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1 Introduction 

We consider the following problem: Given a subspace A of the algebraic dual 
H'  of the space H of s-variate polynomials, find a space P c  H which is correct 
for A. By this we mean that every continuous linear functional F on A can 
be interpolated by exactly one pep in the sense that F~.= 2p for all ~.EA. Among 
the many solutions, we choose a particular one, which we call the least solution 
and denote by A t,  and which is obtained by a certain map A~-->Ai from sub- 
spaces of H' to (homogeneous) subspaces of H. We call this map the least 
map and give (in Sect. 4) a comprehensive discussion of its properties. With 
these properties in hand, we provide (in Sect. 3) and verify (in Sects. 5 and 6) 
a rather striking list of properties that single out Al from the collection IP(A) 
of all possible solutions. We pay special attention to Lagrange interpolation, 
i.e., to A spanned by point-evaluations, as this is the case of most practical 
interest. It is also what started our interest in this topic (cf. [BR1]). 

We use (standard) multivariate notation throughout, in the following disci- 
plined way. We use x, y, z, 0, O for points in IR s (or r with x(j) the j th  
component of xe]R ~, and use t (resp. 4) throughout for real (resp. complex) 
scalars. The letters ~, fl, 7, ~ denote multi-integers, while the letters j, k . . . .  , n 
denote (simple) integers. For  ~ % ,  the power function 

x x'= (I x (/W 
j = l  

is denoted by ()~. As usual, D is the differentiation symbol, hence a space closed 
under differentiation is termed D-invariant, and for a polynomial or power series 

q, q(D) is its evaluation at D. The scalar product ~ x(j)y(j) for x, y e n  s 
j = l  
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is simply denoted by xy. In addition, for 0 e N  s, e0 stands for the exponential 
function 

(1.1) co: x~--+e ~ 

Finally, for ke2g+,//k (resp., H<k) is the subspace of /7  of polynomials of total 
degree at most (resp., less than) k. 

Our approach makes essential use of the well-known identification of /7 '  
with the space IR [X~ of formal power series, via a pairing of the form 

IR~X~ xH-~IR:  (.f, p) ~---, ~ w(~):~(f)D'p(O), 
eZ~ 

in which (~(f)), denotes the sequence of coefficients in the power series f, and 
(w(~)), are some (positive) weights. We choose here w(~):=l/~!, since then the 
pairing ( ' , . )  satisfies 

( f ,p )=p(D) f (O) ,  

for any polynomial p and any analytic power series f. The pairing (f, p)~--~p(D)f(O) 
was earlier exploited in Sect. 7 of [DR], where the theory of exponential box 
splines was employed to solve a certain class of polynomial interpolation prob- 
lems, and was also the pairing used in [BR1]. For completeness, we include 
in Sect. 2 a short discussion of the space IR~X~ of formal power series and 
its identification with the dual //' of the space of polynomials. We also give 
in that section a precise statement of the interpolation problem, and define 
A s to be the linear span of all ).~, with 2 s the unique homogeneous polynomial 
for which )~-2~ is of higher order than is 2, and )~eA. Here is an outline 
of the rest of the paper. 

Section 3 starts off with three guiding examples: The first is Lagrange interpo- 
lation, i.e., interpolation at some finite set O c lR s, whose least solution we denote 
correspondingly by H o. The second example extends this to a setup which 
includes Hermite interpolation and even Birkhoffinterpolation. These two exam- 
ples correspond to the material on polynomial interpolation in our paper [-BR1]. 
The third example concerns Radon interpolation, i.e., the use of line integrals 
as interpolation conditions, as used in tomography and suggested to us by 
Nira Dyn, a suggestion which led us to the study of arbitrary interpolation 
conditions from H' pursued in the present paper. Chief tool for the analysis 
of Lagrange and Hermite interpolation problems is the fact (already much 
exploited in [-DR] and [-BR1]) that, in terms of the above-mentioned pairing 
(and for p, qE~), (qeo, p)=q(D)p(O), and therefore evaluation at 0~IR "~ is repre- 
sented by the simple exponential e0. These examples are meant to help with 
the appreciation of the list of eight particular properties of the 'least solution' 
A s~IP(A), whose discussion fills out the rest of the section. The properties 
concern: (A) generality, (B) monotonicity, (C) constructibility, (D) minimal 
degree, (E) interaction with convolution, (F) interaction with homogeneous maps, 
(G) annihilation/differentiation, (H) tensor products. For example, the minimal 
degree property states that, among all PeIP(A), A s is of least degree in the 
strong sense that dim(P c~/]k) < d i m ( A +  c~ if/k) for every k. As another example, 
the annihilation property concerns associated differential operators and states, 
for the special case of Lagrange interpolation at the points of O, that, for any 
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polynomial p vanishing on O, necessarily Pt (D)1I o = 0 (with p: the leading term 
of p). It further states that if p(D)Ho=O, then necessarily some q with the 
same leading term as p must vanish on O. 

Section 4 commences the verification of all these properties. The section 
starts with the observation that, even when the space A of interpolation condi- 
tions is infinite-dimensionaL, the interpolation problem is essentially finite-dimen- 
sional since the only w*-continuous linear functionals on A are of the form 
2~--,;.p for some polynomial p. There are two main results in this section: one 
is a proof of the assertion that (A +)• =span {p , :peA•  with A• the annihilator 
of A in H, i.e., the joint kernel of AeA. The other is a proof that, for a D-invariant 
A, the vanishing of the constant-coefficient differential operator p(D) on A~ 
implies that q(D)A=O for some q with the same leading term as p, while the 
vanishing of p(D) on A implies the vanishing of the leading term of p(D) on 
A t . 

Section 5 concentrates on the minimal-degree property of the least solution. 
It contains proofs of the facts that all minimal degree solutions and all homoge- 
neous solutions to the interpolation problem can already be determined by 
A z (without knowledge of A). We also take up there the question under what 
conditions a polynomial space P might be dual to a polynomial space Q in 
the sense that the map P~--~(',P}Io provides a w*-dense embedding of P in 
the algebraic dual Q' of Q. 

Section 6 relates the special case (to which Lagrange and Hermite interpola- 
tion belong, while Birkhoff and Radon interpolation do not) of a (finite-dimen- 
sional) D-invariant A to earlier results of ours (in [BR2] and [BDR]) concerning 
the connection of polynomial interpolation to polynomial ideals with finite vari- 
ety, hence to box spline theory: for a finite collection of homogeneous differential 
operators with constant coefficients, we discuss an approach for estimating from 
below the dimension of their joint kernel (in IR~X~) and, at times, identifying 
this kernel with 11 o for a certain O c ~ .  

In the seventh, and final, section we show how At ,  for particular cases 
of Radon interpolation, can be determined as a certain subspace of 17 o for 
a carefully chosen O. The discussion there illustrates the difficulties one may 
have to overcome when A is not D-invariant. 

The present paper only deals with the theoretical aspects of the least solution 
to the polynomial interpolation problem. Questions of construction are taken 
up in the companion paper [BR3],  in which an algorithm for obtaining A~ 
from a spanning sequence for A is presented and computational details are 
discussed. 

For  reasons of convenience, the discussion here is limited by and large to 
real polynomials. Most results extend to the complex case by the appropriate 
use of complex conjugates, i.e., by changing the pairing to ( f ,  p ).'= ~ ~(f )  ~ (p)/~ ?, 

ac 

and by replacing A t in some places by A~. 

2 The interpolation problem 

We are interested in interpolation. By this we mean the construction of a function 
f (the interpolant) which matches given information of the form 

2 f = F ( 2 )  
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for all linear functionals 2 in some set A. Having assumed the 2 to be linear 
functionals, it is no loss of generality to assume that A is a linear space of 
linear functionals. On the other hand, this requires that the information F be 
consistent, i.e., F is necessarily a linear functional on A. 

We intend to choose the interpolants from the space H of polynomials in 
s variables (over ]R), and put no restriction on ).eA other than that they should 
be defined (at least) on/7.  Thus 

A~_/7'. 

We heavily use the (standard) representation of/7 '  as the space IR ~X~ of formal 
power series (of non-negative powers). This representation is based on the pairing 

(2.1) R~x~ xn--,R:(f,p)~(f,p),= y, a(f)e(p) c~(f) D=p(O) 

in which c~(f) denotes the c~th (normalized) coefficient in the formal power series 
(for) f, i.e., 

f =  ~, X= ~(f) felR~X~, r ' 

where X ~ is the formal power symbol: 

x'..= f i  x(j) :<+>. 
j = l  

Choosing p in (2.1) to be the power function ()~, we get from (2.1) that 

(2.2) c~(f) = (f ,  ()~), 

hence the representation of H' by IR ~X~ is given by the invertible linear map 

u'  x ~! �9 

r 

In these terms, formal differentiation of felREX ~ is, in effect, a shift, i.e., 
DPf is defined by 

~(OPf) ,=(~ + fl)(f), ~,/?e2~%. 

Thus, for c~, fl in ~E% and f E ~  ~X~, 

( Da f, ()'> =a(De f)=(~ + fl)(f) = ( f, ( )~+~>, 

and, hence, 

(2.3) ( q (D) fp )=( f ,  qp)=(p(D)fq) ,  felR~X~,p,q~H. 

In the sequel, we identify 1-1' and ~ ~X~, and thus we can think of the elements 
of 1-1' simultaneously as sequences indexed by c~e7/%, or else as linear functionals 
on /7 .  We choose to topologize IREX ] with the topology of pointwise conver- 
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gence, or equivalently equip /7' with the w*-topology, making thereby 17' into 
a Fr6chet space, and making/7  the w*-continuous dual of/7 ' :  

(2.4) Fact. F is a w*-continuous linear.functional on H' if and only if F = ( . ,  q) 
for some q~II. 

