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1 Introduction 

We are interested in this work in the following question raised by H. Weyl 
[15]. Let ,q be a smooth Riemanian metric on the 2-sphere S 2. Does there exist 
a smooth global isometric embedding of  the Riemanian manitbld (S 2,,q) in IR 3 
endowed with the flat metric ? 

When the Gauss curvature of  the metric is strictly positive everywhere, a 
positive answer has been given through the works o f  H. Weyl [15] and L. 
Nirenberg [11], who proved the existence of  a Ck-]'~,O < 7 < 1, isometric 
embedding provided that ,q is Ck,(k > 3). (See also E Heinz [8] and the works 
of A.D. Alexandrov [1], A.V. Pogoretov [12] for a different approach.) 

In a recent work, J.A. Iaia [10] considered the case when the positive 
Gauss curvature vanishes at one point P ~ S 2 and AK is non negative in a 
small neighborhood o f  P. (Here A is the Laplacian on S 2 associated to the 
metric g.) He proved under these conditions the existence of  a C ~'~ isometric 
embedding provided .q ~ C 4. 

The purpose of  our work is to extend this result to the general case, namely: 

Theorem 1.1 Let g be a C "~ Riemanian metric on S 2. Suppose that the Gauss 
curvature sutAJ~'es 

(1. l)  K > 0 on S 2 . 

Then there exists a C U, isometric embedding X : (S 2 ,,q) -~ IR 3. Moreover 
X is C3,~,0 < :~ < 1,(C ~ )  in S2 \K 1(0) ( i f g  is C ~ ) .  

Let us note that the Gauss-Bonnet  theorem tells us that lbr any C 2 metric 
on S 2 its Gauss curvature is strictly positive somewhere on the sphere. 

' Institute of Mathematics, Fudan University Shanga'/, China 
? Department de Math6matiques, Universit6 de Paris-Sud, Brit. 425, F-91405 Orsay Cedex, France 



324 J. Hong, C. Zuily 

Concerning higher regularity, laia [10] observed that if, at a point P,K 
has a non degenerate minimum, and if a C 2 isometric embedding X has a 
mean curvature which vanishes at P, then X cannot be C 3. It is worthwhile to 
point out the Pogorelov gave an example o f  a geodesic disk, with non negative 
curvature, not admitting a local C 2 isometric embedding in IR 3 at its center. 

Let us now outline the paper. Approximating the metric g by a sequence of 
smooth metrics 9,: with strictly positive Gauss curvature and using Nirenberg's 
theorem, we get a sequence (X~:) of  isometric embeddings. The problem is then 
to give absolute upper bounds for the derivatives up to the second order of 
X,:. Classical results (see [5]) show that p,: = -�89 2 satisfies, in every local 
chart, a non linear second order p.d.e, of  Monge-Ampare type : 

det (V(ip,: + 9~)) = Kc(det91~ ) (-2p,: - Ivp,:l 2) . 

o f  course the problems come from the fact that the right hand side may van- 
ish. An important observation is that actually the quantity ( - 2 p  2 [Vp,:l 2) 
is bounded below by a strictly positive constant independant of  e.. This is a 
consequence of  a geometric lemma of  S.Y. Cheng-S.T. Yau [3] about lower 
bounds for the radius of  balls which can be inscribed in a convex compact 
body. On the other hand, the classical upper bounds for the second derivatives, 
as in L. Caffarelli-L. Nirenberg-J. Spruck [2] or C.M. Corona [4] for example, 

1 which is here irrelevant. We use in- are given in terms of  upper bounds for 
stead a technique which is inspired by the work of  J. Hong [9] and an interior 
estimate proved by E. Heinz [7]. 

2 Differential  geometry  formulas  

For sake of  completeness we recall in this section some classical facts which 
will be used in the proof. (See [5], [11].) 

Let 2; be a smooth convex surface with positive Gauss curvature locally 
given by a smooth X : U c IR 2 ----+ ~. Local coordinates will be denoted by 
u = (ul,u2). Let (9~/(u)) and (#ij(u)) be the components of  the metric and of 
the second fundamental form of  Z. We set G = det 9ij. 

The orientation o f  S is so chosen that the inner unit normal to the surface 
L X at any point is given by )(3 = ~ (  ,1 AXe2). 

