A CHARACTERIZATION OF A FREE ELEMENTARY INVERSE SEMIGROUP H.E. Scheiblich

The purpose of this note is to give a characterization of a free inverse semigroup on a singleton set. It will be shown that if B is the bicyclic semigroup, then a certain inverse subsemigroup F of B x B is a free elementary inverse semigroup.

1. <u>PRELIMINARIES</u>. Let S be any inverse semigroup and let x ε S. Then x⁰ will mean 1ε S¹. If n ε N = {0, 1, 2, . . . }, then x⁻ⁿ will mean $(x^{-1})^n$. This should cause no confusion since $(x^{-1})^n = (x^n)^{-1}$ [3]. The following two lemmas are proved easily by induction, or may be deduced from [3]. The corollaries follow from the lemmas by replacing x with x⁻¹ and then taking inverses.

LEMMA 1.1. If $0 \le b \le s$, then $x^s x^{-b} x^b = x^s$. COROLLARY 1.2. If $0 \le r \le a$, then $x^r x^{-r} x^a = x^a$ LEMMA 1.3. If $0 \le a \le r$, then $x^r x^{-r} x^a = x^r x^{-(r-a)}$. COROLLARY 1.4. If $0 \le s \le b$, then $x^s x^{-b} x^b = x^{-(b-s)} x^b$.

The bicyclic semigroup B may be characterized as N x N with multiplication given by (p,r)(a,c) = (p + a - min(r,a), r + c - min(r,a)) [1]. Then B is a bisimple inverse semigroup and so B x B, with componentwise multiplication, is also a bisimple inverse semigroup. Let

 $F = \{((p,r),(q,s)) \in B \times B:p + q = r + s > 0\}$. Then F is an inverse subsemigroup of B x B.

2. <u>THE FREE INVERSE SEMIGROUP ON A SINGLETON SET</u>. If X is a non-empty set, a free inverse semigroup on X is a pair (I,f) such that (i)I is an inverse semigroup, (ii)f:X \rightarrow I, and (iii) if S is any inverse semigroup and g:X \rightarrow S, then there exists a unique homomorphism h:I \rightarrow S such that fh = g. It has been shown in [4] and again in [2] that a free inverse semigroup on any non-empty set always exists.

SCHEIBLICH

2

Let F be the inverse semigroup described above and let $f:\{u\} \rightarrow F$ by uf = ((1,0),(0,1)).

<u>THEOREM</u> 2.1. (F,f) is a free inverse semigroup on $\{u\}$.

<u>PROOF</u>. Let S be any inverse semigroup and let g:{u} \rightarrow S, say ug = y. Let h:F \rightarrow S by ((p,r),(q,s))h = $y^{-q}y^{p+q}y^{-r}$.

To see that h is a homomorphism, let $\alpha = ((p,r),(q,s))$, and $\beta = ((a,c),(b,d)) \in F$. Then

(i) $(\alpha\beta)h = y^{-(q+b-min(s,b))}y^{p+a-min(r,a)+q+b-min(s,b)}y^{-(r+c-min(r,a))}$, and

(ii)
$$(\alpha h)(\beta h) = y^{-q}y^{p+q}y^{-r}y^{-b}y^{a+b}y^{-c} =$$

 $y^{-q}y^{s}(y^{r}y^{-r})(y^{-b}y^{b})y^{a}y^{-c} = y^{-q}(y^{s}y^{-b}y^{b})(y^{r}y^{-r}y^{a})y^{-c}.$

1. Assume $b \le s$ and $a \le r$. Then, by Lemmas 1.1 and 1.3, $(\alpha h)(\beta h) = y^{-q}y^{s}y^{r}y^{(r-a)}y^{-c} = y^{-q}y^{p+q}y^{-(r+c-a)} = (\alpha\beta)h$.

