de- 
termine the Weyl symbol which we denote by e q', so that (cxp qt)W = exp(tQW). 
Differentiation with respect to t should give 

(Oqt/Ot exp qt)W = Q ~ exp(tQ ~)  = Q w (exp qt)W 

which by the calculus (see [4, (18.5.6)]) means that 

Oqt/Ot exp qt = e ~'~r ,o~ :o, ,o,,)Q(x, 4) exp q,(y, r/)[~x,~)=r m) 

= Q expqt + ~7{Q,expq,}  - �89 02Q/O~jO~kO2/OxjOxk 

j ,k=l 

+ ~ 02Q/OxjOXkO2/O~jO~k - 2  ~ 02Q/OxjO~kO2/O~jOXk) expqt 
j ,k=l j ,k=Z 

or if the differentiation is carried out, 
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1 , (  ~ c92Q/O~yOO, O~qt/Ox)Oxk Oq,/Ot = O + N{O,qt} - ~ 
j , k = l  

+ ~ 02Q/Ox)OXkO2qt/O~)O~k - 2  ~ 02Q/OxjO~kO2qt/O~)OXk) 
j ,k=l j ,k=l 

- �89  ~ OeQ/O~)O~Oq'/OxjOqt/Oxk 
I ,k=l 

+ ~ 02Q/OxjOxkOqt/O'JOqt/O'k - 2  ~ 02Q/OxJO't~Oqt/O'JOqt/OXk) " 
j ,k=l j,k=l 

We claim that there is a solution of the form 

qt = 9t + h(t) 

where 9t is a quadratic form in (x, ~). Separating terms of  degree 2 and 0 with 
respect to (x, ~) gives the equations 

(o 
o g t / o t  = Q +  {e,gt} - Sj,k , 02Q/O jO  Og,/OxjOgt/Oxk 
+ n n ),k =, 02 Q /Ox) Oxk 09t / O~ j 09t /O~k - 2 ~ j,~ =, O ZQ /cgx) O~k 09t /O~ j Og, / Oxk ), 

,( ~ h ' ( t ) = - -g ~-~ ),t=l OZ Q / c)~ J O~k O2 9r / Oxj Oxk 
"t- n rl ~ j,k-_~ 02O/OxjOxkO2gt/O~O~k - 2 ~ i,k=l 02O/OxjO~O;gt/O~jOx~) �9 

(4.1) 
This can be regarded as a system of non-linear ordinary differential equations for 
h and the n(2n + 1) coefficients of 9t, so for small t there is a unique solution 
with q0 = 0, that is, 9o = 0 and h(0) = 0. We want to examine if there is a global 
solution. In doing so we can clearly work over the complex numbers since the 
preceding equations are valid over C, and we look for 9t and h(t) as analytic 

functions of  t. 
First consider the non-degenerate case with one degree of  freedom. It is then 

enough to study the case Q(x, ~) = 2 , k ~  for some A c 12 \ {0}. The equation 

for 9t is 

O.qt/Ot = 2A(x( + ~i {x~,9t} + �88 

which is solved by 9t = 7(t)x~ where 

7 ' ( t )  = 2A(1 + l.y2), 3'(0) = 0; thus "y(t) = 2tan(At). 

The equation h'(t)= AT(t)/2 = A tan(At) has the solution h(t) = - l o g  cos(At) so 

e2x~ tan(At) 

expqt(x ,  c) = cos(At) ' 

which is analytic except at the zeros of cos(At). 
Suppose now that we have n degrees of freedom and that 
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n 

Q(x, ~) = Z 2Ajxj~j. 
I 

A generic form is symplectically equivalent to such a form. Then we have 

n 

9t(x,~) = 2 Z x j (  ) tan(Ajt), h'(t) = Aj tan(Ajt), 
1 1 

thus exp( -h ( t ) )  = I2I cos(Ajt). 
1 

The Hamilton map of Q is 

(ao) 
F =  0 A A = diag(A1, . . . ,  A,). 

If  X = (x, ()  then or(X, tan(tF)X) = 2((, tan(tA)) = 9t(X), so we obtain 

n 

9t(X) = ~r(X,tan(tF)X), exp( -h ( t ) )  = H c ~  
1 

(4.2) 

except at the zeros of the product. 

For an arbitrary quadratic form Q in T*C ~, with Hamilton map F,  it is 
clear that sin F and cos F are entire analytic functions of  (the coefficients of) 
F, and det(cos F)  = I-[~ n cos Aj where Aj are all the 2n eigenvalues of F with 
multiple ones repeated. Now the secular equation det(F - AI) = 0 is even in 
A, for in the generic special case above it is equal to the product H ( A  2 - A{), 

taken over one half of  the zeros. Let #l ,  �9 �9 # ,  be the zeros of  det(F - AI) 
as a polynomial in # = A 2. Then det(cos F)  = I-I~(cos x / ~ )  2, and the square 
root x/det(cosF) -- l]~'COSv/- ~ is an analytic function of # l , . - - , # ,  which 
is symmetric under permutations, hence an entire function of  the elementary 
symmetric functions which are polynomials in F.  Thus x/det(cos F)  is an entire 
analytic function of F. Outside the zeros it is clear that t anF  = s i n F ( c o s F )  -1 
is analytic. 

Theorem 4.1 For every quadratic form Q in T*C n the system of differential 
equations (4 .1 ) fo r  a quadratic form 9t(x, ~) and a scalar function h(t) has a 
unique solution with vanishing initial values such that 9t and exp h(t ) are mero- 
morphic functions, 

exp(qt(X)) = exp(9,(X) + h(t)) = exp(~r(X, tan(tF)X))/v/det(cos tF) (4.3) 

where F is the Hamilton map of Q. It is analytic in t and F except at the zeros of 
the denominator, that is, where t Aj = �89 7r + k Tr for some eigenvalue Aj o f F  and 
some k ~ Z. 
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If we have a symplectic'decomposition of the whole space such that Q has 
a corresponding splitting, then we can compute qt separately for the different 
factors. This makes it easy to make explicit computations by using the normal 
forms for F. 

Derezinski [3, Theorem 3.2] proved that the symbol of every operator of 
the form f ( Q ~ )  is a function of Q precisely when F 3 -- cF for some c. This 
is an immediate consequence of Theorem 4.1, for if tan(tF) is a multiple of  F 
for every t then F 3 must be a multiple cF of F, Conversely, if F 3 = cF then 
tan(tF) = F tan( tx /~) /v~,  interpreted as Ft when c = 0. 

As an example consider the quadratic form Q(x, ()  = - x  z - ( 2  for (x, ~) E 
T*R. Then F(x,  () = ( - ( , x )  so F 3 = - F ,  A = •  and tan(tF) = F tan(ti)/i = 
F tanh t. Thus 

e q'(x'() = e-(X2+~2)tanht/cosh t. (4.4) 

It is well known (and will be proved more generally below) that Q~O = _x  2 _ D  2 
defines a self-adjoint operator _< 0 in L2(R), s o  e tQ'' is a well defined self-adjoint 
semigroup of contractions in L2(R) when t _> 0. We claim that the Weyl symbol 
is given by (4.4) when t > 0; this is a function in .Y~(R2). To prove this we 
recall that if.,-gt is the Weyl operator corresponding to (4.4) we have by the 
derivation of  (4.1) 

0 
Q~.,'gtu = -~.. 'gtu, u E 5 / (R) ,  hence 

O ( e  u-')Q~'. 7g, u) = + QW).,,g.,.u = O, u E J J ( R ) ,  e(t-s)Q"(_QW 

for 0 < s < t, which proves that. "gtu = etO'"u as claimed. 
The kernel of  the operator..lgt is (cf. [4, (18.5.4)]) 

, /  A,(x,y) = ~ exp ( - ((x +y )? /4  + ~2)tanh t + i(x - y)~) d ~ / c o s h t ,  

and evaluation of  the Gaussian integral gives the classical Mehler formula: 

Corollary 4.2 The Weft symbol o f  the self-adjoint contraction exp( - t (x  2 + D2)) 
in L2(R), t > O, is given by (4.4), and the kernel is given by Mehler's formula 

(x ,y)  ~ exp ( - �89 2 +yZ)cosh(2t) - 2xy)/sinh(2t))/V/27rsinh(2t) .  (4.5) 

The formula (4.4) for the Weyl symbol is so much simpler since it respects 
the orthogonal invariance of x 2 + ~2. 

For any quadratic form Q in T*R n we denote by MQ the maximal operator 
defined by QW in L2(Rn); the domain consists of all u E LZ(R n) such that 
MQU = QWu, defined in the distribution sense, is in L2(R"). The continuity of 
QW in c'.~'(R") proves that MQ is a closed operator. It is the closure of the 
restriction to .~'~(R"). In fact, if X E Co~(R 2") is equal to 1 in a neighborhood 
of 0, and Xs(~, 7]) = X(e~, e~l), then 

QW ~v w w , e2gaw 
Xe - xe Q = - i { Q  Xe} ~ + 
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where ~,,~ is defined as kE with another function ~ E Co ~ .  Since 

tl 

{Q. ,(~ }(.,, ()  = ~(OQ(x, ~)/o(j ox(ex, ~(j)/Oxj 
1 

-OQ(x,  ( ) /  OxjOx(cx, r O~ j ) 

is uniformly bounded in the symbol space S(1,(dx 2 + d~2)/(1 + Ix[2+ ]~-[2)) 
as 0 < ~ < 1 and vanishes on any compact set for small r it follows that 
(Q~"~c ~'' - y~'Q~')u -~ 0 in L2(R ") as r ~ 0, if u ~ L2(R"). If u is in the domain 
of MQ it follows that X~u c .Y  converges to u in the graph norm of MQ. (Since 
translation of Q yields a unitarily equivalent Weyl operator it is also obvious that 
Re Q _< 0 if MRe Q is bounded above.) Thus MQ is the closure of the restriction 
to , ~  or Co ~ ,  which proves that the adjoint is equal to M~. 