The mean and Gauss curvatures of  the surface H and K, which are then 
positive, are given by 

1 2 .. det #ij H = ~ ~ #ij,q U 
(2.1) K - G ' i,/=1 ' 

where (giJ)= (g~j)-l. The structure equations are then 

?fiX 2_L ~ ~X 
(2.2) auic?uj - k~..'.lFi/ ~ + (ijX3 , 

where F~. are the Christoffel symbols of  the metric. 
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Choosing the origin as the center of the largest ball which may be included 
in the convex body bounded by X we define 

(2.3) p ( u )  = - 2 I [X(u)112 , 

where I1 �9 11 denotes the Euclidian norm on 1R 3. 
Following [ 11 ] we shah show that p satisfies an equation of Monge-Ampbre 

type. By (2.2) and (2.3) we get 

{ ~'~ - I x ,  ~x> 

(2.4) c~2p 
~?u~ guj - -  ~u k k=l 

Denoting by V~jp the second covariant derivative of p we get 

(2.4)' ~,i[<X, X3)  = V i j p  - ,@j , 

and therefore by (2.1) we get 

1 
(2.5) K ( X ,  X3) 2 = ~det(V~jp + 9q) �9 

Now the expression (X, X3} 2 represents the square of the distance from the 
origin to the tangent plane to X at the point X ( u ) .  we have 

X Xul AXu2 
{x, x3) 2 = 112112 I l X A & l l 2 =  112112- A ~ d  

l 
--  IIXII 2 - ~ II <X,X~Q ) 2 1 4 2  - -  <X, Xu2)Xut II 2 

1 ( ( , ? p ) 2  __(?P (?--P-P + 9 1 , ( @ ' ] 2 )  
= --2p -- ~ 922 ~ -- 2912 (~Ul ~u2 ',, (?u2 / 

and therefore 

(2.6) 
2 

(X,X3) 2 = - 2 p -  ~ 9 ' J V , p  �9 V j p  . 
i,j= l 

It follows from (2.5) and (2.6) that p satisfies the equation 

(2.7) det(V~jp +,q~j) -- K G  - 2p - ~ 9iJVip �9 V jp . 
i,j=l 

Moreover, using the mean curvature H we get another equation for p. Indeed 
1 " "  we have H = : ~ i j  9ud/J, and by (2.49 

E , q i j  { ~ j { X  ,X352 __ E g U ~ 7  ij ~ i j  = - ~ ] . q  9!~ = - A ~ p  - 2 
i,j iff i j  

2 
(2,8) Aap + 2 = 2 H  - 2 p  - ~] gijV~p . V j p  . 

i d =  1 

Here A, = E i , j  9'YVij is the Laplace operator with respect the metric (,qij). 
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We shall use in the proof  a result of  S.Y. Cheng-S.T.  Yau that we recall 
now in the particular case of  the dimension two. 

Lemma 2.1 (Cheng-Yau [3]). Let  Z be a compact convex C 4 hypersurface in 
IR 3. Let  K be its Gauss curvature ,function defined on S 2. Then we can f ind  
a positive constant r which depends' only on an upper bound o f  ,fS2 d,~, and 

a lower bound o f  inf~cs2 f s  2 max(O, (u, o o ) ) ~  such that we can put  a ball 

o f  radius r inside the convex body bounded by X. 

We shall also use an interior estimated proved by Heinz [7] which we recall 
now. Let us set B~ = {u C IR 2 : lu] < r}. 

Lemma 2.2 Let  (S,.q) be a closed convex surJaee in IR 3 yiven around p ~ s 
by X : Br --~ S with X(O) p. Assume that its Gauss' curvature s'atL~fies 

(2.9) K(u)  >= a > 0 Vu C B,. . 

Then there exists a positive constant C dependinq only on d iam(S ,g )  , the 

max imum over B,, o f  (de tg i j ) - l , r ,  II~llc~/B,.), IIK[lcZr ]lX]lc0(R,,) such that 

(2.10) [ D2X(u)  ]<= C Vu ~ Br/2 �9 

This lemma follows from Satz 3 in Heinz [7] since we have f f(z,,,)HdO = 

f f ( z , ~ ) { X , n ) K d O  where n ~ is the outward unit normal and dO is the area 

element o f  Z'. 

