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0 Introduction 

This introduction will be a short survey on the subject and a description o f  the 
motivations about the concepts introduced. 

Let (M, g) be a smooth Riemannian manifold o f  dimension n. It is known 
that, given the metric g, it is possible to define the length o f  Cl-piecewise 
curves and to construct an intrinsic geodesic distance 6 on M; on the other 
hand, when ~ is given, the original metric can be restored by differentiating 
the function that gives the distance from a point [B-dR]. 

In particular, we want to recall that the directional derivative along a vector 
v gives the Riemannian norm of v; i.e., in a local coordinate chart (U, t/,) at 
the point x E M, if ~ = ~b(x) and if v is a vector of  q~(U) c IR n, putting 

( . )  ~(~,v) = lim 
t~0 t 

~(~i~--I (~), ~j~--l(~ _{_ tv)) 

one has (with abuse of  notation) 

(**) ~ ( x ,  v )  = tlvlb(x)= i j ( x ) v i v J  . 

Let us consider now a Lipschitz manifold M (briefly LIP manifold) of  
dimension n, i.e. a topological manifold (with countable basis) whose change 
of  charts are Lipschitz functions. Following the presentation of  Teleman [T], 
we consider on M a LIP Riemannian metric g, i.e. an "elliptic"' metric gen- 
erally with measurable coefficients, because it is not possible to ask a greater 
regularity. 

These manifolds, which generalize the polyhedra, can have vertices, edges, 
conical points, even not isolated. Moreover, it is possible to move the singulari- 
ties o f  the carrier to singularities o f  a metric g on a smooth carrier; for example, 
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the problem of  geodesics with obstacles, or on a manifold with boundary, can 
be studied as a problem about metrics with singularities. 

Metrics with singularities can be found in Physics, in Engineering [B]: in 
the general case, the carrier is regular and the singularities of  the metric have 
a physical meaning, e.g. they are caused by "irregularities" of  the materials. 

Given (M, g), starting from g, it is possible to construct a intrinsic distance 
in the following way [DC-P1]. 

I f  N is a set o f  zero measure (with respect to the measure induced by g or 
by the charts), a LIP curve 7 : [0, 1] ---+ M is said transversal to N (abbreviated 

T 

7["IN) if 
meas{t E [0, 1];7(t) C N} = 0 .  

I f  a LIP atlas d of  M is fixed, we consider the integral 

1 F ~  
L,~r g) = f~/gij")i~)Jdt 

0 

which we put equal to +oo  if it does not exist or is not well defined; however 
with a suitable choice of  the set N = N(~r  the previous integral has the 
meaning of  the length of  7 (with respect to the atlas sO). Then one constructs 
the intrinsic distance, which depends on g but is independent of  ~ ,  

T 

pg(x, y)  = sup{inf{L~(7; g); 7(0) = x, approach 7(1 ) = y, 7NN}; meas(N)  = 0} 
N 7 

which turns out to be also given by 

p~ y)---- [inf{ttdullo~; u c 5l ip(M),  u(x) = O,u(y)= 1}] -1 

= sup{lu(x) - u(y)l;  u E 5~ip(M), Ildull~ <= 1}, 

where 5~ip(M) is the set of  Lipschitz functions on M. This distance coincides, 
under very general conditions (cf. [DC-P2] and [DC-P3]), with the integral one 

6g(x,y) = lim inf  dulPd# ;u E ~ ip (M) ,u ( x )  = O,u(y) = 1 
p---* o ~  

(where ] �9 I and d#  depend, as usual, on the metric g on M).  
Now, using the distance pq (or 6~), one can define the length of  7, Y(7;  P~ 

in the usual manner, and prove that [DC-P2] 