If Re Q _< 0 then 

Re (MQ u, u) =(Mae O u, u) <_ 0 

when u is in the domain of MQ. This follows from the metaplectic invariance 
of the Weyl calculus (cf. [4, Theorem 18.5.9]) since Re Q is symplectically 
equivalent to a sum of (possibly degenerate) harmonic oscillators ([3, Theorem 
21.5.3] or Theorem 3.1, cases c) with n = 1, d), e)). Thus MQ and its adjoint 
are both dissipative, so MQ generates a contraction semigroup (cf. Yosida [7, p. 
251]) which we shall denote by exp(tQW), t > 0. 

Theorem 4.2 l f  Re Q is negative definite, then the Weyl symbol At of exp(tQ ~) 
is for t > 0 a function in ,~/(T*R ") given by (4.3) where the quadratic form 9t 
and exp(h(t)) are always finite, and fit has negative definite real part. When Re Q 
is just negative semidefinite, the map Q ~ exp(Q~)u is a continuous function 
(resp. C ~ function) of Q with values in L2(R n) (resp. ,r if u E L2(R ") 
(resp. u C 5,t(R~)), and the Weyl symbol of exp(Q w) is a continuous function of 
Q with values in ~Z'(R2n) given by (4.3) when det(cos F)  ~ 0. 

Proof. If  Re Q is negative definite, then no eigenvalue Aj of F is real (cf. [4, 
Theorem 21.5.4]). Hence l-i cos(tAj) r 0 when t _> 0, so At is well defined and 
analytic in t then. When t > 0 is small enough then Re 9t = tRe Q +O(t3)(lxI2+ 
I~12) is negative definite. Thus At is then in , ~ ,  and we can prove just as for the 
harmonic oscillator above that A t is equal to exp(tQ ~) when 0 < t < to, say. 
By the semigroup property it follows that if t = tl + . . .  + tN where 0 < tj < to 
for j = 1 , . . . , N ,  then exp(tQ ~) is the composition of the operators A~. They 
have kernels in .5 z which are real analytic in tj, so it follows that exp(tQ ~) for 
every t > 0 has a Weyl symbol in ,~,'~ and that it is analytic in t. Hence it must 
always be equal to At, and A t m u s t  be in . ~ ,  which proves that Re 9t is negative 
definite. If u E , ~  it follows that u(t) = exp(tQW)u is a C ~176 function of  t and 
Q with values in . ~  when t _> 0 and Re Q is negative definite. We can estimate 
the L 2 norms of  the derivatives u ,~  = D~x~u by noting that for any N > 0 

O u ~ / ~  = D a x ~ Q ~ u = a ~ u ~ +  Z c~,~,~,uc~,~,, Iot+r < g  
Ic~'+~'l_<g 
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where c,~,a,~, are linear forms in the coefficients of Q. Hence 

d 
dt  Z ] lua~l12=2 ~ Re(Ou~/Ot ,  u~o)<CN,Q ~ Ilu,~ll 2. 

]a+fll<N Iot+fll_<N Ic~+fll<_N 

Integration gives a bound for ~-~q~+~l<U ][u,~ll 2 when t > 0 dependihg only on 
upper bounds for t, the coefficients of Q and the values when t = 0. When Re Q 
is negative semidefinite, and u is a C ~ function of t > 0 with values in ,9 e; such 
that Ou/Ot = Q~u for t _> 0, then u(t) = exp(tQ~)u(O), t > 0, so the bounds 
just obtained in the negative definite case extend to the negative semidefinite 
case. Since . ~  is dense in L 2 the continuity with values in L 2 for u E L 2 follows 
in view of  the contraction property. 

By the Schwartz kernel theorem and the continuity just proved it follows that 
the kernel of exp(Q ~~ is a continuous function of Q with values in , ~ ' ,  so this 
is also true for the Weyl symbol (see [4, (18.5.4)"]). 

When Re Q is negative semidefinite, it follows from Theorem 4.3 that the 
Weyl symbol of  exp(Q ~) is given by (4.3) with t = 1 provided that the denomi- 
nator is not 0, that is, if F has no eigenvalue of the form �89 +kTr with integer k. 
To prepare for the discussion of the remaining case it is instructive to examine 
the harmonic oscillator in detail. We know already that the Weyl symbol of the 
operator exp( - t (x  2 + D2)) in L2(R) is given by 

(x, ~) ~-* exp(- (x  2 + (2) tanh t)/cosh t, (4.6) 

when Re t > 0 and cosht  ~ 0. In particular, if t = is with s 'E  R and coss  r 0 
it is given by 

(x, () ~ exp(- i (x  2 + (2) tan s)/cos s. (4.7) 

I f s  = 7r/2+kTr for some integer k, then the Weyl symbol is the limit in , ~ ' ( R  2) 
as r ~ +0 of the symbol for t = is + E, 

(x, ~) ~ exp(- (x  ~ + ~2)/tanh r  1)~+1 / sinh r 

that is, i(-1)k+lTr6o. The corresponding Weyl operator has the kernel i ( - 1 )  k+l 
• + y), which defines a reflection operator. When sin s = 0 then the Weyl 
symbol (4.7) is • and the corresponding kernel is • - y ) ,  so we have • 
the identity operator. When 2s ins  coss = s in(2s)r  0 the kernel of e -is(x2+D2) is 
easily obtained from (4.5); it is 

(x,y)  ~-~ exp (2((x 2 + yZ)cos(Zs) - 2xy)/sin(Zs))/v/ZTri sin(Zs). (4.8) 

Since x/2zrsinh(2t) = coshtv/4-~tanht and Re tanht > 0 when Re t > 0, the 
square root in (4.8) should be taken in the right (left) half plane when cos s > 0 
( c o s s <  0). When cos(2s) = 0, hence sin(2s) = •  the exponential reduces to 
exp(qzixy), so e -i'~2+~ becomes the (inverse) Fourier transformation apart from 
a factor •  • In particular, when s = 7r/4 then the operator is e -7ri/4 times 
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the Fourier transformation, and from the group property and Fourier 's  inversion 
formula we obtain the values at s = uTr/4 for any integer u which we have 
already given. (Anders Melin has pointed out that this follows from the expansion 
in Hermite functions which are eigenfunctions of the Fourier transformation.) 

We turn now to the case of a general quadratic form Q in T*R" with Re Q _< 
0. First we shall rewrite the result already proved when d e t c o s F  ~ 0. Then 
sec F = (cos F ) -  l is defined, and 

CrF(X, Y)  = a(X,  (sec F ) Y )  (4.9) 

is also a symplectic form in T*(Cn). The corresponding measure volo r, defined 
by the nth power of aF and the standard orientation, is equal to v o l , , / ~  F 
where vola is defined by the standard symplectic form. That crF is skew sym- 
metric is obvious since cos F is even in F ,  and it is non-degenerate since sec F 

isbijective. W h e n F = ( A O _ A )  w i t h A = d i a g ( A ~ , . . . , A n ) t h e n  

n 

= Z i A / cos 
I 

which proves that vol,~ r = vo l , , / I - l~cosA j as claimed. Since this situation is 
symplectically equivalent to the generic case, the statement follows. The result 
of Theorem 4.3 is now that 

A1(X)vol,~ = exp(~r(X, (tan F)X))volo r . (4.10) 

Our next goal is to give a sense to the two factors in the right-hand side when 
d e t c o s F  = 0. As suggested by the example of the harmonic oscillator volor 
will be replaced by a translation invariant measure on the range of  c o s F ,  and 
the quadratic form in the exponential will only be defined there. We need some 
preliminaries: 

Propos i t ion  4.4 l f  Q = Qj + iQ2 where Ql <- 0, then Ker (F  - A) is the complex 
conjugate ofKer  ( F + A ) for  every A C R, and if  F = F1 +iF2 then Fl Ker (F  ~ A) = 
O. Thus Ker (F  - A) G Ker (F  + A), 0 ~ A C R, is the complexification o f  its 
intersection with T*R n, and so is Ker F. 

Proof. Assume that X c T*C n and that (F  - A)X = 0. This means that 

for every Y, thus 

Q ( Y , X )  = ~r(Y , FX)  = Acr(Y,X) 

Q(X-, X) = A~r(X, X) = 2Ai~r(Re X, Im X), 

so Qt(X-,X) = 0. Since QI is semidefinite it follows that Q I ( Y , X )  = 0 for 

arbitrary Y, that is, F1X = 0. Thus (iF2 - A)X = 0 so ( - iF2  - A)X = 0, and 
(F  + A)X- = 0. The proof is complete. 
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Remark. The generalized eigenspaces need not be complex conjugates. For 
example, if Q = -4~  - 42 2 -  x ~ -  2i~1x2 then F(x,~) = (x ' ,~ ' )  where 
x' = (-41 - i x 2 , - ~ 2 )  and ~ = (0 ,x2+i41) .  The kernel of  F is the xl axis 

and the kernel of  F 2 is defined by ~2 = 0 and xz = - i~1 .  The kernel of if2 is 

defined by 42 = 0 and x2 -- i41, so the intersection of the kernels of  F 2 and ~-2 
is the kernel of F .  

