

LIP manifolds: from metric to Finslerian structure*

Giuseppe De Cecco¹, Giuliana Palmieri²

¹ Dipartimento di Matematica Università, Via per Arnesano, I-73100 Lecce, Italy

² Dipartimento di Matematica Università, Campus Univ., I-70125 Bari, Italy

Received 21 September 1992; in final form 26 July 1993

0 Introduction

This introduction will be a short survey on the subject and a description of the motivations about the concepts introduced.

Let (M, g) be a smooth Riemannian manifold of dimension *n*. It is known that, given the metric *g*, it is possible to define the length of C^1 -piecewise curves and to construct an intrinsic geodesic distance δ on *M*; on the other hand, when δ is given, the original metric can be restored by differentiating the function that gives the distance from a point [B-dR].

In particular, we want to recall that the directional derivative along a vector v gives the Riemannian norm of v; i.e., in a local coordinate chart (U, Φ) at the point $x \in M$, if $\xi = \Phi(x)$ and if v is a vector of $\Phi(U) \subset \mathbb{R}^n$, putting

(*)
$$\varphi(\xi, v) = \lim_{t \to 0} \frac{\delta(\Phi^{-1}(\xi), \Phi^{-1}(\xi + tv))}{t},$$

one has (with abuse of notation)

(**)
$$\varphi(x,v) = \|v\|_{g(x)} = \sqrt{g_{ij}(x)v^i v^j}$$

Let us consider now a Lipschitz manifold M (briefly LIP manifold) of dimension n, i.e. a topological manifold (with countable basis) whose change of charts are Lipschitz functions. Following the presentation of Teleman [T], we consider on M a LIP Riemannian metric g, i.e. an "elliptic" metric generally with measurable coefficients, because it is not possible to ask a greater regularity.

These manifolds, which generalize the *polyhedra*, can have vertices, edges, conical points, even not isolated. Moreover, it is possible to move the singularities of the carrier to singularities of a metric g on a smooth carrier; for example,

^{*} This work was partially supported by a National Research Project of the M.U.R.S.T (Italy)

the problem of geodesics with obstacles, or on a manifold with boundary, can be studied as a problem about metrics with singularities.

Metrics with singularities can be found in Physics, in Engineering [B]: in the general case, the carrier is regular and the singularities of the metric have a physical meaning, e.g. they are caused by "irregularities" of the materials.

Given (M, g), starting from g, it is possible to construct a *intrinsic* distance in the following way [DC-P1].

If N is a set of zero measure (with respect to the measure induced by g or by the charts), a LIP curve $\gamma : [0, 1] \to M$ is said **transversal** to N (abbreviated $\gamma \cap N$) if

meas{
$$t \in [0, 1]; \gamma(t) \in N$$
} = 0

If a LIP atlas \mathcal{A} of M is fixed, we consider the integral

$$L_{\mathscr{A}}(\gamma;g) = \int_{0}^{1} \sqrt{g_{ij}\dot{\gamma}^{i}\dot{\gamma}^{j}}dt$$

which we put equal to $+\infty$ if it does not exist or is not well defined; however with a suitable choice of the set $N = N(\mathscr{A})$ the previous integral has the meaning of the *length* of γ (with respect to the atlas \mathscr{A}). Then one constructs the intrinsic distance, which depends on g but is independent of \mathscr{A} ,

$$\rho^{g}(x, y) = \sup_{N} \{ \inf_{\gamma} \{ L_{\mathscr{A}}(\gamma; g); \gamma(0) = x, \text{ approach } \gamma(1) = y, \gamma \bigcap^{1} N \}; \text{ meas}(N) = 0 \}$$

which turns out to be also given by

$$\rho^{g}(x, y) = [\inf\{\|du\|_{\infty}; u \in \mathcal{L}ip(M), u(x) = 0, u(y) = 1\}]^{-1}$$
$$= \sup\{|u(x) - u(y)|; u \in \mathcal{L}ip(M), \|du\|_{\infty} \le 1\},\$$

where $\mathcal{L}ip(M)$ is the set of Lipschitz functions on M. This distance coincides, under very general conditions (cf. [DC-P2] and [DC-P3]), with the integral one

$$\delta^{g}(x, y) = \lim_{p \to \infty} \left[\inf \left\{ \left[\int_{M} |du|^{p} d\mu \right]^{1/p} ; u \in \mathscr{L}ip(M), u(x) = 0, u(y) = 1 \right\} \right]^{-1}$$

(where $|\cdot|$ and $d\mu$ depend, as usual, on the metric g on M).

Now, using the distance ρ^g (or δ^g), one can define the length of γ , $\mathscr{L}(\gamma; \rho^g)$, in the usual manner, and prove that [DC-P2]

$$\mathscr{L}(\gamma;\rho^g) = \sup_{N} \left\{ \liminf_{\tau \to \gamma} \mathscr{L}_{\mathscr{A}}(\tau;g); \tau \bigcap^{\mathsf{T}} N, \operatorname{meas}(N) = 0 \right\}$$

and

$$\rho^g(x, y) = \inf_{\gamma} \{ \mathscr{L}(\gamma; \rho^g); \gamma(0) = x, \gamma(1) = y \},\$$

i.e (M, ρ^g) is a metric space with intrinsic distance [R] or a length space [G].

In this framework, when considering the limit (*), one can ask whether (**) holds.

In [DC-P4] an example (\mathbb{R}^2 with a suitable LIP metric) is produced to show that, under our hypotheses, the equality (**) does not hold on a set of *positive* measure; φ cannot be expressed almost everywhere as a square root of a quadratic form. Nevertheless

$$\mathscr{L}(\gamma; \rho^g) = \int\limits_0^1 \varphi(\gamma, \dot{\gamma}) dt$$
.

In general the function φ , with respect to the second variable, is positive homogeneous of degree 1 and convex, i.e. it is a metric of "Finsler type".