4#(7; pg) = sup . l i  __.nf 2~~ g); tAN,  meas(N)  = 0 
N [.  z 7 

and 
pg(x, y)  = inf{s pg); 7(0) = x, 7(1 ) = y } ,  

7 

i.e (M,p ~ is a metric space with intrinsic distance [R] or a length space [G]. 
In this framework, when considering the limit ( . ) ,  one can ask whether (**) 

holds. 
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In [DC-P4] an example (IR 2 with a suitable LIP metric) is produced to 
show that, under our hypotheses, the equality (**) does not hold on a set of  
positive measure; q9 cannot be expressed almost everywhere as a square root 
o f  a quadratic form. Nevertheless 

1 

s pg) = f~P(7, j )d t .  
0 

In general the function qo, with respect to the second variable, is positive ho- 
mogeneous of  degree 1 and convex, i.e. it is a metric of  "Finsler type". 

Finslerian metrics in the classical case or in weaker hypotheses are studied 
by Busemann and Mayer [B-M] and with generalization by Pauc [P] in view 
of  calculus of  variations on metric spaces. 

The previous results lead to the introduction (in [DC-P4]) of  the LIP Fins- 
lerian maniJolds with LIP Finslerian metric (M,F) which generalize, on one 
hand, the Finslerian manifolds and, on the other hand, the LIP Riemannian 
manifolds if 

F(x, v) = ~/gij(x)viv j . 

Also on (M,F), if  7 is a curve transversal to a suitable set of  zero measure 
(as in [DC-P1]) it is possible to define the integral 

1 

L,~r F )  = fF(7,  j )d t ,  
o 

and consequently to introduce (geometrically and analytically) a geodesic dis- 
tance, pF, induced by the Finslerian structure F. The length, cS(7; pF), of  an 
absolutely continuous curve 7 (briefly ~ E AC(x,y))  usually defined by the 
metric s t ruc tu re  pF, coincides with one, L(7;F) ,  defined by the Finslerian (or 
Riemannian) structure F.  So the metric space (M, pF) becomes a length space. 

Moreover, if the function F ( . ,  v) is upper-semicontinuous, then the transver- 
sality condition and the supremum on N can be left out in the above definitions. 

In the present paper the following problem is considered from a general 
viewpoint. Let M be a LIP manifold with a distance 6, which is locally equi- 
valent to the Euclidean one; which hypotheses are needed to endow M with a 
Finsler structure F in such way that F induces the original given distance? 

In the first place, when 6 is given, the function ~o defined by (*), endowes 
M with a Finsler structure, secondly it is possible to show if 7 is an absolutely 
continuous curve, then the following 

1 

~e(7; ~) = fq~(~,,))dt, 
o 

holds, i.e. the length can be calculated by an integral. 
Evidently (M, 6) must necessarily be a length space in order for the problem 

to be answered positively. Under such a hypothesis, in general the inequality 
6 < p~ holds; an example shows that 6 4=p ~ can actually be true. Now a 
necessary and sufficient condition for 6(x, y) = p~~ y) is that 
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6(x, y )  = sup i n f { ~ ( ? ;  6); 7 c AC(x, y), 7N N} meas(N)  = 0 . 
N 

Finally we observe that, if  one starts from a Finsler structure F,  and consi- 
ders the distance pF and the function ~0 that corresponds to it through ( , ) ,  then 
the example given above yields ~o ~eF. However if  one repeats the procedure 
starting from q0 nothing new is obtained, viz. the construction given above is 
"stable" and the metric q) becomes LIP Finslerian stable (or quasi-Finslerian 
according to [DG3]). Moreover if  (p is the "derivative" of  pF, it follows that 
pF = p~ even when (p ~ F .  

Therefore a LIP manifold M with a Finslerian structure F may not be stable 
with respect to F,  but it is isometric, as a metric space, to the LIP Finslerian 
stable manifold (M, qg). On the other hand there exist LIP Riemannian manifold 
(M, g) that are not isometric to LiP Riemannian stable manifolds. Obviously a 
smooth Finslerian (resp. Riemannian) manifold in the classical sense, is even 
a LIP Finslerian stable (resp. LIP Riemannian stable); the result still holds for 
continuous metrics on manifolds of  class C 1 at least. 

