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1 Introduction 

A Lagrangian submanifold L is an n-dimensional submanifold of a symplectic 
manifold (M 2", co) on which the symplectic form co vanishes. When (M, co) carries 
a K/ihler structure, i.e., possesses an integrable almost complex structure such 
that the bilinear form 

g(X, Y)= (X,  Y):=co(X, JY) 

defines a Riemannian metric, the associated Riemannian properties of Lagran- 
gian submanifolds have been studied by various authors in relation to the study 
of minimal Lagrangian submanifolds. (See [B, C, HL, O1, T]). Concerning the 
interplay between the symplectic and Riemannian geometries of Lagrangian 
submanifolds, Morvan [-M] (see also [HL])  proved that the mean curvature 
vector/~i represents the Maslov class of the Lagrangian immersion i: L-+C":  

1 
the one form - ~/L on L defined by 

7~ 

(1.1) ~ ,  .'= t/i J ~:~ IrL = (J /4i ,  ")LrL 

represents the Maslov class p~HI(L, 2~). Morvan's result was generalized in 
a way by Dazord (see also [B]) who showed that on K/ihler manifolds, the 
one form ~o, on L satisfies 

fl.2) d ~& = i* p 

where i: L--+(M, to) is a Lagrangian immersion and p is the Ricci form of the 
K/ihler metric g. In particular, if (M, co, J) is Einstein-Kfihler, i.e., if 

p=cco, for c~lR, 

the one form ~& on L is closed and so defines a real cohomology class on 
L. One corollary of the closedness of the one form ~ ,  is that the Lagrangian 
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submanifolds stay Lagrangian under the mean curvature flow on Einstein- 
Kfihler manifolds. 

In the present paper, we further analyze the one form ~a and prove that 
this one form is characteristic in the symplectic topological sense that the coho- 
mology class [~a,] is preserved under Hamiltonian isotopies (or exact isotopies) 
of the Lagrangian immersion i: L--* (M, co). 

Theorem I Let (M, co, J) be Einstein-Kdhler and let io: L ~ ( M ,  co) be a Lagran- 
gian immersion. Then under the global Hamiltonian isotopy q~={q~t}o_<,_<l on 
(M, o~) the one-Jbrms ~fi., on L represent the same cohomology class, where t i  t 
is the mean curvature vector of the immersion 

it : =  q ~ t  o i o . 

This result is an immediate consequence of the computat ions done in [02]  
in the course of computing the time variation of ~u under Hamiltonian deforma- 
tions (see Remark  2.5 in Sect. 2 in the present paper). In Sect. 2, we will give 
a more illuminating geometric proof  which also provides the frame work for 
the proof  of Theorem II below. The most primitive case of this theorem is 
the case of closed curves on S 2, where Gauss-Bonnet formula implies the theo- 
rem: For any simple closed curve C on S 2 with the standard metric, let O 
be one of the components  of S 2 -  C. Then the Gauss-Bonnet formula tells us 

S K d A +  ~ t cd s = 2 n  
D C 

where K = 1 and ~c is the (signed) geodesic curvature of C. Therefore if we vary 
C in such a way that the area of D is not changed, S x d s  stay constant. In 

C 

other words, the one forms tcds on S 1 define the same cohomology class in 
HI(S 1, IR) if we consider the curves C as a map  from S 1. 

This theorem has an interesting consequence on symplectic geometry of 
Lagrangian submanifolds in Einstein-K/ihler manifolds. It concerns symplectic 
topology of embedded minimal Lagrangian submanifolds as a special case. To 
describe this, we define two subgroups Fo,, Fo,,L of IR by 

Fo,= {[co](A)J A ~ Ha(M, Z)} 

Fo,,L = {[~o](B)IB~Hz(M, L, ~)}. 

We call (M, co) prequantizable if Fo, is either trivial or discrete. We call a Lagran- 
gian submanifold L cyclic if F~,L is a discrete subgroup of ]R. Note that F,., 
and F~,,L are countable subgroups of IR and that F~, is a subgroup of F~,.L for 
any L (and so cyclic Lagrangian submanifolds exist only in prequantizable sym- 
plectic manifolds). We abuse the notations F~,, Fo,.L also to denote their positivc 
generators respectively when they are discrete groups�9 

Theorem II  Let (M, co, J) be Einstein-Kdhler with non-zero (constant) scalar 
curvature and suppose the one form sfi, associated to a given Lagrangian embedding: 
i: L ~  (M, co) defined as in (1.1) is exact. Then L is cyclic and the following holds: 

(i) When Lis  orientable, nL[~,. 
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(ii) When Lis  not orientable, nL[2Q1 where 

nt, = ~ ( Fo,,ff F~,) = F~o/ I~,,L and 

Fc, = the positive generator of  the group {cl (A)[ A E H z ( M ,  7/)} 

cl =the  first Chern class o f ( M ,  J). 

