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0 Introduction 

We express the solution to the Cauchy  p rob lem of the wave equat ion 

U u = O  

ul t=o = go, Ult=O = g l  

a s  

u ( t )  = E o ( t ) g  o + E l ( t ) g ,  �9 

Then the LV-estimate (Petal [10]) and the LP-Lq-estimate (Strichartz [14]) of  the 
opera tors  Ej(t) (j = 0, 1) are well known.  These estimates are used to show the 
regularity propert ies of the solution (LP-estimate) and to prove the existence of the 
global solution in case that  the wave equat ion has such per turbat ions  as semi- 
linear term or potential  term (LV-Lq-estimate). 

The subject of this paper  is to extend them to more  general hyperbolic 
equations 

(Pu  = 0 
(CP) 

( D / U l , = o = g j  ( 1 = 0 ,  1 . . . .  , m - -  1). 

Here the opera to r  P = P(Dt, Dx) is associated with a homogeneous  polynomial  
p(z, 3) = (z - r �9 �9 (z - r of order  rn ((z, 3) ~ R x R"), and the character-  
istic roots  {qh}7=l are ordered as r > . . .  > ~0m(~) (3 # 0). Then the solution 

rn--1 

u(t) = ~ Ej(t)O j 
j = O  

to the p rob lem (CP) is of the form 

(1) Ej(t) = ~ F -  1 eit~,(Oat,j(r 
/ = 1  

* Dedicated to Professor Tosinobu Muramatu on his sixtieth birthday 
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(j  = 0, 1 . . . . .  m -  1), where the functions az,~ is homogeneous of order - j  and 
F (resp. F - l )  denotes the Fourier (resp. inverse Fourier) transform. Since we can 
see that the symbol ~T= 1 e~t*ar has no singularity at the origin, our problem 
is reduced to 

Question. When is the operator 

Mk(D) = F-lmk(~)F; mk(~) = e i~(O]~l -kz (~)  

LP-bounded (1 < p < ~ ) or LP-LP'-bounded (1 < p =< 2, lip + tip' = 1)? Here the 
function q~(~) ~ C'~(R"\0) is homogeneous of order 1 and positive, and the function 
Z(~) e C~(R ") equals to 1 for large [(I and vanishes near the origin. 

We remark that the general LP-Lq-boundedness (1 < p __< q < ~ ) is obtained 
from the analytic interpolation of the L p and LP-LP'-boundedness, and the LP-L q- 
boundedness (1 < q < p < oo ) cannot be obtained unless Mk(D) = 0 (H6rmander 
[6, Theorem 1.1]). 

In this question, geometrical properties of the hypersurface 

Z = {~eR"; q~(~)-- 1} 

are important since the singularity of the kernel of the operator Mk(D) is related to 
them. There is an answer to the question above in a favorable case, due to Littman 
[8], Brenner [4] and Miyachi [9]. 

Theorem A. We assume that the Gaussian curvature of the hypersurface Z never 
vanishes. Then 

(a) The operator Mk(D) is LP-bounded provided k ~ (n - 1) ~ - ~ .  

(b) The operator Mk(D) is LP-LP'-boundedprovided k > (n + l ) ( ~ -  ~). 

These results are optimal in the sense that the operator Mk(D) with ~p(~)= I~l is 

not LP-bounded (resp. LP-LP'-bounded) provided k < ( n - 1 )  ~ -  ~ (resp. 

When we estimate the solution to (CP), the case m = 2 (e.g. wave equation) 
corresponds to the case that the assumption of Theorem A is satisfied (Remark 3). 
But, to higher order equations, we must remove the assumption on the hypersur- 
face I2. Recently, there are some papers dealing with this subject (Beals [2], Seeger 
et al. [12], Sugimoto [16]). Especially (a) in Theorem A has been proved without 
the assumption [12]. 

Then our next aim is to prove (b) similarly without the assumption, but we 
claim in this paper that it is impossible. This is the essential difference between the 
LP-boundedness and the LP-LP'-boundedness. 

Before going into details, we shall begin with a trivial result. If we combine the 
LP-L 2 and L2-LP'-boundedness of the Riesz potentials (Hardy-Littlewood- 
Sobolev's theorem, see Stein [13]) with the L2-boundedness of the operator Mo(D) 
(Plancherel's theorem), we have 
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(b') The operator Mk(D) is LP-LV'-bounded provided k > 2n(~ - ~). 

