A CHARACTERIZATION OF A FREE ELEMENTARY INVERSE SEMIGROUP H.E. Scheiblich

The purpose of this note is to give a characterization of a free inverse semigroup on a singleton set. It will be shown that if B is the bicyclic semigroup, then'a certain inverse subsemigroup F of B x B is a free elementary inverse semigroup.

I. PRELIMINARIES. Let S be any inverse semigroup and let $x \in S$. Then x^0 will mean 1 ϵS^1 . If $n \in N = \{0, 1, 2, \ldots \}$, then x^{-n} will mean $(x^{-1})^n$. This should cause no confusion since $(x^{-1})^n = (x^n)^{-1}$ [3]. The following two lemmas are proved easily by induction, or may be deduced from [3]. The corollaries follow from the lemmas by replacing x with x^{-1} and then taking inverses.

LEMMA 1.1. If $0 < b < s$, then $x^S x^{T} x^D = x^S$. COROLLARY 1.2. If $0 < r < a$, then $x^T x^{-T} x^d = x^d$ LEMMA 1.3. If $0 \le a \le r$, then $x^r x^{-r} x^a = x^r x^{-(r-a)}$. COROLLARY 1.4. If $0 \leq s \leq b$, then $x^S x^{-b} x^b = x^{-(b-s)} x^b$.

The bicyclic semigroup B may be characterized as N x N with multiplication given by $(p,r)(a,c) = (p + a - min(r,a), r + c - min(r,a))$ [1]. Then B is a bisimple inverse semigroup and so B x B, with componentwise multiplication, is also a bisimple inverse semigroup. Let

 $F = \{((p,r),(q,s)) \in B \times B : p + q = r + s > 0\}$. Then F is an inverse subsemigroup of B x B.

2. THE FREE INVERSE SEMIGROUP ON A SINGLETON SET. If X is a non-empty set, a free inverse semigroup on X is a pair (I,f) such that (i)I is an inverse semigroup, (ii)f: $X + I$, and (iii) if S is any inverse semigroup and $g: X \rightarrow S$, then there exists a unique homomorphism h: I + S such that $fh = g$. It has been shown in [4] and again in [2] that a free inverse semigroup on any non-empty set always exists.

76

2 SCHEIBLICH

Let F be the inverse semigroup described above and let $f:[u] \rightarrow F$ by $uf = ((1,0),(0,1))$.

THEOREM 2.1. (F, f) is a free inverse semigroup on $\{u\}$.

PROOF. Let S be any inverse semigroup and let $g: \{u\} \rightarrow S$, say $ug = y$. Let $h: F \rightarrow S$ by $((p,r),(q,s))h =$ $v^{-q}v^{p+q}v^{-r}$.

To see that h is a homomorphism, let $\alpha = ((p,r),(q,s)),$ and $\beta = ((a,c),(b,d)) \in F$. Then

(i) $(\alpha\beta)$ h = y^{-(q+b-min(s,b))}_yp+a-min(r,a)+q+b-min(s,b) $y^{-\text{(r+c-min(r,a))}},$ and

(ii) (ah)(fh) =
$$
y^{-q}y^{p+q}y^{-r}y^{-b}y^{a+b}y^{-c}
$$
 =
 $y^{-q}y^{s}(y^{r}y^{-r})(y^{-b}y^{b})y^{a}y^{-c} = y^{-q}(y^{s}y^{-b}y^{b})(y^{r}y^{-r}y^{a})y^{-c}$.

1. Assume $b \le s$ and $a \le r$. Then, by Lemmas 1.1 and 1.3, $(\alpha h)(\beta h) = y^{-q}yS_Vr_V^{-(r-a)}y^{-c} = y^{-q}y^{p+q}v^{-(r+c-a)} = (\alpha \beta)h.$

2. Assume $b \le s$ and $r \le a$. Then, by Lemma 1.1 and Corollary 1.2, $(\alpha h)(\beta h) = y^{-q}y^{s}y^{a}y^{-c} = y^{-q}y^{p+q-r+a}y^{-c} =$ $(\alpha\beta)$ h.

