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1 Introduction 

1.1 Some general remarks 

The  pu rpose  of  th is  paper  is to i l lustrate  the symplec t i c  h o m o l o g y  cons t ruc-  

t ion in [7] v ia  s o m e  appl ica t ions  c o n c e r n e d  wi th  e l l ipsoids  and symplec t ic  poly- 

d i sk s .Moreove r  w e  show h o w  a symplec t i c  capaci ty ,  see[19,  3, 4, 16, 15, 14, 

22] ,can b e  cons t ruc t ed  f r o m  the  symplec t i c  h o m o l o g y  theory .A few resul ts  have  

been  a n n o u n c e d  in  [16]. W e  a s sume  the  reader  to be  fami l ia r  wi th  the  results  

and no ta t ion  in [7]. For  bas ic  symplec t i c  geomet ry  we refer  to [25]. 

* Andreas Floer died on May 15th, 1991 
** Supported in parts by DFG-SFB 237 DAAD-Procope 
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1.2 Symplectic homology of ellipsoids 

Although ellipsoids and polydisks are the most simple shapes in symplectic ge- 
ometry we shall see that there are still some interesting open questions. Let us 
define a se t / "  C (0, + ~ ) n  by 

/I  = {r E (0,+cx~) n I r = ( r l , . . . , r n ) ,  rl _< r2 < . . .  _< rn} . 

We denote by Freg C r '  the subset of  those r such that the numbers r ~ , . . . ,  r 2 are 
linearely independent over the integers. An element of  r E Geg will be called a 
regular element of F .  Given r E / "  we denote by E(r) the open ellipsoid defined 
by 

E ( r ) = { z  E C n l  ~ 2 < 1} . 

Generally an ellipsoid in C" is a set of the form 

E = q - l  ((-cxz, 1)) , 

where q is a positive definite (reel) quadratic form. The linear symplectic group 
Sp acts on the collection of all ellipsoids, say f f  via 

Sp • ~ , ~ : ( ~ , E )  , ff/(E) . 

The quotient space ~ of  f f  by the Sp-action can be identified with F via the 
map 

/" ~ ~ :  r ~ [E(r)] . 

This is an exercise in linear symplectic algebra, see [17]. Hence an ellipsoid 
E E ~ has a natural symplectic numerical invariant r(E) E F. 

The map ~ ~ I" : E ~ r(E) is a "fibration" with the fibre over a given 
r E /~  consisting of all linearlely equivalent ellipsoids. Ellipsoids are very good 
objects to demonstrate the difference between linear and nonlinear symplectic 
geometry. 

The following result is well-known, see [ 17] for example. 

Proposit ion 1 For two ellipsoids E, F E ~ the following statements are equiv- 
alent 

(i) There exists fit E Sp with ff~(E) C F 
(ii) r(E) < r(F). 

Here a < b precisely means ai <_ bi for i = l , . . . , n .  As a corollary we have 

Corollary 1 r < r' iff ~(E(r)) C E(rt) for some ~ E Sp. 

This motivates immediately a nonlinear generalization. Let us denote by Diff(w) 
the group of  smooth symplectic diffeomorphisms on C n. We put <1 :=< and 
define a second order relation by 
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Definition 1 We define an order relation <-2 on I ~ by 

r,<2 rt : .', ;. There exists ~ E Diff(w) with 
# (E(r ) )  C E(r ' )  . 

It is not difficult to show that 

L e m m a  1 I f  r<_2r t and rt-<2 r then r = r t. 

Obviously the map (F, <_1) > (F, _<2) : r , r is order preserving. However 
the inverse does not preserve the order. To see this we take a symplectic em- 
bedding of  B2(2) into E ( 1 , . . . ,  1), (for the flexibility of symplectic embeddings 
with positive codimension see [11, 12]). Then the image has a symplectic tubular 
neighbourhood, i. e. there exists a symplectic embedding B2n-2(e) • B2(2) 
E ( 1 , . . . ,  l)  for small e > 0. In particular we have a symplectic embedding ~ of 
E ( e , . . . ,  e, 2) into E ( I , . . . ,  1). Given any e' E (0, e) and 7- E (0, 2) there exists 
~ , ,~  E Diff(w) such that ~.e,~ [ E ( e ' , . . . ,  e', r )  = kO [ E ( e ' , . . . ,  d ,  r). (That is 
the well-known extension after restriction principle for symplectic maps on sim- 
ple shapes, see [3]). Hence we have proved ( e l , . . . ,  e I, T ) < 2 ( 1 , . . . ,  1) for every 
e t E (0, e ) ,  ~- c (0, 2). In particular 

Proposition 2 For all sufficiently small e > 0 we have 

Proposition 2 shows that a considerable amount of  symplectic rigidity is lost if 
we pass from the linear to to the nonlinear theory. But still we know that there 
is a considerable amount of  rigidity left (Gromov width, capacities). To compare 
_<1 and -<2 should give a better idea about rigidity and flexibility in symplectic 
geometry. 

The symplectic homology theory turns out to be a useful tool in comparing 
<1 and -<2. In contrast to proposition 2 we have in C2: 

Theorem 1 For n =  2, i. e. ellipsoids in C 2, let c rE  ( ~7~2,1). The following 
I 

statements are equivalent. 

(i) (cr, cr)-<lr<-lr ' ,<l(1 , 1) 
(ii) (o', ~)-<2r-<Er' <_2(1 , 1) 

In other words; the order intervals for  i = 1,2 

[(cr, or), (1, 1)]i = {r I (or, tr) <i r <i (1, 1)} 

are identical and the orderings <l and -<2 on them coincide. 

The following figure shows the sets A = {r I (a, cr)<lr} and B = {r I (a, tr)<2r}. 
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The proof of Theorem 1 is quite difficult and involves results by McDuff, 
[20], and the symplectic homology theory from [7]. 

The obvious question is why do we need the condition a E (-7~, 1)? To a 
/ 

certain extend it is possible to understand this constraint geometrically. In pass- 
ing from the linear symplectic theory to the nonlinear theory the new flexibility 
is the possibility of "folding" a set. Symplectic capacities measure to some ex- 
tend the area of two dimensional symplectic projections of  a set. If  one folds 
a set some projection might double in size. If for example r = ((r, or) then the 

~r I f  one "folds" some projection could smallest projection is of  area 7ra 2 > 7" 
have area around 2~rcr 2 > 7r. The folded set would not fit into the ball B4(1). So 
to some extend the pinching condition in Theorem 1 excludes folding. If  folding 
is excluded the linear and nonlinear theory coincide. This is of course extremely 
heuristic, but we believe it points in the right direction. Here is a "test problem". 

P rob lem 1 Given any (r E (0, ~ )  does there exist a r~ such that 

(cr, o-) -<1 re,, r,~ ~_1(1, 1) 

ra -<2 (1,1) ? 

In other words: is it true that Theorem 1 is sharp? 
Next we turn to the main topic of  this section, namely the computation of the 

symplectic homology of an ellipsoid. Since symplectic homology is an invariant 
under symplectic diffeomorphism in 6~r, see [7], it suffices to compute it for the 
normal form E(r) .  We shall work for simplicity only with Z2--coefficients. Given 
r E T' we denote by ~r(r) the subset of  (0, +oo) defined by 

c r ( r ) = { k T r r f [ k  E N* , j = 1 , . . . , n }  . 

