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0 Introduction

This introduction will be a short survey on the subject and a description of the
motivations about the concepts introduced.

Let (M, g) be a smooth Riemannian manifold of dimension n. It is known
that, given the metric g, it is possible to define the length of C'-piecewise
curves and to construct an intrinsic geodesic distance 6 on M; on the other
hand, when & is given, the original metric can be restored by differentiating
the function that gives the distance from a point [B-dR].

In particular, we want to recall that the directional derivative along a vector
v gives the Riemannian norm of v; i.e., in a local coordinate chart (U, @) at
the point x € M, if £ = &(x) and if v is a vector of ®(U) C R", putting

(P&, P~ (E +1v))
t b

) p(&,v) = lim

one has (with abuse of notation)

(%) o(x,v) = ”"Hy(X) =/ g,-j(x)v"vf .

Let us consider now a Lipschitz manifold M (briefly LIP manifold) of
dimension #, i.e. a topological manifold (with countable basis) whose change
of charts are Lipschitz functions. Following the presentation of Teleman [T],
we consider on M a LIP Riemannian metric g, i.e. an “elliptic’ metric gen-
erally with measurable coefficients, because it is not possible to ask a greater
regularity.

These manifolds, which generalize the polyhedra, can have vertices, edges,
conical points, even not isolated. Moreover, it is possible to move the singulari-
ties of the carrier to singularities of a metric g on a smooth carrier; for example,
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the problem of geodesics with obstacles, or on a manifold with boundary, can
be studied as a problem about metrics with singularities.

Metrics with singularities can be found in Physics, in Engineering [B]: in
the general case, the carrier is regular and the singularities of the metric have
a physical meaning, e.g. they are caused by “irregularities” of the materials.

Given (M, g), starting from g, it is possible to construct a intrinsic distance
in the following way [DC-P1].

If N is a set of zero measure (with respect to the measure induced by g or
by the charts), a LIP curve y : [0,1] — M is said transversal to N (abbreviated

T
W) if
meas{s € [0,1;y(t) eN} =0.
If a LIP atlas .o/ of M is fixed, we consider the integral

1 —
Lo (v;9) = [+/ g7/ dt
0

which we put equal to +oo if it does not exist or is not well defined; however
with a suitable choice of the set N = N(«/) the previous integral has the
meaning of the length of y (with respect to the atlas 7). Then one constructs
the intrinsic distance, which depends on g but is independent of .7,

T
pox, y) = sxp{ir;f {L#(y;9); 7(0) = x,approach y(1) = y,y(\N}; meas(V) = 0}
which turns out to be also given by

pY(x,y) = [inf {||dul| oo u € Lip(M),u(x) = 0,u(y) = 1}]"'

= sup{[u(x) — u(y);u € Lip(M),||dull < 1},

where &£ip(M) is the set of Lipschitz functions on M. This distance coincides,
under very general conditions (cf. [DC-P2] and [DC-P3]), with the integral one

1/p =1
M(x,y) = plim |:inf { [fldul”du} su € LipM),u(x) = 0,u(y) = 1}}
o0 A

(where | - | and dp depend, as usual, on the metric g on M ).
Now, using the distance p? (or d7), one can define the length of v, Z(y; p?),
in the usual manner, and prove that [DC-P2]

T
L(y; p?) = sup {lim inf & 4(t; 9); t[ N, meas(N ) = 0}
N oY

and
pi(x,y) = ir;f{f("/; p?);9(0) =x,9(1) = y},

i.e (M, p%) is a metric space with intrinsic distance [R] or a length space [G].
In this framework, when considering the limit (%), one can ask whether (*x)
holds.
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In [DC-P4] an example (R? with a suitable LIP metric) is produced to
show that, under our hypotheses, the equality (*x) does not hold on a set of
positive measure; ¢ cannot be expressed almost everywhere as a square root
of a quadratic form. Nevertheless

1
L(;0%) = [o(y,9)dt .
0

In general the function ¢, with respect to the second variable, is positive ho-
mogeneous of degree 1 and convex, i.e. it is a metric of “Finsler type”.