The paper answers, at least partially, conjectures, in the context o f  quasi- 
Riemannian and quasi-Finslerian metric spaces, formulated by De Giorgi (cfr. 
[DG1, DG2, DG3]). 

Venturini, in the framework of  the questions here considered, studied sys- 
tematically the relationships between the class ~ ( V )  of  distance functions lo- 
cally equivalent to the Euclidean distance and the class ~ / ( V )  of  Borel metrics 
locally equivalent to the Euclidean metric on an open connected subset V g IR n. 
The operators he introduced (in [V]) 

d : ~ ( v )  ~ ~ # ( v )  ~ : r ig (v)  --, ~ ( v )  

respectively o f  derivation and integration are similar to the ones defined by us. 

1 LIP Finslerian manifold 

(1.1) A Lipschitz manifold ( L I P  manifold) o f  dimension n is a pair consisting 
of  a topological manifold M and an equivalence class of  LIP atlases [L-V, T]. 
A LIP atlas ~ on M is a family of  charts { ( U ~ , ~ ) } ( ~  c A), where {Us} 
forms an open cover of  M, ~ : Us -+ V~ maps homeomorphically Us onto a 
set V~ which is open either in IR n or in IR~_ and Vet, fl 

a ~  = a,~ o ~ - '  : ~ ( u ~  n u~) --+ a,~(u~ n u ~ )  

defines a Lipschitz homeomorphism. 

(1.2) A (weakly) Finslerian strueture on V~ C IR" is a function F .  : V~ xlR n 
R such that 

1) F . ( . ,  v) is measurable Vv ~ IR n and F~(~, �9 ) is continuous for a.e. 
~ c  V,; 

2) F~(~,v) > 0 for a.e. ~ if v4:0; 
3) F . ( ~ , t v ) = t F ~ ( ~ , v )  i f t  > 0. 

A Finslerian structure on M is a collection F = {F~} o f  (weakly) Fins- 
lerian structure F~ on V~ = ~ . ( U . )  g IR n, such that V.,fl  the following com- 
patibility condition 
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(1.3) F~(~,v) = F~(qJ~l~(~),(d@~)(~)(v)) a.e. ( C V~, Vv E F,n, 

holds, where q ~ ( ~ )  E U~ N U/~. 

(1.4) A Finsler structure F will be called a L I P  Finslerian metric on M if V~t 
two (strictly) positive constants h~ and k~ exist such that 

(1.s) h ivl < F~(~,v) =< k lvl a.e. r E V~ 

where [vl is the standard Euclidean norm. 
A LIP manifold M with a LIP Finslerian metric F will be called simply 

a L I P  Finslerian manifold (M,F).  I f  x = ~-1(~)  E U~, sometimes we write 
F(x) instead F~(~, �9 ) and expressively put 

Ilvll,~-(x) = F=(~, v).  

I f  (M, g) is a LIP Riemannian manifoM [T] and 

F~(r v) = (g~(~)(v, V)) 1/2 = [[vllg(x), 

(M,g) is a LIP Finslerian manifold too. 
In the following we shall always assume M to be a LIP Finslerian manifold 

unless otherwise indicated. 

2 The "derivative" of distance function 

(2.1) Let M be a LIP manifold and 6 a distance which is locally equivalent 
to the Euclidean one in any chart (U~, ~ ) .  Moreover if 

there exist two positive constants h~ and k~ such that 

(2.2) 

We put 

~(~, r + t~) 
lim sup - q~(~, t/), 

t ~O  + t 

then 

and analogously for s  

lim inf a~(~' ~ + tt/) _ ~_~(~, t/) 
t-,O + t 

(2.3) Lemma. The functions q~ and ~_~, which depend on the charts, are 

(i) positive homogeneous of degree 1 with respect to q; 
(ii) LIP with respect to ~1 and Borel-measurable with respect to ~; 

(iii) compatible with the change of charts. 