Here N* = {1,2, 3 , . . . } .  We have a map 

~b:N* • { 1 , . . . , n }  , or(r) : ( k , j )  , 7rkr~ 

Given d E a ( r )  we define m ( d )  = #~b-l(r) and call it the multiplicity of  d. 
Consider the sequence (d l ) ,  dt = d r ( r ) ,  l E N* 

(do =)0 < d l  < d2 < d 3 . . .  

consisting of  all elements in or(r), written in increasing order and each element 
repeated according to its multiplicity. 
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We need the notation of a N-filtered chain complex. For every number # c 
( -o~ ,  +cx~] suppose a subcomplex (CU,O u) of (C, O) is given with C +~ = C. 
We define 

CI,, h) = Cb/C" 

with the induced boundary operator 0 ta'h). For given r E F let (dj)jeN,N = 
{0, 1 , . . . }  be the associated sequence. We define 

C"(r) = 0 for # _ < 0  

CU(r) = (Zz,n)  for O < / ~ < d l  

CU(r) = (Z2,n) O . . . |  for d l _ < # < + o c z  

C+C~(r) = O~o(Z2,n + l )  , 

where m(#, r) = sup{/ I dl < #}. Next we define the boundary map as follows. 
If # < dl it is the zero map, if dl < # < +cr it is given by the following 
diagram 

. . . .  0 ~ - - ( Z 2 , n )  I~d (Z2, n + l )  ~ n+2)~...~(Z2,n+2m-1)~ ) 

(1) 

with m = m(]~, r) and C +~176 is the direct limit complex. We have the following 
result 

Theorem 2 Le t  r E F and -oo  < a < b < +oo. Then 

sla'b)(E(r)) = H, (c[a'b)(r) , O[a'b)(r)) 

As an example let r = ( 1 , . . . ,  1) so that E(r) = B2n(1) is the open unit ball 
around zero in C n. The sequence (dl) is given by 

0, ~r , . . . ,Tr ,  27 r , . . . , 27 r ,  3 % . . . , 3 1 r ,  4rr , . . .  
Y T 

n-t imes n-t imes n-t imes 

To compute the symplectic homology of  B 2n(1) consider the following diagram 

...~__0~___(N2, n ;0 )  I d_d(Z2,n+l;Tr)+_ . . .  ~~ (Z2,3n,~r) 
Id 
~-- (Z2, 3n + 1,2re) ~-- . . .  

Here (Z2, k;d) has the following meaning: k c Z is the grading dimension, and 
with C = (Z2,k ;d)  we have C u = 0 for # <_ d , CU = (Z2,k) for # > d. For 
example let # = 27r. Then the C2'~-part of the above filtered complex is 

. . .  ~-- 0 ~-- (Zz, n) ~ (Z2,n + 1) o (Z2,n +2)  
(2) 0 

�9 .- ~ (g2,3n)  ~ 0 ~ . . .  

since only the groups (Z2, n, 0 ) , . . . ,  (Z2, 3n, rr) live strictly below level 27r. The 
groups (7/.2, 3n + 1, 2~r) and up are replaced by zero in order to obtain C 2'~. In 
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order to continue our example we compute C I~ 2n(1)). The relevant complex 
is (2) since C O = 0. Hence 

C[~ = (Z2, 3n) . 

More generally we compute from Theorem 2 

Corol lary  2 Let - c ~  < a < b < +cx~. For a <_ 0 andkTr < b <_ (k + 1)Tr, k E 
N, we have 

sIa'b)(B2n(1)) = (7,2, n + 2kn)  . 

F o r O  <_jTr < a <_ (j + 1)Tr < kTr < b _< (k + 1)Tr with j , k  E N we have 

s[a'b)(B2n(1)) = (Z2, n + 2in + 1) @ (Z2, n + 2kn) . 

F u r t h e r f o r O  < jTr < a <_ (j + 1)Tr a n d b  = +c~ 

s[a'+~)(B2n(1)) = (Z2,n + 2jn + 1) . 

In all other cases it is zero. 

1.3 Symplectic Homology  o f  Polydisks 

For r E 1" denote by D2n(r) the open polydisk 

D2n(r) = B2(rl) x . . .  x B2(rn) . 

Our aim is to compute its symplectic homology. From the construction in [7] it is 
clear that the symplectic homology has certain product properties. This combined 
with the knowledge of the symplectic homology of a disk suffices to compute it 
for polydisks. Before we give a formula we give two applications. The first is 
Gromov ' s  polydisk conjecture, [11]. 

T h e o r e m  3 Let  r, r I E 1" and assume the open polydisks are symplectomorphic. 
Then r = r t. 

Another application is concerned with the topology of the space of symplectic 
embeddings of  D4(r)  into D4(1, 1). 

The study of such symplectic embedding spaces is in general very difficult. 
In particular McDuff  studied in [20] symplectic embeddings of B4(t~) into B4(1) 
for 6 E (0, 1) and showed that they are all symplectically isotopic. This result is 
not known if n _> 3. 

However we will be able to show that polydisks behave quite differently. 

T h e o r e m  4 Let  n = 2 and r E I" and assume r 2 + r22 > 1 and rl , r2 < 1. Then 

there are at  least two different symplectic isotopy classes o f  symplectic embeddings 
into D4(1, 1). 
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In order to derive the statement for the symplectic homology of the polydisk 
recall that the diagram for a 2-disk of radius r is 

. . .  ~ 0 ~ 0 +--- (Z2, 1;0) ~ (Z2,2;Trr 2) o (Zz,3;Trr2) +- (3) 

Again the numbers 0, 7rr 2 etc. mean that the groups (Z2, 1), (Z2, 2) etc. live above 
a certain level. 

The relevant diagram for a polydisk is then the "tensor product" of the dia- 
gram as in (3) with different radii. The rule for the tensor product is 

(G,k ,b )  | (H ,k ' , b ' )  = (G | H , k  +k ' ,b  +b') . 

Let us denote for r C (0, +cxz) by (CU(r), 0 u) the complex for the r--disk in C. 
Define 

C~176 = C~(r l )  |  | C~176 

with obvious boundary operator, which is the usual tensor product of chain 
complexes. For l c ( - c~ ,  +c~z) we define 

Cl ( r l , .  . . ,  rn)= U C t ' ( r l ) |  | ' 

l = ~  lj 

which is a subcomplex of C ~ 1 7 6  rn). 
Finally we put C[U'V)(r) = C~(r)/CU(r) for r C F. Then 

Theorem 5 For - ~  < a < b < +c~ we have 

s[a'b)(D2n(r)) = n .  (c[a'b)(r),  0 [a'b)) 

This is already quite complicated to calculate and we restrict ourselves to the 
computations of particular cases in order to prove Theorems 3 and 4. 

1.4 Symplectic capacities 

One of the very fruitful notions in symplectic geometry is that of a symplectic 
capacity. This is a map which associates to a symplectic 2n-dimensional manifold 
a number c(M, w) C (0, +cxz] (assuming M r 0) satisfying the following axioms 

c(M,aw)  = [a[ c(M,w) for a 5/0 
If there exists a symplectic embedding of (M, w) into 
(N,T)  then c(M) < c(N) 
c(B2(1) x C n-l ,  standard) < +c~ 

(4) 

The success of the variational theory of Hamiltonian systems was very important 
for the development of the symplectic capacity theory, see [21, 26, 23, 18, 2]. 
Many constructions of symplectic capacities are known [19, 3, 4, 22, 24, 11, 17]. 
It is also well-known that the existence of a single capacity implies for example 
the C~ phenomenon detected by Eliashberg, see [5, 11, 12]. 
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Here we show that one can construct a symplectic capacity for open sets in 
C n from the symplectic homology theory. For 0 < el _< e2 < +o0 and b _> e2 
we have the natural maps 

S [ e l , b ) ( l l ~  ._..._+ [e2,b) 
n+l , , v /  Sn+ 1 ( U )  . 