Finslerian metrics in the classical case or in weaker hypotheses are studied
by Busemann and Mayer [B-M] and with generalization by Pauc [P] in view
of calculus of variations on metric spaces.

The previous results lead to the introduction (in [DC-P4]) of the LIP Fins-
lerian manifolds with LIP Finslerian metric (M, F) which generalize, on one
hand, the Finslerian manifolds and, on the other hand, the LIP Riemannian

manifolds if
F(x,v)y = v/ gij(x)vivj .

Also on (M, F), if 7y is a curve transversal to a suitable set of zero measure
(as in [DC-P1]) it is possible to define the integral

1
Ly(p;Fy= [F(y,7)dt,
0

and consequently to introduce (geometrically and analytically) a geodesic dis-
tance, p”', induced by the Finslerian structure F. The length, £(y;p"), of an
absolutely continuous curve y (briefly y € AC(x, y)) usually defined by the
metric structure p’, coincides with one, L(y; F), defined by the Finslerian (or
Riemannian) structure . So the metric space (M, p’') becomes a length space.

Moreover, if the function F( -, v) is upper-semicontinuous, then the transver-
sality condition and the supremum on N can be left out in the above definitions.

In the present paper the following problem is considered from a general
viewpoint. Let M be a LIP manifold with a distance J, which is locally equi-
valent to the Euclidean one; which hypotheses are needed to endow M with a
Finsler structure F in such way that F induces the original given distance?

In the first place, when J is given, the function ¢ defined by (*), endowes
M with a Finsler structure, secondly it is possible to show if y is an absolutely
continuous curve, then the following

1
L 6) = [o(n.D)dt,
0

holds, i.e. the length can be calculated by an integral.

Evidently (M, §) must necessarily be a length space in order for the problem
to be answered positively. Under such a hypothesis, in general the inequality
6 = p? holds; an example shows that 0= p? can actually be true. Now a
necessary and sufficient condition for d(x, y) = p®(x, y) is that
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(x,y) = sup {ir;f{ff(v;&);y € 4C(x, y), V(T}N} meas(N) = 0} :
P

Finally we observe that, if one starts from a Finsler structure F, and consi-
ders the distance p* and the function ¢ that corresponds to it through (%), then
the example given above yields ¢ +F. However if one repeats the procedure
starting from ¢ nothing new is obtained, viz. the construction given above is
“stable” and the metric ¢ becomes LIP Finslerian stable (or quasi-Finslerian
according to [DG3]). Moreover if ¢ is the “derivative” of p”, it follows that
pF = p? even when @ +F.

Therefore a LIP manifold M with a Finslerian structure F may not be stable
with respect to F, but it is isometric, as a metric space, to the LIP Finslerian
stable manifold (M, ¢). On the other hand there exist LIP Riemannian manifold
(M, g) that are not isometric to LIP Riemannian stable manifolds. Obviously a
smooth Finslerian (resp. Riemannian) manifold in the classical sense, is even
a LIP Finslerian stable (resp. LIP Riemannian stable); the result still holds for
continuous metrics on manifolds of class C! at least.

The paper answers, at least partially, conjectures, in the context of quasi-
Riemannian and quasi-Finslerian metric spaces, formulated by De Giorgi (cfr.
[DG1, DG2, DG3]).

Venturini, in the framework of the questions here considered, studied sys-
tematically the relationships between the class Z(V') of distance functions lo-
cally equivalent to the Euclidean distance and the class .#(V') of Borel metrics
locally equivalent to the Euclidean metric on an open connected subset ¥ C R”.
The operators he introduced (in [V])

A:9Vy>HWV) [ H4V)—> V)
respectively of derivation and integration are similar to the ones defined by us.