Proposition 4.5 If Re Q < 0 then the kernel (resp. range) of cos F is the com- 
plexification of its intersection K (F) (resp. W (F)) with T*R n. The restriction of  
(sin F)/ i  to K(F) is a bijection with square equal to minus the identity, so it 
defines a complex vector space structure in K ( F) and the determinant is equal to 
1. The corresponding orientation induces an orientation in W (F). 

Proof The kernel of cos F is the direct sum of the kernels of  F - A for all A 
with cosA = 0. In fact, the restriction of F to V~, is equal to A + T where T 
is nilpotent. Hence cos F - cos A = cos(A + T) - cos A is nilpotent and cos F is 
invertible if cos A r 0. If  cos A = 0 then cos F = cos(A + T) = - sin A sin T. Since 
(sin T ) / T  - 1 is nilpotent the operator (sin T) /T  is invertible so the kernel of 
sin T is equal to that of T. From Proposition 4.4 it follows now that the kernel 
is the complexification of its intersection with T*R n, and since the range is the 
cr orthogonal space it has the same property. 

The restriction of sin F to Ker (F  - A) | Ker (F  + A) is equal to sin A and 
-s in A in the two factors. Hence (sin F )  2 is equal to the identity in Ker cos F .  
If X E Ker (F  - A) and A E R, it follows from Proposition 4.4 that F1X = 0 
and iF2X = )Of, hence (sin F)X = (sin(iFz))X = i(sinh Fz)X, so (sin F) / i  defines 
a bijection in K(F), with square equal to minus the identity. It makes K(F) a 
complex vector space, so it defines a natural orientation which gives rise to an 
orientation in T*R n / W ( F ) ,  which is dual with respect to the symplectic form. 
Since T*R n has a natural orientation as a real symplectic vector space and the 
real dimension of K(F) is even, this defines an orientation in W(F). 

We can define a symplectic form in the complex vector space W ( F ) c  by 

O F ( ( C o s F ) X  , ( cosF)Y)  = cr((cosF)X, Y), X, Y C T ' C " .  (4.9)'  

This agrees with (4.9) when det cos F r 0. The definition (4.9)' is unique, for 

c o s F  is even in F so the right-hand side is equal to ~r(X, (cos F)Y) ,  hence equal 
to 0 if (cos F)X = 0 or ( cosF)Y = 0. It is obvious that o- r is skew symmetric. If  
the right-hand side of (4.9) ~ vanishes for every Y then (cos F)X = 0 which proves 
that the form is non-degenerate. Thus we have a symplectic form defined in the 
range W ( F ) c  of  cos F ,  and the corresponding volume form defines a translation 
invariant measure volo" r r 0 in W(F) when combined with the orientation defined 

in Proposition 4.5. 
We define the quadratic form similarly. The quadratic form in (4.10) corre- 

sponds to the symmetric bilinear form 

EF(X, Y) = ~r(X, (tan F)Y),  
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and we extend the definition to the case where det cos F = 0 by 

EF((CosF)X,(cosF)Y) = a((cosF)X,(sinF)Y),  X, Y E T*C". (4.11) 

Since c o s F  is symmetric and s i n F  is skew symmetric with respect to cr the 
right-hand side is equal to cr((cosF)Y,  (sin F)X), which proves that the form is 

uniquely defined and symmetric. We can now state the main result of  this section: 

Theorem 4.6 If Re Q < 0 then (4.9) ~ defines a symplectic form in the range 
W ( F ) c  o f  cos F where F is the Hamilton map of Q, and (4.1 1) defines a symmetric 
bilinear form with 

Re EF(X,X) < 0 when X E W(F). 

The product of the Weyl symbol of exp(Q w) and vol ~ is equal to ( Tri )~ exp(EF)volo~ 
where 2u is the dimension of the kernel K(F) of  cos F. Here vol~ is the positive 
measure defined by the symplectic form, and vol~ r is the measure in W (F) defined 
by the form CrF and the orientation of W (F) in Proposition 4.5. 

Proof If  u~, E . ~ "  and u~, --~ u in .9 '~' then (u, ,e  ~) ~ (u,e ~) for every 
quadratic form G with negative definite real part. If  u~, is even then u is even and 
this determines u. In fact, if v E . ~ '  and (v, e 6)  = 0 for all such forms G, then 
differentiation with respect to the coefficients of  G shows that (v, X~G) = 0 for 
every monomial X ~ of even degree, hence for every c~ if v is even. The Fourier- 
Laplace transform of ve ~ is then an entire function with all derivatives equal to 
0 at the origin so v = 0. We can therefore prove the theorem by examining only 
scalar products with Gaussians. 

Let us first recall some well known facts on integrals of  Gaussians. If A is a 
symmetric N x N matrix with Re A positive definite then 

RN e-(ax'x) dX = 7rU /Z / x/detA. (4.12) 

Here dX is the Lebesgue measure in R u and ~ is defined so that it is an 
analytic function of A in the convex set of  matrices with Re A positive definite, 
and equal to 1 at the identity matrix. If  Q is a complex valued quadratic form in 
a real symplectic vector space S of dimension 2n and Re Q is negative definite, 
we write as before Q(X, Y) = a(X,  FY) where F is the Hamilton map and claim 

that 

s eQvol~ = 7r"/x/~ttF (4.13) 

with ~ = V/H~" Aj defined analytically so.that it is positive when Q is real, 
thus the eigenvalues Aj occur in complex conjugate pairs. To prove (4.13) we 
may assume that S = T*R" with standard coordinates X = (x,~) and we write 
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where (-, .) is the standard scalar product in R 2n ~ T ' R " .  Then 

Q (X, Y) = ~r(X, FY) = (EX, FY) = - (X, EFY), 

so EF is symmetric and we can apply (4.12) with A = EF. Since de tE  = 1 this 
proves (4.13). 

If M : Sc ---, Sc is an invertible complex linear map which is symmetric 
with respect to ~r, then ~(X, Y) -- c~(X,M -j Y) is a complex symplectic form in 
Sc, and every complex symplectic form there has such a representation. Since 
cr(X,FY) = 8"(X,MFY) the Hamilton map f" of Q with respect to 6 is equal to 
MF. Since vol,~ = dex/-d--~Mvolo if we keep the orientation in S defined by a, it 
follows from (4.13) that 

for a suitable choice of the square root. Thus (4.13) remains valid with such an 
uncertainty of  the sign if cr is any complex symplectic form in Sc. 

If F is the Hamilton map of the quadratic form Q in the theorem, then the 
zeros t E R of the entire analytic function detcos(tF) are isolated. For t ~ 1 in 
some neighborhood of  1 it follows from Theorem 4.3 that the Weyl symbol At 
of exp(tQ w) is equal to 

exp(c~(X, tan(tF)X )/ ~ ,  

and that Ar ~ AI in . Y '  as t ~ 1. Since Re ~r(X,tan(tF)X) <_ 0 when 
detcos(tF) :fi 0, by Theorem 4.3, we have 

0 > Re ~7(cos(tF)X, tan(tF)cos(tF)X) = Re ~r(cos(tF)X, sin(tF)X) 

Re cr((cosF)X,(sinF)X) as t --+ 1. 

On the other hand, since the range of cos F is invariant under conjugation by 
Proposition 4.5, we may replace (cos F)X by (cos F)Y in (4.t 1) which gives 

Re EF((COS F)Y, (cos F)Y) = Re cr((cos F)Y,  (sin F)Y)  < O, 

and proves that Re EF(X,X) < 0 when X is real and in the range of cosF .  
Let G be a quadratic form with negative definite real part and denote its 

Hamilton map by ~. Then for t r t real and close to I 

e c') = f exp(a(X, (tan(tF) + ~)X))volo/v/-~tcos(tF) (a,, 

= 7r" / v/det cos(tF) det(tan(tF) + 4 )  

= rr"/v/-det(sin(tF) + cos(tF)~) 

7r"/v/det(sinF + (cosF)4') ,  when t --, 1. 

(We postpone discussing the choice of the square root.) To calculate the deter- 
minant we note that s inF  + (cosF),/ '  maps the range W(F)c  of  c o s F  to itself 
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since sin F commutes with cos F. The determinant is therefore equal to the prod- 
uct of the determinant of the restriction to W(F)c  and the determinant of  the 
map induced in the quotient of  T*C n and W(F)c .  Now the ~r orthogonal space 
Ker cos F of W(F)c  is dual to this quotient space and the adjoint of the map 
induced in the quotient is the restriction of the adjoint - s i n F  - ~bcos F to 
Ker cos F ,  hence equal to - s i n  F. With 2u = dim Ker cos F it follows from 
Proposition 4.5 that the determinant of s inF  + (cosF)~b is ( - 1 )  ~' times the de- 
terminant D of  the restriction to W(F)c .  Thus for some choice of the square 
root 

(al ,  e ~ = 7r n i ~'/x/-D. (4.14) 

The theorem will be proved if we show that the right-hand side is equal to 

[ exp(Ev(X, X) + G(X))volar. (4.15) 7rui u 
Jw (F) 

By the remarks made on (4.13) we can evaluate the integral in (4.15) using (4.13) 
in spite of  the fact that cr g is a complex valued symplectic form. By (4.9)' we 
have 

~((cos F)X, ~(cos F)  Y ) = (7 r ((COS F)X, (cos F)~(cos  F)  Y ), 

which proves that with respect to o v the Hamilton map of  the restriction of  G 
to W is equal to (cos F)~'. By (4.11) and (4.9)' 

Er((COS F)X, (cos F)Y) = cr((cos F)X, (sin F)Y) 

----" O'F((COS F)X, (cos F sin F)Y) = CrF((COS F)X, (sin F)((cos F)Y)), 

which proves that with respect to ~rr the Hamilton map of E F is defined by sin F. 
Hence the integral in (4.15) is equal to 7r"-~'/x/D, and we have proved that 

[ exp(EF(X, X) + G(X))volcr v. (al, e G ) +(Tri ) ~ 
Jw (F) 

The sign must be independent of G since both sides are continuous functions of 
G, so we have proved the statement except for the uncertainty of the sign, which 
we have not kept track of in the choice" of square roots above. 