We obtain an inverse system and define 

(o,o) ( ) 
S,+ l ( U ) : =  lira,_ S~'+'()(U) ,~(o,bl 

We shall prove 

Propos i t ion  3 If Trr 2 6 (0, b) then 

s(O,b) ( 8 2 . ) )  ~ +l (r = Z2 �9 

Next we consider for e _< e' the natural map 

S (0,b) K' (0,b) 
. + ,  

since B2"(e) C B2"(e'). We pass to the direct limit e - - - ,  0 obtaining the group 

O. 

Propos i t ion  4 For b > 0 we have 0 ~ Z2. 

Given any z C U and ~ E - ~  with ~(0)  = z we have for E > 0 sufficiently 
small g'(B2"(e)) C U. Hence we obtain an induced map 

(0,b) (0,b) 2n ~* : s,~+1 ( u )  - - ~  s,+l  (8  (c)) 

and passing to the direct limit we obtain a map 

(0 b) 
~,b : S,+, i (U)  ~ O . 

Using the isotopy invariance the map ff'~ only depends on U and the connected 
component of z G U. 

Hence for every connected bounded open set U there is a characteristic map 
denoted by a u  

.~(0,b)t \ 
O'U :~n+ l  k U )  ~ ~) " 

The capacity of  a connected set U is defined by 

~(~ , 69 is onto} . c(U) = inf{b I ~rv : ~,+l , v J  

If  U has components (U;O;~e^ we define c(U) := supAe^ c(U~). For unbounded 
U we define c(U) by exhaustion through bounded open sets. We have 

Theorem 6 i) If gJ C ~ and gt(U) C V the c(U) < c(V). 
ii) c(aU) = tat 2 c(U) for a E R \ {0}. 
iii) c(B2n(1)) = c(B2(1) x C n - I )  = 7r. 
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1.5 Some Remarks 

The previous results, though we only study very simple objects in symplectic ge- 
ometry, show already the richness of this structure. What is missing in symplectic 
geometry is an idea about what  one can do with a symplectic map. Symplectic 
homology is useful in showing that certain things can not be done. It would be 
interesting to know how sharp this theory is, because then borderline examples 
of things which cannot be done could be pin pointed and used in order to find 
the zone of transition between flexibility and rigidity in the theory. 

In symplectic homology II, [8], the theory is extended to more general man- 
ifolds and in [10] we give some further applications. We study for example the 
action spectrum of  the boundary of a symplectic manifold and show its rigidity. 

2 Computation of symplectic homology 

2.1 Generic approximations 

In order to carry out our computation it is important to have a set of  cofinal 
Hamiltonians which can be controlled. 

Let q : C n ~/R be a real positive definite quadratic form. We have already 
said something in section 1.2 about the symplectic properties of  ellipsoids in the 
linear theory. 

Let  r C l"r~g and E = E(r ) .  We study Hamiltonians of the form 

n ( z )  = p(q(z) )  , 

where q( z )  = ~-7=1 ~ 2 and p �9 ~+ ~ R is smooth. Here 11~ § = [0, +c~). We 

assume that p has the following properties 

p'(s)  =: p ' (c~)(=const)  for s > so 
p"(s)  > 0 for 0 < S < S o  (5) 
p'(O) > 0 . 

Hence p looks like 

Moreover we assume that 
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- i ~  = p'(c~)q'(z)  
z(0) = z(1) (6) 

does not have any solution other than the zero solution. This is a nonresonance 
condition on H at infinity. The above system splits into 

--i~j = 2pt(c~) l z j  , j = 1 , . . . ,  n 
o 

r~ 

Hence we deduce that 

2p'(cx~)+ ~ 27rZ 

That means 

for j = 1 , . . . , n  . 

j=l  

(7) 

L e m m a  2 Let p be as described above and assume z is non constant and solves 

- i ~ . =  p ' (q(z))q ' (z)  

z(O) = z ( 1 ) .  

Then the geometric multiplicity of  the kernel o f  the linear unbounded selfadjoint 
operator in L2(0, 1; C n) with domain H l'2(S l, Cn) 

h ~ - i h  - p"(q(z))  (q '(z),  h) q ' (z)  - p ' (q(z))q"(z)h 

is one. (S l = R/Z) .  

Proof  Since r E/~reg we immediately see that z has the form 

z( t )  = ( 0 , . . .  ,0,zj( t) ,  0 . . . 0 )  

for some j E { 1 , . . . ,  n} with zj 5r Moreover zj solves 

- i z j  = 2p'(q(z))  ZJ-~'2 
rj 

zj(0) = z j ( 1 ) .  

Obviously q(z)  = const =: ~- and therefore 

p ' ( r )  E 7rrj2N * , N* = { 1 , 2 , 3 , . . . }  . (8) 

Hence 
zj(t)  = e2~ikt zj (0) 

with 

k = pl(r)  7rr2 (9) 

Now consider the operator L defined as before by 
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h --* - i h  - p " ( r  z~,,/~ r-r,,, 0 , . . .  
J 

-- p '(r)q"(z)h . 

L splits into the direct sum L = L1 @ . . .  E) Ln with 

Lmh = - i h  - p'O-) 2 h , m C j  , 
F m 

- p t (r)~/h �9 

F o r m C j  Lmh =O implies 

r. 2 
h(t) = h(O)e 2'~ik ( ~ ) ' 

2 2rrikt / , ~zj(O)e 0 . . . , 0  

587 

h ) ~ z j  (O)e 27rikt 
] 

Since r E F~eg and h(O) = h(1) we must have h(O) = O. This shows that 
L1 , . . .  Lm-1, Lm§ Ln are isomorphisms as operators from 

H I'2(S 1 C) , L2(S 1, C) . 

Next assume Lj h = 0. That is 

O = - i h  - p t t ( ' r )~z j (O)e2rr ik t (~) ,h~(~z j (O)e27r i la  
(lO) \ \ - - I 1 \ - - I  

-- 27rkh , 

where k E N* is given by (9). Multiplying (10) by e -2~i~ we obtain 

(--ih--27rkh)e-27rikt=p"(7")(zj(O)e27rikt(-~) , h ) ( r ~ ) z j ( O ) .  

Hence 
- i  -~d [he_27rikt ] = p'('r)~j4 Re ( ~ .  (he-2#ikO ) zj(O) 

Therefore with c~ = zj(O)he -2~ikt and A = 4 p ' ( ' r ) ~  we have 

-i6~ = A Re(c0 . 

Since c~(0) = c~(1) and c~ r 0 this implies 

c~(0) = c~(0) + iA Re(c~(0)) 

a(o) 4 0 .  

Consequently Re(c~(O)) = 0 and Im(c~(O)) r O. Therefore c~(t) = ~(0) for t E [0, 1] 
and 
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h( t ) z j (O)e  -2~i~ = itr , tr E R 

for all t c [0, 1]. This gives 

h ( t )  = i trzj(O)e 2~rikt 

a d 
- 27rk d t  z j ( t )  " 

Summing up we have ~hown that if Lmh = 0 then h E ~ ( d z ) .  [] 

We remark further that if pt(0) > 0 is small enough the only constant solution 
of the Hamiltonian system 

= p ' ( q ( z ) ) q ' ( z  

z(0) = z(1) 

- -  the zero solution - -  has a linearization which lS an isomorphism. 
Given a n y / t  C J I /~g(E(r ) )  there exists a p as described before and a 7- > 0 

such that 

p o q >_ ffl + "r 

p o q  [ E ( r ) < O  

and 0 is a nondegenerate solution for the Hamiltonian system H = p o q. 
Our next step consists in taking a precise perturbation of  p o q, say ,4, such 

that p o q + .4 E . / ~ g ( E ( r ) )  and satisfies p o q + A > /4 + 3" In addition this 
perturbation should have a very controlled behaviour as far as the 1-periodic 
solutions are concerned. We define the action for a solution x by 

l/0' /0' �9 (x )  = -~ ( - i k , x ) d t  - p ( q ( x ) ) d t  . 