3 Regularisation of the metric 

The purpose of  this section is to approximate our metric by smooth metrics 
with strictly positive curvature. 

Lemma 3.1 Let go be a C 4 metric on S 2 whose Gauss curvature satisfies 

(3.1) Ko > 0 0 n S  2 . 

Then there exists a sequence (g,:) o f  C "~ metrics on S 2 with curvature K,, 
such that 

i) (g~:) tends" to. go in C 4 
(3.2) it) K,: tends to Ko in C 2 

iii) K~: > 0 on S 2 f o r s m a l l e .  

P r o o f  We first approximate go by a sequence of  C 4 metrics. 
Let us set F = {P C S 2 : K o ( P )  = 0}. We may assume Fq:~b otherwise 

our result reduces to that o f  Nirenberg. Moreover the Gauss-Bonnet  theorer~: 
implies that F 4 : S  2. Let (Sq C C2 be open sets in S 2 contained in S 2 \ F  and le! 
0 C C ~ ( S  2) be such that: 0 < 0 _< 1,0 = 1 on 61,0  = 0 o n  $2 \02  . 

Since the right hand side has mean zero on the sphere, the equation 

1 
(3.3) A~0 v = 0 $2 f O(~o)do~ 

go (s2,y0) 
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has a C ~ solution v. 
Let us set 

(3.4) g,: = e2~:" g o 

It is well known that the Gauss curvature of  g,: is given by 

(3.5) e2~rKc = Ko - eA~oV . 

Let 6 - inf72Ko . Then 6 > 0, and if e is so small that ~: sups2 IAg0v I =< ~6 
1 we have K,: > 0 on 6~2. Moreover, on S 2 \ ( %  we have Agov - is:-  ~ f(s2g0) 

O((o)dco < 0 and Ko > 0. Therefore Kc > 0 on S 2. This proves iii). The 
statements i) and ii) are easy. 

Now lbr a fixed e, since K,: is strictly positive, we can use the mollifier 
technique discussed in Green-Wu [6] to approximate in the C4-topology the 
C 4 metric g,: by a sequence of  C ~ metrices (g~:.,) with strictly positive Gauss 
curvature, which completes the proof of  the Lemma 3.1 

4 Proof of the Theorem 

Consider the Riemanian manifolds (S 2,g,:) where g,: is given by the Lemma 
3.1. Since its Gauss curvature is strictly positive, the theorem L. Nirenberg [1 1] 
implies that there exists a global C "~ isometric embedding X,: : (S  2 ,g~) - - ,  ]R 3. 

We shall set Z,: = X,:(S2). Then Z,: is a strictly convex hypersurface which 
bounds a strictly convex body. 

Bounds  f o r  X~: and  VX~: 

Without loss o f  generality we may assume that the origin is at the center 
of the largest ball inscribed in the convex body bounded by 22~:, translating 
if necessary this isometric embedding X,:. Of  course this will not change the 
bounds of  IV)(,:] and /V2X,:t. It follows from the convexity of  Z): that for 
c c (O, so), 

(4.1) IXc] < d i a m ( S 2 , g , : )  <= maxe2~:~'diam(S2,go) < Co 
S 2 

for some constant Co independent of  c. 
Now since (Xa ,Xq) 2,:,, = e go(i we get 

(4 .2 )  [VyoX~l 2 < supe 2~:~' < C2 �9 
~/0 ~ 

S 2 

From (4.1), (4.2) we get, with a constant C independent of  e, 

4.3) llX~:llc% ~ C, 
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Bounds of  the second derivatives 

As soon as we have a bound for the C 1 norm of  X~, we can show that we 
can put inside the body bounded by X,: a ball whose radius is bounded below 
by an absolute positive constant. Indeed, by Lemma 2.1 it is sufficient to get 
absolute bounds for inf~es2 f s  2 max(O,/u ~o~1 a~o and fs2 a~,) \ ' / / Ke(,o) K,:({o)" 

First of  all since K~: = e-2*:~(Ko-eAv)  one has 0 < K~, < A with A 
independent o f  r.. Therefore for u C S 2 

(4.4) s2fmax(O' (u' c ~  > .  f Al_max(0, (u, co))dco = 2~.A 

On the other hand, since the Gauss map S,: -% S 2 (where n(x) is the unit 
normal at x to 22~,) is a global diffeomorphism one has 

