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1 Introduct ion 

In this paper we prove the weak lower semicontinuity of a functional of the form 

? 9 ( d e t D u ) d x  , 

where Du is the gradient matrix of a function u E Wl 'n(~;Rn) ,  and D is a 
bounded open set in R ~. More precisely, we prove that, if 9 is convex and 
satisfies 

(1.1) 9(t)  >_ alt[ - b 

for suitable constants a > 0 and b _> 0, then 

(1.2) /s g(detDu)dx < l~m~f / 9(detDuh)dX 

for every sequence (Uh) in Wl'n(f2; R ") converging to u E WI ' " ( f2 ;R  n) in the 
weak topology of W1'P(g2;Rn), with p > n - 1. In the case n = 2 the hypoth- 
esis that (Uh) converges weakly in WI ' ] (J2 ;R 2) can be replaced by the weaker 
assumption that (Uh) converges to u in LI(f2; R 2) and is bounded in WI'I(f2; RZ). 

In the casep  > n -  1 this result was proved by B. Dacorogna and P. Marcellini 
in [4] without the coerciveness hypothesis (1.1). In the case n = 2 their method 
gives (1.2) under the assumption that (Uh) converges weakly in W 1'1 (I2; R2), but 
can not be applied to sequences converging in LI(f2; R 2) that are only bounded 
in WI,J(f2; R2). See also L. Carbone and R. De Arcangelis [3] and J. Mal3~ [10] 
for related results. 

We remark that (1.2) does not hold if (Uh) converges weakly in W~,P(f2; R"), 
with p < n - 1, as shown by a recent counterexample due to J. Mal2~ [9]. In the 
same paper he proves, without the coerciveness assumption (1.1), that (1.2) holds 
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when Uh and u are orientation preserving diffeomorphisms and (Uh) converges 
weakly in WI'P(I2;Rn), with p > n - 1. 

We note that in all these results the hypothesis Uh, U E W1'"(s R n) can not 
be replaced by the hypothesis Uh, u C WI'p(ff2;R n) for n - 1 < p < n, as shown 
by a counterexample due to J.M. Ball and F. Murat [2]. 

In Section 3 we consider the more general case of a functional of the form 

f~ f ( x ,  u, DU) dx , 

defined for u E WI'v( f2;Rm),  with v = min{m,n}.  We assume t h a t f  is poly- 
convex and satisfies, for an integer k < v, the coerciveness inequality 

f ( x ,  y, A) > a I,///~(A)I - b ,  

where ,//~.~'(A) denotes the vector whose components are the determinants of  all 
minors of  the matrix A of order greater than or equal to k. Under a suitable lower 
semicontinuity hypothesis on f we prove that 

fs?f( x, u , D u ) d x  < l iminf f f (X,Uh,DUh)dX 
h ~ J ~  

for every sequence (Uh) in W1,~'(~; R m) converging to u E W I'~'(f2; R m) in the 
weak topology of  WI'P(f2;Rm), with p > k - 1. 

The special case w h e r e f ( x , y , A )  = ~b(x,y)9(A), m = n, and p > n - 1 was 
studied by W. Gangbo [5] without any coerciveness hypothesis. 

The proof of  our results relies on a lower semicontinuity theorem with respect 
to LI(f2; R m) convergence proved by E. Acerbi and G. Dal Maso [1], that is based 
on the results of  M. Giaquinta, G. Modica, and J. Sou~ek [6], [7]. 

2 The model c a s e  

Let 9: R ~ R be a convex function. Assume that there exist a > 0 and b > 0 
such that 

(2.l) 9(t) >_ altl - b 

for every t E R. Let f2 be a bounded open set in R n. Under these hypotheses 
we have the following lower semicontinuity result. 

Theorem 2.1 Let u and Uh, h C N, be functions in wl'n(f2;Rn).  Assume that 

(Uh ) converges to u in Ll(g?; R n) and that tluh IIwl,~-l~;R~ is bounded uniformly 
with respect to h. Then 

fs?9( de tDu)dx  < l iminf f 9(detDuh)dX.  
-- h---~oo j ~  
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The proof depends on the following Theorem 2.2, that is based on the results 
of M. Giaquinta, G. Modica, and J. Sou~ek. Let M T M  be the space of all 
mxn matrices. For every A E M T M ,  w e  denote by .//g~(A) the vector whose 
components are the determinants of the minors of the matrix A of arbitrary order. 
We recall that a function f :  M T M  ---+ R is said to be polyconvex, if there exists 
a convex function ~: R ~- ~ R such that f (A)  = cy(.//N(A)) for every A ~ M T M ,  

where ~- is the number of  all minors of an m x n matrix. 