To verify that the sign is correct in Theorem 4.6 we shall use a continuity 
method connecting to the case where Q is purely imaginary so that we can use 
the classification in Theorem 3.1. This argument will be postponed until we have 
made an explicit calculation in that case. 

Thus assume now that Q/i is a real valued symplectic form in T*R ". By the 
metaplectic invariance of the Weyl calculus we may assume that Q/i is a sum 
of polynomials as listed in Theorem 3.1 in different groups of variables. The 
formula for the Weyl symbol of  exp(Q w) is immediately given by Theorem 4.3 
in all cases except case c) in Theorem 3.1 when cos # = 0 so we assume now 
that 
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Q(x, ~) = 7i # xjx.+l_j - xjxn+2-J + # Z ~ j~n+l--] 
2 1 

n-I ) 
- ~ j ~ . _ j  , (4.16) 

where 7 = • and cos#  = 0. Then F ( x , { )  = (x ' ,~ ' )  where 

x '  = 7 i ( # ( { , , , . . . , ~ 1 ) -  ( ~ , - J , - . . , ~ l , 0 ) ) ,  

~' : - '7 i  ( # ( x , , . . .  , x l )  - ( 0 , x , , . . ,  ,x2) ) .  

If ~ = (~,, . . . ,  ~1) = - i x ~ ' 7  it follows that 

x ' -  # x  = - L x ,  ~ ' -  IZ~ = - R ~  

where Lx = ( x 2 , . . . ,  x , ,  0) is a left shift and R~ = (0, ( j , . . . ,  c,,_ 1) is a right shift. 
This proves again that this is the space of generalized eigenvectors belonging to 
the eigenvalue #. Similarly, when ~ = ix~'7 then 

x ' + # x = L x ,  ~ , + # C = R ~  

and we obtain the other generalized eigenspace. K ( F )  is the x ~ ,  plane and W ( F )  

is defined by ~1 = x, = 0. In the kernel of F ~F# we have sin F = • sin #. Writing 

X = ( x l , 0 , . . . , 0 , ~ , )  = ( Y l , 0 , . - . , 0 ,  - i y l / ' 7 )  + ( Z l , 0 , . . . , 0 ,  izl / '7)  

we obtain 

(sin F ) X  = sin #(yl - zl, 0 , . . . ,  0, - i  (Yl + Zl)/'7) = i'7 sin #(~, ,  0 , . . . ,  0, -x~ ). 

Thus the analytic structure defined in K ( F )  by (sin F ) / i  makes ~,~ • an analytic 
coordinate if 7 sin # -- •  so K ( F )  is oriented by the form '7 sin #d~,,/x dxz. The 
quotient space T * R  n / W ( F )  is parametrized by x,~, ~1, and the duality with K ( F )  

is given by 

a((O, . . . , O, Xn ,~ l ,  O, . . . , O), (yl ,  O, . . . , O, 'rln)) = ~lyl  --Xnr]n 

SO the orientation as a dual space of  K ( F )  is given by the orientation form 
7 sin #d(1 A dx,.  Since T ' R "  is oriented as a symplectic vector space by d(1 A 
dxl A . . .  A d ( ,  /~ dxn where we can move dxn to the right of d ( l  without 

changing the sign, it follows that W ( F ) ,  with coordinates x l , . . . ,  x,,_ 1, ( 2 , . . . ,  (,,, 

is oriented by the form 

"7 sin #dx l  A d ~2 /% . . . A d x n - I  A d ~n. (4.17) 

Next we must calculate 67 F using (4.9)/. To find (cos F ) X  we decompose X 
into its components in the two generalized eigenspaces 

X = (x ,  ~) = 0' ,  - i . ~ / ' 7 )  + (z ,  i~/ '7) .  
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In the space of  generalized eigenvectors belonging to the eigenvalue/~ we write 
cos F = cos(F - / z  + ,u) = - sin # s in(F - / ~ ) ,  which acts on the x coordinates 
as (sin/_t) sin L. For the other eigenvalue we find that cos F = cos(F  +/z - / z )  = 
sin # sin(F + #) also acts as (sin #) sin L in the x coordinates. Hence 

(cos F)X = sin #((sin L)x, (sin R)(),  

so  

O'F ((COS F)X, (cos F)Y) = (sin #)rr(((sin L)x, (sin R)O,  0 ' ,  7/)). 

This means that for X, Y E W(F) and Y = (y, 7/) 

aF(X, Y) = (sin lz)a(X, ((sin L ) - l y ,  (sin R)- l r / ) ) .  

The right-hand side is defined since y is in the range of L and 7/ is in the range 
of R, for L/sin L and R/sin R are equal to the identity plus nilpotent maps, so 
the right argument in the scalar product is defined modulo an element in K(F) 
which is a orthogonal to X. When we take the n - 1st power of ~rF regarded 
as a differential form we can replace (sinL) -1 and (s inR) - l  by L -1 and R - l  
for the determinant of  the identity plus a nilpotent matrix is equal to 1. Now the 
n - 1st power of the differential form 

sin #(d~2 A dxl + . . .  + d ( ,  A dx~_ 1) 

is equal to (sin # ) " - i d a 2  A dXl A . . ,  A d~,  A dx ,_ l  which differs from (4.17) by 
the factor ")'(sin #)" ( -  1)"- i. Thus vol,~ r is equal to "/(sin #)n (_  1)"- a times the 
Lebesgue measure in the coordinates in W(F). 

To check Theorem 4.6 for this case we must also calculate the Weyl symbol 
of  exp(Q w) explicitly as the limit of  that of exp(tQ w) as t = 1 + s/# ~ 1. Then 

v/det cos( tF)  = (cos(# + s))" = ( -  sin # sin s) ~. We have 

tan(tF) = tan(t(F q: #) i (# + s)) = - co t ( t (F  :F- #) + s). 

Recalling the Taylor expansion 

O(3 

b2k 22k 2~-J, I cotz = z - ~ + G ( z ) ,  G ( z ) = z . ~  ( -  1)kz tz[ < 27r, 
1 

where b2k are the Bernoulli numbers, we obtain in the eigenspaces where F =t= # 
is nilpotent 

t/ 

tan(tF)X = 7=( Z s-it J-lot 7: F) j - '  + G(s - t(lz qz F)))X. 
1 

If X = ( x , O  then /z =t= F acts as the left shift L on the x coordinates and we 

obtain as in the discussion of sin F above, when s --* 0, 
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1 

b2a 
- ~ (2k)!22k(-1)k(~.L2~-'~) 

I<k< .n /2  

b2k 22k(__l)k(x,g2k--lf~)) _t_O(s). + s - J t Y - I ( x ' R : - l x ) -  ~ (2k)! 
I t<k<n/2 

Here (~ .L: - '~)  = ~'~.+,=,+2-j ~'~u so the first sum can be written 

n 2 
s -n ln- - ' (~-~u(S / l )u - ' )  -- Z St'+tt-2--nfn+l--u--lz~u~l'" 

1 ~,+Lt ~ 2+n 

The second sum here converges to ~t,+u=2+n ~t,~,. The function R 9 "1" 

e - ' '~ '  "~" is asymptotic in .91'(R) to 6 o / ~ / w  as s --~ 0, with a suitable 
choice of the square root..The same square root appears when we take the limit 

of the factors involving x, so a change of variables yields the limit 

lim exp(cr(X, tan(tF)X )/ x/det(cos IF) = -7r3,i ( -  sin #)n 6o(xn)~o(~l ) exp(E), 

b'l ' 22*(-1)k( ~ ~"~"+ Z xux , ) .  (4.18) E = i7  Z (2k)! 
0<k < n / 2  u+tz=n+2-- 2k v+,~=n+2k 

Here we have used that bo = 2. Since -7r3r ( -  sin #)n = 7ri,7(si n #)n(_  1)n-I 

this completes the verification of Theorem 4.6 for the quadratic form (4.26) and 
provides in addition the completely explicit formula (4.18). 

End of proof of Theorem 4.6. Let Q = Q1 + iQ2 be any quadratic form in T*R" 
with Q1 = Re Q < 0, and denote the Hamilton map by F = F1 +iF2. We can 
choose a purely imaginary quadratic form iQo, with Hamilton map iFo, such that 
the kernel of F - ,~ is equal to the kernel of iFo - A when cos )~ = 0. In fact, 

M~ = T*R" N (Ker (F - A) �9 Ker (F - A)) 

is symplectically orthogonal to M u i f /z  r i)~ and cos#  = 0. We can find a 

symplectic decomposition T*R" = So | ~cosu=0,u>0St, such that M u C Su for 
every # > 0 with costt = 0. Using the forms c) in Theorem 3.2 with n = 1 

or n = 2 when # > 0 and the forms a) with n = 1 when # = 0 we obtain 

a polynomial Qo with the required properties as a sum of polynomials in the 

different spaces in the decomposition. 