(4.5) f d o  _ fdcr~ = f e2':~'doo =< Carea(S2, go). 
s2 K~:((o) ~,: (s2,yo) 

It follows then, from (2.6), (2.7) and Lemma 2.1, that our function p,: 
- ! []X~:]] 2 satisfies 

2 

(4.6) det(VijP~: + 9~:q) = K~:G~(-2p~: - IVp~:l]~: ) 

(4.7) - 2 p ~ : -  IVp~l~, ~ r g > 0 ,  

2 i/ 
where t p~[e,: = ~ gi: Vip~Vjp~: and r0 is independent of  e. 

Indeed the left hand side of (4.7) represents the square of the distance 
from the origin to the tangent plane to Z~ at X~(P). Here we took the origin 
to be the center o f  the largest ball which can be inscribed in the convex body 
bounded by Z,:. 

Consider now that C ~ function on S 2 defined by 

(4.8) w~, = Ag,:p,:exp 

where 2 is a real constant staisfying 

2 

1 
(4.8)' 2C g __< 

and where Co is defined in (4.1). 
From now we skip the subscript e keeping in mind that all our upper boun& 

must be independent of  e and we write K instead of  K0. Let us introduce sornc 
conventions and notations. First of all from now on all our derivatives will bc 
covariant derivatives and we shall sometimes write Pi, Pij instead of V i p ,  VjV i /  
etc . . .  Moreover we shall write 
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F(zi j )  -- detzij, z(j = Pij + gO 

f = K G ( - 2 p  - [Vpl ) 
(4.9) F~ j = O,__F_F U _ 0 2 F  

gzq' F pq ~z(j ~Zpq 

A q A ,  

and we shall use the Einstein summation convention. 
Differentiating two times the equation (4.8) we get (since Vkgij = 0) 

(4 .10)  F ' l  Pijk/ 4- FzJPq fli/k ppq /  = f ~/ . 

329 

Now from the Ricci formulas we get 

(4.11) 
4- m m m V/Ri j t~Pm + VjR/ ik ,Om + V j R i k / P m  , 

where R~k are the components of  the Riemann tensor. 

Now multiplying (4.9) by #ks, using (4.10), setting L = 
recalling that A = yk/Vl~Tk we get 

(4.12) L A p  = A f - ,qk/ FijPq l)iikP pq / -- (Jk/ ~k( 

Pijk/. = Pk/(i 4- R~jkPmt 4- R~?Pmk q- R/mikrOmj 4- Ri~/Pmi + RkmifPr.i 

F i j V j V i  and 

with 

(4.13) ~,,, = F ~j (R~kpm / + . . . . . .  + VjRimk/pm) . 

With w defined in (4.8) we get 

(4.14) L w  = e~ rvp]2 (LAp + 22FiJ(Ap)igk/  p~jp/ + Ap[2gk/ f kp[' 

" i/ k/ ] + ] t g k / F i J R ~ i i i p m p / + / ~ F  g PkiP{j  4- 2 2 F ( i g k / g p q f l k i p { p p j p q  ] . 

Here we have used Pkij = pijk + Rir~jPm and F~l Pijk = . f  k. 
On the other hand from (4.9) we get 

(4.15) A f  = A ( K G ) ( - Z p - ] A p l 2 ) 4 - 2 g k e ( K G ) k ( - 2 p / - 2 g q p i / p j )  
1) 2) 3) 

+ KGgke( - 2pk/ -- 29 (i Pik/flj -- 2g '7 Pi, PH) �9 
4) 5) 6) 

We shall denote in that follows by 0(1) a term which is uniformly bounded 
with respect to e.. 

Since ~1~. tends to g in C4,K~: tends to K in C 2, and since we have already 
uniform bounds for p~ and its first order derivatives, it follows that 

1 / + 2 )  = O(l) 
(4.16) 3) + 4 )  = 0(1)Ap 

6) = - 2 K G ( A p )  ? + 0(1) + 0(1)Ap . 

Moreover, using Pike = Pk/i + Rkmirpm we see that 
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(4.17) 

It follows that 

(4.18) 
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5) = - 2 K G g q ( A p ) ~ p j  + O( 1 ) . 