In particular, the above apply to compact minimal Lagrangian submanifolds. 

The integer ~1 is called the index of the K/ihler manifold (M, co, J) in algebraic 
geometry. For  the case M = C P "  with the standard K/ihler structure, we have 
F~, = n +  1 and n~e,=2,  n T , = n +  1 where I R P " ~ ( E P "  is the standard embedding 
oflRP", and T" is the Clifford torus (see Proposition 3.7). Since lRP" is orientable 
if and only if n is odd, the above theorem is nicely illustrated by these minimal 
Lagrangian submanifolds in ~P" .  

We expect that these facts will have some important consequences both 
on the Hamiltonian volume minimization problem introduced in [O 1, O2] by 
the author and on the study of mean curvature evolutions of Lagrangian sub- 
manifolds as well as on the classification of minimal Lagrangian submanifolds 
in ~EP". 

2 Canonical bundle and mean curvature vector 

In this section, we will assume that (M, co, J) is an Einstein-K/ihler manifold 
unless otherwise stated. We first recall a theorem by Dazord [D]. 

Theorem 2.1 (Dazord) Let i: L ~ ( M ,  co) be a Lagrangian immersion on a Kgihler 
manifold (M, co, J) and p be the Ricci-form of (M, co, J). Then the one form defined 
by 

satisfies the identity 
~,:=(Hi~ co)LTL 

d ~ = i* p 

where I4 i is the mean curvature vector of  the immersion i. In particular, sO, is 
closed if (M, co, J) is Einstein-Kdhler i.e., if p = c co, c constant. 

If we denote by K the canonical line bundle of a Kfihler manifold (M, co, J), 
i.e., the bundle of (n, 0)-forms A" '~  then the Ricci form p represents its 
curvature. Therefore on an Einstein-K/ihler manifold, i* K is a flat bundle with 
respect to the induced connection from (M, co, J) for any Lagrangian submani- 
fold (M, co). Indeed, this bundle is a topologically trivial bundle on any orientable 
Lagrangian submanifold L whose trivialization is given by the unique complex 
extension, denoted by ~, as (n, 0)-form over L from the volume form on L 
with respect to the induced metric on L. 

We now study the question when i* K is trivial as a flat bundle, i.e., when 
i* K carries a nowhere vanishing parallel section or equivalently when the holo- 
nomy of i* K vanishes. The following proposition relates the mean curvature 
vector and the holonomy of i* K. A similar computation was implicitly carried 
out in [HL].  
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Proposition 2.2 Let L be an oriented Lagrangian submanifold and Q be the unique 
complex extension o f  the volume form on L. Then we have, for any X e TxL, 

Vx~=iot~ , (X)Q,  i=~-- - - I  
i.e., 

V Q = i ~ &  | g2 

where V x is the covariant derivative with respect to the induced connection on 
i* K. 

Proof  Since L is oriented, we choose a positively oriented o r thonormal  local 
frame {E 1 . . . . .  En} and the corresponding Da rboux  frame {El . . . .  , E, ,  F1, ..., F,} 
over L, i.e., J E i = F  i. We may  choose Ei's so that  

(2.1) VE, Ej=O at x. 

Let {~1 . . . . .  ~,, fll . . . . .  ft,} be its dual frame. Then ~ can be written with respect 
to this frame as 

Q = ( ~ I  +if l l ) /x  ... A (~,+if l , ) .  

Therefore, for any X e  T~L, 

~TxQ= ~ (~1 + i f l l ) A  "" A Vx(~j+ifl j)A ... A (%+if l , ) .  
j= l  

Here by the assumpt ion (2.1), we have 

Vx ~(E~)  = 0 

Vx ~j(V~) = - ~ ( ~  FO = - ~ j ( ~  (J  EO) = - ~ j (J  ~ Ek) 