Consider the set 
27 = (kTrr  2 [ j  = 1 , . . . , n  ; k E N*} . 

We observe that if r C Freg the map 

~b : { 1 , . . . , n }  x N* ~ 27: O , k )  -+ kzrr:  

is a bijection. We order the elements of Z7 in increasing order 

27 = { d l  < d 2  < d 3  < d 4 . . . }  �9 

We define do = 0. Now assume ~b(j, k)  = din. Then for m = 1 , 2 , . . .  

z m ( t )  = ( O , . . . , O ,  z je2~rik t ,O. . .O)  

q ( z m ( t ) )  = 1 ,  t E S 1 

solves 
- - i  d z m = d m q " z  m 

Zm(O) = zm(1) . 
(11) 
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Here q,, is the l inear izat ion of  the gradient  q '  of  q. Define mo = sup{m I d m <  

p ' (c~)}.  For  every m = 1 , . . . ,  rno we find a unique posi t ive number  Am such that 
~m : )~mZ m solves 

= Xpoq(Z) , z(0) = z(1)  . 

Then up to a phase  shift  and putt ing t ~ = 0 we know that t ~  m~ are all 
1-per iodic  solutions.  We compute  

/o /o' ~ ( t m )  = 2 ( - - i z m ' t m )  d t  -- p o q ( t m ) d t  . 

We have 

�9 ( t  ~ = - p ( o )  , 

and for m = 1 , . . . ,  mo with d m =  q~(j, k) 

�9 ( t  m) = k ~  I t m ( o ) f  - - p ( q ( t m ( o ) ) )  

= o - p ~ (12) 

= p ' ( r m ) r m  - -  p ( r m )  

~"~(0) 2 
with rm = ~ . Fo r  7- E [0, so) we compute  

d 
d----r ( p ' ( r ) r  - p ( r ) )  = p ' ( r ) r  + p ' ( r )  - p ' ( r )  

= p " ( r ) r  

> O .  

Since dm= p'(rm) for m = 1 , . . .  , too and 0 < dl < d E . . .  < dmo we  in fer  

O = ' r o  < r l  < r2 < r3 . . .  < r ~  . (13)  

Therefore 
~ ( t  ~ < ~ ( t  1) < . . .  < ~ ( t  m~ . (14) 

Assume  t m (t) = ( 0 , . . . ,  0, t m (0)e27rikt, 0 , . . . ,  0) for d m =  ~b(j, k). We define 

~ ( t )  = e 2€ Id 

and put  

Then 

t m = ~(t) t ]  m . 

fi(t)  = ( 0 , . . . ,  0, tim (0), 0 , . . . ,  0) 

and we deduce  via  the subst i tut ion qta = z 

0 = - i ( ~ a  + ffqt) - p ' ( q ( q J a ) ) q ' ( ~ a )  

= ~ [ - i a  + ~ - l ~ a  - f f ( q ( a ) ) q ' ( a ) ]  

Therefore,  if  z is a 1 -pe r iod ic  solut ion the map  " a "  satisfies 
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0 = - i a  + 27rka  - p t ( q ( a ) ) q ' ( a )  . (15) 

Observe that for every solution "a"  of (15) the map eiOa for 01 E [0,271] is 
also a solution of (15). Let m > 1. We have in view of the previous discussion 
a critical circle S = {ei~ m ] 0 E R}. We find a C a -  small perturbation h 
supported as close as we wish to the circle S such that h I s has precisely two 
different critical points and is a Morse function. We do this for every critical 
circle and define 

By construction H is an arbitrarily small C a perturbation of p o q. Moreover 
we may choose the hj ' s  in such a way that the perturbation only takes place near 
the critical circles. In addition we may choose the hj 's  in such a way that for a 
proper choice of  p 

H > / ~ + r  

H I E( r )  < 0 ,  

where/4 is a given function in ~reg(E(r)) and ~- > 0 is sufficiently small. If p is 
sufficiently flat at zero we may also assume 0 is a nondegenerate critical point. For 
every m ~ { 1 , . . . ,  too} the transformation ~m , am , k~fim = 2m, transforms a 
critical circle of one problem into a critical circle of another problem. The critical 
circle S = { e i ~  m [ 0 c R} is split into two nondegenerate critical points (in 
view of  lemma 5 and the fact that h is a Morse function on S and C m-small) 
under the perturbation h a .  A straightforward computation gives therefore for the 
corresponding critical points ~ 

~SH(~) = ~poq(~. m) -- hm(Ctm~ ) . 

We take our notation in such a way that 

~ -  (z2) > ~(2m) . 

Assuming the perturbation H of  p o q to be small enough we have 

0 < ~ n ( 0 = 2  ~ 
< ~.(2L) < ~n(~+ I) < ... (16) 
< ~n  (2- m~ < ~ .  (~+mo) . 

The Conley-Zehnder index, see [1, 6, 7], can easily be computed to be 

Ind(~~ = n 
Ind(21_,H) = n + l  

�9 ( 1 7 )  

Ind(~+ ~~ = n + 2 m o  . 

We sum up the previous discussion as follows 



Applications of symplectic homology I 591 

Propos i t ion  5 Given a p as described in (5) and (6) with p sufficiently flat at 0 
there exists an arbitrarily small S 1-dependent C ~176 o f  p supported 
as close as we wish to the too-many nontrivial critical circles such that the per- 
turbed Hamiltonian H : S 1 • C n , R has besides the zero solution also 2mo 
nondegenerate critical points with energies and Conley-Zehnder index as just 
described, see (16),(17). 

2.2 The boundary operator 

We shall work exclusively with Zz-coefficients to avoid the more elaborate ori- 
entation questions. We assume that the Hamiltonian H C ~reg(E(r))  is of the 
kind we just  constructed in 2. 1. By construction we have for every regular pair 
(H,  J )  the following diagram 

0 ~  ( Z z , n , ~ n ( 0 ) )  ~ (Z2,n + 1, ~H(~I_)) ~-- 
(Z2, n + 2, ~H(s ~__ . . .  , 

(18) 

where the boundary maps have to be determined. 
Consider the Hamiltonian H0 defined by 

Ho(z) = p ' (oo)q(z )+c  

for a suitable constant c C R such that 

H(Z)  = Ho(Z) for [z[ large . 

Then Ho E ,4~g and Ho has only zero as a critical point with Ind(0, Ho) = (Z2, n + 
2too). Hence for every regular 3 and numbers a and b with a <_ #Ho(0) = --c < b 
we have 

s[a'b)(Ho, J) = (Z2,n + 2too) . 

Following 4 . 5  in [7] we may take a homotopy L between Ho and H1, which 
is constant for large ]zl , and a regular J .  If a < <  0 < <  b, i. e. a sufficiently 
negative a and a sufficiently positive b we have following [7] for the gap 9 and 
the size d(L) of L 

1 
d(L) < -~g(H, Ho, [a, b]) . 