Finslerian metrics in the classical case or in weaker hypotheses are studied by Busemann and Mayer [B-M] and with generalization by Pauc [P] in view of calculus of variations on metric spaces.

The previous results lead to the introduction (in [DC-P4]) of the LIP Finslerian manifolds with LIP Finslerian metric (M,F) which generalize, on one hand, the Finslerian manifolds and, on the other hand, the LIP Riemannian manifolds if

$$F(x,v)=\sqrt{g_{ij}(x)v^iv^j}.$$

Also on (M, F), if γ is a curve transversal to a suitable set of zero measure (as in [DC-P1]) it is possible to define the integral

$$L_{\mathscr{A}}(\gamma;F) = \int_{0}^{1} F(\gamma,\dot{\gamma}) dt ,$$

and consequently to introduce (geometrically and analytically) a geodesic distance, ρ^F , induced by the Finslerian structure *F*. The length, $\mathscr{L}(\gamma; \rho^F)$, of an absolutely continuous curve γ (briefly $\gamma \in AC(x, y)$) usually defined by the metric structure ρ^F , coincides with one, $L(\gamma; F)$, defined by the Finslerian (or Riemannian) structure *F*. So the metric space (M, ρ^F) becomes a *length space*.

Moreover, if the function $F(\cdot, v)$ is upper-semicontinuous, then the transversality condition and the supremum on N can be left out in the above definitions.

In the present paper the following problem is considered from a general viewpoint. Let M be a LIP manifold with a distance δ , which is locally equivalent to the Euclidean one; which hypotheses are needed to endow M with a Finsler structure F in such way that F induces the original given distance?

In the first place, when δ is given, the function φ defined by (*), endowes M with a Finsler structure, secondly it is possible to show if γ is an absolutely continuous curve, then the following

$$\mathscr{L}(\gamma;\delta) = \int_{0}^{1} \varphi(\gamma,\dot{\gamma}) dt$$
,

holds, i.e. the length can be calculated by an integral.

Evidently (M, δ) must necessarily be a length space in order for the problem to be answered positively. Under such a hypothesis, in general the inequality $\delta \leq \rho^{\varphi}$ holds; an example shows that $\delta \neq \rho^{\varphi}$ can actually be true. Now a necessary and sufficient condition for $\delta(x, y) = \rho^{\varphi}(x, y)$ is that

G. De Cecco, G. Palmieri

$$\delta(x, y) = \sup_{N} \left\{ \inf_{\gamma} \{ \mathscr{L}(\gamma; \delta); \gamma \in AC(x, y), \gamma \bigcap^{\mathsf{T}} N \} \operatorname{meas}(N) = 0 \right\} .$$

Finally we observe that, if one starts from a Finsler structure F, and considers the distance ρ^F and the function φ that corresponds to it through (*), then the example given above yields $\varphi \neq F$. However if one repeats the procedure starting from φ nothing new is obtained, viz. the construction given above is "stable" and the metric φ becomes LIP *Finslerian stable* (or *quasi-Finslerian* according to [DG3]). Moreover if φ is the "derivative" of ρ^F , it follows that $\rho^F = \rho^{\varphi}$ even when $\varphi \neq F$.

Therefore a LIP manifold M with a Finslerian structure F may not be stable with respect to F, but it is isometric, as a metric space, to the LIP Finslerian stable manifold (M, φ) . On the other hand there exist LIP Riemannian manifold (M, g) that are not isometric to LIP *Riemannian stable manifolds*. Obviously a smooth Finslerian (resp. Riemannian) manifold in the classical sense, is even a LIP Finslerian stable (resp. LIP Riemannian stable); the result still holds for continuous metrics on manifolds of class C^1 at least.

The paper answers, at least partially, conjectures, in the context of quasi-Riemannian and quasi-Finslerian metric spaces, formulated by De Giorgi (cfr. [DG1, DG2, DG3]).

Venturini, in the framework of the questions here considered, studied systematically the relationships between the class $\mathscr{D}(V)$ of distance functions locally equivalent to the Euclidean distance and the class $\mathscr{M}(V)$ of Borel metrics locally equivalent to the Euclidean metric on an open connected subset $V \subseteq \mathbb{R}^n$. The operators he introduced (in [V])

$$\Delta: \mathcal{D}(V) \to \mathcal{M}(V) \quad I: \mathcal{M}(V) \to \mathcal{D}(V)$$

respectively of derivation and integration are similar to the ones defined by us.

1 LIP Finslerian manifold

(1.1) A Lipschitz manifold (LIP manifold) of dimension *n* is a pair consisting of a topological manifold *M* and an equivalence class of LIP atlases [L-V, T]. A LIP atlas \mathscr{A} on *M* is a family of charts $\{(U_{\alpha}, \Phi_{\alpha})\}(\alpha \in \Lambda)$, where $\{U_{\alpha}\}$ forms an open cover of $M, \Phi_{\alpha} : U_{\alpha} \to V_{\alpha}$ maps homeomorphically U_{α} onto a set V_{α} which is open either in \mathbb{R}^{n} or in \mathbb{R}^{n}_{+} and $\forall \alpha, \beta$

$$\Phi_{lphaeta}=\Phi_eta\circ\Phi_lpha^{-1}:\Phi_lpha(U_lpha\cap U_eta) o \Phi_eta(U_lpha\cap U_eta)$$

defines a Lipschitz homeomorphism.

(1.2) A (weakly) Finslerian structure on $V_{\alpha} \subset \mathbb{R}^n$ is a function $F_{\alpha} : V_{\alpha} \times \mathbb{R}^n \to \mathbb{R}$ such that

1) $F_{\alpha}(\cdot, v)$ is measurable $\forall v \in \mathbb{R}^{n}$ and $F_{\alpha}(\xi, \cdot)$ is continuous for a.e. $\xi \in V_{\alpha};$ 2) $F_{\alpha}(\xi, v) > 0$ for a.e. ξ if $v \neq 0;$ 3) $F_{\alpha}(\xi, tv) = tF_{\alpha}(\xi, v)$ if $t \ge 0$.