= - ~ j (JB(X ,  Ek)) = f l j (B(X,  Ek) ) 

and therefore 

(2.2) V x ~j = ~ f l j(B(X, Ek) ) ilk" 
k 

Similarly, we compute  

(2.3) Vx flj = - - ~  f l j(B(X, Ea)) ~k . 
k 

Therefore, we have 

Vx(o~ j -4- i fl j) = ~, fl j( B(X ,  Ek))(fl, -- i ct,) 
k 

= - i y~ & ( B ( X ,  E O ) ( ~  + i~O 
k 

and so 

~ ~ = - i ~ ( ~  + i ~,)/ , . . .  ^ (2  B j ( B ( x ,  E O ) ( ~  + i BO) ^ . . .  ^ (~, + i/~,) 
j= l  k 

= - i 6j~/~  (B (X, Ek)) O = -- i Y / ~ ( B  (X, E ) )  ~. 
j k=l j= l  
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However, 

flj(B(X, Ej))= ~ (B(X ,  Ej), Fj) 
j = l  j = l  

= ~ (B(X ,  Ej), J E j ) =  ~ (B(Ej,  Ej), J X )  
j = l  j = l  

=(fit,  J X ) =  - ( J  H, X ) =  - a , ( X ) .  

In the third identity above, we used the symmetry property of the second funda- 
mental form B, i.e., 

(B(X, Y), J Z ) = ( B ( X ,  Z), J Y )  

of Lagrangian submanifolds in Kfihler manifolds (see e.g. [01]).  This finishes 
the proof. Q.E.D. 

This gives the following immediate corollary. 

Corollary 2.3 The holonomy of the bundle i* K over a loop 7 c L  with respect 
to the induced connection is given by 

exp(i S ~,)-  

We now assume p = c.co, c :r 0 and denote by E the holomorphic line bundle 
over M whose curvature form is the indivisible positive integral class proportion- 
al to leo]. Then we can express K as 

(2.4) K=(E)  | or (E*) | 

when M is simply connected and we can at least choose such line bundle E 
so that (2.4) holds in general (The k in (2.4) is called the index of M in algebraic 
geometry). We will always assume that we have made this choice in the rest 
of this paper. From the definition F~, in the introduction, it follows 

(2.5) k=F~,. 

Since K is the prequantization line bundle with respect to the Ricci form 
p when c :4= 0, any holonomy preserving deformation of i* E preserves the holo- 
nomy of i* K from (2.4). In other words, any Hamiltonian isotopy of the immer- 
sion i: L ~ ( M ,  o~) preserves the holonomy of i*K (see for the discussion for 
Hamiltonian isotopy in Sect. 3). 

Theorem 2.4 Let i: L ~ ( M ,  ~o) be a Lagrangian immersion and let ~b= {q~t}o~t~l 
be a Hamiltonian isotopy of (M, ~o). Define i t = C~to i and let ~ be the one-form 
associated to the mean curvature vector H t o f  the immersion 

it: L ~ ( M ,  o~, J). 

7-hen the one forms ~ on L define the same cohomology class on L. 
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Proof First note that for any given loop 7 ~ L ,  the integrals ~ ~ ,  vary contin- 
uously with respect to t. On the other hand, the values 

exp(i S cO,) 
7 

stay constant by Corollary 2.3. These imply that the integrals S ~ ,  stay constant 
), 

for a given loop 7 CL  with respect to t. Hence cqq, define the same cohomology 
class in Hi(L, IR). Q.E.D. 

Remark 2.5 Theorem 2.4 is an immediate consequence of the time variation 
formula of ~O,, 

~ u , -  Atctv~ +C~v~, 
8t 

where At is the Hodge-Laplacian of the metric induced from the immersion 
it" L ~ (M, co, J) and 

v, = ~ t  (q~' ~ i). 

This formula is an immediate consequence of the Eqs. (16) and the one right 
after (25) in the author's paper [02] .  However the present proof is more geomet- 
ric and shows the interplay between Riemannian and symplectic geometries 
of Lagrangian submanifolds in Einstein-Kfihler manifolds in a clearer way. 

3 Action integral and prequantization 

We first begin with a general discussion on the action integral and prequantiza- 
tion on general symplectic manifolds (M, co). When the symplectic form co is 
exact, i.e. has the form 

co = - d f l  

for some one form fl, the action integral A along the loop 7 is defined by 
the integral of fl along -f. If ,/ bounds a surface S mapped into M, then by 
Stokes' theorem we have 

(3.1) A ( 7 ) = - ~ o .  
S 

The equation can be used to define the action integral A on loops on M up 
to an element of the period group (See [W] for more details). 