Using Proposition 35 in [7] we obtain an isomorphism 

S [a,b)(H ' j)-- '-SS [a,b)(Ho, j )  = (Z2, n + 2too) �9 

This gives us precisely the knowledge about the arrows in (18) which we need. 

Namely we must have 

�9 . . 0  ~-- ( ~ . 2 , n , ~ H ( 0 ) )  ~ (7/.2,n + 1 , ~ H ( z l ) )  
0 ~-- (Z2,n  + 2,~n(s I d (Z2, n +3 ,~n (22_ ) ) . . .  (19) 
0 

~-- ( Z 2 , n  + 2mo,~H(2+~)) *-  0 +- . . .  
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or in short hand 
I d  0 I d  

(20) 
0 ~_' ~' ~_~ 

In view of  (19) we are able to compute S[a ,b) (H,J)  for every choice of  numbers 
- c ~  < a < b < +c~. The crucial point is to understand the induced morphism 
between groups associated to (H, J )  and" (K, J )  respectively, provided (H, J )  _< 
(K, J) .  This is done in the next subsection 

2.3 The directed system 

Let Pl, P2 satisfy (5) and (6) in 2. 1 such that for a suitable ~ > 0 

pl(s) = p2(s) for 0 < s < g 

pl (s )  < p2(s) for s E [0,+c~) 

p j o q l E ( r ) < O  for j = l , 2  

and r E -Prig as in the previous subsection. 
Our perturbation method allows us to obtain Hamiltonians H1, Ha satisfying 

HI < / / 2  in such a way that HI has periodic solutions 

o, ~!, ~+~,..., ~_~', ~y' (21) 

and //2 has the periodic solution given in (21) and in addition the periodic 
solutions 

~_,g,+l, ~,,+~,..., ~ , ,  ~T~ (22) 
We fix suitable regular J and J and take a monotone homotopy between (Hi, J )  
and (H2,J) ,  which we call (L,J) ,  see [7]. The associated partial differential 
equation is 

us -- J ( s ,  t, u)ut - (~73L)(s, t, u) = 0 
u ( s , * ) - - - * x E ~ h  as s ~ - - o o  (23) 
u ( s , * ) ~ y E  ~ 6 as s ~ + c x D  , 

where Ind(x, H1) = Ind(y,/-/2). In view of  (21) and (22) it follows immediately 
that (23) only has solutions if x = y and that the only solution in that case is 
u(s ,  t) = x ( t )  = y( t ) .  

Hence we have for the particular choice of  H1,/-/2 just described the diagram: 

( H  l , j )  �9 4 �9 . . . . . .  �9 �9 �9 �9 �9 

L l t I t 
o z z? I -~ z"l_ l & ...... z 
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Given - o o  < a < b < +oo with a < +oo let/90 and Pl be as described in 2. 1 
and 2. 2 such that po(s) = pl(s)  for s > so and po(s) < pI(s) for 0 < s < so for 
a suitable so. Let p~- = (1 - 7.)Po + 7-Pl. If b < +co define j_  and j+ by 

dj - l ( r )  < a < dj_ <_ .. .dj. < b <_ dj+~l 

and if b = +oo put j+ = +co and define j_  in the obvious way. Consider for 
fixed 7. the set consisting of  all numbers p~(s)s - pr(s), where p~(s) = dj(r) for 
some j E N. We know that this is a nondecreasing sequence dj(r; 7-). Let us put 
d0(r, 7-) = -p r (0 ) .  

Lemma 3 Let the data be as described above and assume for  all 7- E [0, 1] we 
have 

dj__l(r ,  r)  < a < dj_ (r, r)  

and if b < +co in addition 

dj+(r,7-) < b < dj,+l(r,7-) 

for  all r E [0, 1]. Let Ho and H1 be small generic perturbations o f  Po and Pl 
respectively as described in 2.1 and 2.2, such that 11o <_ HI. Then for  a generic 
choice o f  calibrated almost complex structures (perhaps t-dependent) we have 
that 

s[a'b)(no,J) - , S[a'b)(Hl,J) (24) 

is an isomorphism. 

Proof Using Proposition 35 in [7] and our assumption the monotonicity map in 
(23) can be written as a product of small distance isomorphism and therefore 
is an isomorphism. In fact if Hr is a small generic perturbation of Pr then if 

[7"2 - -  7-1 [ , 7.1 < 7.2 is small Proposition 35 in [7] says that the monotonicity map 
sta'b)(Hrl,Jr~) ~ Sf~'b)(Hr2,Jn) is an isomorphism. (24) can be written as a 
product of such maps. 

Using the discussion in this section it is not very difficult to construct for given 
a and b a monotonic sequence of (Pk) such that Pk o q I E(r)  < 0 and for every 
H E JV~g there exists a k E N* and 7. > 0 with 

p k o q  > H + 7 -  . 

Moreover the Pk have the property that for two consecutive elements Pk <_ 
Pk+~ and suitable generic approximation H~ and Hk+l either the first part of  our 
discussion in 2 . 3  applies or the result in lemma 3. Hence the monotonicity map 
is the composition of injections and isomorphisms. Moreover the methods in 
section 2 show that we have a control about the critical levels for ~nk between 
a and b. The following figure illustrates Pk-t < Pk <-- Pk+t. 
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Pk+~ 

Pk P h -  x 

2.4  Computat ions f o r  ell ipsoids and  polydisks  

The results in 2. 1, 2. 2, 2. 3 apply immediately that for a regular r c Freg 
Theorem 2 holds. Next consider r E F .  We take a sequence r t E F~g with 
r t , r. Without loss o f  generality let us assume r t < r (for the coordinate - 

wise ordering). 

Let us assume - o o  < a < b _< +oo with a < +oo and a ~ /d j ( r )  for all 
j = 0, 1 , . . .  (with do(r)  = 0) and "if b --//+oo we assume the same for b. For l 
sufficiently large we have dj(r  t) ~ ta ,  b for all j .  Consider the diagram 

E ((1 - 6)r)  ~ E ( r  t) ~ E ( r )  '--', E ((1 + 6 ) / )  

for  6 > 0 small and l large. This induces a diagram 

St,,b) (E((1  + 5) .  r t ) ) s[a, b) (E(r t ) )  

\ 
S [a,b) (E ( r ) )  SIa,b) (E(  (1 - ~) . r ) ) 

If  we know that the horizontal arrows are isomorphisms for r t ..... ~ r and 
6 ~ 0 the proof  of  Theorem 2 is complete. However this result can be easily 
reduced to a variant of  Lemma 3 and therefore ultimately to Proposition 35 in [7]. 
This  completes the proof  of  Theorem 2 if a and b avoid the sequence (dj(r)) jeN.  

Next assume djo(r) = a for some j E N. We may assume without loss of  
generality that djo_l(r  ) < a. Pick e E (0 , a  - djo_l(r)) .  We have the exact 
sequence 
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S l . . . . .  )(E(r))  , sla-~'b)(E(r)) 

Sl",b)(E(r)) 

In order to compute S["-r start with a p satisfying p o q I E(r)  < 0 
and (5) and (6) in 2.1 In addition we assume p'(s) = p'(cx~) for all s 6 R + with 
p(s) >_ O, and moreover ]p'(s)[ small for s <_ 1. Then 

p'(T)7 - p(T) > a 

if p'(7") = djo(r ) and p'(T)T -- p(7") < a -- ~ if p'(T) = djo(r ) for a suitable choice 
of p. We note that generic perturbations of such p ' s  constitute a cofinal set. 