1 LIP Finslerian manifold

(1.1) A Lipschitz manifold (LIP manifold) of dimension # is a pair consisting
of a topological manifold M and an equivalence class of LIP atlases [L-V, T].
A LIP atlas o on M is a family of charts {(U,, ®,)}(« € A), where {U,}
forms an open cover of M,®, : U, — V, maps homeomorphically U, onto a
set V, which is open either in R” or in R", and Va, 8

Oup = Pgo b, Dy(U, N Up) — Pp(U, N Up)
defines a Lipschitz homeomorphism.

(1.2) A (weakly) Finslerian structure on V, C R” is a function F,, : V, xR" —
R such that

1) F,{ - ,v) is measurable Vv € IR" and F,(¢, - ) is continuous for a.e.
€V

2) Fy(é,v) > 0 for ae. & if v£0;

3) F(&,tv) = tF(&,v) if £ 2 0.

A Finslerian structure on M is a collection F = {F,} of (weakly) Fins-~
lerian structure F, on V, = ®,(U,) C R”, such that Va, § the following com-
patibility condition
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(1.3) Fo(&,v) = Fp(@up(E), (dPep)(E)(v)) ae. L€V, VeR",
holds, where @, '(¢) € U, N Up.

(1.4) A Finsler structure F will be called a LIP Finslerian metric on M if Va
two (strictly) positive constants k, and k, exist such that

(L.5) hafv| £ Fu(év) £ kylv| ae. eV,

where {v] is the standard Euclidean norm.

A LIP manifold M with a LIP Finslerian metric F will be called simply
a LIP Finslerian manifold (M, F). If x = @, !(¢) € U,, sometimes we write
F(x) instead F,(¢, - ) and expressively put

“U”F(x) - fo(é, v) .
If (M, g) is a LIP Riemannian manifold [T] and

F(&,9) = (@O N = V]l gee) »

(M, g) is a LIP Finslerian manifold too.
In the following we shall always assume M to be a LIP Finslerian manifold
unless otherwise indicated.

2 The “derivative” of distance function

(2.1) Let M be a LIP manifold and & a distance which is locally equivalent
to the Euclidean one in any chart (U,, @,). Moreover if

o:(&,1) = 8(D;1(8), 0, () V&€ Vs

there exist two positive constants 4, and k, such that

(22) halé —n| < 0u(&n) S kal&—n| VENETV,.
We put
. g6, ¢+t P (Y £
hlriggp —5“—(5—'}’;——@ = ¢xC,n),  liminf i(—ééTﬂ—) =9 (&m
then
(22)l halrll § ()001(677’) é k{x|rl| Vé,n E fo >

and analogously for ¢ .
(2.3) Lemma. The functions @, and [ which depend on the charts, are

(i) positive homogeneous of degree 1 with respect to n;
(ii) LIP with respect to n and Borel-measurable with respect to &,
(iii) compatible with the change of charts.

Proof. For simplicity’s sake we omit the index a when there is no risk of
ambiguity.
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(1) Forc > 0
t
(&, en) = limsup LI ¢ sup TEELID ey
t—0t t—0F 1

Since the arguments we are going to use hold for ¢ and for ¢ we give them
only for o.
(ii) Taking into account that é is a distance, by (2.2), one has

o(&,E+m) S o(&E+tm)+o(E 4+t E+ ) £ a(&E+ ) + thny —m
whence
@(&m) £ o(&m) + kln2 —m|

and interchanging the role of 7, and

lo(&,m) — o(& )| £ klny —mil,

from which the LIP-nature of ¢ for every ¢ follows.

By definition, ¢ — ¢(&, %) may be regarded as the limit of lower semi-
continyous functions and, as consequence, as Borel-measurable with respect
to £.