Proof For simplicity's sake we omit the index 7 when there is no risk o f  
ambiguity. 
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(i) For c > 0 

a(~, ~ + tcr/ ) a( (,  ~ + tcr/ ) 
q~(~,cr/) = l imsup - c l imsup - eg(4,r / )  . 

t - . O +  t t _ . O  + t c  

Since the arguments we are going to use hold for q~ and for q~ we give them 
only for r 

(ii) Taking into account that ~ is a distance, by (2.2), one has 

0"(4 , { +/r/1 ) =< 0"(~, ~ + tr/2) + 0"(~ + tr/2, ~ + tr/1) ~ a({, { + tr/2) + tklr/2 - r/l[ 

whence 
(P(4, r/1) ~ (P(4, r/2) -1- klr/2 -- r/ll 

and interchanging the r61e of  r/2 and r/1 

from which the LIP-nature of  q~ for every ~ follows. 
By definition, r --* ~o(~,r/) may be regarded as the limit of  lower semi- 

continuous functions and, as consequence, as Borel-measurable with respect 
to 4. 

(iii) I f  q~g~(~) E U~ N U#, then there exists a t such that for 0 < t < t- 
one has #~-1(r + tr/) E U~ N U& I f  ~/i~ = ~# o q0g 1 is differentiable in ~ and 
consequently for a.e. q~-l(~) E U~ A Up, then 

a=(4, ~ + tr/) ----- 6 (~-1(4) ,  ~.b~,-1 (4 + tr/)) = a/~(q~=/~(~), q~3(4 + tr/)) 

= aa(r 0~(~) + tdGa(r o(t)). 

It follows for a.e. x 

(p ~( ~, r/ ) = ~o fl( q~ ~fl( ~ ), d qO ~fl( ~ )q ) . [] 

By the previous lemma, the functions q~ and ~ satisfy the conditions 
(1.2), then they define a Finslerian structure on M, which becomes a LIP 
Finslerian man i foM (M, qO. 

Now for a generic Finslerian structure F ,  the integral 

1 
(2.4) L .~ (7 ,F)  = f F ( ? ,  ~)d t  , 

o 

is not well defined for every curve 7 and, in general case, the value depends 
on the chosen atlas. In the particular case F = q~, it is indipendent o f  the atlas, 
because the following theorem holds. 

(2.5) Theorem. For every absolutely continuous curve ~/: [0, 1] --+ M 

1 l 

~e(7; 6) = f ~o(?, fOdt = f s 9)dt 
0 0 

where 5a(7;3 ) is the usual length o f ?  in (M,6) .  
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Proof Since the functions <p~ are compatible with the changes of  chart, it 
suffices to prove the theorem in a chart (U~, ~ )  and, for convenience, we 
shall omit the suffix a. 

Let T be a partition of  [0, 1] and 37 = q~(7)- Since 7 is AC, then 37 and 
a(~(ti),37(t)) are differentiable a.e. and whence at the points at which it is 
differentiable one has 

d a(~(ti), a(~(ti), :/(t) + ~(t)h + o(h)) - a(~(ti), ]7(t)) ~(t)) lim 
h ~ 0  h 

< lim inf a(~7(t), 37(t) + }(t)h)/h = q~(~(t), }(t)),  
h ~ 0  

then 

from which 

ti  + 1 

b(7(ti ), 7(ti+l )) ---- a(~(ti), 7(t~+2 )1 <= f ~('7, ~)dt 
ti 

1 

(2.6) ~ ( 7 ;  6) < f~(7 ,9)dt .  
o 

But the function ~~ = ~(7t[O,t])  is increasing, so by a corollary of  
Fatou lemma 

l d  
fo ~t&P(7(t))dt <= 5~cp(y). 

If  t is a derivability point of  s176 and of  ~7(t), then 

d ~ e ( ~ ( t ) )  = tim ~ ( ~ ( t  + h)) - _~(~,(t)) 
h-~O h 

tT(~(t), ~(t + h) 
> lira sup : q~(~(t), ~(t)) .  

h--.o h 

Now by (2.6) too, 

t 1 

f<p(7,p)dt ~ ~-~(7) <= f~P(7,7) dt 
o o 

but q~ ~ <p, from which the assertion follows. [] 

It can be remarked that every AC curve 7 is transversal to the set in which 
q~ > _~. 