With this identification of 17' with N ~X~, F/ is naturally embedded in /7'. 
Thus, pE/7 can be (and is) treated as an element of H, as a linear functional 
(power series) in /7', and as an analytic function on lRL Furthermore, many 
non-polynomial 2e/7 '  of interest to us can also be reasonably interpreted as 
a function analytic at 0, viz. the function to which the power series converges 
uniformly. If it is important to distinguish between 2 and its analytic limit, 
we write 2v for the latter, and refer to it as the generating function of 2. We 
denote by 

Ao 

the collection of all 2 e / / '  analytic at the origin. 
For us, the most important example of ) ,e / /  is point evaluation at 0, i.e., 

the linear functional 

(2.5) 6o: p~---~p(O). 

Since 6o()==0 ~, the formal power series corresponding to ~0 is 

Hence 

(~0 v = e  0 . 

X ~ :~!. 
~ez 5 

If )-=/~l~ for some distribution/~, then it is often possible to determine 2"  
directly from the identity 

(2.6) 2 v (z)= (/t, e~). 

For  example, ~6o, e~)=e~ The identity (2.6) is particularly 
useful when it is hard to determine directly the action of 2 on the monomials 

Finally, we note the identity 

(2.7) (2, p) = p(D) 2 v (0) 

valid for any 2EAo and any pE/7. 
In these terms, the interpolation problem to be studied in this paper is 

the following. For  a given linear subspace A o f / / ' ,  determine a linear subspace 
P of H so that the pair (A, P )  is correct in the sense that 

P ~ A * :  P~--*(',P)IA 

is 1-1 and onto. We denote by IP(A) the interpolation problem induced by 
A as well as the collection of solutions P to this problem. 

Here, A* denotes the continuous dual of A ~ 17' with respect to the induced 
topology. This is an appropriate choice since any FsA*  is extendible to 17'* 
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(Hahn-Banach), hence is representable as ( . ,  q>lA for some qeII  (Fact 2.4), 
and also, conversely, the restriction to A of every peH=FI'* is continuous 
in this topology of A, namely, <., P>IAeA*. 

As we will see, IP(A) is never empty and is infinite unless A is dense in 
17'. Among the possibly infinitely many solutions, we single out a particular 
solution which, in addition to many other nice features to be described, is of 
the least possible degree (in a strong sense to be made precise). The description 
of this particular solution makes use of a particular map (which we call the 
least map), from subspaces of H' to homogeneous subspaces of H, and which 
we introduce now. 

We use Hk to denote all polynomials of (total) degree at most k, and 

no 

to denote the space of all homogeneous polynomials of degree k (with the 0 
polynomial included as usual). Recall that the order of the power series 2el l ' ,  
denoted by ord 2, is defined by 

(2.8) ord 2..=min {l~]: c~(2) 4= 0}. 

For a formal power series .~=~0, its initial form (or least term) 2+ is the 
unique homogeneous polynomial 2~ e//~ ~ that satisfies ord ()~- 2+)> ord 2. For 
completeness, we set 0+ :=0. This definition can be written in terms of the power 
series coefficients as follows: 

(2.9) c~(2~) ={;12), if /~(2) =0  for every Ifll < [c~l; otherwise. 

(5.8) Theorem. Let A be a subspace of H', and define 

A+:=span{)h:2eA ]. 

Then, for every FcA*, there exists a unique peA+ such that F =  <-, P>la' Hence, 
A~ ~IP(A). 

For a finite-dimensional A, Theorem 5.8 implies the following result, which 
is recorded for subsequent use: 

(2.10) Proposition. For any finite-dimensional subspace A of 11', dim A = dim A ~. 
We refer hereafter to the space A + as "the least solution of the interpolation 

problem". A discussion of the various aspects of the least map A H A ~  as well 
as the proof of Theorem 5.8 can be found in Sect. 5. 

3 Properties and examples of the least solution 

In this section, we present some typical examples of linear functional spaces 
A (i.e., interpolation conditions), and then discuss in detail several attractive 
properties that the least solution A~ possesses, with the initial examples being 
used to illustrate these properties. Some of the claims made in this section 
will be proved only in subsequent sections. Our primary aim here is to provide 
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the reader with a reasonable overview and a better insight, which may be helpful 
in reading the other parts of the paper. 

(3.1) Example. The basic and most important example in our discussion is 
the Lagrange interpolation problem, i.e., the particular choice A,=span{6o}o~o, 
for some finite O c lR  ~, with 6 o point evaluation at 0 (see (2.5)). The corresponding 
space of generating functions is the exponential space 

(3.2) Expo,=span {e0: 0e O}. 

For this Lagrange interpolation problem, we use IP(O) rather than IP(A) to 
denote the set of solutions. Also, we use 

Ho ,=(Exps)+ 

to denote its least solution. Note that, regardless of the choice of O, the space 
Expo is always translation-invariant, hence also D-invariant. Also, it is easy 
to characterize here IP(O) algebraically: P~IP(O) if and only if 17=P| 
with Io ~ 17 the ideal of all polynomials that vanish on O. However, this charac- 
terization does not readily provide solutions to problems of interest, e.g., to 
find the maximal He which is included in some solution PeIP(O). 

Although the linear functional space A is defined here (and in other examples 
to come) with the aid of a basis (namely, {5~}0~o), one cannot deal in the context 
of the least map with the basis elements alone, but must treat the whole linear 
functional space. Indeed, although the set {eo}o~o forms a basis for Expo, we 
have {e0~}0~o= {1} (while 17o, as any other solution of IP(O), must have dimen- 
sion equal to @ O = dim Expo ). 

(3.3) Example. This example extends the Lagrange interpolation problem 
above, and also contains the Hermite interpolation problem and the Hermite- 
Birkhoff interpolation problem (cf. [BRI~). A is again finite-dimensional, and 
a basis for A is given by (the restriction t o / 7  of) distributions with one-point 
support. That is, a typical basis element ).cA is of the form 

;~: p~q(O)  e(o), 

where q~17 and 0EN s are 2-dependent. With the aid of (2.6), we compute that 

)." (z)= <2, e=> =q(z) e~(0)=q(z) eo(z), 

and therefore the generating function space is now a finite-dimensional subspace 
of ~ e0//  for some finite O c lR  s. In contrast to the previous example, there 

0EO 

is no guarantee here that A is D-invariant. 

(3.4) Example. A is finite-dimensional and is spanned by (say, compactly sup- 
ported) measures. E.g., each basis element E is a line integral of the form 

1 

E: p~-+ ~ p[a+(b-a)t)dt ,  
0 
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where a, bEIR s are ~'-dependent. Again, the generating function is easily comput- 
ed from (2.6): 

eb(z)-e.(z) 
:, v ( z ) =  <~, e~> - 

(b - a) z 

Note that now, in contrast to the Lagrange case, the generating function space 
is never D-invariant (since the derivatives of the univariate function t~-~(#-1)It 
are linearly independent). From the standpoint of this paper, the lack of D- 
invariance here makes this interpolation problem harder than others like the 
Lagrangeinterpolat ion problem. [] 

With these examples in mind, we start now the discussion of the properties 
of the least solution A; of the interpolation problem IP(A). 

Property A: Generality 

The space A of interpolation conditions might be taken to be any subspace 
of the dual of f/. Even when restricting our attention to the Lagrange interpola- 
tion problems (in more than one variable), a general method for obtaining a 
solution does not seem to be a trivial task: given n ~2 ,  one cannot make up 
one subspace P ~ /7  of dimension n that solves all Lagrange problems associated 
with some O c I R  s of cardinality n. Therefore, the choice of the solution space 
must depend on the geometry of O. However, trying to determine a suitable 
P by studying these geometrical considerations seems to be painful, and usually 
results in restrictive assumptions on O. 

Property B: Monotonicity 

For subspaces A and M of FI', 

(3.5) A c M  ~ A ~ c M ~ .  

This (obvious) property is crucial if one wants to construct A~ inductively. 
It also makes it possible to provide a Newton Jbrm for the interpolant. 

Property C: Constructibility 

From a practical point of view, this is probably the most important  property. 
We proposed in [BR1] an algorithm which constructs, in finitely many arithmet- 
ic operations, from a given basis for the finite-dimensional A, another basis, 
say {2j}~=1, such that {2jl}~= 1 is bi-orthogonal to {2j}]= 1, hence forms a basis 
for A~. The construction of the interpolant I f  to a function f then proceeds 
in the usual way, i.e., 

f~- , I f ,= ~ ),j, <2j,f>, 
j=l 
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which uses only the data {()or, f)}~= 1 on f. A modified version of the above- 
mentioned algorithm, its relation to Gaul3 elimination, algorithmic details and 
some Lagrange interpolation examples are discussed in [BR3]. These two algo- 
rithms can, in turn, be used to construct a basis for the polynomial subspace 
of a box spline space; cf. Sect. 6. 

Property D: Minimal degree 

In general, it is desirable to keep the polynomials in the solution space P of 
the interpolation problem A of as small a degree as possible, and, in particular, 
to make the d for which / / d c P  as large as possible. There are limits to this, 
since P must exclude polynomials on which all the interpolation conditions 
vanish. In the discussion here, we use the "minimal-degree" notion in the follow- 
ing sense. 

(3.6) Definition. We say that the polynomial space P is minimally correct for 
A (or, is a minimal-degree solution) if P~IP(A) and 

dim(Qc~IIk)<=dim(Pc~Hk), VQ~IP(A), keT/+. 

We denote by MIP(A) the collection of all minimal-degree solutions for 
A. The following theorem implies that MIP(A) is never empty. 

(5.10) Theorem. The space A, is minimally correct for A. 
Thus, P~MIP(A) if and only if PeIP(A) and 

dim(P c~ Hk)=dim(A~ c~Fik), Vk~Z+. 

We show later (in Sect. 5) that MIP(A) can be characterized directly by A s 
(without recourse to A), and that, further, A~ is the only homogeneous polyno- 
mial space that can be used in this characterization. 