(iti) If @, (&) € U, N Up, then there exists a 7 such that for 0 < ¢t < 7
one has & 1(¢+ 1) € Uy N Up. If @5 = Pgo &, ! is differentiable in ¢ and
consequently for a.e. @, (&) € U, N Up, then

(&, &+ 1) = 8(D; ' (€), B, (€ + tn)) = 0p(Pap(E), Pap(E + 1))
= 0p(Pup(E), Pap(E) + td Pop(O)n + 0(2)) -

It follows for a.e. x

@a(&, 1) = @p(Pop( &), d Pop(E) . T

By the previous lemma, the functions ¢, and ¢ satisfy the conditions

(1.2), then they define a Finslerian structure on M, which becomes a LIP
Finslerian manifold (M, ).
Now for a generic Finslerian structure F, the integral

1
(24) La(y,F)= {F(m})dt,

is not well defined for every curve y and, in general case, the value depends
on the chosen atlas. In the particular case F' = ¢, it is indipendent of the atlas,
because the following theorem holds.

(2.5) Theorem. For every absolutely continuous curve y:[0,1] — M

1 1
L(y;0) = Ofso(%v')dt = ({Q(V,?)dt

where ¥(y;0) is the usual length of y in (M,90).
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Proof. Since the functions ¢, are compatible with the changes of chart, it
suffices to prove the theorem in a chart (U,, #,) and, for convenience, we
shall omit the suffix a.

Let T be a partition of [0, 1] and § = @(y). Since y is AC, then § and
o(3(t,), 7(t)) are differentiable a.e. and whence at the points at which it is
differentiable one has

1

iy SO, 7(0) + F(1)h + o(h)) — o(5(4), (1))

d ... .
S0, 5(1) = lim ;

< lim inf o(3(0), 50) + F(OhYR = @(F(0),5(0)) ,
then .
o(p(t:), Y(tix1)) = o(3(t:), ¥tir1)) < fg(‘?,}j)dt
from which
1
(2:6) L(y;0) = Ofg(?,?')dt-

But the function L(y(¢)) = L({0,]) is increasing, so by a corollary of

Fatou lemma
1

d
f;;»?’(}’(t))dt < 2@y).
0

If ¢ is a derivability point of £(y(¢)) and of {(¢), then
m L+ k) — L))

d .
Ei”(}’(t)) =l

h—0 h
o _
> limsup “—@{i’i—) = (1), 1)) .

Now by (2.6) too,

t 1
o, pdt < 2() < [o(y,7)dt
0 0

but ¢ = ¢, from which the assertion follows. U
It can be remarked that every AC curve y is transversal to the set in which
o > 0.
(2.7) Corollary. Under our hypotheses, for ae. &, o(L, 1) = ¢(¢,n) holds and
whence . )
. oG, ¢+
@(¢,n) = lim __t___n

Moveover for a.e. & the function ¢(¢&,.) is symmetric (i.e. o(&,n) = (&, —n)).

Proof. One has to prove that ¢ = @ a.e. By the linearity and continuity of
¢ e ¢ (with respect to ) it suffices to prove that for every direction # and
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for a.e. ¢ one has ¢(¢,77) = ¢(,n) from which the assertion follows by the
separability of R”.

Let us assume that there exist 77 and a set C C ¥, of positive measure such
that

o611 < oS, YieC.

One can then find a segment of a straight line contained in V, that has end

points e & + ky and which cuts C in a set of positive 1-dimensional measure.
Then by (2.5)

1 _
0 < [[@(¢+ tkif, i) — @(& + thA, 7)]dt = 0
0

which is impossible.
Analogously one proves that (&, n) = (& —n) for ae. & O

3 Recalls on intrinsic distances

In order that this paper may be as self-contained as possible, we recall some
concepts and notions contained in [DC-P4], to which we refer for details.

Let (M,F) be a LIP Finslerian manifold and of its atlas. If y is an abso-
lutely continuous curve (AC), we introduce the integral (2.4), with the under-
standing that L, (y; F) = +oo whenever it does not exist. We put

ACM;x,y)y ={y : 1 — M|y is AC and p(é) = {x} U {y}},
A" = {N C M;meas(N) = 0} .

For a fixed set N € 4~

T
3.1 pi(xy) = inf{Lus (7 F)ly € AC(M;x, ), 31N}
is a pseudodistance dependent on .&/; on the contrary

(3.2) pF(x, y) = sup{p}(x, y);N € 4}

is a distance on M independent of .o7.