Theorem 2.2 Let f :  M T M  --~ R be polyconvex. Assume that there exist a > 0 
and b > 0 such that 

(2.2) f (A)  >> a ],//g. (a)[ - b 

for every A E M T M .  If  u and Uh, h E N, belong to wl'u(~'2;Rm), where u = 
min{m, n}, and if (uh) converges to u in LI(Y2; Rm), then 

(2.3) f f(Du)ax <_ l~m~f f / ( D u h ) d X .  

Proof The deduction of this result from [6] and [7] can be found in Corollary 
3.13 of [1] under the additional assumption that there exist c > 0 and d > 0 
such that 

f (A)  < clAI ~ + d 

for every A E M TM. I f f  does not satisfy this assumption, let us write f (A)  = 
~(,//N(A)), where ~: R ~ ~ R is a convex function such that 

(2.4) cP(~) _> al~{ - b 

for every ~ C R ~-. Then there exists an increasing sequence (r of convex 
functions converging to ~ such that each function ~k is Lipschitz continuous on 
R ~" with Lipschitz constant k and satisfies (2.4) for k _> a.  Indeed, it is enough 
to define 

= s u p  ( < C ,  - 
I~*l<k 

where ~p* is the Young-Fenchel conjugate of cp. Set f~(A) = ~k( ,~(A))  and note 
that 

fk(a)  _< ~k(O) + k ].//~(A)[ < ~ ( 0 )  + kclal". 

From the previous step we get 

fs?fk(Du)dx <_liminf f J~ < l ~ m ~ f f  f(Duh)dX. 

Passing to the limit as k --~ oe we obtain (2.3). 

Proof of Theorem 2.1. Given e > 0, let us consider the function f~: M n• 
defined by 

fe(a) = g ( d e t a )  + e ].///g~-1 (a) ] ,  

- - * R  
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where . / / ~ - I ( A )  denotes the vector whose components are the determinants of 
all minors of the matrix A of order less than or equal to n - 1. As 9 is convex 

and satisfies (2.1), it is clear that f~ is polyconvex and satisfies (2.2) for suitable 
constants a > 0 and b > 0. By Theorem 2.2 we have 

(2.5) / fe(Du)dx < l~m~f /sTf~(Duh)dX. 

Since 

and 

f g(detDu)dx < Jsf~(Du)dx 

s fe(Duh)dX <_ /s29(detDuh)dX + eKilUhllw~,,-l~s~;R,) 

for a suitable constant K,  independent of  e and h, from (2.5) we obtain 

f g(detDu)dx <_ l iminf  f 9(detDuh)dX + eKC, 
h ~  Js2 

where [lUhIIwI,,-~(S~;R,) < C for every h. The conclusion follows by passing to 
the limit as e --~ 0. 

3 A more general result 

More generally, using the same technique, we can prove the following result. 
Let f :  ~2• m x M  T M  --~ [0, +cx~[ be a function such that: 

(i) for every (x,y) E ~'2• rn the function A ~-~ f (x ,y ,A)  is polyconvex on 
Mmxn; 

(ii) there exist a > O, b _> 0 and k E N, with 1 < k _< u = m i n { m , n ) ,  such 

that 

f (x,  y, A) > a [ . / ~ ' ( A )  I - b 

for every x E O, y E R m, A E M T M ,  where .//~(A) denotes the vector 
whose components are the determinants of  all minors of the matrix A of 
order greater than or equal to k; 

(iii) for every xo E g2, Y0 E R m and for every e > 0 there exists 6 > 0 such that 

f (x ,y ,A)  >_ (1 - e)f(xo,Yo,A) 

for every x E ~ ,  y E R" ,  A E M T M ,  with Ix -Xot  < 6 and [y -Y0t < 6. 

Note that every function of  the form f ( x ,  y,A) = ~b(x, y)9(A) satisfies conditions 
(i), (ii), (iii), if ~ b : O •  m --~ [0,+c~[ is lower semicontinuous, ~b(x,y) >_ 1, 
9: Mm• --~ [0, +cxz[ is polyconvex, and 9(A) >_ al. / /g~(A)l - b .  

Theorem 3.1 Assume that f: O •  m •  T M  ~ [0, +cx~[ satisfies (i), (ii), (iii). 
Let u and uh, h E N, be functions in W1'~'($2; Rn). Assume that (Uh) converges to 
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u in L l (,(2; R m ) and that ]1Uh II w l , k -  '~;Rm ) is bounded uniformly with respect to h. 
Then 

f f ( x , u , D u ) d x  < timinf f f(x~uh,Ouh)dx. 