There are various efforts in the literature to find (primarily Lagrange and 
Hermite) interpolation conditions which are correct for /-/k (for some keZ+). 
It is therefore reassuring to conclude, in view of Theorem 5.10, the following. 

(3.7) Corollary. Let A be a subspace of 17'. If  H~elP(A) for some ke7l +, then 
A~ = 17 k. 

Finally, we note that, generally speaking, the minimal degree property con- 
flicts with generality and constructibility. E.g., in the Lagrange case, there are 
"easy-to-implement" schemes which can be used to find spaces in IP(O) (cf. 
[GM]), yet these spaces are, in general, far from being of minimal degree, nor 
are they canonical, for the solution space depends on ordering O, as well as 
on the choice of certain free parameters. 

The remaining properties below concern the interaction between the least 
map and some basic operations on H', such as convolution, differentiation, 
homogeneous maps and taking tensor products. 

Property E: Interaction with convolution; the translation-invariance of 0~-, 17o 

In order to distinguish between the multiplication of / ,E I I~X~=H'  with 
2 EIR ~X~ = H' and the application of/~ ~ H' = IR ~X~ to 2 ~ / / =  H', we write 

p*2 
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for the former, as {~(#,)~)}~ is indeed the convolution product of {c~(/~)}~ and 
{c~(2)}~. Since, for any 2, ~EH', 

(3.8) (#.2)~ = 2 ;  #~, 

we reach the following conclusion: 

(3.9) Propnsition. Let A be a subspace and/2 an element of H'. Then 

(3.10) (#*A)~ =/z; A~. 

In particular, if ~ l is a nonzero constant, then 

(#*A)I =A~. 

(3.11) Example. For the Lagrange interpolation problem IP(O), A 't is the expo- 
nential space Expo. If we take/~" to be any exponential er (reIR~), then/~; = 1, 
hence (by Proposition 3.9) 

(er Expo); = (Expo) 1 = 1Io. 

On the other hand, e, Expo=  Exp~,+o), and we thus obtain that the least solution 
of the Lagrange problem is invariant under translations of O: for every relR ~ 
and O = R  s, 

(3.12) H~r+ o) = Ho. 

As a matter of fact, the main property of IP(O) used for (3.12) is the fact 
that the basis {~0}0~o for A is obtained by shifting a single linear functional 
(viz., 6o). For this reason, we have the following extension of (3.12): 

(3.13) Cornllary. For 2eF/'  and finite O c l R  s, define A,=span{E~ 0cO}, 
where (E~ p).=()o, p(. +0)). Then 

A, = 2 ; / 7 0 .  

We exploit this observation in the next example. 

(3.14) Example. Suppose that X is a matrix in IR ~• with non-zero columns, 
and let X stand also for the collection (more precisely, the multiset) of the 
columns of X. Each xEX (considered as a vector in lRS\0) induces a line integral 
dx: 

1 i p(tx)dt. G: P ~  
- 1  

We define dx to be the convolution product of all the line integrals dx, x~X.  
The density measure of X is known as a (centered) box spline [-BH]. The generat- 
ing function of Yx can easily be computed (compare with Example 3.4): 

(3.15) #x" (z)= l-[ sinh(xz) 
X Z  
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Since the box spline is a unit measure centered at the origin, (#x, P) provides 
an average value of p around the origin. We now generate a family of linear 
functionals from (x by translation, and by changing the magnitude (but not 
the direction) of each x~X.  A typical functional E obtained by such a modifica- 
tion is of the form 

#v (z)=eo H sinh(txXZ), 
X Z  x E X  

where (tx}x~x are some f-dependent non-zero scalars and 0~IR s is #-dependent 
as well. Suppose that A is the span of (say, finitely many) linear functionals, 
all obtained by modifying the same original box spline. In this case the function- 
als in A provide average values in balls of possibly different diameters around 
different points. 

Note  now that the homogeneous polynomial q(z):=I~ (xz) (of degree n) 
x E X  

appears in the denominator of (the generating function of) every functional 
in A. In view of Proposition 3.9, we may obtain A s in the form Ms~ q, with 
the exponential space M'/  spanned by the exponentials of the form 

#V (z)=eo 1~ sinh(txxz). [] 
x ~ X  

More specific examples of this nature are discussed in Sect. 7. 

Property F: Homogeneous maps 

0 c 0 A linear map A: H' ~ H '  is homogeneous of degree k if A(H~) Hi+ k for every 
j > 0. If A is such a map, it satisfies 

(A2)t = A().+), 

unless A(2t)=0.  This implies that, for any space A cFI', 

(3.16) A(A~)c(AA)s. 

Since, in particular, any directional differentiation is a homogeneous map, this 
provides the following result of much use later. 

(3.17) Proposition. I f  a subspace A of H' is D-invariant, then so is A t . 
Since Exps is D-invariant, we have the following. 

(3.18) Corollary. The least space II o associated with the Lagrange interpolation 
problem IP(O) is D-invariant. 

In particular, there are no " jumps"  in the homogeneous grades of H o, i.e., 

/ / o ~ f / ~  =~ //~c~ o _ /~k +j-- 0, Vj>0. 

Also, the homogeneous dimensions of He constitute the Hilbert function of 
some (homogeneous) ideal. 

(3.19) Remark. It should be clear that A t might be D-invariant even though 
A is not (take a one-dimensional A which does not vanish on the constants 
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and is not an exponential space). On the other hand, not every space of the 
form A~ is D-invariant: on multiplying any A by any polynomial that vanishes 
at the origin, we obtain a space M whose least space M+ does not contain 
constants (cf. Proposition 3.9), hence is not D-invariant. [] 

If A, in addition to being homogeneous, is also injective, then equality must 
hold in (3.16). A particular case of interest is a linear change of variables, i.e., 
a linear invertible map A: IR ' - - , l t  s, which is lifted to H by the definition Ap(x) 
::e(Axl. 

(3.20) Proposilion. Let A be a linear change of variables. Then, (AA)~ =A(A; )  
for every subspace A ~ H'. 

With A t being the transposed map of A, this implies that 

A (17o) = HAtO,  

since A(Expo)=ExpAto.  In particular, rotation and reflection of O result in 
a similar action on 17 o, so that symmetries of this type in O are preserved 
in II o . 

(3.21) Example. With s=2 ,  let O consist of the four intersection points of the 
ellipse a l ( ) 2 ' ~ 1 7 6  with the coordinate axes. Then H1(IRZ)cHo,  by 
the minimal degree property of 17 o, since no linear pe/7(lR 2) vanishes on O. 
Furthermore, O is invariant under reflection across each of the axes, which 
means that H o c~ 17 ~ may contain only polynomials of the form c~ ( )2. o + c2 ( )0, 2 
(polynomials of the form c( )t' 1, which are also invariant under the above reflec- 
tions, are excluded since they vanish on O). If the ellipse is circular, then O 
is invariant under rotation by 90 degrees, hence so is II o, which implies that 
c 1 + c 2 = 0  (the other possibility c1=c2 is excluded since then the quadratic 
polynomial assumes a constant value on O). If the ellipse is not circular, then 
c1 ( )2 '0+c2( )~  ~ if and only if (cl, c2) is perpendicular to the vector 
(al, az). This will follow as well from the general discussion concerning annihila- 
tion (see Property G below). [] 

In case we choose the linear map A to be the scaling operator  

we may use the fact that A t is scale-invariant (as is every homogeneous space) 
to conclude that 

(~hA)+ =ah(A+)=At ,  

which implies in the Lagrange case that 

f r i l l  h = I7~0, 

Property G: Annihilation 

For a D-invariant A, i.e., a A closed under (formal) differentiation, the study 
of the relation between the actions of differential operators on A and A+ is 
very useful. The next theorem summarizes our main results in this direction. 
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We use here the notation q$ for the leading term of the polynomial q, i.e., 
qt is the unique homogeneous polynomial that satisfies 

(3.22) deg (q - qr < deg q. 

We also use q(D) for the (formal) differential operator with constant coefficients 
obtained by evaluating q at D. Note that in general q(D) is neither injective 
(unlike convolution operators) nor a homogeneous map. However, if q is homo- 
geneous, then q(D) is homogeneous, of order - d e g  q. 

(4.11) Theorem. Let A be a D-invariant subspace of 17', and let p be a polynomial. 

(a) I f  p(D) A ~ =0, then q(D) A =0, for some q~ el with qz = p~ . 
(b) Ifp(D) A=O, then pt(D) A~ =0. 

This theorem is of particular interest for the Lagrange interpolation problem, 
to which it applies since Expo is D-invariant: One has p(D)eo=p(O)eo (for pEH 
and 0elR~). This also implies that 

(3.23) p(D)(eo)=O .~ p(O)=O. 

Thus, Theorem 4.11 reads in the Lagrange case as follows. 

(3.24) Corollary. For a finite 0 cIR s, and peel: 

(a) I f  p(D)(II~)=O, then q vanishes on 0 for some qe/7 with qT =Pr '  
(b) I f  p vanishes on O, then pT(D)(H~)=0. 

(3.25) Example: Harmonic polynomials. Suppose that we want to approximate 
functions which are harmonic in the open unit disk U c I R  2 and continuous 
on its closure U-,  by interpolating their values on the unit circle (say, at the 
roots of unity). It is obvious (and well-known) that this can be done by using 
harmonic polynomials of sufficiently high degree. It is therefore very pleasing 
to see that the least solution provides exactly these harmonic polynomials: 

(3.26) Theorem. Let s=2. Then 1I o consists of harmonic polynomials if and 
only if 6) lies on some circle in the plane. 

Proof Assume that O lies on the circle given by the quadratic equation p=0.  
In this case, the leading term Pt (D) of p(D) is the Laplacian, and, by Corollary 
3.24 (b), p~ (D)(Ho)= 0, hence 17 o is a harmonic space. 