In an analytic way it is possible to define an intrinsic distance induced by
F using the “dual norm”.

If F = {F,} is a symmetric Finslerian structure on M, we introduce the
“dual” function on F,F* = {F;} through

(3.3) Fy(&w) = sup{(w,v) : Fy({,v) < 1}

where ( - , - ) is the duality in R".
By the properties of F,, a.e. one has

. B v\ _v
Fa(Gw)=sup <W’ Fa(é,V)> o <W’ Fa(f,v)> '
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(3.4) Theorem. The function
F7:VyxR"— R
verifies the following properties

1) Fr(& - ) is a norm, which is locally equivalent to the Euclidean norm;

2) (w,v) S Fy(Ew)Fu(&,v);

3) Fy(& - ) is Lipschitz and F;( -, n) is measurable;

4) (F))*(&,w) S Fo(&,w) ae. and equality holds if and only if F(&, - ) is
convex;

5) F7(&w) = F(Pup(8), (dD.p) &)~ (w)) for every change of charts.
35)If f: M — R is a LIP function and z € U,, we put

(F*(df))z) = F@f )

where f = fo @7 and { = ®,(2).
Moreover Vx, y € M we introduce in way similar to [DC-P3] the intrinsic
distance &6 defined by

(3:6) 8", y)" = inf{IF @) f € LipM), f(x) =0, f(y) =1} .

This unusual definition of distance has the advantage of being “naturally”
invariant, if F, is replaced by F « 8.t. Fy = F, a.e.; namely the distance depends
only on the equivalence class to wich F, belongs.

If M is a manifold of class C' and F a Finslerian structure of class C°, then
& = pF , i.e. the intrinsic distance coincides with the usual distance, induced
by F (cf. [DC-P4, theorem 3.6]).

Moreover one shows [DC-P4, theorem 4.7]

(3.7) Theorem. If p** is the distance function induced by (F*)*, then

PP y) =0"(x,y) £ pF(x,»)
and the equality holds if F is convex.

Our goal (see Introduction) is to compare the distances p? and 6 with the orig-
inal &, where ¢ is the LIP Finslerian structure defined by “( differentiation” ).

4 The main theorem

We premise the following theorem

(4.1) Theorem. Let 6 be a distance locally equivalent to a Euclidean one, ¢
the “derivative” of 6 and ¢* its dual Then

o™ (@& - Mlle =1, 0°(&m) 2 8(En).

Proof. Fixed ¢ € V,, we put for # € V,
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fln)=a(&n) =88, 1(£), 0, (n)) .
In the differentiability points

S+ tw) — f(n) =t{(df)n), w) +o(t)
from which by definition of f

{(df)m), e

> + __0% — 0(57’1 + ta)t) B O'(f, ’7) é 0-(77’ '7t+ tw)

whence a.e.

(df)n), w) = @a(n, ) = @ ((df)m) = 1.

The assertion follows from the definition of 6?. [
(4.2) Corollary. Under our hypotheses the function (¢, + ) is convex.

Proof On account of the convexity of ¢**(¢, - ), it suffices to prove that
¢** = . Now by 4) of (3.4) ¢** =< ¢; it remains to show that ¢** = ¢. If
p** is the distance induced by ¢**, the theorem 3.7 gives 6% = p** and by
the previous theorem 6 < 6% < p**. Then [see Th. 2.6, part 2, DC-P3]

o 088+ m)
%(i,n)—}gr(l)————t————

: 1 *x — — Aok

< limsup 2o (2,10, 8. 1(E+m) £ 97" (Gn).
[

whence the conclusion. [

(4.3) It follows from the definitions that p? = 6. Now we want to check when
p? = 9.

Since (M, p**) and (M, p) are length metric spaces, it is clear that a neces-
sary condition is that (M, d) is a length metric space. Howerer this condition
is not sufficient as can be seen in the following example.