Definition 3.1 The period group, denoted by F,o = F(M, co)clR is defined to be 
the image of [co]xHz(M, 2g ) under the integration pairing HZ(M,N) 
x H2(M , Z ) ~  IR. In other words, 

F~ = {[CO](A)elRIA+H2(M, Z)}. 
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Remark 3.2 When M is simply connected, Fo, coincides with the spherical period 
group 

{[co3(u)elRI u: S 2 --, M}.  

The period group is either trivial, a discrete subgroup or a countable dense 
subgroup of N. When Fo~ is discrete, we abuse the notation Fo, to be the positive 
generator of the group itself. Following Weinstein [W], when Fo, is trivial or 
discrete (such a symplectic manifold is called prequantizable). We can interpret 
the action integral as a holonomy of some principal G,~-bundle where 

6,o..=~/ro, 

as follows: it is well-known (see e.g. [K]) that when a symplectic manifold 
(M, o)) is prequantizable, there is a principal Go,-bundle n : Q ~ M with a connec- 
tion form 0 such that its curvature form d 0 satisfies 

dO=n* ~o. 

Then the action integral of a loop 7 is equal to the holonomy of the connection 
0 around ~,. 

When (M, ~o, J) is an Einstein-Kfihler manifold, i.e., 

(3.2) p = c- co 

where p is the Ricci-form of (M, co, J), we may assume by multiplying a constant 
appropriately that [~o]eH2(M, IR) defines an indivisable integral class in 
H 2 (m, 7Z) proportional  to [-8]. Then the above prequantization is topologically 
isomorphic to a principal Sl-bundle associated to a holomorphic line bundle 
E over M whose curvature becomes (~. If we denote K the canonical line bundle 
of (M, co, J), i.e., the bundle A"'~ then we may assume as we remarked 
in Sect. 2 that 

(3.3) K = E  | when c > 0  

K =(E*) | when c <O, 

where k = F~,. 
Now we restrict the prequantization Go,-bundle to a given Lagrangian sub- 

manifold. In this section, we assume that Lagrangian submanifolds are embedded. 
Given any Lagrangian submanifold Lcc(M, o)) the connection 0 on the bundle 
Q IL is flat over L because 

d O= n* (o 

and L is Lagrangian. We now define 

GL(x)'.=Image of {nl (L, x) ~ Go,}, 

i.e., the holonomy group of QLL and x. Since L is assumed to be connected, 
GL(X) are all isomorphic and so we denote the common group by GL. (Compare 
this with [W] where GL is meant to be the quotient of Go, by the image of 
holonomy.) This group is either cyclic or a countable dense subgroup of Go,. 
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Definition 3.3 Let (M, to) be a prequantizable symplectic manifold. We call a 
Lagrangian submanifold L c ( M ,  ~o) cyclic if GL is a discrete subgroup of G,, 
or equivalently if the group 

ro,,L,={[co](B)lBeI42(M, L, ag)} 

is discrete. 

Lemma 3.4 For any two loops 7o and 71 with 71=q~1(7o) where ~b={qSt}o<t< 1 
is a Hamiltonian isotopy of (M, co), then 

~co=0 
c 

where c is the 2-chain given by C={ ~)t~ . 

Proof Parametrize 7o by the parameter se [0, 1]. Then 

! ~ ~  o co ~ t  ' ~ss d s d t  

= !  ! d H ,  Os(~btoTo) d s d t =  o Os Ht((~176176 

Here H t denote the Hamiltonian functions generating the isotopy q~-- 
{q5,}o5,__< 1 . Q.E.D. 

Corollary 3.5 Let 7o, 71 be as in Lemma 3.4. Then the action integrals satisfy 

A(71)=A(7o) 

as elements in Go, i.e., the holonomies around 7o and 71 of the prequantization 
bundle are the same. 

In the remaining section, we describe two basic examples of cyclic Lagrangian 
submanifolds that are indeed minimal submanifolds with respect to the associated 
metric on (M, co, J). 

Examples (1) Let (M, co) be a Hermitian symmetric space of compact type with 
an invariant K/ihler form and the invariant almost complex structure. Then 
it becomes an Einstein-Kfihler manifold and so (M, co) is a prequantizable sym- 
plectic manifold with respect to the K/ihler form. Let L=F ix  z for an anti- 
holomorphic involutive isometry. Then it is easy to check that L is a cyclic 
Lagrangian submanifold. In particular, the totally geodesic NP"  c CP" is cyclic 
and in this case GL ~7Z2. Indeed, we have the following general proposition. 