Conversely, assume that i7 o is annihilated by the Laplacian L(D). Since 
L(D) is homogeneous, we may apply Corollary 3.24 (a) to find a polynomial 
p such that P t = L  and p vanishes on O. Since L = ( ) 2 ' ~  ~ the equation 
p = 0  defines a circle. [] 

Theorem 4.11 might also be helpful for some types of non-Lagrange interpo- 
lation problems. An example is discussed in Sect. 7. 

Whether or not A is D-invariant can often be decided by the following 
criterion. 

(6.1) Proposition. A closed subspace A of H' is D-invariant if and only if A• 
is a polynomial ideal (in 11). 

Here, the annihilator or kernel Al  c 11 of A c /7 '  is defined as usual by 

(3.27) A• :={p~H: (2, p) =0,  V2~A}. 
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Because of its importance for us, and in preparation for the proof of Theorem 
4.11, we verify directly the following 

(3.28) Corollary. I f  the subspace A of II' is D-invariant, then p(D)A=O for 
all peA I. 

Proof For 2cA, p e A ,  and ee7l'+, 

~(p(D) 2)= (p(D) 2, ( )~) = ( D=)., p) =0, 

by (2.2), (2.3), and the D-invariance of A, respectively. [] 

Property H: Tensor product 

The tensor product of two power series spaces commutes with the least map: 

(3.29) Proposition. Let M, N be subspaces of H'(N."), FI'(N') respectively. Then, 
M | N, regarded as a subspace of FI'(lRm+"), satisfies 

(3.30) ( M |  = M ;  |  

Proof For g e M  and yeN, (#| = p ;  |  hence (MQN)~ ~M~ |  1. This 
completes the proof for finite-dimensional M and N, since in this case both 
sides of (3.30) are of dimension dim M dim N (by Proposition 2.10 applied to 
M, N and M | N). The general case now follows by expressing M | N as the 
union of an increasing sequence (M (j) | N(J))f= ~ of subspaces, where each M ~ 
and N (j) is a finite-dimensional subspace of M and N, respectively. [] 

This proposition applies to a "rectangular array" of interpolation conditions: 
assume that we are given finite-dimensional M~ . . . .  , M~ c /7 '  (IR) and define 

M - ' = M I | 1 7 4  ~. 

Then, with (#j.~)t=o in H(N) a basis for (Mj); , j =  1, s, 

(3.31) 

where 

(3.32) 

M;  = span {pl,~l | P2,~2 | ... |  .... : ~eF}, 

r ..--j (~)..= {~ ez%:~ __< K}. 

In particular, we get the following result: 

(3.33) Corollary. Let {Mj}~=I and M be as above, and assume that, for each 
j, (M j) s =/7~,(IR). Then 

(3.34) M t = / / r  :=span {( )~: ~er}. 

In case O c l R  ~ consists of the vertices of a rectangular grid, this corollary 
shows that II o coincides with the "natura l"  solution, i.e., the polynomial space 
of coordinate degree r. 
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Corollary 3.33 can be extended from rectangular arrays to order-closed arrays 
(or, lower sets in the terminology of [LL]), i.e., to subsets F' of F which satisfy 

~+o~<=flsF' ~ ~sF'. 

For this, we equip each Mj in the corollary with a basis {pj, o . . . . .  p~.~j} for 
which 

(3.35) (Mj, k)+ =Jr/k, VO<--k<--lfj, 1 <j<s,  

with Mj, k,=span {Oi,0 . . . . .  ~tj.k}. For each e~F  (with F as in (3.32)), define 

A~:=MI,,~ @M2,a2@ ... |  ..... . 

Finally, for a given F' c F, we set 

Ar,.'= ~ A~ 
~EF' 

and conclude the following. 

(3.36) Corollary. For every order-closed F ' c  F, 

(3.37) (Ar,)~ = Fir, ,=span {( )': e r F'}. 

Proof The map 

( ):%'-+/./1, al @ 122,a2 @ .. .  @ 11 . . . .  ~E:F '  

induces a linear isomorphism between I1 r, and Ar,, hence their dimensions 
agree. On the other hand, by Corollary 3.33 and the monotonicity property 
(Property B), 

F/j(~) = (A~)~ c(Ar,)~ V ~ F ' ,  

therefore IIr,=(Ar,)~ , and the desired result then follows, since by the above 
and Proposition 2.10, dim Fir, = dim Ar, =(dim Ar,)+. [] 

A particular example is obtained by choosing each #i,k to be the point- 
evaluation 6ojk (with Oj, kslR and Oj, k#Oj, k, for k#k') .  In this case IP(Ar,) is 
a Lagrange interpolation problem with respect to an order-closed O and the 
least solution turns out to coincide again with the "natural"  monomial space 
llr,. It is not the (known) fact that Fir, does solve IP(Ar,) that should be empha- 
sized, but the fact that the least solution coincides with this preferred solution. 
We note that actually the only facts used to derive this result (aside from the 
correctness of total degree spaces for Lagrange interpolation at arbitrary subsets 
of ~t.) are the monotonicity, the tensor product property, and the minimal degree 
property, of the least map. Any other map satisfying these three properties 
would provide here 1I r, as the solution space. 
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4 Homogenization 

The least map 

(4.1) A~-*A~ :=span {).~ : 2EA}, 

defined on subspaces of H', is a typical example of an internal homogenization 
map (cf. [NV]). Such maps make use of the graded structure of/7 ' .  The least 
map is complemented by the homogenization map 

(4.2) P~-* Pt,=span {pt" pe P } 

defined on subspaces P c I I ,  where p~ denotes the leading term (cf. 3.22)) of 
the polynomial p. We discuss in this section some properties concerning these 
maps and their interrelation. 

The spaces Pr and A+ are both homogeneous (or graded), i.e., are spanned 
by homogeneous polynomials. The map pw-~pT (resp. 2~-+2~) is non-linear, and 
is neither inject• nor surjective when considered as a map from P to g (resp. 
A to A~). We already noted the monotonicity of the least map; the leading 
map P~-~N is just as obviously monotone. 

For  any P ~/7,  the action of A c fir' on 

(4.3) Pk := P ~ Ht 

is entirely determined by Tk A, with T~ the Taylor map, i.e., the map on /7' 
which associates with each 2 e H ' = ~ E X  ~ its Taylor polynomial T k 2 of degree 
k. In terms of the power series coefficients, 

e(Tk Z)= {~()~), [~l<k; 
otherwise. 

In particular, for any subspace A _ fir', 

( A • = (( Tk A) l)k . 

Here and below, we use the subscript k to indicate the collection of all 
polynomials of degree __<k in a set (cf. (4.3)), and continue to use the subscript 
• to indicate the kernel of a set of linear functionals o n / / ( c f .  (3.27)). 

The next result shows that the two homogenization processes preserve dimen- 
sions in the following strong sense. 

(4.4) Proposition. (a) For any subspace A c H '  and any ke7Z+, dim(A~)~ 
= dim Tk A. In particular, dim A ~ = dim A. 
(b) For any subspace P c I I  and any kET~+, dim(Pt )k=dimP k. In particular, 
dim P~ = dim P. 

Proof (b) Set Sj ,=( id-Tj) te  (id being the identity map). Note that deg p = j  iff 
S~ p = 0 and S j_ l P + 0, and so 

dim (P~ ~ H ~ = dim S j_ x (ker S j) = dim ker Sj - dim ker S i_ 1, 
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using the fact that kerSj_~ cke rS j .  Summing this equality over j = 0 ,  1 . . . . .  k, 
we obtain 

dim PT k = dim ker Sk - dim ker S_ 1. 

Yet, S_~=id,  and therefore dim ker S_ 1 =0 ,  while kerSk=Pk, hence dim Pk 
= dim(P0k. Letting k --+ oc, we obtain also that dim P = d i m  Pr. 

The proof of (a) is very similar to that of (b) (see [BR1] for details). [] 
We will also need the following observations regarding homogeneous bases 

for A;. While A s is a homogeneous polynomial space, hence has homogeneous 
algebraic bases, an algebraic basis for A is of little interest when A is not finite- 
dimensional. But any subspace A of/7'  has a weak basis, i.e., there are sequences 
()~} in A so that, for every 2eA, there is a unique a so that , i = ~  a(i) 2 ,  with 

i 

the sum taken pointwise, i.e., <2, p> = ~ a(i)<Z, p) for all peII. 
ord ki  < d e g p  

(4.5) Lemma. Let A be a subspace of H'. Any homogeneous (algebraic) basis 
for AS, is of the form (2is)i for some (weak) basis (2i)i for A. In particular, 
'A• = (] ker 2i, for each homogeneous basis (2i s)i for A ;. 

i 

Proof Since any homogeneous element of A ~ is necessarily of the form ).~ for 
some 2sA, we may assume that our homogeneous algebraic basis for A s is 
of the form (2 i +} for some sequence (23z- in A. 

We now prove that such a sequence (23~ is necessarily a (weak) basis for 
A. The proof is by induction: Let 2~A. Assume that we have already determined 
a(i) for o r d 2 / < k  so that 2=  ~ a(i) 2i on H<k, with the sum being finite, 

o r d  ),~ < k  

since (Z~ S)ord a, < k are linearly independent. Then 

# : : , t -  ~ a(i) 2i 
o r d  A, < k 

is in A and has order at least k (since it vanishes on II<k). If o rd t t=k ,  then 
t*~= ~, a(i) 2i~ for some numbers a(i). Else, choose a( i)=0 for ord2i=k .  

o r d  A i  - k 

In either case, Z= ~ a(i) 2i on /Tk, with the new coefficients uniquely deter- 
oral ; t  z < k 

mined since {2/~: ord 2/=k} are linearly independent, by assumption. This 
advances the induction hypothesis. 