(4.4) Let M = R? be described by x = (x1,x,). We put

4(3,“ x1 %0
gij(x) = { 5;‘]1 x: =0

1
o(x, y) = inf {{\/gij("/)v',-?,»dt; Y€ AC(x,y)} .

e —yl £ (x, ) £ 2x—y],

Obviously

and the geodesics are union of segments of straight lines.
If x %0, (p(x’y) = Z'yl’lfxl =0,

w3l v = x| > nl/V3
Pl = { 20yl 2 = x| < nil/V3.
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Since ¢(x, y) = 2|y| a.e., then

PP, ¥) = p® (x,y) = 2x — y| = 8(x, »)

and there exist couples of points, for example (0,x;) and (0, y»), from which
the strict inequality holds, but

1
(x, y) = inf {ffp(v,“/'); S AC(x,y)} :
0

(4.5) Theorem. Let 6 : M x M — R be a distance locally equivalent to the

Euclidean one and let ¢ = {¢@,} the Finslerian structure so built in any chart
(Uy, @,):

gﬁ‘f‘i@ o(&m) = 8(9; 1 (0), ;' () -

¢a(&,n) = lim
10
Then

1
o(x, y) = inf {fqo(“/,"/');v € AC(x,y)} :
[}

In order that 6 coincides with the distance p?, induced by @, a necessary and
sufficient condition is that

T
o(x, y) = sup {inf {.,Z’(y; d);y € AC(x, ¥), yﬂN} N € ./V} )
N ¥
A sufficient condition is that ¢ is upper-semicontinuous.

Proof. The condition for J is necessary and sufficient; namely by definition of
p? and by theorem 2.5 one has

T
p?(x, y) = sup {inf {L(v);“/ € AC(x, ), vﬂN} N € m}
N L7
T
= sup {inf {,Z’(y);y € AC(x,y),yﬂN}N € JV} .

N Y
The condition for ¢ is sufficient by theorem 3.3 of [DC-P4]. O
(4.6) Main Theorem. Let M be a LIP manifold, é a distance locally equivalent
to an Euclidean one, ¢ the Finslerian structure constructed by the “derivative”
of 6 and p the distance induced by ¢. If one repeats the procedure (as in

Sect. 2) starting from p, then the function ¢ is a.e. equal to .
Moreover if j is the distance induced by the Finslerian structure &

p=p(=p=20%),

where p** is the distance induced by @** and 8¢ the intrinsic one induced
by o.
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Proof. By the convexity and the uniform Lipschitzianity of ¢, one can prove,
by suitable modifications of the argument used in [DC-P3, Theorem 2.6, part
2)] that in any chart

—1 -1
“%p((pa (.2, Cxm) Pu(&,1) ae.;

FuEm) = i : <

)
>

because in general p 2 J one has even @, (&, n) = ¢4(& n), from which the
conclusion follows a.e.

Now p verifies the conditions of the previous theorem, hence p = p. By
convexity of ¢, from the theorems 3.7 and 3.4

0 =p" =p(=p). O

(4.7) Remark. The family ¢, built through the indicated procedure, has greater
“regularity” than what we originally requested from a Finslerian structure. In
particular ¢ is Borel-measurable and it makes sense to evaluate, for every
absolutely continuous curve 7y the following integral

1
L(y) = Ofsﬂ(%?)dt :

Moreover @(&, - ) is a family of norms, dependent on ¢ and locally equivalent
to the Euclidean norm.

5 Stable Finslerian manifolds

Let (M,F) be a LIP Finslerian manifold and p” the intrinsic distance induced
by F. Then if ¢ is the “derivative” of p”, in general, ¢ +F, as the following
example (studied in [DC-P4]) shows.

(5.1) Example. Let the sequence {oz}(2 € IN) be dense in R and A the
following open subset of R?

A= {x = (x1,%) € R?*| min {ir;f |x; — cx;,]2h,ir;f |xy — oc;,l2h} < 1} .