Proposition 3.6 Let (M, co) be a prequantizable symplectic manifold and z: M ~ M 
be an anti-symplectic involution, i.e., it satisfies 

r * c o = - c o  and rZ=id. 
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Suppose that the fixed point set L. '=Fix r is nonempty. Then L is a cyclic Lagran- 
gian submanifold such that GL is either trivial or Zz. 

Proof. It  is easy to show that  L is Lagrang ian  (see e.g., [O1]  and we shall 
just show that  it is cyclic. We ambiguous ly  denote  by F,~ the positive genera tor  
for the per iod group F~ of P. Then  we shall prove  that  for any ~o: (D 2, OD 2) 
.-,(P, L), D 2 the unit disk, F~, divides 2[co](w), which shows that  GL is either 
trivial or  Z2. Since wl~o2='cowt~D2, we can define the so-called double of  w, 
u: S 2 --* P by 

U(Z)= fS ~'!Z),_, zGD2 

where S 2 =D2 ~ /~2  and /~2 is the unit disk with opposi te  or ientat ion to D 2. 
Then we have 

S 2 D 2 O 2 

= j" w * o g -  j" w*~o= j" w*~o+ I w*~o=2  5 w*(~ 
0 2 / )2  0 2 0 2 D 2 

i.e., 

[co](u)= 2[o)](w) 

and so F~ divides 2 [co] (w) as it does [~o] (u) for any sphere u. Q.E.D. 

(2) One more  interesting example  is the Clifford torus T"~II2P": consider 
the isometric  embedding  

T "+ ' , = S '  (1/n]/-~ 1) x . . .  x S ' ( 1 / ~  11 = I12 "+ '.  

n + 1 t i m e s  

This embedding  is Lagrang ian  in C" +1. Since the s tandard  Hopf-ac t ion  restricts 
to bo th  the above  torus  and S 2"+ 1, we take the quot ients  of these. The torus 
T":=T "+ 1/$1 cl~_,Pn,=S 2n+ 1/$1 is Lagrang ian  and we call this torus the Clifford 
toms. In  this case, we have 

Proposition 3.7 The Clifford torus above is cyclic in II2 P" with 

GT,~-Z(,+ ,). 

Proof. Note  tha t  z , (T" )  is i somorphic  to 7I" and its generators  are given by 
the boundar ies  of the following maps  

Wk: (D 2, c~D 2) ~ (~P" ,  T") 

wk(z) = [-1,0 . . . . .  z, . . . ,  0], k = 1 . . . . .  n, 
k - t h  

in the homogeneous  coordinates  of 112P'. It  is then enough to prove 

[~o] (It2P') = (n  + 1)[m](Wk), k= 1 . . . . .  n 

where II2P' is any complex  line in CP" .  It  is obvious  that  [e)](Wk) are all the 
same for k. Therefore  we have only to compa re  [co](IEP 1) and [col(w0, which 
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J W  1 

Fig. 1 

�89 

are nothing but the areas of II;P l and w 1, respectively, since they are holomor- 
phic. Here we choose for tEP 1 the complex line given by the equations 

Z2-~.Z3:..,:Zn:O 

in the homogeneous coordinates [z0, zl, ..., z,] of 112P". Then wl is just a part 
of the complex line tUP 1, whose boundary t~w~ is a round circle in II2P 1 c~ T" 
(see Fig. 1). 

In our description of the Clifford torus above, the II2P 1 with the induced 
metric is isometric to $2(�89 and so has area 7r. Now it is not too difficult to 

2 7~ 
~ - ~  [O 1]) which implies that the boundary prove that the length ofc~wl is n+  1 tsee 

n - 1  1 
circle1 0Wl has the radius ~n+l ,  that in turn implies t - 2 ( n + l )  and so ~ - r  

- in Fig. 1. Now by Archemedian law, it implies 
n + l  

[co] (wl) Area(w0 1 
[o~](lI]P 1) Area (CP  1) n + l  " 

Hence the proof. Q.E.D. 

4 The case when ~ is exact  

In this section, we study some symplectic topological properties of the embedded 
Lagrangian submanifolds whose associated form c~ is exact. This case includes 
the case/~-= 0, i.e., the case of minimal Lagrangian submanifolds. In this section, 
we again assume i: L ~ ( M ,  co) is a Lagrangian embedding and identify L with 
its image through the embedding. The main theorem we prove is the following. 