If now p e ~  ker 2i, then <2, p> = ~  a(i)<2, p>=O for any 2eA, hence peA• 
i i 

This proves that ~ ker 2~ c A~, while the converse inclusion is trivial. [] 
/ 

Here is a simple, yet useful, observation. 

(4.6) Lemma. Let )odI' and peFl. I f  <2, p> =0, then <2~, Pr> =0  as well. 

Proof If ord24=degp, then p. and Z s are two homogeneous polynomials of 
different degrees and hence <2s, p r>=0  trivially. Otherwise, d e g p = o r d 2 ,  a 
case in which <2, p> = <2s, p~>. [] 
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In analogy to A• we define 

P• .= {2~// ' :  P ~ k e r  )~}, 

the annihilator in H' of P~_II. We note that, with the identification FI'=IR~X~, 
any subspace P of H is also a subspace o f /7 '  and that, for a homogeneous 
subspace P of H, the essential difference between P• and P• lies in the fact 
that the latter contains also infinite linear combinations. Further, 

for any subspace P of H, and also 

(4.7) 

P=P•177 

P=Px• 

for any homogeneous subspace P of/7. 
We now come to the main result of this section. It concerns the interaction 

among the maps +, t, l and • 

(4.8) Theorem. Let P and A be subspaces of 17 and H' respectively. Then 

(a) (A~)• = (A• ; 
(b) (P• = (P01. 

Proof (a) We first show that (A,)• D(AI)T. Let qE(A• T. To prove that qe(As)• 
we need to show that (#, q) =0  for # e A , .  Since both A s and (A• t are homoge- 
neous, we may assume without loss that # and q are homogeneous. This in 
turn implies the existence of peA• and 2cA such that p , = q  and 2, =#,  so 
that we have to prove that (,is, pT)=0.  But this follows from Lemma 4.6, 
since, by the choice of 2 and p, one has (2, p ) =  0. 

For the converse inclusion, it is now sufficient to show that, for every kET/+, 

(4.9) dim (A +)~k = dim(A• k 

(with Qk=Q~FIk for any QcFI,  as before). We have Mlk=(TkM)• for any 
M c / / ' ,  since (2, p )= (T~  2, p) for every 2e/7' and every p~ l l  k. Further, by 
Proposition 4.4 (b) (with P=A• we have dim(Ai)~k=dim A• Therefore, (4.9) 
is equivalent to 

(4.10) dim(T k A+)• = dim(T~ A)• 

For any M C I l k ,  M• is the orthogonal complement of M in Hk with respect 
to the inner product ( . , . ) .  Since both Tk A s =A+k and T k A are subspaces of 
II k, (4.10) is therefore equivalent to 

dim A,k =d im TkA, 

and this is Proposition 4.4 (a). 
As for (b), it is obtained by choosing A = P  • in (a), hence (P•177177 

=P•177  = P t ,  which implies (P•177177 and this gives (b), by (4.7). [] 
For the D-invariant case, the last theorem implies the following. 

(4.11) Theorem. Let A be a D-invariant subspace of lI', and let p be a polynomial. 

(a) I f  p (D) A ~ = 0, then q (D) A = O, for some q ~ II with q T - P 1. 
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(b) l fp(D)A =0, then pt(D) A~ =0. 

Proof (a) Since A+ is homogeneous, p(O)A t = 0  implies that pz(D)A; =0, and 
therefore Pt eA ~ • hence also p, cA• t, by Theorem 4.8. This implies the existence 
of some qeA• with q~ =p~. Since A is D-invariant, it follows from Corollary 
3.28 that q(D)A =0. 

(b) If p(D)A=O, then peA• hence p ~ A • 1 7 7  , by Theorem 4.8. Since 
A is D-invariant, so is A t (by Proposition 3.17), therefore p~ (D)A t = 0 by Corol- 
lary 3.28. []  

5 The least solution and its minimal degree property 

Since any FeA* is necessarily of the form ( . ,  q)la for some qs / / ,  our interpola- 
tion problem (of finding peP with F = ( . ,  P)IA) is essentially finite-dimensional, 
even if A is not. For, if such q has degree k, then it is sufficient to find 

such that 

(5.1) 

since 

(5.2) 

pe Pk = P ~ IIk 

(Tk) . ,p)=(TkZ,  q) V).eA, 

(Tk2, r ) = ( 2 ,  Tkr)=(2 ,  r) Vre//k,  

hence (5.1) implies that (2, p ) =  (2, q ) = F ( 2 )  for all 2cA. Further, the solution 
p is unique (in P) if and only if A• ~ P = 0, while (with (5.2)) 

(5.3) A •  *:, (T~A)• 

Finally, the correctness of the (finite-dimensional) pair (TkA, Pk) is well-known 
to be equivalent to the conditions 

(5.4) dim Tk A < dim Pk, (Tk A)• ~ Pk = 0. 

Thus, having (5.4) hold for every k is a sufficient condition for the correctness 
of (A, P),  and we have proved the following lemma. 

(5.5) Lemma. Let P and A be subspaces of II and II', respectively, which satisfy 

(5.6) dim Tk A < dim Pk, Vk, 

with Pk,=P r~ FI k . Then the following are equivalent: 

(a) (A, P)  is correct; 
(b) A•  
(c) For all k, (Tk A)• ~ Pk = 0; 
(d) For all k, (Tk A, Pk) is correct. 

(5.7) Corollary. I f  P and A are homogeneous subspaces of [1 and 11', respectively, 
then the following conditions are equivalent (even without the explicit assumption 
(5.6)). 

(a)(A, P )  is correct; 
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(b) For all k, (Ak, Pk) is correct; 
(c) For all k, (A c~ 11 ~ P ~ H ~ is correct; 

Proof. Note that Tk A = A k for a homogeneous A, hence (b) here is (d) of Lemma 
5.5. We already observed that (d) of Lemma 5.5 implies (a) for arbitrary A 
and P. For the converse, it is sufficient to prove that (a) implies (5.6). So assume 
that dim Ak > dim Pk for some k. Then it follows that Ak contains some nontrivial 
2 which vanishes on Pk. By the homogeneity of P, it therefere vanishes on 
all of P, yet belongs to A by the homogeneity of A. Thus (A, P )  is not correct. 

For the equivalence of (b) and (c), note that the correctness of (Ak, Pk) 
is equivalent to the invertibility of the Gramian matrix ((2i, pj)},j for some 
(hence, any) bases (2i} and (pj)j for Ak and Pk, respectively. By taking, in particular, 
homogeneous bases, ordered by degree, such a Gramian becomes block-diago- 
nal, hence invertible if and only if these diagonal blocks are invertible. [] 

(5.8) Theorem. For any subspace A of H', A ~ EIP(A). 

Proof By Proposition 4.4, P.-=A s satisfies (5.6). Hence, by Lemma 5.5, it suffices 
to prove that A• =0. Let pEA• Since A+ is homogeneous, p,EA+, 
hence there exists 2EA such that )~, =P t .  By assumption (,;~,p)=0, hence, by 
Lemma 4.6, (PT, P T) = (2~, p~)=  0, which implies that p = 0. [] 

If 
dim Tk A < dim Pk 

for some k, then Pk contains some nontrivial pe(TkA)• and, since pEIlk, it 
follows (from (5.2)) that peA• therefore pE(A• showing that (A, P )  
is not correct in this case. Consequently, having 

(5.9) dim Tk A > dim Pk 

hold for every k is a necessary condition for the correctness of (A, P).  Since 
P=A~ is a solution (by Theorem 5.8) for which equality holds in (5.9) for all 
k (by Proposition 4.4), we conclude that A, is minimally correct for A in the 
sense of Definition 3.6. 

(5.10) Theorem. For every subspace A of H', A + is a minimal-degree solution. 

Further, PEIP(A) is in MIP(A) if and only if 

(5.11) dim Pk = dim (A +)k, Vk. 

We now show that all minimal-degree solutions can be characterized entirely 
in terms of A ~. 

(5.12) Theorem. Let A be a subspace of II', and P be a subspace of H that 
satisfies the minimal-degree conditions (5.11). Then the following conditions are 
equivalent: 

(a) PeIP(A);  
(b) A•  
(c) A I •  

Proof The equivalence (a),*-(b) was already established in Lemma 5.5. 
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( b ) ~  (c): If A,  �9 n P 4= 0, then it would contain some p of degree k > 0. Choose 
(2~} c A such that (2~ }is a basis for A t. By Lemma 5.5, (b) implies that ( T  k_ ~ A, Pk- 1 ) 
is correct, while, by Lemma 4.5 (with A and A+ replaced by Tk-~ A and (A~)k-1 
respectively), (Tk-~ fli)~d ~, < k are linearly independent. Hence, we can find q e Pk- 
such that 

(2 i , q )=(Tk -12 i , q )=(2 i , p )  V o rd 2 i<k ,  

the first equality since d e g q < k .  Further, if o rd 2 i>k ,  then (2~, q ) = 0  (since 
deg q < k), while ( 2 ,  p ) =  (2~t, p ) =  0 (since deg p = k and by choice of p, respec- 
tively), thus (2~, q ) = ( 2 i ,  p)  also in this case. We thus conclude that 
p - q E ~  ker 2i, which implies, by Lemma 4.5, that p - q e A •  This contradicts 

assumption (b), since deg p > deg q, and therefore p -  q e P \0 .  
(c)~(b):  This is proved analogously, but with 2i and 2~ interchanged. In 

particular, Lemma 4.5 is not needed for this implication. [] 
We note for completeness that any of the possible four conditions of the 

form M n Q = 0 ,  with M one of A or A~, and Q one of P or Pt, is equivalent 
to the correctness of (A, P )  under the minimal-degree conditions (5.11). 

(5.13) Corollary. Let A and P be subspaces of H' and H respectively, satisfying 
the minimal-degree conditions (5.11). Then A• nP=Oc*A+I  n P = O . ~ A •  ~ P  T 
= 0 ~ A ~ •  t = 0 .  