On R? we consider the LIP Riemannian metric g defined by
gij(z) =0y z€A4, g z)=4%; z¢A4,
(where ¢;; is the Kronecker symbol). The “derivative” ¢ of p? is
ViR 412 zeA
plrry=2¢ " 107
lvi] + |v2] aezgAd.

Hence ¢(x,v) = ||vl|4x); moreover ¢ is a norm, that is not induced by inner
product.
It is interesting to see when ¢ = F.
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(5.2) A LIP Finslerian manifold (M, F') is said to be Finslerian stable if ¢ = F,

1.
Fooap—1 -1
i OO0 ) _ ey

Analogously a LIP Riemannian manifold (M, g) is called Riemannian sta-
ble, if the “derivative” of p? coincides with g.

(5.3) Theorem. If (M, F) is a LIP Finslerian manifold, p* the intrinsic distance
induced by F and ¢ its “derivative”, then p' = p? and (M,@) is a LIP
Finslerian stable manifold.

Proof. By theorem 2.5, pf' = p®. Moreover p/ verifies the necessary and
sufficient condition of theorem 4.5, then the “derivative” of pf'(= p?) is ¢. [J

Remarks

(5.4) The example given in (5.1) proves that, by starting from a LIP Rie-
mannian manifold (M,F) and by “differentiating” p, one obtains a stable
Finslerian manifold that is not a Riemannian manifold.

(5.5) Now we shall compare our definition of stability with the notion of quasi-
Finslerian space introduced in [DG1] and [DG3]. To this end, we give a new
definition of intrinsic distance.

Following the idea in [DC-P3}, we put

-F _
5 (x,y) =

Yp
_113}00 [inf { A{IF*(a’f)I”a’#;f € LipM), f(x)=0,f(y)= IH

p

where y is a measure compatible with the changes of chart and equivalent to
the Lebesgue measure on any V,, ¢.g. the Hausdorff n-dimensional measure if
n=dim M.

On account of the formal properties of F* (cf.(3.4)), and by repeating the

arguments in {DC-P3], one can conclude that also 5 s a distance, which we
shall call the integral distance.

=F 3 . . .
Of course, the cases where 0 = & are of particular interest, when oF is
the intrinsic distance defined (3.6). One sees that equality holds if the sets

B(&,r)={neM;p®&n) <r}

have finite measure. In particular, this assumption is verified if M has finite
measure or if M is a complete manifold [G].

(5.6) Theorem. Under our hypotheses on M, let ¢ be a distance locally equi-
valent to the Euclidean one and let ¢ be its “derivative”. Then

6 = 8%(= p®).

Proof. Because 9o*(¢&, - ) is LIP, one can repeat with suitable modifications
the proofs in [DC-P3, (5.5) and (5.11)]. Then
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(5.7) 0" (@3(E, * Moo < 1.

Now let N C M be the subset on which (5.7) is not verified or dd is not well
defined. Then, if y € AC(x, y) is a curve transversal to N,

- 1 - 1
o(x,y) £ [@™(dd)o(y,Y)dt = [o(y,7)dr,
0 0

which leads to 0 < p by definition of p.

Since the “derivative” of p (= p?) is a.e. equal to ¢ (cf.(4.6)), then, by
(4.1) p*(do) < 1 ae.

Now we consider (for x# y) the function

ey = { 55 o) = o)
L pw2) 2 o)

then f(x) =0,f(y) =1 and (df)(z) =0 for z € M — B(x, p(x, ¥)).
Moreover Vp > 1

1/ l/p
ir}f{(A{[<P*(df)]”dV> /p} B-S (]{[w*(df)]”do
< p(x, )™ (meas B(x, p(x, )7,
from which d(x, y)™' < p(x, y)~! follows by taking the limit. [
By Theorem 4.6, the following corollary ensues.
(5.8) Corollary. The equality

8’ (@71(8), 07 (E+m))

lim p = (1) ae.

holds.

=F . . . .
Hence one concludes that, when § = 0%, a stable Finslerian manifold is a
quasi-Finslerian space.
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