Hence S[a-~'a)(H,J)  = 0 for a cofinal set. This shows that 

S I . . . .  b)(E(r)) ~ s[a,b)(E(r)) . 

The same argument works for b. This completes the proof of  Theorem 2. 
The recipe in the computation for ellipsoids was to take special Hamiltonians. 

Given a polydisk D2~(r) = B2(rl)  x . . .  x B2(r,)  we consider Hamiltonians of 

the form H = H1 �9 �9 �9 �9 |  ,i. e. 

and almost complex structures of the form J = J1 @ . . .  @J , ,  where Jr(z) = i for 
[z] large, z E C. Clearly J ( z )  =/i in general for Izl large, z E C". However one 

can derive apriori estimates as in [7] and show that s ta'b)(H, J )  is isomorphic to 

s[a'b)(H,J)  with ] (Z)  = i for z E C " ,  Izl large. Note that this is an assumption 
in [7]. Alternatively we may consider (H,  i)  with H = Hi @..  �9 (9/ / ,  which is also 
possible by [9]. It is now obvious that we obtain a cofinal family of  complexes 
by considering the tensor products of  those for disks. Then the discussion for the 
ellipsoid case immediately implies Theorem 4. 

2.5 Some properties of  induced homomorphisms 

Next we study induced homomorphisms, in particular we given some criteria 

which imply their nontriviality. 

Propos i t ion  6 Let �9 E ~ ,  ~ E (0, +co) and r E 1" such that #(B2"(~)) C E(r).  
For a e (0, 7r~ 2] and  b E (Trr 2, +c~] the linear map 

is an isomorphism. 
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Proof We note that using Gromov width, [11, 12], or capacity we have neces- 
sarily ~ < rl and consequently a < b. In  view of  corollary 2 we deduce that 
s~a+~b)(BZ~(~)) ~ Z2 and the same for s~a+ib)(E(r)). It is almost obvious that (using 
the previously constructed cofinal system) 

S[n~ ~ SI~ 2"(?)) 

is an isomorphism, see the proof  of Theorem 1 for the argument. Since 
St~ and S[~ vanish it follows from the exact triangle that 

S n [ a , + c x O t l 4 ' t - ~ x ~  r [a,+oO)tB2n~px~ +1 ~ t ] )  On+ 1 ~ [ 11 

is an isomorphism. Another application of the exact sequence gives the following 
commutative diagram 

s [a,+oo) n+l (E(r)) s Ia,+c~) .+, (BZ"(r)) 

Sn[a ,b) ~i* K' [a ,b) (B 2. (?)) +1 (E(r)) " on+l 

Hence the bottom arrow is an isomorphism, too. 

7 Let a E ( '~2 '  1] and consider Proposition 

I d : ( C n , B Z n ( r ) ) .  ~(Cn,B2n(1)) �9 

Assume a E (0, 71"O "2) and b E (Tr, 7r + e) with 7r + e < 27r0- 2. Then 

Id* : sta'b)(BZ"(1)) , s[a'b)(B2n(a)) 

[] 

is an isomorphism. 

The arguments are similar to the ones used in subsection 2.3. Again the proof is 
built on two ingredients, the factorization of  the monotonicity map through small 
distance isomorphisms and the fact that the actions of  closed characteristics do 
not interfer with the numbers a and b for all balls BZn(r) with radii r E [a, 1], 
which allows in 2. 1 to construct suitable regular Hamiltonians whose associated 
critical values do not interfer with the numbers a and b. 

Again along the same lines one can show the following 

Proposition 8 Assume n = 2 and 0 < a < 7rr? < 7rr~ < 7r < b < 7r(r? + r~). 
Then Id : (C2,D4(r l ,  rl)) ~ (C2,D4(1, 1)) induces an isomorphism 

Id* : s[a'b)(D4(1, 1)) ~ s~a'b)(D4(rl, r2)) �9 
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For the proof one notes that the groups are isomorphic to Z2 @ Z2. The crucial 
observation is that the action of closed chararcteristics on tgDg(rl, r4) are of the 
form 7r(jr 2 + kr 2) for k , j  E N, k + j > 1. (Clearly tgD 4 is not smooth, but 
our approximation by suitable Hamiltonians of the form HI O H2 will result in 
functionals having critical levels close to that numbers). If  we deform D4(rl, r2) 
through polydisks in D4(1, 1) in a monotonic way the numbers a and b satisfying 
the above inequalities will not be crossed by a critical level belonging to a critical 
point of index 2, 3 or 4 (for suitable approximations in the sense of 2. 1 or 2. 2). 
Precisely this allows the outlined recipe of generic approximation and small 
distance isomorphisms to work. 

There is of  course some underlying more general argument behind all this 
which will be established in [9]. 

3 Applications 

3.1 Properties of the nonlinear order structure 

Next we prove Theorem 1. The direction i) ~ ii) is trivial. So we assume that ii) 
holds. By assumption we have the following diagram of symplectic embeddings 

S 
B4(tr) ~ E(r) ~-+ E(r') s B4(1 ) (25) 

where all the maps are induced by globally defined symplectic maps. Without 
loss of  generality we may assume that all maps are in ~ .  By a result of McDuff, 

[20], the map B4(cr) ~ B4(1) defined by (25) is symplectically isotopic to the 
standard inclusion. Using the well-known "extension after restriction" principle, 

for example [3], the restriction of this isotopy to B4(cr ')  with or' E (~2 ,  or) see 

can be considered as the restriction of  an isotopy in 6.~,y. Without loss of  generality 
we may assume crr = cr and the following: There are maps c~,/3, 7, ~ E ~"  such 
that 

o~(B4(cr)) C E(r) 

/~(E(r)) C E(r') 

7(E(r')) C 84(1)  

= 7o~oa 

and there exists (~s)sE[0,1] C G~ with ~0 = Id,  fir1 = ~ and 

k~s(B4(cr)) C B4(1) for all s E [0, 1] . 

Using the isotopy invariance of symplectic homology we have 
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SIa,b)(B4(1)) 

sta,b)(E(r')) 

Id* . s ia ,b ) (B4(cr ) )  

'[' OL* 

/3* " S[a'b)(E(r)) 

(26) 

Note that Id* is not necessarily identity since Id : (C 2, B4(o')) ~ (C 2, B4(1)). 
First we take a = 7ra 2 and b = +cxz. Then Theorem 2 gives 

S[~rc3'+~)(B4(1)) = (Z2,3) 

S[~r~r2'+~)(B4(cr)) = (Z2, 3) . 

We observe that Id* " Z2 ~ Z2 is the identity. This follows from the following 
observation. We have S/~ = 0 for �9 = B4(1) and B4(cr) and S[~ = 
(Z2, 2) for * = B4(1) and B4(o'). Hence it follows from the exact triangle 

s[O, 7ra2) (B4(1)) Id* S[0, ~rcr:) (B4(o-)) 

T T deg = - 1 

SITter2, +*) (B4(1)) Id* S [w~ (B 4 ( 1 )) 

This precisely gives 

Z2 * Z2 

l l �84 
Z 2 , , , Z 2 

The top arrow however is the identity and therefore Id* is the identity for the 
bottom arrow. The top arrow is given by the number of  connecting orbits con- 
necting 0 with 0. Using the cofinal system we constructed before and a suitable 
monotone homotopy it follows easily the the connecting orbit is precisely the 
map (s, t) ~ 0. This implies immediately that ")'* is injective and a* surjective. 
Therefore 
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�9 [ ~ a 2 , + ~ )  r 
d i m S  3 ( E ( r  )) > 1 

�9 [ ~ 2  +~) 
d i m S  3 ' ( E ( r ) )  >_ 1 . 