If e > 0 is sufficiently small, then the kernel of Fi + i((1 - "r)F2 + TFo) - )~ 
is independent of 7- when 0 < ~- < ~ and cos)~ = 0, for it contains the kernel of 

F - A and the dimension is upper semicontinuous. Also i((1 - r)F2 + rFo) - ), 
has the same kernel except for finitely many values of 7-, for the kernel cannot be 

smaller than that of F - )~ and is equal to it except at the zeros of a determinant 
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which is a polynomial in 7- and ~ 0 when "r = 1, For such a value of 7-0 E (0, c] 

we define 

F ~ = ~" Fi + i ( ( l  - 7-)F2 + 7-F0), if 0 < 7- <_ To, (4.19) 

L (2 - 7-/7-o)F1 + i((1 - 7-0)F2 + 7-0F0), if 7"o < 7- < 27-o 

It follows from Proposition 4.4 that the kernel of  cos(F  ~') is independent of 

7- when 7-o _< 7- < 27-o, and since it contains the kernel when 7- = 27-o the 
semicontinuity of the dimension of the kernel completes the proof that the kernel 
is independent of  7". 

Now our definitions of ~rF and EF in (4.9)' and (4.11) are continuous in F 
when Ker c o s F  is fixed. If Q~- is the quadratic form with Hamilton map F ~ 
obtained when Fj is replaced by Qj in (4.19) then the Weyl symbol for exp(Q Tw) 
is as stated in Theorem 4.6 for all 7- ~ [0, 27-o] since this is true when 7- = 27-o. 
In particular this is true for exp(Q ~ = exp(Q~) ,  which completes the proof. 

The literature also contains some formulas for the symbol of  exp(itQ~(x, D)) 
when Q is an inhomogeneous quadratic polynomial.  An example is the formula 
of  Avron and Herbst [1] for Q(x,~) = 42 +x in T * R  We shall now show how 
such formulas can be derived from the results in this section. 

First assume that Q(X), where X = (x, ~) c T*R n, is a quadratic polynomial 
with real coefficients, and that the principal part q(x,~) is non-singular. We 
denote the Hamilton map of q by F and write 

Q ( X ) = q ( X ) +  2~r(X,a)+b =~r(X,FX)+ 2cr(X,a)+b. (4.20) 

Then we have 

Q ( X ) = q ( X  +O)+c, where O= F-Ja ,  c = b - q ( O ) = b  -cr(O, FO). 

There is a unitary operator, the composition of a translation and multiplication 
by an exponential, such that 

U-IAwU = B ~ i f B ( X ) = ~ t Y + 0 ) .  

Hence 

QW = U-IqWU + c, exp(itQ ~) = U - l  exp(itq~)U exp(itc), 

so it follows from Theorem 4.3 that the Weyl symbol of  exp(itQ "~) is equal to 

exp(icr(X + 0, tanh(tF)(X + 0)) + itc)/v/detcosh(tF) 

when the denominator is not equal to 0. Here 

~r(X + O, tanh(tF)(X + 0)) + tc 

= c~(X, tanh(tF)X) + 2or(X, F-I  tanh(tF)a) - o'(a, F - 2 ( t a n h ( t F )  - tF))a) + tb. 

The right-hand side is well defined even if F is not invertible, provided thaw 

de tcosh( tF)  -r 0. For reasons of  continuity we conclude that the symbol ot 
exp(iQ w) is then equal to the product of  the symbol of  exp(itq ~) by 
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exp (i(2o-(X, F - i  tanh(tF)a) - c~(a, F-2(tanh(tF) - tF)a) + tb)) (4.2t) 

if det cosh(tF) r 0, even if F is not invertib[e. 
The preceding result means that we have solved the equations analogous to 

(4.1) for an inhomogeneous Q when Q has real coefficients, and the analyticity of 
the result shows that the solution is also valid when the coefficients are complex. 
We can therefore apply the proof of Theorem 4.3 again, which gives: 

Theorem 4.7 Let Q be a quadratic polynomial in T*R" such that Im Q is 
bounded below. Write Q in the form (4.20) with q homogeneous, and let F be 
the Hamilton map of q. Then the Weyl symbol of exp(itQ w) is equal to that of  
exp(itqW), described in Theorem 4.3, multiplied by (4.21), provided that t > 0 
and that det cosh(tF) r 0. 

We shall not discuss the case where detcosh(tF) = 0 but content ourselves 
with the example where F 3 = cF as in Derezinski [3]. As observed above, 
tanh(tF) = F tanh(tx/c)/x/7 then, and similarly 

F -  2(tanh(tF) - tF) = F(tanh(tx/7) - t v/7)/  (c v/7), 

so the symbol of exp(itQ ~) is equal to 

exp (i (tanh(t v/-[)/x/c(q (X) + 2a(X, a)))) K, 

K = exp (i (q(a)(tv/c - tanh(tv/7))/(cx/7) + tb)) 

or equivalently, 

. . . .  ~ exp ( i t (q(a) /c  2 + b)) 
exp (i(tanh tv /7) /x /7(q(X)  + 2cr(X, a) - q~a)/c)) ~ 1 ~  ' 

when c :~ 0, 

exp ( i ( tQ(X) + q(a)t3/3)) ,  

when c = 0. 

When Q ( X ) =  ~z +x ,  X = (x,s c) E T ' R ,  we obtain the Weyl symbol 

a(x, 4) = exp(i(t~ 2 + tx + t3/12)). (4.22) 

By [4, Theorem 18.5.10] we have aW(x, D) = b(x, D), where b(x. D) is detined 
by the standard calculus, if b(x, ~)= exP(�89 Dr ~), that is, 

' / /  b(x,~) = - a(x - y ,~ - I])exp(-2iyTI)dy dll. 
7r 

Evaluation of this Gaussian integral gives 

b(x, ~) = exp(i(t~ 2 + t2~ + tx + t3/3)), (423)  

which is the formula of Avron and Herbst. Again we notice that the Weyl symbol 
(4.22) is simpler than the standard symbol (4.23); the lack of commulativity only 

affects the constant term in (4.22). 
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5 Gaussian calculus 

In this section we shall put the results of Sect. 4 in the framework of general 
Gaussians studied as infinitesimal Fourier integral distributions (operators). We 
start with recalling some essentially well known facts on Gaussian distributions. 
(See [4, Sect. 21.6] for the case of real Lagrangians.) 

Let 0 r u E ~-c~P(Rn) and set 

c)rj, = {L;L(x ,D)u  =0} ,  
n n 

where L(x, O)-- oj j + bjxj (5.1) 
1 1 

One calls u a Gaussian if every v E ~ ( R  ~) such that L ( x , D ) v  = 0 for all 
L r . ~  is a multiple of  u. If Ll,  L2 c ~ ,  then the commutator [L1, L2] is equal 
to 0, for it is a constant and [L1, L2]u = 0. Hence 

A, = {(x,~) E T*C";L(x ,~ )  = 0 V L r ~ u }  (5.2) 

is an involutive subspace. 

Propos i t ion  5.1 I f  u is a Gaussian then (5.1), (5.2) define a complex Lagrangian 
plane such that V = {~; (0, ~) r Au } is invariant under conjugation, hence gen- 
erated by its intersection with R ~. Conversely, for  every such Lagrangian plane 
A a distribution u such that L ( x ,D)u  = O for  ever), L which vanishes on A is a 
Gaussian, and u = ceqd where d is a ~.function on a linear subspace and q is a 
quadratic form there, both determined by A, and c E C \ {0}. 

Proof. We introduce new coordinates by first taking a basis e l , . . .  ,e  k for 
W N R" where W = {L(O,O/Ox);L r ~ , } ,  and then extending it to a basis 
in Re W by taking real and imaginary parts of elements ek+j , . . .  ,ek+l such 
that e l , . . . , e k , e k + l , . . . , e k + t  is a complex basis in W. Then we can write the 
equations L(x, D)v = O, L 6 ~ , ,  in the form 

(O/Ox) +aj(x) )v  = 0 ,  1 <_j < k; (O/OZj +bj(x) )v  =0 ,  1 <_j < l; 

c j ( x )v=O,  1 < j  <_m. 

Here 0/02j  = 1 (O/Oxk+2j_ 1 + t O/Oxzk+2i). Since the operators commute we havc 

Oaj /Oxi = Oai /Oxj,  Oa) /O~, = Obi /Oxj, Obi /O~j = Ob) /O~,, 

and c~ , . . . ,  Cm are independent o f x ~ , . . . ,  xk and analytic in z~, � 9  zt. This means 
that if 

1 - Q ( x )  = ~ x)xj  + x)z j  

then 

e~g(x) = aj(x) - OQ(x)/Ox),  j = 1, . .  ,k ,  

13)(x) = bj(x) - OQ(x)/O~), j = 1, . .  , l, 
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are independent of .,q . . . . . .  r~. and analytic in z l , . . . , z t .  With v = e-Qto the 
equations reduce to 

Ou,/Oxj+aju,=O, j = 1 , . . . , k ;  Ow/O~j+[3jw=O, j = 1 , . . . , l ;  

cj(x)~v = 0. j = 1 . . . . .  m. 