A Finslerian structure on M is a collection $F = \{F_{\alpha}\}$ of (weakly) Finslerian structure F_{α} on $V_{\alpha} = \Phi_{\alpha}(U_{\alpha}) \subseteq \mathbb{R}^{n}$, such that $\forall \alpha, \beta$ the following compatibility condition

(1.3)
$$F_{\alpha}(\xi, v) = F_{\beta}(\Phi_{\alpha\beta}(\xi), (d\Phi_{\alpha\beta})(\xi)(v)) \quad \text{a.e. } \xi \in V_{\alpha}, \quad \forall v \in \mathbb{R}^{n},$$

holds, where $\Phi_{\alpha}^{-1}(\xi) \in U_{\alpha} \cap U_{\beta}$.

(1.4) A Finsler structure F will be called a LIP Finslerian metric on M if $\forall \alpha$ two (strictly) positive constants h_{α} and k_{α} exist such that

(1.5)
$$h_{\alpha}|v| \leq F_{\alpha}(\xi, v) \leq k_{\alpha}|v|$$
 a.e. $\xi \in V_{\alpha}$

where |v| is the standard Euclidean norm.

A LIP manifold M with a LIP Finslerian metric F will be called simply a LIP Finslerian manifold (M,F). If $x = \Phi_{\alpha}^{-1}(\xi) \in U_{\alpha}$, sometimes we write F(x) instead $F_{\alpha}(\xi, \cdot)$ and expressively put

$$||v||_{F(x)}=F_{\alpha}(\xi,v).$$

If (M, g) is a LIP Riemannian manifold [T] and

$$F_{\alpha}(\xi, v) = (g_{\alpha}(\xi)(v, v))^{1/2} = ||v||_{g(x)},$$

(M,q) is a LIP Finslerian manifold too.

In the following we shall always assume M to be a LIP Finslerian manifold unless otherwise indicated.

2 The "derivative" of distance function

(2.1) Let *M* be a LIP manifold and δ a distance which is locally equivalent to the Euclidean one in any chart $(U_{\alpha}, \Phi_{\alpha})$. Moreover if

$$\sigma_{lpha}(\xi,\eta)=\delta(arPsi_{lpha}^{-1}(\xi),arPsi_{lpha}^{-1}(\eta)) \hspace{1em} orall \xi,\eta\in V_{lpha}$$

there exist two positive constants h_{α} and k_{α} such that

(2.2)
$$h_{\alpha}|\xi-\eta| \leq \sigma_{\alpha}(\xi,\eta) \leq k_{\alpha}|\xi-\eta| \quad \forall \xi,\eta \in V_{\alpha}.$$

We put

$$\limsup_{t\to 0^+} \frac{\sigma_{\alpha}(\xi,\xi+t\eta)}{t} = \varphi_{\alpha}(\xi,\eta), \quad \liminf_{t\to 0^+} \frac{\sigma_{\alpha}(\xi,\xi+t\eta)}{t} = \underline{\varphi}_{\alpha}(\xi,\eta)$$

then

$$(2.2)' h_{\alpha}|\eta| \leq \varphi_{\alpha}(\xi,\eta) \leq k_{\alpha}|\eta| \quad \forall \xi,\eta \in V_{\alpha} ,$$

and analogously for φ_{α} .

(2.3) Lemma. The functions φ_{α} and $\underline{\varphi}_{\alpha}$, which depend on the charts, are

- (i) positive homogeneous of degree 1 with respect to η ;
- (ii) LIP with respect to η and Borel-measurable with respect to ξ ;
- (iii) compatible with the change of charts.

Proof. For simplicity's sake we omit the index α when there is no risk of ambiguity.

(i) For c > 0

$$\varphi(\xi,c\eta) = \limsup_{t\to 0^+} \frac{\sigma(\xi,\xi+tc\eta)}{t} = c \quad \limsup_{t\to 0^+} \frac{\sigma(\xi,\xi+tc\eta)}{tc} = c\varphi(\xi,\eta) \,.$$

Since the arguments we are going to use hold for φ and for $\underline{\varphi}$ we give them only for φ .

(ii) Taking into account that δ is a distance, by (2.2), one has

$$\sigma(\xi,\xi+t\eta_1) \leq \sigma(\xi,\xi+t\eta_2) + \sigma(\xi+t\eta_2,\xi+t\eta_1) \leq \sigma(\xi,\xi+t\eta_2) + tk|\eta_2-\eta_1|$$

whence

$$\varphi(\xi,\eta_1) \leq \varphi(\xi,\eta_2) + k |\eta_2 - \eta_1|$$

and interchanging the rôle of η_2 and η_1

$$|\varphi(\xi,\eta_1)-\varphi(\xi,\eta_2)|\leq k|\eta_2-\eta_1|,$$

from which the LIP-nature of φ for every ξ follows.

By definition, $\xi \to \varphi(\xi, \eta)$ may be regarded as the limit of lower semicontinuous functions and, as consequence, as Borel-measurable with respect to ξ .