(2.7) Corollary. Under our hypotheses, for a.e. ~,r r holds and 
whence 

a((, ~ + tq) 
~o(~, t/) = lira a.e. 

t--~0 t 

Moreover for a.e. ~ the function <p(~, .) is symmetric (i.e. ~p(~, q) = ~p(~,-tl)). 

Proof One has to prove that ~o = <p a.e. By the linearity and continuity of  
~o e ~ (with respect to r/) it suffices to prove that for every direction t/ and 
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for a.e. ~ one has cp(4, q) = ~0(~,t/) from which the assertion follows by the 
separability of  IR n. 

Let us assume that there exist 0 and a set C C V~ of  positive measure such 
that 

s < q~(~,6) V 4 c C .  

One can then find a segment of  a straight line contained in Y~ that has end 
points ~e 4 + kt/ and which cuts C in a set o f  positive 1-dimensional measure. 
Then by (2.5) 

1 
0 < f[~o(~ + tk~ ,~)  - ~o(~+tk&~)]d t  = 0 

0 

which is impossible. 
Analogously one proves that q~(4, r/) = ~o(~,-q) for a.e. 4. [] 

3 Recalls on intrinsic distances 

In order that this paper may be as self-contained as possible, we recall some 
concepts and notions contained in [DC-P4], to which we refer for details. 

Let (M,F) be a LIP Finslerian manifold and d its atlas. I f  7 is an abso- 
lutely continuous curve (AC), we introduce the integral (2.4), with the under- 
standing that L~(~; F )  = + e c  whenever it does not exist. We put 

AC(M;x,y) --- {7 : I ---* M[7 is AC and 7(~I) = {x} U { y } ) ,  

Y = {N c M; meas(N) = 0 ) .  

For a fixed set N E JV 

Y 

(3.1) pF(x, y)  = inf{L.~(7; F)[7 C AC(M; x, y), ~NN) 

is a pseudodistance dependent on d ;  on the contrary 

(3.2) pF(x, y)  = sup{pF(x, y); N E iV} 

is a distance on M independent o f  d .  
In an analytic way it is possible to define an intrinsic distance induced by 

F using the "dual norm". 
I f  F ---- {F~} is a symmetric Finslerian structure on M, we introduce the 

"dual" function on F,F* = {F~} through 

(3.3) F~(4,w) -- sup{(w,v) :  F~(~,v) __< 1} 
D 

where ( �9 , �9 ) is the duality in ~,". 
By the properties o f  F~, a.e. one has 

F~(~,w) = sup w, = max w, . 
v.o F~(4, v v.0 F~(4,v) 
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(3.4) Theorem. The function 

F~ : V~ x lR~ ~ IR 

verifies the followin9 properties 

1) F~(~, �9 ) is a norm, which is locally equivalent to the Euclidean norm; 
2) (w,v) < F~(~,w)F~(~,v); 
3) F~(~, �9 ) is Lipschitz and F~( �9 , q) is measurable; 
4) (F~)*(~,w) < F~(r a.e. and equality holds if  and only i f  F(~, �9 ) is 

convex; 
5) F~(r = F~(~l~(~), t (d~/~)(~)- l (w))  for every chan9 e of  charts. 

(3.5) If f : M --~ IR is a LIP function and z 6 U~, we put 

(F*(d f ) ) ( z )  = F*(~, (df(~)) 

where f = f o q~;- 1 and ~ = ~b~ (z). 
Moreover Vx, y E M we introduce in way similar to [DC-P3] the intrinsic 

distance 6 F defined by 

(3.6) 6F(x,y) - '  = i n f { l l F * ( d f ) H ~ ; f  ~ 5 f l ip(M) , f (x )  = O , f ( y )  = 1}. 