Proof. The first and last equivalence are special cases of Theorem 5.12. Further, 
A~ ~ nP~ = 0  implies A •  by Lemma 4.6. It is therefore sufficient to prove 
that A + • ~ P = 0 implies that A 1 • n P~ = 0, and this we do by an argument similar 
to that for the equivalence (b)~(c)  of Theorem 5.12. For  this, let (2)~ be a 
homogeneous basis for A~ and let p e A ~ •  r. If p +0 ,  then, since A~• 
is homogeneous, we may assume without loss that p is homogeneous, hence 
that p = q  for some rEP with degr= . 'k>0 .  By Lemma 5.5, our assumption 
would then provide some qePk 1 SO that (2~, @ = ( 2 i ,  r )  for all o rd 2 i<k ,  
while (2i, q ) = 0 = ( 2 ~ ,  r ~ ) = ( 2 i ,  r )  for all ord 2i__>k. Consequently, r - q  would 
be a nontrivial element of A+ • n P. [] 

In the remainder of this section, we examine certain relations among the 
various elements of IP(A). In particular, we take advantage of the fact that 
a polynomial space Q is also a subspace o f / / '  to consider conditions under 
which PEIP(Q) for P, QeIP(A). This also gives us an opportunity to examine 
the related question of whether the algebraic dual Q' of a polynomial space 
Q is representable by a polynomial space. Since Q' is much richer than its 
w*-dual in case dim Q g 0% we actually cannot hope to represent such Q' by 
some P c /7 .  But, since the algebraic dual of a polynomial space is not as rich 
as the algebraic dual of an arbitrary subspace A if 1I', we can hope that some 
subspace P o f / / i s  w*-densely imbedded into Q' by the map 

(5.14) P ~ Q': pw--~pl Q 

which carries peP to the linear functional PlO on Q given by 

(5.15) PIe: Q--*lR:q~--~(q,p). 
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If this is the case, then we say that P is dual to Q. Our results concerning 
polynomial interpolation readily yield conditions on P to be dual to a given 
Q. In addition, such considerations throw further light on the special role played 
by the least solution in the set of all minimal solutions and in the set of all 
homogeneous solutions. 

(5.16) L e m m a .  Let P and Q be subspaces of H. I f  P~IP(Q), then P is dual 
tO Q. 

Proof Since PeIP(Q), we have Q• hence the map P~-~PIQ is 1-1 on 
P. Further, to show that PIQ is w*-dense in Q', observe that, since Q is polynomial, 
there exists, for any 2eQ', some rkeH k so that rklQ=)~ on Qk, k = l ,  2, ..., 
hence 2 is the w*-limit of r~l Q as k --, or. Since PeIP(Q), there exists a correspond- 
ing sequence (Pk}, in P with Pkle = rtlQ for all k. [] 

The converse does not hold in general since the w*-closure of PIQ may well 
contain polynomials not in P. For example, with P the linear span of the univar- 
late polynomials pk. .=l+()  k, k = l ,  2 . . . . .  and Q=/7, the linear functional 6 o 
(represented by p =  1) is in the w*-limit of P c H ' ,  hence so is all of /7, the 
latter being obviously dense in H', and therefore P is dual to / /  in the above 
sense. On the other hand, (H, P )  fails to be correct, since there is no p e p  
for which (p,. > = 6o even though ~o~H'. 

In the next two results, we study in greater detail the above duality notion, 
as well as the interpolation problem IP(Q) for a polynomial Q. 

(5.17) Proposition. Let P and Q be polynomial spaces satisfying the conditions 

(5.18) dim T k Q < d i m  Pk, Vkr 

Then the following conditions are equivalent: 

(a) (Q, P)  is correct (i.e., PEIP(Q)); 
(b) P is dual to Q; 
(c) (T~ Q, Pk> iS correct for every kEZ+. 

Proof The equivalence of (a) and (c) is obtained by substituting A = Q in Lemma 
5.5, and using the equivalence of (a) and (d) there. Also, assuming (b), we get 
Q• c'~ P = 0, and this implies (a) here because of the implication ( b ) ~  (a) in Lemma 
5.5. Finally, the implication (a)~(b) holds even without the aid of (5.18), as 
is proved in Lemma 5.36. [] 

More can be said in case P and Q are homogeneous: 

(5.19) Corollary. Let P and Q be homogeneous subspaces of H. Then conditions 
(a), (b), and (c) of Proposition 5.17 are equivalent. Furthermore, P is dual to 
Q if and only if Q is dual m P. Also, P~IP(Q) / f  and only if QeIP(P). 

Proof The equivalence of (a) and (c) was already established in Corollary 5.7. 
Further, (c) implies (5.18), hence implies (b), by Proposition 5.17. Thus, by the 
same proposition, it suffices to prove that (b) implies (5.18). For this, assume 
by way of contradiction that dim T k Q > dim P~ for some k. Then it follows that 
Tk Q contains some nontrivial q perpendicular to Pk, hence to all of P, by the 
homogeneity of P. Further, this q is in Q by the homogeneity of Q. Since q 
is not zero, there exists F~Q' with Fq = 1, and no such F can be in the w*-closure 
of PIQ, hence P cannot be dual to Q. 
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Finally, since Q is homogeneous, TR Q = Q~, and hence condition (c) of Propo- 
sition 5.17 is symmetric in P and Q, and we may change the roles of P and 
Q in this condition. Thus, from the equivalence of the three conditions in Proposi- 
tion 5.17, we get the rest of the claim. [] 

We showed in Theorem 5.12 that A~ can be used to single out MIP(A) 
in the collection of all polynomial spaces satisfying the minimal degree conditions 
(5.11). The next corollary shows that A, also singles out all homogeneous ele- 
ments of MIP(A) among all polynomial spaces. 

(5.20) Corollary. Assume that P is a homogeneous subspace of 11 and A is a 
subspace of H'. Then the following conditions are equivalent: 

(a) PeMIP(A); 
(b) PeIP(A ~)(r ~ zIP(P)); 
(c) P is dual to A t ( .~  A ; is dual to P). 

Proof The equivalence of (b) and (c) is obtained by substituting Q = A ~ in Corol- 
lary 5.19. 

Assume (b). First, the implication (a)~(c) of Corollary 5.19 (with Q,=As 
and with T k Q =Qk by the homogeneity of Q) shows that (A;k, Pk) is correct 
for every k, in particular dim A+k = dim Pk for every k. Second, the assumption 
here guarantees that A ~ • ~ P = 0. Employing the implication (c) ~ (a) in Theorem 
5.12, we obtain that P~MIP(A), which is (a)here. 

Finally, assume (a). The implication (a)~(c) in Theorem 5.12 shows that 
A;•  but then the implication (b)~(a) there (with A replaced by At) 
shows that PEIP(A ~), which is (b) here. [] 

The above corollary states that MIP(A) and IP(A ;) contain the same homo- 
geneous spaces. It should be clear that, for any homogeneous Q other than 
A, ,  it is never true that MIP(A) and IP(Q) contain the same homogeneous 
spaces, since this would mean that IP(A ~) and IP(Q) contain the same homoge- 
neous spaces, and this is false, by Corollary 5.7: Indeed, Corollary 5.7 implies 
that, for a homogeneous Q, for any k and any algebraic complement C (in 
//o) of the orthogonal complement of Q c~ H ~ (in H~ we obtain a homogeneous 
PeIP(Q) by taking any homogeneous space in IP(Q) but replacing its kth homo- 
geneous part by C. Thus, any algebraic complement of the orthogonal comple- 
ment of Q c~/7 o occurs as P c~ H ~ for some homogeneous PelP(Q). This shows 
that the homogeneous spaces in IP(Q) determine the orthogonal complement 
of Q ca//o (in /7o), hence determine Q ca/7 0 for every k, therefore determine 
Q. 

6 The D-invariance case 

In the case of the Lagrange interpolation problem IP(O), the linear functional 
space is the exponential space Expo, hence is always D-invariant. The D-invar- 
iance of the linear functional space is equivalent to A• being an ideal, and 
thus allows us to employ some elements of ideal theory for the analysis of 
A• This point is pursued in the present section. 

We begin with some general remarks about D-invariant subspaces of H'. 

(6.1) Proposition. Let A be a subspace of lI'. Consider the following: 
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(a) A is D-invariant; 
(b) A• is an ideal (in H). 

Then (a)~(b), and, if A is closed, then (b)~(a)  as well. 

Proof For ~7/~+, we consider the map 

(6.2) Z~: / / ~ F / :  p~-~()'p. 

Since <2, ()'p>=<D=;~, p> for every p c / /  and 2~17', by (2.3), the map X ~ is 
the transpose of the map D~: 11' --, 17'. This implies that A is an invariant subspace 
of D" if and only if A• is an invariant subspace of ;(~ (with the "if" implication 
making use of the fact that A =A• l, namely that A is closed). In particular, 
A is D-invariant, (i.e., invariant under all possible D ~) if and only if A• is invariant 
under all possible Z ", i.e., is an ideal. [] 

In general the annihilator A• of a given linear functional space A is infinite- 
dimensional, hence a characterization of A in terms of its annihilator requires 
infinitely many conditions. The D-invariance assumption changes the situation: 
since A• is a polynomial ideal, it is finitely generated, say by G c/7 .  The finitely 
many polynomials in G characterize the (closure of the) original space A, if 
we regard them as differential operators rather than linear functionals. Precisely, 
for G c / / ,  defining 

ker G,={).~FI': g(D) 2=0,  Vg~ G}, 

we have 

(6.3) Proposition. For a subset G of 17, let I~ be the ideal (in 11) generated 
by G. Then 

(6.4) ker G = I~ • 

In addition, p~I~ if and only if the differential operator p(D) vanishes on ker G. 