The proof depends on the following theorem. 

Theorem 3.2 Let f :  (2 • R m x M m x n __~ [0, +oO[ be a function satisfying condi- 
tions (i) and (iii). Assume that there exist a > 0 and b > 0 such that 

f ( x , y , A )  > a l J ' / g ( A ) t -  b 

x E J'2, y C R m, A C M TM.  Ifu anduh, h E N, belongto wl,u(~2;Rm) andi f  
(Uh) converges to u in Ll(J2; Rm), then 

/s f ( x , u , D u ) d x  <_ l iminf f f ( X , U h , D U h ) d X .  
h --* oo j ~ 

Proof The theorem is proved in Corollary 3.13 of [1] under the additional hy- 
pothesis that f is continuous and that f satisfies an estimate from above of the 
form 

f ( x , y , A )  < c la l  ~ §  

To prove the theorem in the general case, we associate with f the class [~  of all 
functions 9: ~2xR'n xMmXn -~ [0, +c~[ with the following properties: 

(a) 9(x,y ,A)  < f ( x , y , A )  for every x c J2, y C R m, A E Mm• 

(b) 9 satisfies all hypotheses of Theorem 3.2 with constants a, b depending 

on 9; 

(c) 9 is continuous on ~QxR m x M  T M  and satisfies an inequality of  the form 

9(x ,y ,a)  < c la l  ~ + d ,  

with constants c and d depending on 9. 

First of all let us prove that 

(3.1) f(xo, Yo, A) = sup 9(xo, Yo, A) 

for every xo E f2, Yo E R m, A E M T M .  By property (iii) o f f ,  for every e > 0 
there exists 6 > 0 such that B(x0, 6) C f2 and 

f ( x , y , A )  > (1 - c)f(xo,Yo,A) 

for every x E (2, y C R m, A ~ M TM, with Ix - x0[ < 6 and lY -Yol < 6. 
Let ~b: Jr2xRm ----4 R be a cut-off function between B(xo, ~)• ~) and 
B(Xo,6)• i.e., ~ C C0~(f2xRm), 0 _< ~b _< 1 on J2xR m, ~b = 1 on 
B(x0, ~)• ~), and ~b = 0 out of B(x0, 6)• 6). Let us represent the poly- 
convex function f(xo,  Y0, ") as f(xo, Yo, A) = qD(~/Pg(A)), where ~: R T --~ [0, +c~[ 
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is a convex function satisfying the estimate from below (2.4), and let us consider 
an increasing sequence (~j)  of non-negative convex functions converging to 
such that g~j is Lipschitz continuous on R ~ with Lipschitz constant j and satisfies 
(2.4) f o r j  > a .  Define 9f :~•  T M  ---+ [0,+cx3[ as 

9j ~ (x, y,  A) = ~b(x, y)(1 - e)~j (.//~.(A)) + (1 - ~b(x, y))  (a [,//g(A)l - b)+. 

It is easy to see that the functions 9j e belong to the class ~9 for j > a. Passing 
to the limit as j -~ cx~ we get 

(1 - e)f(xo,Yo,A) = .lim 9f(xo,Yo,A) < sup 9(xo,Yo,A). 
j ---* cx3 9 E ~  

As e ~ 0 we obtain (3.1). By Lindel6f Theorem (see, e.g., [8], Chapter 1, 
Theorem 15) there exists a sequence (gi)  in ~r such that 

f (x ,y ,A) = supgi(x,y,A) 
iEN 

for every x E $2, y E R m, A E M T M .  By the stability properties of  the class 

, ~  it is not restrictive to assume that the sequence (9i) is increasing. Since each 
function 9i satisfies all conditions of  Corollary 3.13 in [1], we have 

/s gi(x,u,Du)dx < l imin f  f gi(X,Uh,Dtth)dx ~ l iminf  f f(x,uh,OUh)dx. 
h~o~ Ja h--,~ Ja 

All that remains is to take the limit as i ~ cx~. 

Proof of Theorem 3.1. It is enough to consider, for every ~ > 0, the function 

fdx ,y ,A)  = f(x ,y ,A) + el. / /~.~-l(A)l,  

where ~//g~-t (A) denotes the vector whose components are the determinants of 
all minors of the matrix A of order less than or equal to k - 1. The conclusion 
follows easily as in the proof  of Theorem 2.1. 
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