Thus W ( x ) =  w(x)exp(~-]~ " ~/(x)xj + y-j1 ~j3 j (x)) i s  independent of x~, . . .  ,xk 

and analytic in z l , . . . , z t  so the support is invariant under translation in the 
directions of the Xl,....xk.21 plane. The product of a solution by any analytic 

function of zl,..., ., zt is another solution, and since all solutions are supposed to be 
proportional it follows that l = 0. The forms cj must be independent of x l , . . . ,  xk 

for otherwise W would have to be equal to 0 by the translation invariance in 

these variables. As at the beginning of the proof we can change the coordinates 

Xk+ 1 . . . .  , x, so that the linear combinations of the forms cj are precisely the linear 
combinations of Xk+l +ixk+2 . . . . .  Xk+2p,-1 +ixk+2,,  xk+21~+|,.. .  ,XN for some # _> 0 
and N _< n. Since the solution W is supposed to be unique it is clear that N = n. 
Then we have xk+l . . . . .  xn = 0 for every solution W. However, if we apply 

O/Oxk+l + iO/Oxk+2 to a solution we obtain a new solution, so the uniqueness 
also implies that p = 0. Thus A, is defined by 

~ j - i a j ( x ) = O , j = l , . . . , k ,  x ) = O , j = k + l , . . . , n ,  

which is a complex Lagrangian such that V is defined by ~j = 0, j < k, hence 
invariant under conjugation. We have u(x) = ce-q 6(xk+l,... ,x ,)  where q(x) = 
1 k ~f~l xjaj(x) can be taken as a quadratic form in ( x l , . . .  ,xk) only. 

Now assume that we are given a complex Lagrangian A C T*C" such that 

V = {~; (0, () E A} is generated by V A R n. By a change of coordinates we may 
assume that this is the ~k+l, - - �9 ~, plane. Then x~+~ . . . . .  xn = 0 in A, and 

~1 . . . .  ,~k are there linear functions o fx  ~ = (x l , . . .  ,xk), so A is defined by 

~j =aj(x'), j = l , . . . , k ,  xj =O, j =k + l , . . . , n .  

k t which is precisely the situation just discussed since ~ k  aj(x')yj = ~ a)(y )xj. 

The condition on A in Proposition 5.1 is not invariant under the linear symplectic 

group in T*R n. The following result shows how it must be strengthened to 
become invariant. Note that 

ic~(Y.X), X, Y C T*C n, 

is a Hermitian symmetric form. 

Proposition 5.2 l f  A C T*C" is a complex Lagrangian plane, then the following 
properties are equivalent." 

(i) For ever 3, real Lagrangian plane # C T*R ", with complexification Pc, the 
intersection "A N #c is invariant under complex conjugation. 

(ii) ia (X ,X)  is semidefinite when X E A. 
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Proof Assume that (ii) is valid and let X E A n # c .  Then X E #c,  so a(X, X) = O, 
and it follows from (ii) that icr(X, Y) = 0 for every Y E A. Hence X E A since 
A is Lagrangian, so (i) is valid. Now assume that (ii) is not fulfilled. Then we 
can find X E A with i a (X ,X)  = 0 such that i~r(X, Y) ~ 0 for some Y E A. Thus 
it(Re X, Im X) = 0, so we can choose a real Lagrangian # containing the vectors 
Re X and Im X. Then X E A n #c  but X ~g A since A is isotropic and Y E A. 
Hence (i) is not fulfilled. 

Definition 5.3 If  S is a real symplectic vector space with complexification Sc, 
then a Lagrangian A C Sc is said to be positive if i a (X ,X)  > O, X E A, and 
strictly positive if icr(X,X) > 0 when 0 ~ X E A. The set of strictly positive 
Lagrangian planes will be denoted by A +. 

It is obvious that the closure of A + consists of positive Lagrangian planes. To 
prove that every positive Lagrangian plane A is in the closure we represent A in 
the form {(x' ,0, OQ/Ox r, (")}  as in the proof of Proposition 5.1, where Q is a 
quadratic form in x '  = (xl , . . .  ,xk) and x"  = (xk+l,...  ,xn). The positivity means 
that 

i((OQ(x')/Ox', x') - (~-70Q(x')/Ox')) = 4Im Q(Re x ' )  + 4Im Q(Im x'),  

that is, that Im Q is positive semidefinite in R k. It is now clear that A is the limit 
as e ~ 0 of  the strictly positive Lagrangians 

{(x', ex", OQ/Ox' + iex', ix")}. 

Let : ~  be the set of all Gaussians in R n such that the associated complex 
Lagrangian is positive. By Proposition 5.1 and the preceding discussion these 
are precisely the Gaussians which are temperate distributions, and the map :~  
u ~ A+ to the corresponding positive Lagrangian has complex lines with the 
origin removed as fibers. 

Proposition 5.4 With the topology induced by ,Y" and the projection just defined, 
the temperate Gaussians .%~ form a complex line bundle over -A+ with the zero 
section removed. 

Proof The Gaussian in the proof of  Proposition 5.1 can be written as a Fourier 
transform 

= c J exp(iq(x') + i (x", ~")) d~" U 

in the sense of  distribution theory, where c E C \ {0} and Im q > 0 in R k if and 
only if u is temperate. If Q(x', ~") is an arbitrary quadratic form with Im Q _> 0 
in R n, then 

= c J exp(iQ(x', ~") + i(x", ~"))d~" (5.3) Uc,Q 

is an injective continuous function of  c ~ 0 and Q with values in .~"' and is a 
Gaussian associated with the positive Lagrangian 
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{(x',  -OQ (x', ( ' ) / 0 ( ' ,  aQ (x', ( ' )  / Ox', ( ' ) } .  (5.4) 

The integral in (5.3) is defined in the sense of distribution theory. That (5.4) 
defines a Lagrangian is clear since 

(4, dx) = Z OQ/Oxjdxj - ~idOQ/O~i 
l k+! 

has the differential 

02Q /O~iOxjd~i A dxj - ~ d(, A OZQ /O~iOxjdxj = O. 

Every Lagrangian A close to the given Lagrangian {(x' ,  0, Oq(x') /cOx', 4")} is 
of the form (5.4), for the projection A 3 (x, 4) ~ ( x~, 4") is then surjective so 
we can write x "  = ~(x ' ,  ~") and ~' = 0(x ' ,  ~ ' )  on A. That A is Lagrangian means 
then that 0 = d ( ( ~ ' , d x ' )  - ( x " , d ~ " ) )  = d ( ( O , d x ' )  - (~ ,d~" ) ) ,  so there is a 
quadratic form Q(x', 4") with 0 = OQ/Ox' and ~y = -OQ/O~'.  The statement 
is now a consequence of the following more general result: 

Proposi t ion 5.5 Let Q(x, O) be a complex valued quadratic form in R ~ | R u 
such that Im Q > 0 and the linear forms OQ/OOj, j = 1 , . . . ,  N, are linearly 
independent over C. Then 

u = J e iQ(a ,0) d8 (5.5) 

can be interpreted as a Gaussian belonging to the positive Lagrangian 

A = {(x, OQ(x, 8)/Ox); OQ(x, 8)/08 = 0}. (5.6) 

Proof. First note that the equations 

= OQ(x,O)/Ox, 0 = OQ(x,O)/O0 

for (x ,~ ,0)  c C n | C n 6 ) C  A' define a linear space of  dimension n since the 

equations are linearly independent. The projection (x, 4, 0) ~ (x, 4) is injeetive 
there, for if OQ(x, O)/Ox = O, OQ(x, 0)/00 = 0 and x = 0 then 

which implies 0 = 

t . . . .  , N. Thus (5.6) 

N 

Z 
j=l 

N 

Z 
j=l 

OjO2Q/OxkaOj =-O, k = I , . . .  ,n; 

O)02Q/OSkO01 = O, k = I , . . . , N  �9 

0 by the assumed linear independence of OQ/OO), j = 
defines a linear space of  complex dimension n, and since 
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s d~ j i dxj = s d(OQ/Oxj) i dxj 
j=l j=l  

= ZoeO/OxjOOkaOk Adxj = ~-~dOk AdOO/OOk 
3=1 k=l k=l 

vanishes on the manifold where OQ/O0 = 0, it follows that A is Lagrangian. If 
X = (x, OQ(x, O)/Ox) and OQ(x, 0)/00 = 0, then 

ia(X,X) = i((OQ/Ox,x) - (-s OQ/Ox)) 

= 2Ira ((OQ/Ox,-s + (OQ/O0,-O) = 4Im Q(x, 0;2-,0)) 

where Q(.;-)  is the polarized symmetric bilinear form defined by Q. Hence A is 
positive. 

The integral (5.5) can be defined in the sense of  distribution theory: If  qo E .~  
we shall prove that 

(u, W) = / ~p(x )e ia(x'~ dx dO (5.5') 

exists as an oscillatory integral. If  Im Q is positive definite the integral is ab- 
solutely convergent. Since we have just seen that x = OQ/Ox = O, OQ/O0 = 0 
imply 0 -- 0 we can write 

oj = a ; k x ,  + Z b j ,  O /Ox  + Zcj Oe/O0  

and obtain in the strictly positive case for any integer u > 0 by partial integration 
after multiplication by (1 - iOj)(1 - iOj) -1 

N 
- -  

j=l 

When u > N this defines a distribution in .5 -'~' also when Im Q is just positive 
semidefinite, so (5.5) defines a temperate distribution depending continuously 
on Q- It suffices to verify that it is Gaussian in the strictly positive case. If 
L(x, ~) = 0 on the Lagrangian (5.6), then L(x, OQ/Ox)= ~-]u tjOQ/OOj for some 
tj, and we obtain 

L(x, D)u = f L(x, OQ/Ox)e iQ(x'~ dO 

N t "  Z,, I OQ/OOje'O"'~ dO = o, 
d 1 

which completes the proof. 
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Proposition 5.6 l f  Q is a quadratic form satisfying the hypotheses of  Proposition 
1.5 and c = 02Q/O02 ~ O, then 

Q(x ,O)= �89 +L(x,O'))2 +Ql(x,O'),  O '=(02, . . . ,ON) ,  (5.7) 

where L is a linear form, Ql is a quadratic form satisfying the hypotheses of  
Proposition 5.5 with N replaced by N - 1, and 

i eiQ<~'~ dO = ~ f eiQ'<x'~ dO ' (5.8) 

with the square root in the right half plane. 