This unusual definition of distance has the advantage of being "naturally" 
invariant, ifF~ is replaced b y / ~  s . t . /~  = F~ a.e.; namely the distance depends 
only on the equivalence class to wich F~ belongs. 

I fM is a manifold of class C l and F a Finslerian structure of class C ~ then 
6F = pF, i.e. the intrinsic distance coincides with the usual distance, induced 
by F (cf. [DC-P4, theorem 3.6]). 

Moreover one shows [DC-P4, theorem 4.7] 

(3.7) Theorem. I f  p** is the distance function induced by (F*)*, then 

p**(X, y) -~- 6F(x, y) ~ DF(x, y) 

and the equality holds i f  F is convex. 

Our goal (see Introduction) is to compare the distances p~O and 6 e with the orig- 
inal 6, where q~ is the LIP Finslerian structure defined by "( differentiation" ). 

4 The main theorem 

We premise the following theorem 

(4.1) Theorem. Let 6 be a distance locally equivalent to a Euclidean one, q~ 
the "derivative" of  6 and ~p* its dual. Then 

11~~ " ) ) ) lk~ < 1, 6~(~,q) _-> 6(~,q).  

Proof Fixed r C V~, we put for t/C V~ 
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f ( q )  = a(~, ~/) = 6(0~ t(~), ~ j ) ~ - l ( ~ ) )  . 

In the differentiability points 

f ( ~  + tco) - fO1) = t((d f)O1),co) + o(t) 

from which by definition of  f 

((d f )( t l ) ,  co) + o(t) _ a(r t 1 + tco) - a(~, ~l) <= aO1, tl + to)) 
t t t 

whence a.e. 

((d f ) ( t l ) ,  co) <= ~p~(tl, co) ~ ~p~((df)(t/)) =< 1 . 

The assertion follows from the definition of  6 9. [] 

(4.2) Corollary. Under our hypotheses the function ~o(~, �9 ) is convex. 

Proof  On account of  the convexity of  q~**(~, �9 ), it suffices to prove that 
~o** = ~o. Now by 4) of  (3.4) ~0"* =< q~; it remains to show that q~** = cp. I f  
p** is the distance induced by q~**, the theorem 3.7 gives 6 9 = p** and by 
the previous theorem 6 ~ 6~.0 =< p**. Then [see Th. 2.6, part 2, DC-P3] 

a~(~, ~ + tq) 
go~(r t/) = lim 

t--,0 t 

1 ** ~--- cp - -1  * *  < l i m s u P t  p ( ~  (~),O~-l(~ + t t / ) )  =< ~p~ (~, t / ) ,  
t - -~0  

whence the conclusion. [] 

(4.3) It follows from the definitions that p~ => b. Now we want to check when 
p~ = 6.  

Since (M, p**) and (M, p)  are length metric spaces, it is clear that a neces- 
sary condition is that (M, 6) is a length metric space. Howerer this condition 
is not sufficient as can be seen in the following example. 

(4.4) Let M = R 2 be described by x = (xl,x2). We put 

46ij x I + 0  
gij(x) = 6ij Xl = 0 

1 ~ e y ) }  6(x, y)  = inf  { fo ~ . d t ;  , AC(x, , "  

Obviously 
I x -  y[ < 6(x,y)  < 2Ix-  Yl, 

and the geodesics are union of  segments of  straight lines. 
I f  xl 4:0, ~p(x, y)  = 2[yl ; i f  xl : 0, 

f v~ly~[ + ly2l lye-x2l > ly~l/v~ ~o(x, y)  
2lyl [y2-x2l < lyal /v~.  
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Since (p(x ,y)= 21y I a.e., then 

p~(x ,y)  = p < ~  = 2Ix - Yl ~ S(x,y)  

and there exist couples of  points, for example (0,x2) and (0, y2), from which 
the strict inequality holds, but 

6(x, y)  = inf q9(7, 7); 7 C AC(x, y)  . 
~0 

(4.5) Theorem. Let 6 : M • M -~ IR be a distance locally equivalent to the 
Euclidean one and let ~o = {cp~} the Finslerian structure so built in any chart 

q~((, r/) = lim a~((, ( + tr/), 
t ~ 0  t 

~ ( ~ , ~ )  = ~(~2' (~) ,  ~2 ' (~ ) )  . 