(iii) If $\Phi_{\alpha}^{-1}(\xi) \in U_{\alpha} \cap U_{\beta}$, then there exists a \overline{t} such that for $0 \leq t \leq \overline{t}$ one has $\Phi_{\alpha}^{-1}(\xi + t\eta) \in U_{\alpha} \cap U_{\beta}$. If $\Phi_{\alpha\beta} = \Phi_{\beta} \circ \Phi_{\alpha}^{-1}$ is differentiable in ξ and consequently for a.e. $\Phi_{\alpha}^{-1}(\xi) \in U_{\alpha} \cap U_{\beta}$, then

$$\sigma_{\alpha}(\xi,\xi+t\eta) = \delta(\Phi_{\alpha}^{-1}(\xi),\Phi_{\alpha}^{-1}(\xi+t\eta)) = \sigma_{\beta}(\Phi_{\alpha\beta}(\xi),\Phi_{\alpha\beta}(\xi+t\eta))$$

= $\sigma_{\beta}(\Phi_{\alpha\beta}(\xi),\Phi_{\alpha\beta}(\xi)+td\Phi_{\alpha\beta}(\xi)\eta+o(t)).$

It follows for a.e. x

$$\varphi_{\alpha}(\xi,\eta) = \varphi_{\beta}(\Phi_{\alpha\beta}(\xi), d\Phi_{\alpha\beta}(\xi)\eta) . \quad \Box$$

By the previous lemma, the functions φ_{α} and $\underline{\varphi}_{\alpha}$ satisfy the conditions (1.2), then they define a **Finslerian structure** on M, which becomes a LIP *Finslerian manifold* (M, φ) .

Now for a generic Finslerian structure F, the integral

(2.4)
$$L_{\mathscr{A}}(\gamma,F) = \int_{0}^{1} F(\gamma,\dot{\gamma}) dt$$

is not well defined for every curve γ and, in general case, the value depends on the chosen atlas. In the particular case $F = \varphi$, it is indipendent of the atlas, because the following theorem holds.

(2.5) Theorem. For every absolutely continuous curve $\gamma : [0, 1] \rightarrow M$

$$\mathscr{L}(\gamma;\delta) = \int_{0}^{1} \varphi(\gamma,\dot{\gamma}) dt = \int_{0}^{1} \underline{\phi}(\gamma,\dot{\gamma}) dt$$

where $\mathscr{L}(\gamma; \delta)$ is the usual length of γ in (M, δ) .

Proof. Since the functions φ_{α} are compatible with the changes of chart, it suffices to prove the theorem in a chart $(U_{\alpha}, \Phi_{\alpha})$ and, for convenience, we shall omit the suffix α .

Let T be a partition of [0, 1] and $\tilde{\gamma} = \Phi(\gamma)$. Since γ is AC, then $\tilde{\gamma}$ and $\sigma(\tilde{\gamma}(t_i), \tilde{\gamma}(t))$ are differentiable a.e. and whence at the points at which it is differentiable one has

$$\frac{d}{dt}\sigma(\tilde{\gamma}(t_i),\tilde{\gamma}(t)) = \lim_{h \to 0} \frac{\sigma(\tilde{\gamma}(t_i),\tilde{\gamma}(t) + \dot{\tilde{\gamma}}(t)h + o(h)) - \sigma(\tilde{\gamma}(t_i),\tilde{\gamma}(t))}{h} \\ \leq \liminf_{h \to 0} \sigma(\tilde{\gamma}(t),\tilde{\gamma}(t) + \dot{\tilde{\gamma}}(t)h)/h = \underline{\phi}(\tilde{\gamma}(t),\dot{\tilde{\gamma}}(t)),$$

then

$$\delta(\gamma(t_i),\gamma(t_{i+1})) = \sigma(\tilde{\gamma}(t_i),\tilde{\gamma}(t_{i+1})) \leq \int_{t_i}^{t_{i+1}} \underline{\phi}(\tilde{\gamma},\dot{\tilde{\gamma}}) dt$$

from which

(2.6)
$$\mathscr{L}(\gamma;\delta) \leq \int_{0}^{1} \underline{\varphi}(\gamma,\dot{\gamma}) dt \, .$$

But the function $\mathscr{L}(\gamma(t)) = \mathscr{L}(\gamma | [0, t])$ is increasing, so by a corollary of Fatou lemma

$$\int_{0}^{1} \frac{d}{dt} \mathscr{L}(\gamma(t)) dt \leq \mathscr{L}(\gamma) \, .$$

If t is a derivability point of $\mathscr{L}(\gamma(t))$ and of $\tilde{\gamma}(t)$, then

$$\frac{d}{dt}\mathscr{L}(\gamma(t)) = \lim_{h \to 0} \frac{\mathscr{L}(\gamma(t+h)) - \mathscr{L}(\gamma(t))}{h}$$
$$\geq \limsup_{h \to 0} \frac{\sigma(\tilde{\gamma}(t), \tilde{\gamma}(t+h))}{h} = \varphi(\tilde{\gamma}(t), \dot{\tilde{\gamma}}(t)).$$

Now by (2.6) too,

$$\int_{0}^{1} \varphi(\gamma,\dot{\gamma}) dt \leq \mathscr{L}(\gamma) \leq \int_{0}^{1} \underline{\varphi}(\gamma,\dot{\gamma}) dt$$

but $\varphi \ge \varphi$, from which the assertion follows. \Box

It can be remarked that every AC curve γ is transversal to the set in which $\varphi > \underline{\varphi}$.

(2.7) Corollary. Under our hypotheses, for a.e. ξ , $\varphi(\xi,\eta) = \underline{\varphi}(\xi,\eta)$ holds and whence

$$\varphi(\xi,\eta) = \lim_{t\to 0} \frac{\sigma(\xi,\xi+t\eta)}{t}$$
 a.e

Moreover for a.e. ξ the function $\varphi(\xi, .)$ is symmetric (i.e. $\varphi(\xi, \eta) = \varphi(\xi, -\eta)$).

Proof. One has to prove that $\varphi = \underline{\varphi}$ a.e. By the linearity and continuity of $\varphi \in \varphi$ (with respect to η) it suffices to prove that for every direction η and

for a.e. ξ one has $\varphi(\xi,\eta) = \underline{\varphi}(\xi,\eta)$ from which the assertion follows by the separability of \mathbb{R}^n .