Since the d imens ion  is apriori at most one we deduce 

dim S[~2'+~176 . . = 1 = dim S[~'2'+~ . . 

From Theorem 2 it follows that 

~r~ _> ~2 
7r(r() 2 > 7rcr z . 

(We note this could also be obtained by using symplectic capacities). 
For vo lume reasons we must  have 

' < 1  rl _< 1 , r I _ 

(since r 2 < r 1 and r:~ > r~). 

Hence  we know that 

a < r l  < l and a < r ~  < l . 

From Proposit ion 7 we know that for every ~ E - ~  with ~(B4(e)) C E ( r )  and 
for a E (0, 7re 2] , b c (:rr~, + ~ )  the fol lowing map 

s~a 'b) (E(r ) )  , s~a'b)(B4(e))  

is onto. Note that s~a'b)(B4(e))  = Z2 by Theorem 2. Next let us show rl _< r(. 

' We pick b E 0r(r~) 2 7rr12), and Arguing indirectly let us assume rl > r 1 . 
a E (0, 7ra2). Then  we have the commutat ive  diagram 

s~a,b) / 3 "  s~a,b)(E(r) )  

/ 
(/~ o ~)* / / ~ *  

Z2 

From Theorem 2 we know that S~a'b)(E(r ' ) )  = Z2 and s~a 'b) (E(r) )  = O. This 
gives a contradict ion.  

Hence  we know so far that 

' < 1  _< r l  _< r l  _ . 

Next we take in (26) a = 7ra 2 and for e > 0 small b E (Tr, 7r + e). From Theorem 

2 we know that 

s[a 'b) (B4(1))  = ( Z 2 , 3 ) O ( Z 2 , 6 )  

s[a'b)(B4(o')) = (Z2,3) @(Z2 , 6 )  . 
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Studying (26) for the above choices of  a and b in dimension 6 we obtain 

Z2 Id ,- Zz 

7* a* (27) 

s[6a'b)(E(rt)) ~1~. S6' . .) ) [ a  b)tE(r 

It follows from Proposition 7 that the top arrow is indeed the identity. Conse- 
quently Sf6a'b)(E(r'))sr and s~a'b)(E(r)) ~[0. If  r~ > 1 we take ~ > 0 above so 

small that b < 7r(r~) 2. Then s~a'b)(E(r')) = 0 by Theorem 2 giving a contradic- 
tion. Hence r.~ _< 1. The same argument shows r2 < 1. Now assume r~ < r2 < 1 
arguing indirectly. Taking b E (Tr(r~) 2, 7rr~) we deduce that a*~* in (27) is zero. 

On the other hand we know that the composition 

S[6 a,h)(E(r,)) /3.* s[6a,b)(E(r)) c~* s~a,b>(B4(o.)) 

for a = 7ra 2 and 7r < b < 7r + ~, e > 0 small enough, is an isomorphism. Since 

from the exact sequence for the triplet a < b '  <__ b we have 

s~a'b ' ) (n4(~))  

[a b') t S~ ' (E(r )) 

provided 7r(r~) 2 < b '  _< b, we see that 

_ _  ~ s[6a'b)(B4(cr))  

_ S ~ ' b ) ( E ( ~ ' ) )  

b' ,~ .~[a,b')..~. t.. (/~oc0* a, ) (or)) = g2 Z 2  = ~6 4,t~tr ) )  ... .  ~ S ( B  4 ' ~  

is an isomorphism. Taking b '  such that 7r(r~) 2 < b < 7rr2 we obtain (/3 o a)* ~ 0 
contrary to our assumption. So, summing up we have proved 

(a, or) -<1 r ~1 r '  <-1 (1, 1) . 

3.2 Polydisk classification 

We define for a E R and r E F 

dr(a) = lim dimS~a+-("a§ . 
r 

In view of  Theorem 4 we have 

dr(a)=#(j 17rr:=a} �9 

We observe that the map 

F ..... , Maps (R, {I,..., n}) : r -----+ d, 
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is an injection. So it suffices to show that D ( r ) ~ - D ( r ' )  implies dr = dr,. 
We note that for every a E R there exists a e(a) > 0 such that for e E (0, e(a)] 

dim s~a-~"a+')(D(r)) = dr(a) . 

[a+~l ~a+e2) This follows from Sn+ l (D(r ) )  = 0 for 0 < q < e2 , e2 small etc. , 
using the exact triangle. One obtains this from studying a suitable cofinal set of 
Hamiltonians as in the ellipsoid case. 

For every 6 > 0 small, there exists by the extension after restriction principle 
a k~6 E ~ with 

~6 [ D2n(( 1 - 6)r) = p [ D2n((1 - 6)r) , 

where p : D2"(r) ~_ D2n(r t) is the given symplectic diffeomorphism. In particular 
~6 (DZa((1 - 6)r))  C DZ"(r'). We find a 6' > 0 small, such in fact ~P6(D2"((I - 
6)r))  C D2n((1 - ~')r ') .  Again we find a ~6' E ~ with 

~6' [ D2n((1 - 6')r ' )  = p-1 [ D2n(( 1 _ t~t)r t) . 

Hence we have 

~ 6 ' o k v 6 ( x ) = x  for x E D ( ( 1 - 6 ) r )  . 

Take any symplectic isotopy of a = ~ ,  o kV~ in G~, say (as)sE[O,1] with ao = Id 
and al  = a.  For t E [0, 1) define, following [13], 

Ct[.(X) = (1 - -  t)c~ s ( (1  - -  t ) - l x )  

0 We note that a s = as and that supp(c~s +) C (1 - t)BR(O) for R sufficiently large 
independent of t and s. Taking a suitable path in [0, 1] x [0, 1) connecting (0, 0) 

_b(r) and may assume with (1,0), say 7- ~ (a0-),b(7")) we define 6T(x) = %(~.) 
that &~(D(1 - tS)r)) C D ( r )  for all ~- E [0, 1]. Therefore ( ~ ,  o ~6)* = Id* : 
sta'b)(D2"(r))  ~ SIa'b)(D2"((1 - 6)r). Consequently we have the commutative 
diagram 

S~ale,a+e)(o2n(r)) Id* [a--r162 2n 
, Sn+ l (D ( (1  - ~ ) r )  

/ (28) 

[a -e ,a+e)  2n 
Sn+ 1 (D ((1 - ~')r ')) 

�9 [a --r 2n For e > 0 small we have &mSn+ 1 (D (r)) = dr(a).  Let this e > 0 be fixed. 

For 6 > 0 small enough we have also dim S~-"a+~)(D2"((I - ~)r)) = dr(a)  and 
Id* is an isomorphism. The latter follows from the following observation. We 
take suitable cofinal systems for DZ"(r) and D2"((1 - 6 ) r )  respectively. Then Id* 
is the monotonicity map. This monotonicity map can be factored through small 
distance isomorphisms and hence is an isomorphism, see Proposition 35 in [7]. 
Therefore 

dr(a)  < G , ( a )  �9 

Similarly dr,(a)  <_ dr(a).  This proves r = r p. 
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3.3 Non isotopic symplectic embeddings 

The aim of this section is to prove Theorem 4. Pick a, b such that 

0 < a  <'n-r?_<Trr~ <Tr < b  <Tr(r?+r  2) . 