3. Assume s < b and a < r. Then, by Corollary 1.4 and Lemma 1.3, $(\alpha h)(\beta h) = v^{-q}v^{-(b-s)}v^{b}v^{r}v^{-(r-a)}v^{-c}$ $y^{-(q+b-s)}y^{b+p+q-s}y^{-(r+c-a)} = (\alpha\beta)h.$

4. Assume s < b and r < a. Then, by Corollaries 1.4 and 1.2, $(ah)(gh) = v^{-q}v^{-(b-s)}v^{b}v^{a}v^{-c} =$ $v^{-(q+b-s)}v^{p+a-r+q+b-s}v^{-c} = (\alpha\beta)h.$

Further, $u(fh) = ((1,0),(0,1))_h = y^{-0}y^{1+0}y^{-0} = y = ug.$

Finally, to show that h is unique, it is sufficient to show that $((1,0),(0,1))$ generates F. But $((p,r),(q,s))$ = $((1,0),(0,1))^{-q}((1,0)(0,1))^{p+q}((1,0),(0,1))^{-r}$ and so the proof is complete.

REMARK. Let $N = \{0, 1, 2, \ldots\}$ and consider max as a multiplication on N. Then N is a semilattice and N is uniform (Na $\tilde{=}$ Nb for all a,b ϵ N).

Let $E = N \times N$. If (p,q) , $(r,s) \in E$, an isomorphism $\alpha =$ [(p,q);(r,s)] of E(p,q) = Np x Nq onto E(r,s) is induced by isomorphisms of Np onto Nr and of Nq onto Ns. This isomorphism is given by $(x,y)[(p,q);(r,s)] = (x + r - p, y + s - q)$. Thus E is uniform and so the semigroup $T_F = T$ of all principal ideal isomorphisms is inverse and bisimple [5]. If $\alpha = [(\mathfrak{p},\mathfrak{q});(\mathfrak{r},\mathfrak{s})]$ and $\beta = [(\mathfrak{a},\mathfrak{b});(\mathfrak{c},\mathfrak{d})] \in \mathbb{T}$, then $\Delta(\alpha\beta)$, the domain of $\alpha\beta$, is (E(r,s) $\bigcap E(a,b)\big)$ [(r,s);(p,q)]) = $E(max(r,a) + p - r, max(s,b) + q - s)$. Thus $[(p,q); (r,s)][(a,b); (c,d)]$ = $[(max(r,a) + p - r, max(s,b) + q - s);$ $(max(r,a) + c - a, max(s,b) + d - b)].$

The author's original characterization of a free elementary inverse semigroup was given in terms of $F' = \{[(p,q); (r,s)] \in T: p + q = r + s > 0\}$, an inverse subsemigroup of T. Indeed; θ : $((p,r),(q,s)) \rightarrow [p,q),(r,s)]$ is an isomorphism of B x B onto T. This isomorphism was pointed out to the author by Professor Mario Petrich.

It is not difficult to characterize Green's relations on F and A(F), the lattice of congruences on F. These results are not included here, however, since they are special cases of results to appear in [2].

SCHEIBLICH

REFERENCES

- Clifford, A.H. and G.B. Preston, The Algebraic Theory
of Semigroups, Vol. 1, Amer. Math. Soc., Math Surverys
No. 7, (Providence, R.I., 1961). $1.$
- Eberhart, Carl and John Selden, One parameter inverse
semigroups, Trans. Amer. Math. Soc., (to appear). $2.$
- Gluskin, L.M., Elementary inverse semigroups, Mat.
Sbornik 83(1957), 23-36. $3.$
- McAlister, D.B., A homomorphism theorem for semigroups,
J. London Math. Soc. 43 (1968), 355-366. 4.
- Munn, W.D., Uniform semilattices and bisimple inverse $5.$ semigroups, Quart. J. Math. Oxford (2), 17 (1966), $151 - 159.$

University of South Carolina

Columbia, South Carolina

Received June 4, 1970