Let us assume that there exist $\bar{\eta}$ and a set $C \subset V_{\alpha}$ of positive measure such that

$$\varphi(\xi,\bar{\eta}) < \varphi(\xi,\bar{\eta}) \quad \forall \xi \in C$$

One can then find a segment of a straight line contained in V_{α} that has end points $\bar{\xi}e\bar{\xi} + k\eta$ and which cuts C in a set of positive 1-dimensional measure. Then by (2.5)

$$0 < \int_{0}^{1} \left[\varphi(\bar{\xi} + tk\bar{\eta}, \bar{\eta}) - \underline{\varphi}(\bar{\xi} + tk\bar{\eta}, \bar{\eta}) \right] dt = 0$$

which is impossible.

Analogously one proves that $\varphi(\xi,\eta) = \varphi(\xi,-\eta)$ for a.e. ξ . \Box

3 Recalls on intrinsic distances

In order that this paper may be as self-contained as possible, we recall some concepts and notions contained in [DC-P4], to which we refer for details.

Let (M, F) be a LIP *Finslerian manifold* and \mathscr{A} its atlas. If γ is an absolutely continuous curve (AC), we introduce the integral (2.4), with the understanding that $L_{\mathscr{A}}(\gamma; F) = +\infty$ whenever it does not exist. We put

$$AC(M; x, y) = \{ \gamma : I \to M | \gamma \text{ is } AC \text{ and } \gamma(\partial I) = \{x\} \cup \{y\} \},\$$
$$\mathcal{N} = \{ N \subset M; \operatorname{meas}(N) = 0 \}.$$

For a fixed set $N \in \mathcal{N}$

(3.1)
$$\rho_N^F(x,y) = \inf_{\gamma} \{ L_{\mathscr{A}}(\gamma;F) | \gamma \in AC(M;x,y), \gamma \cap N \}$$

is a pseudodistance dependent on \mathcal{A} ; on the contrary

(3.2)
$$\rho^F(x, y) = \sup\{\rho^F_N(x, y); N \in \mathcal{N}\}$$

is a *distance* on M independent of \mathcal{A} .

In an analytic way it is possible to define an intrinsic distance induced by F using the "dual norm".

If $\tilde{F} = \{F_{\alpha}\}$ is a symmetric Finslerian structure on M, we introduce the "dual" function on $F, F^* = \{F_{\alpha}^*\}$ through

(3.3)
$$F_{\alpha}^{*}(\xi, w) = \sup_{v} \{ \langle w, v \rangle : F_{\alpha}(\xi, v) \leq 1 \}$$

where $\langle \cdot, \cdot \rangle$ is the duality in \mathbb{R}^n .

By the properties of F_{α} , a.e. one has

$$F_{\alpha}^{*}(\xi,w) = \sup_{v\neq 0} \left\langle w, \frac{v}{F_{\alpha}(\xi,v)} \right\rangle = \max_{v\neq 0} \left\langle w, \frac{v}{F_{\alpha}(\xi,v)} \right\rangle.$$

(3.4) Theorem. The function

$$F_{\alpha}^*: V_{\alpha} \times \mathbb{R}^n \to \mathbb{R}$$

verifies the following properties

1) $F_{\alpha}^{*}(\xi, \cdot)$ is a norm, which is locally equivalent to the Euclidean norm; 2) $\langle w, v \rangle \leq F_{\alpha}^{*}(\xi, w) F_{\alpha}(\xi, v);$

3) $F_{\alpha}^{*}(\xi, \cdot)$ is Lipschitz and $F_{\alpha}^{*}(\cdot, \eta)$ is measurable;

4) $(F_{\alpha}^{*})^{*}(\xi, w) \leq F_{\alpha}(\xi, w)$ a.e. and equality holds if and only if $F(\xi, \cdot)$ is convex;

5) $F_{\alpha}^{*}(\xi, w) = F_{\beta}^{*}(\Phi_{\alpha\beta}(\xi), (d\Phi_{\alpha\beta})(\xi)^{-1}(w))$ for every change of charts.

(3.5) If $f: M \to \mathbb{R}$ is a LIP function and $z \in U_{\alpha}$, we put

$$(F^*(df))(z) = F^*_{\alpha}(\zeta, (d\tilde{f}(\zeta)))$$

where $\tilde{f} = f \circ \Phi_{\alpha}^{-1}$ and $\zeta = \Phi_{\alpha}(z)$.

Moreover $\forall x, y \in M$ we introduce in way similar to [DC-P3] the intrinsic distance δ^F defined by

(3.6)
$$\delta^F(x,y)^{-1} = \inf\{\|F^*(df)\|_{\infty}; f \in \mathcal{L}ip(M), f(x) = 0, f(y) = 1\}.$$

This unusual definition of distance has the advantage of being "naturally" invariant, if F_{α} is replaced by \tilde{F}_{α} s.t. $\tilde{F}_{\alpha} = F_{\alpha}$ a.e.; namely the distance depends only on the equivalence class to wich F_{α} belongs. If M is a manifold of class C^1 and F a Finslerian structure of class C^0 , then

If M is a manifold of class C^1 and F a Finslerian structure of class C^0 , then $\delta^F = \rho^F$, i.e. the intrinsic distance coincides with the usual distance, induced by F (cf. [DC-P4, theorem 3.6]).

Moreover one shows [DC-P4, theorem 4.7]

(3.7) **Theorem.** If ρ^{**} is the distance function induced by $(F^*)^*$, then

$$\rho^{**}(x, y) = \delta^F(x, y) \leq \rho^F(x, y)$$

and the equality holds if F is convex.

Our goal (see Introduction) is to compare the distances ρ^{φ} and δ^{φ} with the original δ , where φ is the LIP Finslerian structure defined by " \langle differentiation" \rangle .

4 The main theorem

We premise the following theorem

(4.1) **Theorem.** Let δ be a distance locally equivalent to a Euclidean one, φ the "derivative" of δ and φ^* its dual. Then

$$\|\varphi^*(d(\delta(\xi, \cdot)))\|_{L_{\infty}} \leq 1, \ \delta^{\varphi}(\xi, \eta) \geq \delta(\xi, \eta).$$

Proof. Fixed $\xi \in V_{\alpha}$, we put for $\eta \in V_{\alpha}$

$$f(\eta) = \sigma(\xi, \eta) = \delta(\Phi_{\alpha}^{-1}(\xi), \Phi_{\alpha}^{-1}(\eta))$$
.

