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A CHARACTERIZATION OF A FREE
ELEMENTARY INVERSE SEMIGROUP
H.E. Scheiblich

The purpose of this note is to give a characterization
of a free inverse semigroup on a singleton set. It will be
gshown that if B is the bicyclic semigroup, then a certain
inverse subsemigroup F of B x B is a free elementary in-
verse semigroup.

1. PRELIMINARIES. Let S be any inverse semigroup and
let x € S. Then x0 will mean 1 € Sl. If
neN-=1{0,1, 2, . . . }, then x © . This

should cause no confusion since (x-l)n = (xn)"1 [3]1. The

will mean (x 5T
following two lemmas are proved easily by induction, or may
be deduced from [3]. The corollaries follow from the

lemmas by replacing x with x_l and then taking inverses.

LEMMA 1.1. If 0 < b < s, then x®x x> = x5,

COROLLARY 1.2. If O

A

r < a, then x'x Tx% = %@
LEMMA 1.3. If 0 < a < r, then T Ty = XPX-(r-a)'

COROLLARY 1.4. If 0 < s < b, then x°x x° = x~(P78%%

The bicyclic semigroup B may be characterized as
N x N with multiplication given by
(p,r)(a,e) = (p + a - min(r,a), r + ¢ - min(r,a)) [1].
Then B is a bisimple inverse semigroup and so B x B, with
componentwise multiplication, is also a bisimple inverse
semigroup. Let
F={(p,r),(g,s)) e BxB:p+q=r+s >0} Then F is
aninverse subsemigroup of B x B.

2. THE FREE INVERSE SEMIGROUP ON A SINGLETON SET. If

X is a non-empty set, a free inverse semigroup on X is a

pair (I,f) such that (i)I is an inverse semigroup,

(ii)f:X »+ I, and (iii) if S is any inverse semigroup and
g:X + S, then there exists a unique homomorphism h:I » S
such that fh = g. It has been shown in [4] and again in
[2] that a free inverse semigroup on any non-empty set al-
ways exists.
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2 SCHEIBLICH

Let F be the inverse semigroup described above and
let £:{u} > F by uf = ((1,0),(0,1)).

THEOREM 2.1. (F,f) is a free inverse semigroup on
{u}.

PROOF. Let S be any inverse semigroup and let

g:{u} » S, say ug = y. Let h:F + S by ((p,r),(g,s))h =
- + -7
y dyPTdy7r
To see that h is a homomorphism, let a = ((p,r),(q,s)),

and B = ((a,c),(b,d)) ¢ F. Then
(1) (af)h = y~(q+b—min(s,b))yp+a—min(r,a)+q+b—min(sJ»

y—(r+c—m1n(r,a))’ and

(i1) (ah)(Bh) = y dyPtay Py -boatbo-c .
yIy® (yry'rj ( y"byb) yly™¢ = y7d (ysy'byb) (yry“rya) v C.

1. Assume b < s and a < r. Then, by Lemmas 1.1 and
1.3, (ah)(Bh) = y=QySyry (T73)y7C o gragprag-(rtesa) (o gy

2. Assume b < s and r < a. Then, by Lemma 1.1 and
Corollary 1.2, (ah)(Bh) = y-qysyay-c = y“(]‘y£>+cl—]”“'-‘a3l-C =
(aB)h.

3. Assume s < b and a < r. Then, by Corollary 1l.u
and Lemma 1.3, (ah)(g8h) = y—qyn(b~s)ybyry~(r—a)y—c =
y—(q+b-s)yb+P+Q-Sy-(P+c-a) = (ap)h.

4. Assume s < b and r < a. Then, by Corollaries
1.4 and 1.2, (ah)(gh) = y Iy (P=8)ybyay=c .

y-(q+b~s)yp+a—r+q+b—sy-c = (ag)h.

Further, u(fh) = ((1,0),(0,10n = y Oy™*070 =y = yg.

Finally, to show that h is unique, it is sufficient
to show that ((1,0),(0,1)) generates F. But ((p,r),(qg,s))
= ((1,0),€0,1)7%((1,0)¢0,1)P%9((1,0),(0.1))7" and so the

Proof is complete.
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SCHEIBLICH 3

REMARK. Let N = {0, 1, 2, . . .} and consider max
as a multiplication on N. Then N is a semilattice and N
is uniform (Na = Nb for all a,b € N).

Let E = N x N. If (p,q),(r,s) € E, an isomorphism
a = [(p,q);{(r,s)] of E(p,q) = Np x Ng onto E(r,s) is induc-
ed by isomorphisms of Np onto Nr and of Ngq onto Ns. This
isomorphism is given by
(x,y)[(p,q)3(r,s)] = (x+ » - p, y +s - g). Thus E is
uniform and so the semigroup 'I‘E = T of all principal ideal
isomorphisms is inverse and bisimple [5]. If
a = [(p,q)3(r,s)] and B = [(a,b);(c,d)] € T, then A(aB),
the domain of aB, is (E(r,s) N E(a,b))[(r,s);(p,q)]1) =
E(max(r,a) + p - r, max(s,b) + q - s). Thus
[{p,q)3(r,ys)]l(a,b);(c,d)] =
{(max(r,a) + p ~ v, max(s,b) + q - s);

(max(r,a) + ¢ - a, max(s,b) + d ~ b)1.

The author's original characterization of a free
elementary inverse semigroup was given in terms of
F* = {[(p,q);(r,s)] € T:p + q =1 + s > 0}, an inverse sub-
semigroup of T. Indeed;6:((p,r),(q,s)) » [(p,a);(r,s)] is
an isomorphism of B x B onto T. This isomorphism was
pointed out to the author by Professor Mario Petrich.

It is not difficult to characterize Green's relations
on F and A(F), the lattice of congruences on F. These re-
sults are not included here, however, since they are specid
cases of results to appear in [2].
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