A f = - 2 K G , q q ( A p ) i p j  - 2 K G ( A p )  2 + 0(1) + 0(1 ) A p  . 

Now let p be a point where w attains its maximum on S 2. Assume that, 
with the constant Co mentioned in (4.1), we have 

1 
(4.19) K ( p ) C 2  > i 6  " 

It follows from the interior estimates given in Lemma 2.2 that we have absolute 
bounds for the second derivatives o f  X in a neighborhood o f  p. It follows from 
(2.3), (4.3) and (4.8) that we have an absolute bound for w,:(p) and therefore 
for sup~2w: from which we deduce an absolute bound for Apt: on S 2. 

Thus we may assume in the sequel that 

1 
(4.20) K ( p ) C g  < 16 " 

We shall work in a normal coordinate system centered at p. This means that 

(4.21) 9i j (P)  = 6q, G ( p )  = 1, F f / ( p )  = 0 

and the covariant derivatives become, at p,  the usual ones. 
Moreover, since the equation (4.6) is invariant by rotation, we may assume 

that 

(4.22) P~2(P) = 0 . 

It follows that 

(4.23) F 12 = 0 at p . 

On the other hand, since w has at p a maximum, we get V i w ( p )  = 0 which 
implies 

(4.24) (Ap) i  --- - 2 p i P i i A p  at p, for i  = 1,2 . 

Now it is easy to see that the second term in the right hand side of  (4.12) can 
be written at p as 

2 
(4.25) --(:]kdF~TPqpijkPpq/ = 2 ~(P~2k - P, ,~P22k 

k=l 

Using (4 . t2 )  to (4.25) we get at p 

k=l I) 2) 

- 2 K  ( A p )  2 - 9 kk @kk +2zFi i (AP)iPi iPi  
3) 4) 5) 

+ 2g i i f i  pi Ap + ]4F ii p~Ap 
6) 7) 

+ 22F ii p2ii p2iA p + 0(1) + 0(1 )Ap  . 
8) 
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First of  all we have 

ii _.qkk~, kk = 2F Rkikpkk + 0(1 )Ap + 0(1 ) 

and therefore 

(4.27) 4 )  = 2 K ( A p )  2 § O( 1 ) 4- O( 1 )Ap . 

Since .fl = - 2 K G ~ , -  KGIVp[ 2 we get at P, f i  = - 2 K p ,  Pii + 0(1), so 

6) = 2KGgii2p~PiiAp + 0(1 )).Ap = 2Kgi'(Ap)iPi + O( 1 ))tAp 

(4.28) 2) + 6) = 0(1)2Ap . 

Now from (4.24) we get 

5 ) + 8 )  -2 i, 2 2 = - Z  F f l i iPi  A p  = --  ) , 2F i i (P i i  + 1 ) P i i [ J ~ / J D §  

+ )~2Fii(Pii + 1)p2iAp - 22FiipZiA p . 

But for each i = 1,2, we have at p 

Fi'(p,, + 1) = f ,  F J1 + F  22 = A p + 2  . (4.29) 

It follows that 

(4.30) 
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5) + 8) ~ - ; ? ( 1  + f ) l V p [ 2 ( A p )  2 + 0(l  ) ~ ? ~ p .  

Let us look at 7), 

2 

/oF (Pii + 1 )piiAp 2Fii(Pii + 1 )Ap + ) ~ F i i A p  . 7) - ,i 
i=q 

From (4.29) we get 

(4.31) 7) = ).(1 + f ) ( A p )  2 + Z0(1 )Ap .  

Let us estimate the term 1). We first observe that if  at p we have 

(4.32) Ap + 2 < m a x ( l ,  X/8) =) . 

then we are done since the right hand side o f  (4.32) is uniformly bounded. So 

we can assume that 

(4.33) A p + 2  > max( l , x /8 - J : )  a t p .  

Since (Pll P22) 2 = (Ap) 2 - 4pllP22 = (Ap + 2) 2 - 4 f  we get 

1 1 
(4.34) ( P l l -  p22)2 > 5(AP + 2 )  2 > ~ .  