In the differentiability points

$$f(\eta + t\omega) - f(\eta) = t \langle (df)(\eta), \omega \rangle + o(t)$$

from which by definition of f

$$\langle (df)(\eta),\omega\rangle + \frac{o(t)}{t} = \frac{\sigma(\xi,\eta+t\omega) - \sigma(\xi,\eta)}{t} \leq \frac{\sigma(\eta,\eta+t\omega)}{t}$$

whence a.e.

$$\langle (df)(\eta), \omega \rangle \leq \varphi_{\alpha}(\eta, \omega) \Rightarrow \varphi_{\alpha}^{*}((df)(\eta)) \leq 1$$

The assertion follows from the definition of δ^{φ} . \Box

(4.2) Corollary. Under our hypotheses the function $\varphi(\xi, \cdot)$ is convex.

Proof. On account of the convexity of $\varphi^{**}(\xi, \cdot)$, it suffices to prove that $\varphi^{**} = \varphi$. Now by 4) of (3.4) $\varphi^{**} \leq \varphi$; it remains to show that $\varphi^{**} \geq \varphi$. If ρ^{**} is the distance induced by φ^{**} , the theorem 3.7 gives $\delta^{\varphi} = \rho^{**}$ and by the previous theorem $\delta \leq \delta^{\varphi} \leq \rho^{**}$. Then [see Th. 2.6, part 2, DC-P3]

$$\varphi_{\alpha}(\xi,\eta) = \lim_{t \to 0} \frac{\sigma_{\alpha}(\xi,\xi+t\eta)}{t}$$

$$\leq \limsup_{t \to 0} \frac{1}{t} \rho^{\varphi^{**}}(\Phi_{\alpha}^{-1}(\xi),\Phi_{\alpha}^{-1}(\xi+t\eta)) \leq \varphi_{\alpha}^{**}(\xi,\eta),$$

whence the conclusion. \Box

(4.3) It follows from the definitions that $\rho^{\varphi} \ge \delta$. Now we want to check when $\rho^{\varphi} = \delta$.

Since (M, ρ^{**}) and (M, ρ) are length metric spaces, it is clear that a necessary condition is that (M, δ) is a length metric space. However this condition is not sufficient as can be seen in the following example.

(4.4) Let $M = \mathbb{R}^2$ be described by $x = (x_1, x_2)$. We put

$$g_{ij}(x) = \begin{cases} 4\delta_{ij} & x_1 \neq 0\\ \delta_{ij} & x_1 = 0 \end{cases}$$
$$\delta(x, y) = \inf \left\{ \int_0^1 \sqrt{g_{ij}(\gamma)\dot{\gamma}_i\dot{\gamma}_j} dt; \gamma \in AC(x, y) \right\}.$$

Obviously

$$|x-y| \leq \delta(x,y) \leq 2|x-y|,$$

and the geodesics are union of segments of straight lines.

If $x_1 \neq 0$, $\varphi(x, y) = 2|y|$; if $x_1 = 0$,

$$\varphi(x,y) = \begin{cases} \sqrt{3}|y_1| + |y_2| & |y_2 - x_2| > |y_1|/\sqrt{3} \\ 2|y| & |y_2 - x_2| < |y_1|/\sqrt{3} \\ \end{cases}$$

Since $\varphi(x, y) = 2|y|$ a.e., then

$$\rho^{\varphi}(x, y) = \rho^{\varphi^{**}}(x, y) = 2|x - y| \ge \delta(x, y)$$

and there exist couples of points, for example $(0, x_2)$ and $(0, y_2)$, from which the strict inequality holds, but

$$\delta(x, y) = \inf \left\{ \int_0^1 \varphi(\gamma, \dot{\gamma}); \gamma \in AC(x, y) \right\} \ .$$

(4.5) Theorem. Let $\delta : M \times M \to \mathbb{R}$ be a distance locally equivalent to the Euclidean one and let $\varphi = \{\varphi_{\alpha}\}$ the Finslerian structure so built in any chart $(U_{\alpha}, \Phi_{\alpha})$:

$$\varphi_{\alpha}(\xi,\eta) = \lim_{t\to 0} \frac{\sigma_{\alpha}(\xi,\xi+t\eta)}{t}, \quad \sigma_{\alpha}(\xi,\eta) = \delta(\Phi_{\alpha}^{-1}(\xi),\Phi_{\alpha}^{-1}(\eta)).$$

Then

$$\delta(x, y) = \inf \left\{ \int_0^1 \varphi(\gamma, \dot{\gamma}); \gamma \in AC(x, y) \right\} .$$

In order that δ coincides with the distance ρ^{φ} , induced by φ , a necessary and sufficient condition is that

$$\delta(x, y) = \sup_{N} \left\{ \inf_{\gamma} \left\{ \mathscr{L}(\gamma; \delta); \gamma \in AC(x, y), \gamma \bigcap^{\mathsf{T}} N \right\}, N \in \mathcal{N} \right\} \,.$$

A sufficient condition is that φ is upper-semicontinuous.

Proof. The condition for δ is necessary and sufficient; namely by definition of ρ^{φ} and by theorem 2.5 one has

$$\begin{split} \rho^{\varphi}(x,y) &= \sup_{N} \left\{ \inf_{\gamma} \left\{ L(\gamma); \gamma \in AC(x,y), \gamma \bigcap^{\mathsf{T}} N \right\}, N \in \mathcal{N} \right\} \\ &= \sup_{N} \left\{ \inf_{\gamma} \left\{ \mathscr{L}(\gamma); \gamma \in AC(x,y), \gamma \bigcap^{\mathsf{T}} N \right\} N \in \mathcal{N} \right\} \;. \end{split}$$

The condition for φ is sufficient by theorem 3.3 of [DC-P4]. \Box

(4.6) Main Theorem. Let M be a LIP manifold, δ a distance locally equivalent to an Euclidean one, φ the Finslerian structure constructed by the "derivative" of δ and ρ the distance induced by φ . If one repeats the procedure (as in Sect. 2) starting from ρ , then the function $\tilde{\varphi}$ is a.e. equal to φ .