Then 

} 6(x,y) = inf ~o(7,'});7 E AC(x,y)  . 
k 0  

In order that ~ coincides with the distance p~, induced by q~, a necessary and 
sufficient condition is that 

{{ '} S(x,y) = sup inf Y(7;c5);7 E AC(x , y ) ,7AN ,N 
N 

A sufficient condition is that ~o is upper-semicontinuous. 

E J V }  . 

Proof The condition for 6 is necessary and sufficient; namely by definition of  
p~ and by theorem 2.5 one has 

'} } p~~ = sup i f L(7);7 E A C ( x , y ) , T A N  ,N  E JV" 
N 

= s u p { i n f { L P ( 7 ) ; T G A C ( x , y ) , T N N } N E Y }  

The condition for q~ is sufficient by theorem 3.3 of  [DC-P4]. [] 

(4.6) Main Theorem. Let M be a L IP  manifold, 6 a distance locally equivalent 
to an Euclidean one, ~p the Finslerian structure constructed by the "derivative" 
o f  ~ and p the distance induced by q~. I f  one repeats the procedure (as in 
Sect. 2) startin9 from p, then the function ~ is a.e. equal to q~. 

Moreover i f  ~ is the distance induced by the Finslerian structure 

where p** is the distance induced by ~o** and 6 <~ the intrinsic one induced 
by r 
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Proof By the convexity and the uniform Lipschitzianity of  ~p, one can prove, 
by suitable modifications of the argument used in [DC-P3, Theorem 2.6, part 
2)] that in any chart 

q3~(~,q) = lim P ( q ~ - l ( ~ ) ' ~ l ( ~ + t q ) )  < ~p~(~,~) a.e. ; 
t-~0 t 

because in general p > 6 one has even ~ (~ , r / )  > q~(~, q), from which the 
conclusion follows a.e. 

Now p verifies the conditions of the previous theorem, hence fi = p. By 
convexity of  q~, from the theorems 3.7 and 3.4 

~ = p * *  = p (=  ~). [] 

(4. 7) Remark. The family q~, built through the indicated procedure, has greater 
"regularity" than what we originally requested from a Finslerian structure. In 
particular ~p is Borel-measurable and it makes sense to evaluate, for every 
absolutely continuous curve 7 the following integral 

1 

L ( 7 ) =  f~(7,~)dt. 
o 

Moreover ~o(r �9 ) is a family of  norms, dependent on ~ and locally equivalent 
to the Euclidean norm. 

5 Stable Finslerian manifolds 

Let (M,F) be a LIP Finslerian manifold and pr the intrinsic distance induced 
by F. Then if cp is the "derivative" of  pF, in general, (p ~ F ,  as the following 
example (studied in [DC-P4]) shows. 

(5.1) Example. Let the sequence {~h}(h E N )  be dense in ~ and A the 
following open subset of  ]R 2 

A={x=(xl,x2)~lR2lmin{inflxl--~hl2h, inflx2--~Zhl2h} < 1} . 

On IR 2 we consider the LIP Riemannian metric g defined by 

gi j (z )  = rij  z E A,  g i j ( z )  = 4•ij z f[ A , 

(where 6ij is the Kronecker symbol). The "derivative" (p of  pg is 

~o(x, v) : [ ~ + v~ z ~ A 
[ Iv, I + 1~2t a.e.z f lA .  

Hence ~o(x, v):~ [[vl[o(x); moreover ~p is a norm, that is not induced by inner 
product. 