With this choice we have by Theorem 5 

s~a'b)(o4(1, 1)) = Z2 0 Z2 

s~a'b)(D4(rl, r2)) = Z2 G Z2 �9 

The identity map induces with this identification the identity map and is therefore 

represented by the matrix [o 1 ~ see Proposition 8. 
r 

It is easy to construct a sequence (~Pk) E -~  such that for Iz] < k we have 

g'k (z ) = (z2, z~ ) 

and for l > k there exists an isotopy in _~ from ~P~ to ~Pt which is constant on 
{z I Izl _< k}. For k > 2 the morphism 

LV~ . s~a'b)(o4(1, 1)) ' s~a'b)(oa(rl, r2)) 

is independent of k by the isotopy invariance' of symplectic homology. Taking a 
cofinal sequence for D a(1, 1) along the construction outlined before we have for 
each element (Ht, Jr) an apriori bound for the Morse complex. For k large enough 
~k acts like the permutation map on the Morse complex. This gives immediately 

~Pk* fork large is given by the matrix [0 01]. Since ~Vk, is independent of k we that 

have shown that the maps [~~ and [~ are induced by suitable symplectic 

maps in .~r. Hence there cannot be an isotopy (~Vs) C -,~ with ~s(Da(rl, r2)) C 
D4(1, 1 ) f o r s E  [0, 1] with (kVo)* = [1 o] and (~Vl)* = [~ ~]. 

Using the extension after restriction principle and the previous discussion we 
see that the maps kVk ]O4(r2, r2)] and Id I O4(rl, r2) cannot be isotpic as maps 
from D4(rl, r2) into D4(1, 1). 

3.4 Construction of a symplectic capacity 

Let U C C n be a bounded open set and 0 < el < e2 < +c~. We have a natural 
map 

S[es,b)[ll~ ~[~2,b)[ll~ 
n + l  \ ~ 1  ) u / l + ]  k ~ l  

where we assume b > e2. We have an inverse system 

[~,b) 
( sn+l (U)) eE(0,b] 

We define 
(O,b) ([ , ,b)  ) S~+ 1 (U):= inv lim S~+ 1 (U) ~E(O,bl 
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Proposit ion 9 For every bounded open set U C C n there exists a constant 
bo(U) =: bo such that bo(U) =: bo such that 

S (0'b)f r ~'" ~ ( 0  
n+l ~.tJ) 

for  b >_ bo. 

Proof We may assume without loss of  generality that 0 E U. Hence we find 
numbers 0 < r < R < +c~ such that we have inclusions 

B2n(r) C U C B ~ ( R )  . 

For numbers 0 < a < 7rr 2 < 7rR 2 "< b < +oo we consider the commutative 
diagram 

[a ,b) 2n [a ,b) 2n S~+ 1 (B (R)) , S~+ I (B (r)) 

s(a,b) .+l (U)  

where all maps are induced by the identity. In view of Proposition 6 the top 
arrow is onto. Since however both top groups are isomorphic to Z2 it is an 
isomorphism. This implies that r162 is nontrivial for the above choices of a ~n+l \ v /  
and b. Next we consider for 0 < a' < a the natural maps Sin"b)(*) ~ sta'b)(*). 

We obtain the diagram (via Proposition 6) 

S [a,b) (B2n (R)) 

Sn[a ,b) (g 2n (R)) 
+1 

sia' ,b ')  (t:~ Pl+l k ~  J 

1 
Sn[a, b) +l (U) 

s[a',b) (B2n(R)) 
n+l 

s [ a t , b )  [l~2n/Dxx 
n+l ~,~' k~x )) 

Passing to the inverse limit gives with Z2 - S(~ , 7/'2 ~ S(~ 
for  7rr 2 < "fiR 2 < b the diagram 
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Z 2 , Z 2 

S (a'b) ( U )  

proving our assertion. [] 

L e m m a  4 Consider the group 

O := dir lim S(~247 . 
e---40 

Then 0 ~ Z2 and f o r  every bounded open set U C C n there exists a natural map 

s(O'b)(u) - ~  0 

for  every path component [U~] of  U. 

Proof  Let U.~ C U be a path component. Pick a ~ E ~-~ and el > 0 small such 
that 

fft(B2n(el)) C U~ C U . 

.~(O,b)r x (O,b) 2n We obtain a map ~* : - ,+l ~U) , S,+ 1 (B (el)) and therefore also 

(0,b) (0,+oo) 2n 
~YJ* : Sn+ 1 ( U )  --'-+ Sn+ I (O ( e l ) )  

for el < e2 we have a natural map 

(0,+oo) 2n t~ (O,+oo)r r~ 2n t_  ~x 
S,+ 1 (B (e2)) ,an+ I ~o ~ewj �9 

In view of an argument used in Proposition 9 this map is an isomorphism. Hence 
O ~ Z2. Hence ~* induces a map 

,~ (O,b)[ t f x 

Now observe that any two such maps g ' , #  with g'(BZ"(e)) C U,x , #(B2"(e)) C 
Ux and e > 0 small enough induce the same map in symplectic homology in view 
of the isotopy invariance. Hence #* only depends on the chosen path component 
of U. Let (Ux);~r /x =/Xv be the collection of path components of  U. Let aa 

(O,b)( be the natural maps cr~ : S,+ 1 ,U)  ~ Z2 for ,~ E A v .  
If  ~ E .-~ we have by construction a natural diagram if k~(U) C V 

[O,b) k~* (O,b) 
S,+ 1 (V) , S,+ 1 (U)  

Z2 
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with k~(U;O C Y~. 
We define 

c (U)  sup inf {b [~r u (0,b) ) = " S,+ 1 (U) ---* Z2 is onto 
~EAu 

As a by-product of the proof of Proposition 9 we know that for a bounded open 
set U , c (U)  < cx~. Moreover the computations for the symplectic homology of 
an ellipsoid give easily 

c(E(r ) )  = 7rr 2 . 

The following properties are obvious: If  ~P(U) C V for some kv c _~ then 
c (U)  < c(V) .  If  we define for an arbitrary open set U C C" 

c (U)  = sup{c(V) [ V open bounded V C U} , 

then it follows immediately that 

c(B2(1) x C n - l )  = 71" . 

Also we have 
c(B2~(1)) = 7r . 

If  U is an open bounded set of C ~ and a C ]R \ (0) consider the set a U .  For 
H E .A~reg(U) we define Ha C J/~g(C~U) by 

H a ( t , z )  = aZH(t ,  a - l z )  . 

We observe that dH~(t,  *) = a w ( X , , ,  ( a - l  z ), ,).  Hence 

XH~,a(Z ) = OLXHt(OL--Iz) . 

If  z is a 1-periodic solution of  

= x . , (z )  

then y := az  is a 1-periodic solution of  

.;, = x . , . , , ( y )  . 

Multiplying the Morse complex associated to H by a we obtain the Morse 
complex associated to Ha (for a suitable J~). Hence 

c ( a U )  = ~ 2 c ( U )  . 

Consider the group ~ c o n f  consisting of all diffeomorphisms ~P of C n such that 

~P(z) = az  for all ]z[ large 

for a suitable a c R \ {0} such that ~P*w = a2w. 

Hence summing up we have 

Theorem 7 The map c has the following properties. For every nonempty open 

set U we have c (U)  E (0,+c~]. l f  gz(U) C V and if' E ~-~conf with g~*w = a2cv 
then 

,, c ( V )  >_ ~2c(U) 
�9 c ( B 2 n ( 1 )  = c ( B 2 n ( 1 )  x C " - 1 )  = "n" . 

Hence c is a symplectic capacity for  open sets in U in the sense o f  [3]. 
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