Moreover if $\tilde{\rho}$ is the distance induced by the Finslerian structure $\tilde{\phi}$

$$\tilde{\rho} = \rho (= \rho^{**} = \delta^{\varphi}),$$

where ρ^{**} is the distance induced by ϕ^{**} and δ^{ϕ} the intrinsic one induced by ϕ .

Proof. By the convexity and the uniform Lipschitzianity of φ , one can prove, by suitable modifications of the argument used in [DC-P3, Theorem 2.6, part 2)] that in any chart

$$\tilde{\varphi}_{\alpha}(\xi,\eta) = \lim_{t\to 0} \frac{\rho(\Phi_{\alpha}^{-1}(\xi), \Phi_{\alpha}^{-1}(\xi+t\eta))}{t} \leq \varphi_{\alpha}(\xi,\eta) \quad \text{a.e.} ;$$

because in general $\rho \geq \delta$ one has even $\tilde{\varphi}_{\alpha}(\xi,\eta) \geq \varphi_{\alpha}(\xi,\eta)$, from which the conclusion follows a.e.

Now ρ verifies the conditions of the previous theorem, hence $\tilde{\rho} = \rho$. By convexity of φ , from the theorems 3.7 and 3.4

$$\delta^{arphi}=
ho^{**}=
ho(= ilde
ho).$$
 \Box

(4.7) Remark. The family φ , built through the indicated procedure, has greater "regularity" than what we originally requested from a Finslerian structure. In particular φ is Borel-measurable and it makes sense to evaluate, for every absolutely continuous curve γ the following integral

$$L(\gamma) = \int_0^1 \varphi(\gamma, \dot{\gamma}) dt .$$

Moreover $\varphi(\xi, \cdot)$ is a family of *norms*, dependent on ξ and locally equivalent to the Euclidean norm.

5 Stable Finslerian manifolds

Let (M, F) be a LIP Finslerian manifold and ρ^F the intrinsic distance induced by F. Then if φ is the "derivative" of ρ^F , in general, $\varphi \neq F$, as the following example (studied in [DC-P4]) shows.

(5.1) *Example.* Let the sequence $\{\alpha_h\}(h \in \mathbb{N})$ be dense in \mathbb{R} and A the following open subset of \mathbb{R}^2

$$A = \left\{ x = (x_1, x_2) \in \mathbb{R}^2 | \min \left\{ \inf_h |x_1 - \alpha_h| 2^h, \inf_h |x_2 - \alpha_h| 2^h \right\} < 1 \right\} .$$

On \mathbb{R}^2 we consider the LIP Riemannian metric g defined by

 $g_{ij}(z) = \delta_{ij} \quad z \in A, \quad g_{ij}(z) = 4\delta_{ij} \quad z \notin A,$

(where δ_{ij} is the Kronecker symbol). The "derivative" φ of ρ^g is

$$\varphi(x,v) = \begin{cases} \sqrt{v_1^2 + v_2^2} & z \in A \\ |v_1| + |v_2| & a.e.z \notin A \end{cases}$$

Hence $\varphi(x, v) \neq ||v||_{g(x)}$; moreover φ is a norm, that is not induced by inner product.

It is interesting to see when $\varphi = F$.

(5.2) A LIP Finslerian manifold (M, F) is said to be **Finslerian stable** if $\varphi = F$, i.e.

$$\lim_{t \to 0} \frac{\rho^{F}(\Phi_{\alpha}^{-1}(\xi), \Phi_{\alpha}^{-1}(\xi + t\eta))}{t} = F(\xi, \eta)$$

Analogously a LIP Riemannian manifold (M, g) is called **Riemannian sta**ble, if the "derivative" of ρ^{g} coincides with g.

(5.3) Theorem. If (M, F) is a LIP Finslerian manifold, ρ^F the intrinsic distance induced by F and φ its "derivative", then $\rho^F = \rho^{\varphi}$ and (M, φ) is a LIP Finslerian stable manifold.

Proof. By theorem 2.5, $\rho^F = \rho^{\varphi}$. Moreover ρ^F verifies the necessary and sufficient condition of theorem 4.5, then the "derivative" of $\rho^F(=\rho^{\varphi})$ is φ . \Box

Remarks

(5.4) The example given in (5.1) proves that, by starting from a LIP *Riemannian manifold* (M, F) and by "differentiating" ρ^F , one obtains a stable Finslerian manifold that is *not* a Riemannian manifold.

(5.5) Now we shall compare our definition of stability with the notion of *quasi-Finslerian space* introduced in [DG1] and [DG3]. To this end, we give a new definition of intrinsic distance.

Following the idea in [DC-P3], we put

$$\bar{\delta}^F(x,y)^{-1} = \lim_{p \to +\infty} \left[\inf \left\{ \int_M |F^*(df)|^p d\mu; f \in \mathscr{L}ip(M), f(x) = 0, f(y) = 1 \right\} \right]^{1/p}$$

where μ is a measure compatible with the changes of chart and equivalent to the Lebesgue measure on any V_{α} , e.g. the Hausdorff *n*-dimensional measure if $n = \dim M$.

On account of the formal properties of F^* (cf.(3.4)), and by repeating the arguments in [DC-P3], one can conclude that also $\overline{\delta}^F$ is a distance, which we shall call the **integral distance**.

Of course, the cases where $\overline{\delta}^F = \delta^F$ are of particular interest, when δ^F is the intrinsic distance defined (3.6). One sees that equality holds if the sets

$$\mathbb{B}(\xi,r) = \{\eta \in M; \rho^{\varphi}(\xi,\eta) \leq r\}$$

have finite measure. In particular, this assumption is verified if M has finite measure or if \tilde{M} is a complete manifold [G].