Proof For 2~FI' and with Iv:=pll, 

(6.5) p (D) 2 = 0 

.~<p(D),:,()O =o, v~E~~_ 

<~<z,()~p>=O, v ~e 7z% 

,r 2~1p • 

where the equivalence of the second and third statements is a consequence 
of (2.3). Thus (6.4) follows from the fact that 2~I(~ • if and only if 2elp • for 
all peG. 

The other statement follows from Corollary 3.28, since ker G is D-invar- 
iant. [] 

The linkage between kernels of differential operators and annihilators of 
linear functionals that was obtained in Proposition 6.3 allows us to convert 
some of the results of Sect. 4 to the present context. 

The following is a rewrite of Theorem 4.11 in the language of this section. 

(6.6) Corollary. Let G be a polynomial set, and p a polynomial. 

(a) I f  p(D)((ker G)~)=0, then q(D)(ker G)=0, for some qEH with qt =P~; 
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(b) I f  p (D) (ker G) = 0, then p~ (D) ((ker G) ~) = 0. 

Next, substituting P = I ~  into Theorem 4.8 (and using (6.4)), the following 
corollary is obtained from Proposition 6.3. 

(6.7) Corollary. Let 1~ be the ideal generated by the subset G of~7. Then 

(6.8) (ker G), = (I~)t • 

The above corollaries (which were first established in [BR2]) are useful 
tools in the analysis of certain interpolation problems, and, moreover, admit 
important applications in other areas of Approximation Theory (e.g., box 
splines). We first comment on the connection of Corollary 6.6 to polynomial 
interpolation. 

Suppose that our original polynomial interpolation problem is reversed. 
Rather than having the linear functional space A as given, we hold a (D-invariant 
and, say, finite-dimensional) polynomial space P, and seek (say Lagrange) inter- 
polation problems IP(O) whose least solution H a coincides with the given P. 
S ince / /~  is always homogeneous, we must assume that so is P. Assume that, 
further, a collection F of polynomials for which ker F = P has been identified 
(the case might be that P is not known explicitly and is a priori defined as 
ker F for some F c H). Since P_ is homogeneous, we may assume without loss 
that all the polynomials in F are homogeneous (otherwise, each one of them 
can be replaced by its homogeneous components). Now, we perturb F in the 
following way: with each h e F we associate g e/7 that satisfies g r = h, thus obtain- 
ing a new set G of (possibly) non-homogeneous polynomials. By construction, 
F ~ (IG)~, hence also I~. c (I~)t, and hence 

(ker f = )  IF• 

Combining this with Proposition 6.3 and Theorem 4.8, we arrive at the following. 

(6.9) Corollary. Let F be a set of homogeneous polynomials, and let G c H be 
such that F c {gr" geG}. Then 

(6.1O) ker F ~ (ker G)s. 

Since we are assuming that P = k e r  F is finite-dimensional, so is (ker G),. 
Moreover, in order to get equality in (6.10), it suffices, in view of Proposition 
4.4 (for the choice A ~=ker G), to show that dim ker F < d i m  ker G. 

If only F and G are known (i.e., if the original polynomial space P is known 
only implicitly, i.e., is defined as ker F), it may be hard to estimate either dim 
ker F or dim ker G. On the other hand, it might be easier to find (at least some 
of) the exponentials eo in ker G. This is so, since e0eker G if and only if 0 is 
a common zero for the polynomials in G, (equivalently, the point 0 lies in 
the (affine) algebraic variety of the ideal IG). If G vanishes on some O c R  ~, 
then each of the exponentials e0, 0cO,  lies in ker G, and we get the simple 
estimate dim ker G > 4~ O. These observations lead to 

(6.11) Corollary. Let F be a homogeneous polynomial set, and G a polynomial 
set satisfying F ~ {g~" g~G}. Let 0 be a finite set of common zeros of G. Then 

(a) ker F ~ 17 o; in particular dim ker F > ~ O ( = dim 17o). 
(b) I f  dim ker F = :~ O, then 
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(bl) ker G = Expo :=span {e0}0~o; 
(b2) ker F is the least solution for the Lagrange interpolation problem IP(O), 

i.e., ker F = Ho. 
The last corollary admits various applications. As a first setting, assume 

that a (finite-dimensional) polynomial space is defined as the joint kernel ker F 
of some homogeneous differential operators. The first part of Corollary 6. l l  
provides a way to obtain a lower bound for the dimension of ker F in terms 
of the cardinality of the variety of the ideal I G. This results [BR2]  in a painless 
derivation of the lower bound for the dimension of the space I I (M) of all polyno- 
mials in the span of the integer translates of a box spline M. If G is chosen 
in such a way that also (b) is valid, one obtains a way to construct a basis 
for ker F: if O is known and ker F = / 7  o, then we only have to apply one of 
the algorithms [BR1, BR3] that compute 17o from O. This leads [BR2] to 
an algorithmic way to construct a basis for the above-mentioned FI(M), by 
an application of these "least map algorithms" to the (explicitly known) expo- 
nential space in the span of the integer translates of a suitably chosen exponential 
box spline. 

We mention in passing that, in [BDR],  Corollary 6.11 is exploited in a 
different way. The main result of [BDR] shows that a certain explicitly known 
polynomial space P (of significance in box spline theory) is ker F for very simple 
polynomials F (each of which is a power of a directional derivative). Perturbing 
the polynomials in F in a suitable way, we obtain there a polynomial set G 
whose common zero set O constitutes the integer points in the support of a 
box spline. It then follows from Corollary 6.11 that P = I I  o. The various known 
properties of P (e.g., its homogeneous dimensions) provide in this way a better 
understanding of the interpolation problem IP(O) (which was previously consid- 
ered in [DM]), leading thereby to some optimality results for box splines. 

When we want to adopt such an approach in general, we encounter at 
least two essential difficulties. In the first place, for the given D-invariant homoge- 
neous space P, we need to find a set F of reasonably simple polynomials such 
that ker F = P .  Then, we need to find a way to obtain a perturbed set G with 
(at least) dim ker F common zeros. Even then, there is no guarantee for the 
resulting interpolation problem to be of any interest. 

7 Reduction to the Lagrange interpolation problem 

Finding the space 17o that solves the Lagrange interpolation problem associated 
with the finite O may appear to be very hard in general. Nevertheless, the 
results of the previous section exhibit the fact that certain tools and observations 
can be applied to facilitate the study of D-invariant interpolation problems, 
and this is particularly true for the Lagrange interpolation problem because 
of its explicit structure. It is therefore useful, especially for an interpolation 
problem IP(A) which is not D-invariant, to identify the space A 1 with a certain 
/ /o space, or one of its subspaces. We describe in this section a certain effort 
in this direction, and discuss some specific examples corresponding to this setting. 

We start with the following simple fact: 
(7.1) Proposition. Assume that M ~ c~ N ~ =O for some subspaces M, N c ll'. Then 
M + N is direct, and 

(7.2) (M + N)~ = M ~ O N ~. 
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Proo(. This is a consequence of Lemma 4.5, but here is a direct proof. If 2 ~ M ~ N, 
then )~ ~Ms ~ N ,  hence ,i s =0,  hence also 2=0,  and the sum M + N  is indeed 
direct. Further, the sum M s +N+ is direct by assumption, and is included in 
(M +N)  l , by the monotonicity of the least map (cf. (3.5)). 

To prove the opposite inclusion, note that since M; c~ N s =0, we must have 

ord(/l + v) = min {ord #, ord v} 

for g E M and v E N, since otherwise/~ ~ + v ~ = 0 and hence/l I ~ M ~ c~ N s. It follows 
t h e n t h a t ( / ~ + v ) l e { / ~ l , v l , # l + v s } ~ M s + N  ~. [ ]  

Next, we discuss the following instructive example. 

(7.3) Example. Let s = 2  and assume that O is a finite set in the right half 
plane. We use here (u, v) for the generic point in I/2. We associate with each 
0~O the line integral 

0~ 
~o: P~--~ ~ p(t, O2) dt, 

--01 

i.e., each integration segment is horizontal and symmetric across the v-axis. 
The corresponding generating function is then (up to a multiplicative constant) 

for(U, v)=eO~ L, sinh(01u). In view of Proposition 3.9, we may obtain A s in 
u 

the form Ms~u, with M v the exponential space 

(7.4) M v ,=span {(u, v)~--,e ~ sinh(01 U)}o~o. 

This space has dimension # O  and is a subspace of Expx, with T , = O u O ' ,  
and O' being the image of O under reflection across the v-axis. Furthermore, 
the monomials appearing in the power expansion of each of the basis functions 
of M v in (7.4) contain exclusively odd powers of u. On the ether hand, defining 
N by 

N v :=span {(u, v)~--~e ~ cosh(01 u)}o~o, 

we get another subspace of A, and all the monomiats appearing in the power 
expansion of any y e N  have only even powers of u. Hence M s c~N l =0. Since 
M + N = E x p r ,  we obtain from Proposition 7.1 that l I r=(Expr)s  = M  t |  l, 
which implies that M s consists of all polynomials in //T which are odd in 
u. Application of Proposition 3.9 then yields the following: 

A; is the subspace of FIT/U consisting of all polynomials which are even fi~nc- 
tions in u. 