Proof. By completion of squares we can write Q in the form (5.7). If/3 c R then 
{(o~+ i13)z; c~ E R} is a parabola surrounding the circle {z;Izl =/3z}, so we have 

-�89 L(x,O')lZ+Im Ql(x,O') > infIm Q(x,Ol,O') > o, x E R~, O' E R N-I 
ol 

which proves that Q1 satisfies the hypotheses of Proposition 5.5. When Im c > 0 
we obtain (5.8) immediately by integration and the general case follows by 
continuity. 

By repeated use of Proposition 5.6 we can reduce the number of 0 variables 
in (5.5) until we are left with a quadratic form Q(x, O) which is linear in 0. It is 
then essentially uniquely determined by )~: 

Proposition 5.7 I f  Q(x, O) is a quadratic form satisfying the hypotheses in Propo- 
sition 5.5 and Q is linear in O, then 

Q(x, O) = (LO, x ) + q(x ), (5.9) 

where L is an injective linear transformation R N -~ R n and Im q > O. The 
corresponding Lagrangian is 

A = { (x ,q ' (x )+LO);x  C C'~,0 E CN, 'Lx =0} .  

The Gaussian distribution (5.5) is (27r)u 6(' Lx )e iq~x). If  Q(x, 0) = (LO, x ) + el(X) 
defines the same Lagrangian then L = LT where T is a linear bijection in R N, 
and ~t = q when t Lx = O, which is equivalent to t L, x = O. 

Proof. Since Im Q(x, O) >_ 0 in R" 63 R N we must have Im (LO, x) = 0 there, so 
L maps R N to R n. The linear independence of OQ/OOj,j = 1 , . . .  ,N, means that 
L is injective. The range of L is {~;(0,~) E A}, which proves that L is uniquely 
determined by A apart from an invertible factor to the right. This completes the 
proof. 
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For the sake of brevity we shall not discuss here the definition of  symbols of 
general Gaussian distributions but pass to a study of  those which are related to 
symplectic linear maps. If A C T*C n ~ T*C n ~ T*C 2n is a positive Lagrangian 
with injective projection in each of  the two factors, then the projections are 
bijective. In fact, if A ~ (X, Y) ~ X E T*C ~ is not surjecive, then one can find 
Xo E T*C ~ \{0}  such that ~r(X,X0) = 0 for all (X, Y) E A. Since A is Lagrangian 
this means that (X0, 0) E A so the projection to the second factor is not injective. 

- -  When the projections are bijective we introduce the twisted Lagrangian 

C = A ' =  {(X, Y');(X, Y) E A}, 

where Y' = 0' ,  -77) if Y = (y, r/). We regard C as the graph {(TY, Y); Y E T*C n } 
of a symplectic linear bijection T*C n ~ T ' C " ,  that is, a(TX, TY) = a(X, Y) for 
all X, Y E T*C ". We shall say that T ispositive if the corresponding Lagrangian 
A is positive, that is, 

i (e(TY,TY)-cr(Y,Y))>O,  Y E T * C  n. (5.10) 

With T we associate the Gaussian distribution 

Kr =(27r)-~"+u)/2~det ( Q~~ Q~'Y ) f eio~x'y'~ iO"~xy 

E .~"'(R" • R"), (5.1 1) 

where Q is a quadratic form defining A = C '  according to Proposition 5.5. We 
do not prescribe the sign of  the square root so Kr is only determined up to the 
sign. Apart from that Kr is uniquely determined, independently of the choice of 
Q. To prove this we first observe that if the hypotheses of  Proposition 5.6 are 
fulfilled, then the definitions using the two quadratic forms Q and Ql (with x 
replaced by (x,y)) agree. We just have to prove that 

( ) (" ,,) det Q~o Qo'y Qto,o' Q,o'y Q ~  ,, = cdet  ,, ,, . (5.12) 
axy alxo'. Qlxy 

Let Qz be the form obtained when L is replaced by 0 in (5.7). Then the matrix in 
the left-hand side of  (5.12) is equal to the corresponding matrix with Q replaced 
by Q2 multiplied right and left by O((0j +L),  O',y)/O(O,y) and the transpose of 
0((01 +L), 0 I, x)/O(O, x), which have determinant 1. This proves (5.12), and it just 
remains to discuss the case where Q is linear in 0. By Proposition 5.6 two such 
forms Q can only differ by a substitution of TO for 0 where T is an invertible 
linear transformation in R N, and this does not affect (5.11). 

Before discussing the composition of two operators with kernels of  the form 
(5.11) we have to prove a continuity property making it well defined. 

Proposit ion 5.8 If T is a positive symplectic linear bijection in T*C n, then the 
map .TCT : .5~(R") --~ .5~1(R") with kernel (5.11) is a continuous map in . ~ ( R  n) 
and extends to a continuous map in ,gr 
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Proof. By duality it suffices to prove the statement on . ~ .  If  (xo, ~o) = T(yo, r/o) 
then (xo, ~0,Yo, -r /o)  E A = C t, which means that 

(~,xo) - ( x , ~ o ) + ( r / , y o ) + ( y , r / o ) : 0 ,  (x,~,y,r/)c A. 

Thus the corresponding differential operator annihilates KT which means that 

LT,~YeS"~r = . ~ T L  if L = (Dx, Yo) - (Y, r/o) and Lr = (Dx, Xo) - (x, ~0). Any product 
of ,-Tc"r to the left by such operators is therefore equal to a product to the right. 
Since (1 + IDt 2 + [XI2)-U.~Tf is a bounded continuous function for all f 6.5/~ 
if N is large enough, it follows that 

xC*O3,~TgS~Tf = (1 + 1012 + Ixl2)-N(1 + [Oj 2 + ]x]2)Nxc~oLl.~/'g~fT. f 

is a bounded continuous function for arbitrary a, /3.  This proves the statement, 
and the proof shows that ,::TeY~Tf depends continuously on T also. 

Propos i t ion  5.9 l f  Tl and T2 are two positive symplectic bijections in T*C n, then 
T1 T2 is also a positive symplectic bijection and .~Tgg'~r, r2 = • 

Proof. We write 

r  / /  KTL = (27r) -(n+NO/2 det Qloo/t,, Qlo,.. ,, e iQ'~x'y'~ dO, 
Qlxo tQIx.v 

r  )/ 27-Z Kr, = (27r) -~"+u2)/z det Q e ~ / t  Q'' �9 ?1 Q~[., e iQ2(''z'~') d'r, 
I Q 2 y z  

and let Q (x, z, y, 0, 7) = Qt (x, y,  0) + Q2(y, z, "1-) with X = (Y, 0, r )  considered as 
the fiber variables, with dimension u = n +NI +N2. Since n +Nl +n +N2 = n +u,  
this gives the right power of (2~r) in the composition. The corresponding twisted 
Lagrangian is defined by 

/ ! ! I 
{(x, Qrx, z, -Qz);  Qs = o, Qo = o, Qr = 0}. 

Then we have 

T2(z , -OQ2(y , z, r ) / Oz ) = (y , OQ2(y , z, 7-) / Oy ) = (y, - OQl (x , y , tg) / Oy ), 

thus TiTz(z , -OQz(y,z ,7-) /Oz)  = (x,OQl(x,y,O)/Ox),  so it will follow that 

�9 7Ur, r2 is equal to .  7Ur,. -7Z~ 2 i f we prove that 

(,, ,,) (,, , , ) ( , ,  ,,) det Qxx/ t  Qxz Qloo/l Qlov Q2~-T/t Qz~z Q~x io"  = d e t  �9 ,i det ,, . ,, , 
,...,z a(':,o 'Olxy Q2y~- tQ2yz 

for this will prove at the same time that the components of OQ/Ox are linearly 

independent. For reasons of  continuity it suffices to prove this algebraic identity 
when the number of 0 and 7- variables can be reduced to O, and when these 
variables are absent it reduces to 

( n ' , l i  " ) 
det (Q(Ivv + ~2y) ' l l  Qeyz . , ,  " , ,  Q(~x]j 0 = det(t Ol ~'- ) det(tQ2"z- ) 

which is obvious. 