(5.6) Theorem. Under our hypotheses on M, let δ be a distance locally equivalent to the Euclidean one and let φ be its "derivative". Then

$$ar{\delta}^{arphi} = \delta^{arphi} (=
ho^{arphi})$$
 .

Proof. Because $\varphi^*(\xi, \cdot)$ is LIP, one can repeat with suitable modifications the proofs in [DC-P3, (5.5) and (5.11)]. Then

G. De Cecco, G. Palmieri

(5.7)
$$\|\varphi^*(d\bar{\delta}(\xi, \cdot))\|_{\infty} \leq 1.$$

Now let $N \subset M$ be the subset on which (5.7) is not verified or $d\overline{\delta}$ is not well defined. Then, if $\gamma \in AC(x, y)$ is a curve transversal to N,

$$\bar{\delta}(x,y) \leq \int_{0}^{1} \varphi^{*}(d\bar{\delta})\varphi(\gamma,\dot{\gamma})dt \leq \int_{0}^{1} \varphi(\gamma,\dot{\gamma})dt,$$

which leads to $\overline{\delta} \leq \rho$ by definition of ρ .

Since the "derivative" of $\rho \ (= \rho^{\varphi})$ is a.e. equal to $\varphi \ (cf.(4.6))$, then, by (4.1) $\varphi^*(d\varrho) \leq 1$ a.e.

Now we consider (for $x \neq y$) the function

$$\bar{f}(z) = \begin{cases} \frac{\rho(x,z)}{\rho(x,y)} & \rho(x,z) \leq \rho(x,y) \\ 1 & \rho(x,z) \geq \rho(x,y); \end{cases}$$

then $\overline{f}(x) = 0, \overline{f}(y) = 1$ and $(d\overline{f})(z) = 0$ for $z \in M - \mathbb{B}(x, \rho(x, y))$. Moreover $\forall p > 1$

$$\inf_{f} \left\{ \left(\int_{M} [\varphi^{*}(df)]^{p} dv \right)^{1/p} \right\} \leq \left(\int_{\mathbb{B}} [\varphi^{*}(d\bar{f})]^{p} dv \right)^{1/p}$$
$$\leq \rho(x, y)^{-1} (\text{meas } \mathbb{B}(x, \rho(x, y))^{1/p},$$

from which $\overline{\delta}(x, y)^{-1} \leq \rho(x, y)^{-1}$ follows by taking the limit. \Box

By Theorem 4.6, the following corollary ensues.

(5.8) Corollary. The equality

$$\lim_{t\to 0}\frac{\bar{\delta}^{\varphi}(\varPhi_{\alpha}^{-1}(\xi), \varPhi_{\alpha}^{-1}(\xi+t\eta))}{t} = \varphi(\xi, \eta) \quad \text{a.e.}$$

holds.

Hence one concludes that, when $\tilde{\delta}^F = \delta^F$, a stable Finslerian manifold is a quasi-Finslerian space.

Acknowledgement. We thank E. De Giorgi for drawing our attention to this subject and for valuable and stimulating discussions.

References

- [B-dR] Bidal, P., de Rham, G.: Les formes différentielles harmoniques. Commun. Math. Helv. 19, 1-49 (1946)
 - [BR] Berger, M.: La géométrie métrique des variétés riemanniennes. Conf. Dip. Mat. Univ. Roma, 1984
 - [B] Busemann, H.: Metric methods in Finsler spaces and in the foundation of geometry. Ann. Math. Stud., 8, Princeton 1942

- [B-M] Busemann, H., Mayer, W.: On the foundations of calculus of variations. Trans. Am. Math. Soc. 49, 173–198 (1941)
- [DC-P1] De Cecco, G., Palmieri, G.: Distanza intrinseca su una varietà riemanniana di Lipschitz. Rend. Semin. Mat., Univ. Torino 46, 2, 157–170 (1988)
- [DC-P2] De Cecco, G., Palmieri, G.: Length of curves on LIP manifolds. Rend. Accad. Naz. Lincei, s.9, v. 1, 215-221 (1990)
- [DC-P3] De Cecco, G., Palmieri, G.: Integral distance on a Lipschitz Riemannian Manifold. Math. Z. 207, 223–243 (1991)
- [DC-P4] De Cecco, G., Palmieri, G.: Distanza intrinseca su una varieta finsleriana di Lipschitz. (Rend. Accad. Naz. Sci. V, XVII, XL, Mem. Mat., 1, 129–151 (1993)
 - [DG1] De Giorgi, E.: Su alcuni problemi comuni all'Analisi e alla Geometria. Note di Matematica Vol.IX-Suppl., 59-71 (1989)
 - [DG2] De Giorgi, E.: Conversazioni di Matematica. Quad. Univ. Lecce n.2 (1990)
 - [DG3] De Giorgi, E.: Alcuni problemi variazionali della Geometria, Conf. Sem. Mat. Univ. Bari, n.244 (1990)
 - [G] Gromov, M.: (rédigé par J. Lafontaine, P. Pansu), Structures métriques pour les variétés riemanniennes. Cedic-Nathan, Paris 1981
 - [L-V] Luukkainen, J., Väisälä, J.: Elements of Lipschitz topology. An. Accad. Sci. Fenn., Ser. A.I. Math. 3, 85–122 (1977)
 - [P] Pauc, C.: La méthode métrique en calcul des variations. Hermann, Paris 1941
 - [R] Rinow, W.: Die innere Geometrie der metrischen Räume. Springer 1961
 - [T] Teleman, N.: The index of signature operators on Lipschitz manifolds. Publ. Math., Inst. Hautes Stud. Sci. 58, 261–290 (1983)
 - [V] Venturini, S.: Derivations of distance functions in \mathbb{R}^n . (preprint 1991)