Theorem 4.1 Let (M, co, J) be an Einstein-Kdhler manifold with the constant c # O, 
and let L c ( M ,  ~, J) be a Lagrangian submanifold such that the one form ctt~ 
is exact. 7hen L is cyclic and 

(i) when L is orientable, nLIF~, 
(ii) when L is non-orientable, nL I 2F~, 
where nL = F,o/Fo,,L. 
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Proof Since the p roof  for the case c < 0  is similar, we prove  the theorem only 
for the case c > 0. Denote  F~,-= k. Then 

(4.1) K = E  | 

from (3.3). When  L is orientable,  we first p rove  that  the bundle K]L is trivial 
as a flat bundle,  i.e., there exists a nowhere  vanishing parallel section of K[L, 
provided ~d is exact. Since ~O is exact, there exists a function f such that  

o~i~=d f . 

Using Propos i t ion  2.2, it is immedia te  to prove  that  e - i l  ~ is parallel. Indeed, 

V ( e - i r  i J O + e - i J ' V  f2 

= - i e - i ~ ( d f - e ~ ) . f 2 = O .  

Hence KIL is trivial and so its h o l o n o m y  is trivial. Therefore  f rom (4.1), we 
have 

a k = id, 

for any element aeG L. Since GL is an abel ian subgroup  of G~=IR/F~o, this 
immediately  implies that  GI, is finite, i.e. cyclic and its order nL = # (GL)= FJF~o.L 
divides k = F~I. 

When  L is not orientable,  K does not  have to be trivial in general but  
K | is so. In fact, for any given o r t h o n o r m a l  local f rame {El . . . .  , E,}, its asso- 
ciated D a r b o u x  frame {El . . . . .  E , ,  F1 . . . . .  F,} and its dual  frame {e~ . . . . .  ~,, 
fll . . . . .  ft,}, the expression 

{(cq +? i l l ) / x  ... A (ct, + i ft,)} | {(~, +?rio/x  .../x (0~, + ifl,)} 

does not  depend on the choice of  {E 1 . . . . .  E,} and  defines a global section 
of K | 2. The same computa t ions  we carried out in the p roof  of Propos i t ion  2.2 
proves  that  this is indeed parallel. Hence we have proved  that  K | 2 is a trivial 
flat bundle,  which implies (ii) in the same way as in (i). Q.E.D. 

Since any minimal  Lagrang ian  submanifo ld  has vanishing one form co ,  in 
particular,  exact an,  this theorem has the following corollary.  

Corollary 4.2 Let (M, oa, J) be on Einstein-Kdhler manifold with c 4 0 ,  i.e. not 
Ricci-flat and L be a minimal Lagrangian submanifold. Then the same conclusion 
as in Theorem 4.1 holds. 

This leaves an interesting quest ion when (M, ~o, J)  is Ricci-flat i.e. c = 0  (e.g., 
when (M, ~o, J)  is a K3-surface ). 

Question. W h a t  can we say abou t  compac t  min imal  Lagrangian  submanifolds  
in Ricci-flat K~ihler manifolds  (if they exist at  all)? Fo r  example,  are they cyclic? 
Note  that  in this case, we lose the relat ionship between the prequant iza t ion  
of (M, co, J)  and the canonical  bundle of  (M, J), which has been the crucial 
ingredient to prove  T h e o r e m  4.2. 
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We have a l r eady  shown two examples  of min ima l  Lag rang ian  submanifolds  
in tI;P", one IRP" and  the o ther  T". W h e n  n = 2 ,  we have 

F~, = 3, n~e2 = 2, nr~ = 3 

and IRP 2 is not  or ientable .  Therefore  these two examples  seem to exhaus t  possi-  
ble nL d iv id ing  F~ or  2F~,. This  leads us to the fol lowing conjecture.  

Conjecture.  ]RP a and T 2 in ffgP 2 are the only compact  minimal Lagrangian sub- 
manifolds. 

We m a y  even ask the same ques t ion  for II2P" for general  n. M o r e  generally,  
the fol lowing classif icat ion seems to be an in teres t ing ques t ion  to s tudy  since 
the system of min imal  and  Lag rang i an  equa t ions  is ove rde te rmined  and  since 
our  theorem provides  some a pr ior i  in fo rmat ions  on their  symplect ic  topolog ica l  
behavior .  

Problem. Try to classify all poss ible  compac t  min ima l  Lag rang ian  submani fo lds  
in compac t  He rmi t i an  symmet r i c  spaces. Is there any g roup  theore t ica l  mecha-  
nism to cons t ruc t  min ima l  L a g r a n g i a n  submani fo lds?  
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