Assume further that O here lies on the right unit semicircle. Then T lies 
on the unit circle, and Theorem 3.26 implies that H~ consists of harmonic polyn- 
omials. Further, since # T is even ( = 2 ~ O = : 2 n ) ,  /7T contains all harmonic 
polynomials in /7,_ 1 and one homogeneous harmonic polynomial of degree 
n. The description of A s given in the previous paragraph thus implies that 
A s c~ 17,_ 2 is spanned by the polynomials 

Im (i u - v)~, k = 1, 2 . . . . .  n - 1. 
U 
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Since dim A s = # O = n, we must have an additional polynomial in the space, 

necessarily of degree n - 1 ,  namely the polynomial Im ( iu -v ) " .  Since the space u 
of all homogeneous polynomials of degree n in/7 T has dimension l, it is necessar- 
ily spanned by Im(iu-v)", regardless of the distribution of O. Note that we 
have obtained a complete description of F/T for T= O w 0', and tha t /7  T depends 
on ~ O, but not on the distribution of the original O. [] 

In the rest of the section, we consider spaces A which are the composition 
of a single univariate power series with a collection of s-variate homogeneous 
polynomials. To avoid possible confusion between the aforementioned univariate 
power series and elements of H'(IRg, we use the letter ~o exclusively for the 
former. The setting is of interest, primarily since it includes every Lagrange 
interpolation problem IP(O); there the univariate power series (p is the exponen- 
tial function 

e: t~--~e t, 

and the homogeneous polynomials are the linear polynomials 

xF-~Ox, OeO. 

For  a power series 2, we use K a to denote its support, i.e., 

(7.5) K; .'={a~Z~+ : ~(2)*0}, 

with ~(2) the ~th coefficient of 2; cf. (2.1). Thus, K ~ c ~ + ,  for any univariate 
~o. We assume that the linear functional space A ~ H' is of the form 

(7.6) A = span {~oog: g~G}, 

where q~ is some univariate power series and G c H ~ for some k. 
The basic observation concerning the setting (7.6) is recorded in the following 

proposition. 

(7.7) Proposition. Assume that A c11' is of the form (7.6). Then the space A s 
depends only on G and K~, hence is independent of the specific (non-zero) values 
{~(~o): ~ K o } .  

Proof Each homogeneous polynomial in A~ has the form 2 s for some 
2 =  ~ c~ q~og. Since the g's are all homogeneous and of the same degree, say 

g~G 

k, each ~p o g is graded in the form 

(7.8) ~pog= ~ j(cp)gJ, 
j6K~ 

where gJ is homogeneous and of degree jk. This implies that the decomposition 
of 2 into its homogeneous terms takes the form 

= y ,  
j~Kr 
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with rj being the homogeneous polynomial ~ c~gJ, hence is independent of 
gEG 

cp. Since, up to the non-zero multiplicative constant j(~p), 2~ is the nonzero 
rj of smallestjEK~, our claim follows. []  

In view of this proposition, we make the following definition : 

(7.9) Definition. Let G be a finite set of homogeneous polynomials, all of the 
same degree, and let K be an arbitrary subset of2g+. We define 

/ / r ,  ~ :=(span {q0 ~,g: g~G})~, 

with ~0=pr  some (any) univariate power series satisfying K o = K .  In case G 
= {0"}0~o for some Oc IW,  we use 

/ ] r , o  
rather than FIr.G. 

The space / / r .~  is well-defined by Proposition 7.7, and / / z , . o = / T e .  We 
record this in the following corollary: 

(7.10) Corollary. Let O=IR ~ be a finite set, and (p a univariate power series 
that satisfies K ~ = Z + .  Then, for A ,=span {0(0")}o~o, we have 

(7.11) A+ =Ho. 

The above corollary follows indeed from Proposition 7.7, since K~=2g+ for 
the univariate exponential function e, and the functions {0. }0 are all homoge- 
neous and linear. 

The next result provides information about the case when K forms an arith- 
metic progression, i.e., the case when K = k + n2~+ for some non-negative integers 
k, n. In this theorem we make use of the polynomial space II o for a finite 
complex 0 c C ~, which is defined in the same way as in the real case (the only 
difference being t h a t / I  o, rather than 1I o itself, solves IP(O)). Also, for a fixed 
positive integer n, we define on C s the following equivalence relation 

0 ~ 0 . ~ 0 = ~ 0 ,  forsome ~e(12 with ~"=1. 

We denote by [0] the equivalence class containing 0, and by O' any subset 
of O c I12 ~' which contains exactly one representative from each equivalence class 
[0], 0e O. 

(7.12) Theorem. Let 0 be a finite subset of (E S, n be a positive integer and 

0 < k < n .  Let ~ be a primitive nth root of unity (say ~=e2~i/n). Set T:= ~) ~JO 
j = l  

and K :=Kk :=k + n~+. Then (a) F/K, o = (Gk)t, where Gk ,=span {go: 0E O}, with 

(7.13) 

(b) I f  0 r O, then 

(7.14) 

In particular, 

go:=gO.k '= ~ ~ Q J O "  
j = l  

dim Hr,  o = 4t= O' = # T/n. 
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(bl) dim FI K, o = q# 0 if and only if the sets { ~k O } ~- 1 are pairwise disjoint; 
(b2) for  real O, dimHK, o= # O  if and only if either n is odd, or else n 

is even and 0 c~ ( - O) = O. 

(c) IlK, o is spanned by all homogeneous polynomials in IlT where degree is in K. 

Proof  Since ~ is primitive, (r 1 are the n different characters of the group 
7/,, and hence, for every non-negative m, 

(7.15) ~ ~ ~"q:4=O <=> k = m m o d n .  
j = l  

Since each of the homogeneous terms in the power expansion of go has the 
form 

( 0 . ) l  . 

l! Z ~ # ,  
j = l  

we conclude that 

go = Z c(m)(O') ~+~ 
trtET,~ 

for some 0-independent non-zero coefficients c(m), and (a) follows from the defini- 
tion of IlK, o. 

(b) The fact that 4+T=n 4# O' readily follows from the observation that 0eT 
iff [0] ~ 0'4=0, which implies that T = U [0]. Since, with go and Gk as above, 

0 c O '  

goeExPtol, we conclude that {g0}0Eo, are linearly independent. On the other 
hand, one checks that, for 0 ~ O, the functions go and go are dependent (regardless 
of the underlying k). Therefore, dim Gk = 4+ 0 ' ,  and hence, by Proposition 4.4, 
also dim IlK, o= 4+ 0'.  This proves (7.14), which implies the rest of(b). 

n - - 1  

To prove (c), it suffices to show @ HK~,o=-fiT. By (a), Gk~= HK~,O. Also, 
k = 0  

it is clear that g0~EXpr for every 0~O, hence, GkcEXpT, and, by the monoto- 
nicity of the least map, IIK. o c Hr .  On the other hand, the sum 

n 1 

k = O  

of subspaces of HT is direct, since each IIK~,o is spanned by homogeneous 
polynomials of degrees eKk, and the sets Ko . . . . .  K,-1 are pairwise disjoint, 
and, consequently, 

n - 1  

(7.16) @ llK,,,oC FiT. 
k = O  

If OCT, then equality must hold in (7.16), since, by (b), 

n - 1  

d i m / / r  = ~ T = n 4~ 0 '  = Y, dim IlK~, O" 
k = O  
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But this readily extends to the case when OcT, since adding 0 to T adds constants 
; G  l ~ -  1 to Exp. ,  hence does not affect ~ kSk= ~, and increases dim Go by 1, hence also 

increases dimIIro,O by 1. [] 

Remark. The observation, just made at the end of the proof of (c) of Theorem 
7.12, implies that also the exclusion of 0 from O in part (b) of Theorem 7.12 
was for convenience. Addition of 13 to the set O will increase dimHKo, o by 
1, and will leave all other IIK~ o unchanged. 

The following example provides some illustration for the last result. 

(7.17) Example. Let O:={+_0} for some 0c(12~\0 and let n=2,  k = l .  Then, 
by Theorem 7.12, d im/ /2g+~,o= 1. Indeed, we find that the linear polynomial 
(0.) is in H2e+~,o, yet no higher-degree polynomial is in this space, since a 
dependence relation c~(O.)+Cz(-O')=O implies that ca(O.)J+c2(-O'),i=O for 
every jc2)Z + 1. 

We also note the following interaction of the spaces H,e+k. o with differentia- 
tion: 

(7.18) Proposition. Let p be a homogeneous polynomial of degree m. Then, in 
the notations of Theorem 7.12, 

p(D) HK~, o ~ Hr(k ,,),,o, 

wherej ,  c{0, ..., n -  1} is the residue ofj  rood n. 

Proof It suffices to prove the result for p=()~, Ic~l=m. Let go, k be as in (7.13). 
Then 

D~go, k=O~ ~ ~ ~ --n~, ~ b "~;5,JO - v  I S O , ( k - m ) n ~ ' ~ ( k  re)n" 
j = l  

C Therefore, D Gk G(k_m) . ,  and thus combining (a) of Theorem 7.12 with (3.16) 
and (3.5), we obtain 

D~HK~.oc(D:Gk)~ ~(G(k-~).)S =HK(k_~).,O. [] 

We end this section with the following application of the above results. 

(7.19) Example. Let {#0}0~o be a finite set of line integrals of the form 

b 

(o:p~--~ ~ p(~+tO) dt, 
a 

where OeOcN~\O, tlclR ~, a, bMR, and 17, a, b are 0-independent. In this case, 
the generating function associated with f0 has the form 

ebo - -  eao 
to" =e~ (0") 

Set 

A ==span {~0}0~o. 
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W i t h  q0 the univar ia te  funct ion 

qo : t w-~ - -  
eb t_e  at 

t ' 

we observe that  A v = e ,  span{o (0"  )' 0 e O } .  F r o m  Propos i t i on  3.9, we conc lude  
tha t  

A~ = (span {~p(0"): 0e O } ) s ,  

and  thus  A s is of the form ITr~,o. Since K~o=2g+ unless a = - b  (we exclude 
the tr ivial  case a=b) ,  in which case K e = 2 Z + ,  we thus  conclude  f rom T he o re m 
7.12 the fol lowing 

(7.20) Corol lary .  In the terms jus t  introduced, 

A ~ = ~  Ho,  ij" a 4 = - b ;  

1 ( span{cosh (0 - ) :0EO})+ ,  ![ a = - b .  

The least space associated witk the latter case consists of  all even functions in 
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