Now differentiating the equation (4.6) with respect to Vk we get at p 

Fl lp l lk  + F22p22k = f k  

pJlk + P22k = (Ap)k. 
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It follows that 

f k  -- F 2 2 ( A P ) k  

Pllk = P22 -- P l l  

(4.35) f k - F~I(AP)k 

P22k = Pl l  - -  P22 

Now using Ricci formulas we get 

1) = 2 (P1212 - P,,lP22, +p22] - DII2P222 + 2R'~2,P,,,PlI2 + 2R2~2 ProP22, 4- 0 ( l  )) . 

Using (4.35) and F ll �9 F 22 = f , F  11 + F 22 = Zip q-2 We see that 

1 
~1) = (Pl12 + R721Prn)2 @ (P221 + Rm212Pm)'2 

2 f 2  i + f ( A p ) 2  _ f i ( A p ) i ( A p  + 2) 
+ ~ +o(l 

i=1 (P22 -" P l l  )2 

Since 
f ;(~p),(~p + 2) _ 2;~<:p2ip~Ap(~p + 2) 

- + 0(1 ))~ 
(P22 -- P I 1 )  2 (P22 --  P I I )  2 

we deduce that 

(4.36) - f i ( A p ) i ( A p  + 2) > _ 4 2 K l ~ p [ 2 ( A p ) 2  + 0(1 )ZAp + 0(1 )}~ 
(P22 --  r o l l  )2 

It follows that 

(4.37) 1 ) > - 8 ) . K I V p [ 2 ( A p )  2 + 0(1)2Ap + 0(1 )2 . 

From (4.26) to (4.36) we get 

(4.38) exp ( . . . )Lw ~ 2(Ap)2((1 - Z]Vpl2)(1 + f )  - 8KIVpl 2) + 0(1),~zip. 

Now from (4.7), (2.3) and (4.1) we get 

]Vpl 2 < - 2 p  = I l X f  _-< c0 2 �9 

Therefore we deduce from (4.8)', (4.21) th.at 

I 
(4.39) ( 1 - 2 1 V p l Z ) ( t + f ) - S K I V p l  2 > ( I - 2 C 0 2 ) ( I + f ) - S K C  g >= ~ . 

From (2.4)', since (X, X3) is negative and the second fundamental form ({ i j )  
is positive, the matrix (V!/p + 9ij) is positive. This implies that the operator L 
is elliptic with positive symbol. It follows that at p, since w is maximum, we 
have Lw < O. Using (4.38) and (4.39) we deduce that Zip = 0(1 at p, which 
implies a uniform bound for Ay~p~ on S 2. 

It follows from (2.8) and (4.7) that 

(4.40) The mean curvature H~. is uniformly bounded on S 2 
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Now from the Gauss equations we see easily that A~,:X~: �9 Ay,X~, = 4H~. So 
(4.40) implies 

A 2. (4.41) [1 (hX~:]] 1S uniformly bounded 

On the other hand we have 

V2 X 2 ij k /  
I y: ,:10, = g g :  X, , : i~Z:/ /  �9 

Choose normal coordinates at a point Q. It follows that 

- 2 IV; : X t : l l  " X~:I1 - [ -2X~:12  �9 X~:12 - -  X~:22 " X,:22 , 

Since Xd2  �9 X~:12 : f,2:l 2 < {~11{c22 : Xt:ll �9 X~:22, we have at Q 

2 2 IVgc.u <" (ys:ll +Xc22) 2 : ( A x c ) 2  + ( A y c ) 2  +(Az~:)  2 Am:X~: . Am:Xt: , 

where X~: = (x,:,y~:,z,:). It follows from (4.36) that, with an absolute constant  

M, 
V 2 X~ 2 4~:v ~'-~2 X 12 

~0 :~0 e v ~  ~:,~. __<M, 

which completes the proof of  the bounds of  the second derivatives of  X~:. 
Moreover  near a point where K0 is strictly positive it follows from (4.6) and 

(4.7) that p satisfies a uniformly elliptic Monge-Amp6re  equation. It follows 
from [8] and [14] that p C C 3"~, It follows from (2.8) and (4.7) that H C C ~'~. 

Since every component  of  X satisfies the equation A~ = 2 H ' ~ ] - - [ V z [  2 (see 

[10]) it follows that X E C3'C This completes the proof of  Theorem 1.1 
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Note added in Proof. After completion of our manuscript, we are informed that Pengfei 
Guan and Yan Yan Li recently got the same result but the method they used to estimate the 
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