It is interesting to see when ~o = F. 
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(5.2) A LIP Finslerian manifold (M, F )  is said to be Finslerian stable if  ~o = F,  
i.e. 

lim p F ( ~ l ( ~ ) ,  qb~-l(~ + tr/)) = F(~, r/). 
t-*0 t 

Analogously a LIP Riemannian manifold (M,g)  is called Riemannian sta- 
ble, if the "derivative" of  pg coincides with g. 

(5.3) Theorem. I f (M,  F)  is a LIP Finslerian maniJbld, pF the intrinsic distance 
induced by F and q~ its "derivative", then pF = p~O and (M, qg) is a LIP 
Finslerian stable manifold. 

Proof By theorem 2.5, pF = pq~. Moreover pF verifies the necessary and 
sufficient condition of  theorem 4.5, then the "derivative" of  pF(== pq,) is (p. [~] 

Remarks 

(5.4) The example given in (5.1) proves that, by starting from a LIP Rie- 
mannian manifold (M,F)  and by "differentiating" pF, one obtains a stable 
Finslerian manifold that is not a Riemannian manifold. 

(5.5) Now we shall compare our definition of  stability with the notion of  quasi- 
Finslerian space introduced in [DG1] and [DG3]. To this end, we give a new 
definition of  intrinsic distance. 

Following the idea in [DC-P3], we put 

jF (x ' y)--I ~--- 

lim inf flF*(df)fdmf ~ f i p ( M ) , f ( x )  = O , f ( y )  = 1 
P--~+~ M 

where p is a measure compatible with the changes of  chart and equivalent to 
the Lebesgue measure on any V~, e.g. the Hausdorff n-dimensional measure if 
n = dim M. 

On account of  the formal properties of  F* (cf.(3.4)), and by repeating the 

arguments in [DC-P3], one can conclude that also ~F is a distance, which we 
shall call the integral distance. 

Of course, the cases where ,gF = 6F are of  particular interest, when ~F is 
the intrinsic distance defined (3.6). One sees that equality holds if  the sets 

lB({,r) = {q C M; p~~ r/) ~ r} 

have finite measure. In particular, this assumption is verified if M has finite 
measure or if  _M is a complete manifold [G]. 

(8.6) Theorem. Under our hypotheses on M, let 6 be a distance locally equi- 
valent to the Euclidean one and let r be its "derivative". Then 

~o = 6~(=  p ~ ) .  

Proof  Because ~p*({, �9 ) is LIP, one can repeat with suitable modifications 
the proofs in [DC-P3, (5.5) and (5.11)]. Then 
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(5.7) [[q~*(dS(~, �9 ))Iloo 1. 

Now let N C M be the subset on which (5.7) is not verified or d6 is not well 
defined. Then, i f  7 E AC(x, y) is a curve transversal to N, 

1 1 

3(x,y) < fr  < f~o(7 ;/)dt 
o o 

which leads to 5 < p by definition o f  p. 
Since the "derivative" of  p ( =  p~0) is a.e. equal to q~ (cf.(4.6)),  then, by 

(4.1) ~p*(d0) < 1 a.e. 
Now we consider (for x 4= y )  the function 

{ p(x,z) p(x,z) < p(x,y) 
= p ( x , y )  

1 p(x,z)  >= p(x, y)  ; 

then f ( x )  = O,f(y)  = 1 and (d f ) (z )  = 0 for z E M - ]B(x, p(x, y)). 
Moreover Vp > 1 

inf  
f 

from which 3(x, 

By Theorem 

(5.8) Corol lary.  

p(x, y ) - -  1 (meas IB (x, p(x, y) ) I/p, 

y)-~ < p(x,y) -1 follows by taking the limit. 

4.6, the following corollary ensues. 

The equality 

1/p 

[] 

lim 3 e ( ~ - ~ ( ~ ) ' q ~ - l ( ~  + tq)) = ~o(~,r/) a.e. 
t~o t 

holds. 

Hence one concludes that, when ~F = 5F ' a stable Finslerian manifold is a 
quasi-Finslerian space. 
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