4 4 6  L .  H 6 r m a n d e r  

The kernel of the adjoint of.  ~3"5/r is defined by - Q ( y ,  x ,  0), and the corresponding 

symplectic transformation is Y ~ T - t Y  -, which we shall denote by T -1. In 
particular, this is the inverse of T when T is real. The structure of  a general 
positive symplectic linear map is clarified by the following analogue of the polar 
decomposition: 

Proposit ion 5.10 Every positive symplectic linear map in T*C n can be factored 
as Tl T2T~ where Tt and T3 are real linear symplectic maps and T2(x, ~) = (x', ~') 
where for  j = 1 , . . . , n  either 

(xf,  ~ )  = (xj cosh 7) - i { j  sinh "~, ixj sinh ~ + {j  cosh ~)) 

or ( x f , { ] )=(x j , i x j  +{j) ,  

with ~ > O. The map 7"2 is defined by the sum of  the quadratic forms 

1 .  2 0f)sinhT) 7) xjOj+�89 3~)Oj (xjOj + ~t(xj + ) /cosh  - yjOj or - . 

Proof  This is contained in Theorem 4.1 of  H6rmander [5] where it was proved 

by studying T -  l T. 

We shall now connect the preceding facts with the Weyl calculus. First we 
consider the Weyl operator in R n with symbol e iQ(x'~) where Q is a quadratic 
form with Im Q _> 0 in T*R ' .  The kernel of  the operator is 

K(x,  y) = (27r) -"  f e iQ(�89176176 dO (5.13) 

which is well defined since the derivatives of the exponent with respect to 
01 , . . . ,0n  are obviously linearly independent. The corresponding twisted La- 
grangian contains (x, ~,y, r/) if with z = �89 + y )  and some 0 

t 1 t I t Q o ( z , O ) + x - y = O ,  0 ~, - , + 0  Qz (z O) + = = , ~ Qz (z O) rl, 

which is equivalent to 

1Q~(z, O), ~ = o + l , 1 , x =z  - ~ iQz(z ,O),  y = z  + 7Qo(z,O), 
~ = o -  1 r Oz (z, o). 

If F is the Hamilton map corresponding to Q this means that 

( x , ~ ) = ( l - F ) ( z , 0 ) ,  (y, r/) = (l + F)(z,  0). (5.14) 

If  F does not have the eigenvalue 1, hence not the eigenvalue - 1  either, we 
obtain a symplectic linear map T = (I - F ) ( I  +F)  - l .  (The passage from F to T 
is an analogue of the Cayley transformation.) The kernel (5.13) is then a constant 
times Kr, defined by (5.1 1). To determine the constant we must evaluate 

det Qoo/t ~ O z  - I =de t  iQoo ?~Oz 
l [ ' i t t  + i 1 .  t !  1 t!  �9 
7~zo ZtQzz ~Qzo +I  2Q~z 
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0 1 ) 
Multiplication to the right by - 0 , which has determinant 1, shows that 

this determinant is equal to 

(, ) - - _5~00 = det( l  - F) .  det " lr176 1 + !c~" 
- -  3 : ~ z z  2 ~ z  0 

Hence we have proved: 

Propos i t ion  5.11 If Q is a quadratic form in T ' R "  with Im Q >_ 0 and the 
Hamilton map F of Q does not have the eigenvalues • then 

v/det( 1 - F ) ( e i Q )  w = ' ~ ( I - F ) / ( I + F ) ,  (5.15) 

where .7g5. T is the operator with kernel KT defined in (5.11). 

We shall apply this result to  e iQ''' where Q is a quadratic form with Hamilton 
map F and Im Q _> 0. When det cosh F r 0 we know from Theorem 4.3 that the 
Weyl symbol is equal to e x p ( i O ) / ~ F  where Q(X) = c~(X,(tanhF)X). 
Thus the Hamilton map of Q is tanh F,  which according to Proposition 5.11 is 
associated with the linear symplectic map 

(I - tanh F)(I + tanh F )  -1 = e -2F. 

We have det(l  - tanh F )  = det(cosh F - sinh F)/de t  cosh F = 1 /de t  cosh F ,  for 
the determinant of e - F  is equal to 1 since it is a symplectic map. Now it follows 
from Proposition 5.11 that the Weyl operator defined by exp ( iQ) /x /de t cosh  F 
is equal to ,~exp(-2F), which means that e iQ''' is equal to ,~exp(-2F)- We can 
therefore give another interpretation of the Mehler formulas of  Sect. 4: 

Theorem 5.12 If Q is a quadratic form in T*R n with Im Q >_ O, then exp(iQ w) = 

�9 ~ZC'~exp(-2F) where .~{'r is the operator with kernel 1(7" defined by (5.11) when T 
belongs to the semigroup ~+ of positive symplectic linear maps in T*C n. The 
semigroup generated by the contraction operators exp(iQ w) consists of  all ot7_ 
erators .7CT with T E ~+," it is a double cover of ~+. The invertible elements 
in the semigroup are those with T ~ ~0 C ~+, where ~6 is the real symplectic 
group. They form a double cover of ~o, generated by exp(iQ '~) when Q is a real 
quadratic form. 

Proof. If cosh A r 0 when A is an eigenvalue of F ,  we have already seen that 
exp(iQ ~') = .7~xp(-2F) .  Otherwise we write 1 = s + t  where 0 < s < t and 
coshAs r 0, coshAt r 0 when A is an eigenvalue of F .  Then exp(itQ ~) = 
,~W-exp(-2tF) and exp(isQ ~) = .Tgexp(-2,F), and using Proposition 5.9 we conclude 

that exp(iQ ~) = .  7{exp(- 2/:). 
If T is a real symplectic map close to the identity, then the equation e -2F  = T 

has a skew symmetric solution F close to 0 given by the Taylor expansion of  
F = -�89 log ( l+(T- l ) ) ;  the skew symmetry follows since T - I  is the adjoint of T 

with respect to the symplectic form. Thus .~Ur = exp(iQ w) if Q is the quadratic 

form with Hamilton map F .  



448 L. H6rmander 

Let G be the subgroup of  the unitary group generated by exp(iQ w) with real 
quadratic forms Q, and let G be the group consisting of the operators with kernel 
(5.11) where T r ~W0. We have G C G, and G is a double cover of ~ .  Since 
the range of the composition G ~ G --~ ~W0 contains a neighborhood of the 
identity we have either G ~ t~ or G ~ ~C0, for ~ is connected. Now we know 
from the Mehler formula (4.7) that if a ( x , ~ )  = ~--~ sj(x~ + ~2j) where sinsj = 0, 
j = 1 , . . .  ,n,  then exp(iQ w) = I/l-I~ cos(sj), which is - 1  if we take sl = 7r and 

s) = 0 f o r j  ~ 1. Hence G = G. 
In the complex case the surjectivity is now a consequence of Proposition 

5.10, for the map /'2 there is equal to e -2F where F(x, ~) = (x', ~') means that 

x j = � 8 9  ~ ' j=- �89 or x / : 0 ,  ~ = - � 8 9  

The corresponding quadratic form is Q(x, 4) = ~ Qj(xj,~j) where 

Qj(xj,~j) = 1. 2 ~'9(x; +~)  or Q j ( x i , ~ j ) =  1. 2 -~lxj. 

The corresponding operator is therefore a classical Mehler operator. It is a con- 
traction operator, and it is not unitary unless Q = 0. If T = T1TzT3 as in Propo- 
sition 5.10 it follows that T has an inverse which is a contraction operator if and 
only if T2 is the identity which means that T is a real symplectic map. 

The group of operators {.'~ZSfr} with T C ~ is isomorphic to the metaplectic 
group, and it seems natural to call the semigroup of operators {,Tgfr } with T r U+ 
the metaplectic semigroup. If U = .~7-e;'~T with T r ~ and if Im Q >_ 0, then the 
metaplectic invariance of  the Weyl calculus (see [4, Theorem 18.5.9]) implies 
that 

u- l (e iQ)wu = (eiQ) w, 

where Cg(X) = Q(TX) has the Hamilton map F = T-IFT,  if F is the Hamilton 
map of Q. This is also a consequence of Proposition 5.11, but the full metaplectic 
invariance does not follow from Proposition 5.11 since all Gaussian symbols are 
even. 

Remark. The exponential map Q ~ exp(iQ~), defined when Q is a quadratic 
form in R" with Im Q >_ 0, is not a surjection of  a neighborhood of 0 on a 
neighborhood of the identity in {,~Tgfr; T E U+}. In fact, assume that n = 1 and 
that Q is small; let F be the Hamilton map of Q and set F = tanhF,  thus 
F = arctanh F. Suppose that a(X, b'X) = ax2+ib( 2 for some small a r R \ 0  and 
b > 0, which is a form with non-negative imaginary part. Then the eigenvalues 

A ~  0-a ibo ) areg ivenbyA2+iab=O's~  

/0, t (arctanhF)/F = (arctanh A)/A = 1 - A2t 2 - 1 +a2b2t 4 dt, 

which proves that 
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Im Q(X) : Im ( ( ax  2 + ib~2) (a rc t anh  A ) / A )  

f l  dt fool t2 dt 
= b~2 1 + a2b2t 4 a2bx2 1 + a2b2t 4' 

w h i c h  is no t  n o n - n e g a t i v e .  H e n c e  the  e l e m e n t  ,~Tg'r o b t a i n e d  by  n o r m a l i z i n g  the 

W e y l  o p e r a t o r  w i th  s y m b o l  exp(i(ax2+ib~2)) as in (5 .15)  is no t  in the  local  range 

o f  the  e x p o n e n t i a l  m a p .  H o w e v e r ,  the  f ac to r i s a t i on  in T h e o r e m  5.12 is g iven  

exp l i c i t l y  by .~TtY:r = exp(liax2)exp(icD2)exP(�89 2) w h e r e  c = ib/(1 + iab) -1, 
thus  Im  c = b/(1 + a 2 b  2) > 0. 
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