2. Assume $b \le s$ and $r \le a$. Then, by Lemma 1.1 and Corollary 1.2, $(\alpha h)(\beta h) = y^{-q}y^{s}y^{a}y^{-c} = y^{-q}y^{p+q-r+a}y^{-c} = (\alpha\beta)h.$

3. Assume $s \le b$ and $a \le r$. Then, by Corollary 1.4 and Lemma 1.3, $(\alpha h)(\beta h) = y^{-q}y^{-(b-s)}y^{b}y^{r}y^{-(r-a)}y^{-c} = y^{-(q+b-s)}y^{b+p+q-s}y^{-(r+c-a)} = (\alpha\beta)h.$

4. Assume $s \le b$ and $r \le a$. Then, by Corollaries 1.4 and 1.2, $(\alpha h)(\beta h) = y^{-q}y^{-(b-s)}y^{b}y^{a}y^{-c} =$ $y^{-(q+b-s)}y^{p+a-r+q+b-s}y^{-c} = (\alpha\beta)h.$

Further, u(fh) = ((1,0),(0,1))h = $y^{-0}y^{1+0}y^{-0} = y = ug$.

Finally, to show that h is unique, it is sufficient to show that ((1,0),(0,1)) generates F. But ((p,r),(q,s))= $((1,0),(0,1))^{-q}((1,0)(0,1))^{p+q}((1,0),(0,1))^{-r}$ and so the proof is complete. <u>REMARK</u>. Let N = {0, 1, 2, . . .} and consider max as a multiplication on N. Then N is a semilattice and N is uniform (Na = Nb for all a, b \in N).

Let E = N x N. If $(p,q),(r,s) \in E$, an isomorphism $\alpha = [(p,q);(r,s)]$ of $E(p,q) = Np \times Nq$ onto E(r,s) is induced by isomorphisms of Np onto Nr and of Nq onto Ns. This isomorphism is given by (x,y)[(p,q);(r,s)] = (x + r - p, y + s - q). Thus E is uniform and so the semigroup $T_E = T$ of all principal ideal isomorphisms is inverse and bisimple [5]. If $\alpha = [(p,q);(r,s)]$ and $\beta = [(a,b);(c,d)] \in T$, then $\Delta(\alpha\beta)$, the domain of $\alpha\beta$, is $(E(r,s) \cap E(a,b))[(r,s);(p,q)]) =$ E(max(r,a) + p - r, max(s,b) + q - s). Thus [(p,q);(r,s)][(a,b);(c,d)] = [(max(r,a) + p - r, max(s,b) + q - s);(max(r,a) + c - a, max(s,b) + d - b)].

The author's original characterization of a free elementary inverse semigroup was given in terms of $F' = \{[(p,q);(r,s)] \in T:p + q = r + s > 0\}$, an inverse subsemigroup of T. Indeed; $\theta:((p,r),(q,s)) \neq [(p,q);(r,s)]$ is an isomorphism of B x B onto T. This isomorphism was pointed out to the author by Professor Mario Petrich.

It is not difficult to characterize Green's relations on F and $\Lambda(F)$, the lattice of congruences on F. These results are not included here, however, since they are special cases of results to appear in [2].

78

SCHEIBLICH

REFERENCES

- Clifford, A.H. and G.B. Preston, <u>The Algebraic Theory</u> of <u>Semigroups</u>, Vol. 1, Amer. Math. Soc., Math Surverys No. 7, (Providence, R.I., 1961).
- 2. Eberhart, Carl and John Selden, <u>One parameter inverse</u> <u>semigroups</u>, Trans. Amer. Math. Soc., (to appear).
- Gluskin, L.M., <u>Elementary inverse semigroups</u>, Mat. Sbornik 83(1957), 23-36.
- McAlister, D.B., <u>A homomorphism theorem for semigroups</u>, J. London Math. Soc. 43 (1968), 355-366.
- 5. Munn, W.D., <u>Uniform semilattices and bisimple inverse</u> semigroups, Quart. J. Math. Oxford (2), 17 (1966), 151-159.

University of South Carolina

Columbia, South Carolina

Received June 4, 1970