There is a great gap between (b) and (b'), but the following result, due to Brenner 
[5], fill it to a certain degree. 

Theorem B. Let p =min~.orankq~"(~) .  Then the operator Mk(D) is LV-L p'- 

b o u n d e d p r o v i d e d k > ( 2 n - p ) ( ~ - ~ ) .  

We remark  that  we obtain the inequality 0 __< p __< n - 1 f rom the homogenei ty  of 
the function (o(~). The mos t  favorable case p = n - 1, which is equivalent to the 
condit ion that  the Gauss ian  curvature  of the hypersurface 2; never vanishes, 
corresponds to (b) and the most  unfavorable  case p = 0 to (b'). 

Theorem B, however,  makes  no contr ibut ion towards  the boundedness  of the 
opera tor  Mk(D) with 

(2) ~0(~) = (~t zN + ~N + . . .  + ~2N)l/(2N), (N = 1,2 . . . .  ) 

since p = 0 (resp. p = n -- 1) provided N > 2 (resp. N = 1). Is this result opt imal  for 
this special case? 

In Sect. 1, our  main theorems (Theorems 1 and 2) say that  a geometrical  
proper ty  of  the hypersurface I; has an essential effect on the LP-LP'-boundedness.  
As a special case, we have 

Theorem C. The operator Mk(O ) with q)(r as equality (2) is LP-LV'-bounded if and 

only if k>= 2n ~ - . 

This result suggests that Theorem B is not  necessarily a good scale which inter- 
polates the results (b) and (b'). 

In Sect. 2, we shall show that  the geometrical  p roper ty  stated in main  theorems 
is derived only f rom the order of the opera to r  P in (CP) under  a convexity 
condit ion for characteristics (Theorem 3). Because of this fact, we can easily apply  
our  theorems to the prob lem of higher order  equations,  and  show a priori  est imates 
for them (Theorem 4). They  are extension of the results of Strichartz [15] which 
treats the wave equation.  

1 LP-LP'-estimates 

Let 2; be a hypersurface in R", and let T b e  a tangent  hyperplane  at the point p s 2;. 
Then for any plane H that contains the normal  line of Z at p, the line 
Tc~ H tangent  to the curve 2; c~ H. We denote the order  of this contact  by 7(2;; 
p, H), and set 

y(X) = supT(Z;p ,  H ) .  
p,H 

For  example,  we have 7(2;) = 2N for the hypersurface Z = {~ ~ R"; ~o(~) -- 1} with 
q~(r = (~N + ~2zN + . . .  + ~zu)l/(2N) (N = 1, 2 , . . . ) .  

Now, we shall state the boundedness  of the opera to r  Mk(D), which is an answer  
to question in introduct ion.  
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Theorem 1 We assume that the hypersurface S = {4 ~ R"; q~(r = 1} is convex. Then 
the operator Mk(D) is LP-LP'-bounded (1 < p < 2, 1/p + 1/p' = 1) provided 

k >  2n 7(27 ) , ] \P  . 

Remark 1 If the Gaussian curvature of the hypersurface 2~ never vanishes, then E is 
convex (Cf. Kobayashi  and Nomizu [7, Chap. 7]) and 7 ( E ) =  2. Accordingly, 
Theorem 1 contains (b) in Theorem A as a special case. 

Remark 2 The convexity, real analyticity, and the compactness imply that the 
hypersurface Z is strictly convex, that is, every tangent plane of Z never lies on 
Z except for the tangent point. Then the order  7(Z) is finite and even. 

This result is optimal in the following sense. 

Theorem 2 The operator mk(D ) with q g ( ~ ) = ( ~ u +  ~ u + . . .  +~zu)l/(2u) 

(N = l, 2 . . . .  ) is not LP-LP'-bounded provided k < 2n ~ - . 

We shall prove Theorem l. Since the case n = 1 is trivial, we may assume n > 2. In 
the following, the capital "C" (with some suffices) in estimates always denotes 
a positive constant (depending on the suffices) which may be different in each 
occasion. 

First of all, we introduce the Besov spaces B~,q defined by the norms 

- '  j II v I[ ll~, <, = ( 2j~ 11F dPj(~)Fv II LP) q~l/q �9 
7 

r oo Here { j}s=l is a part i t ion of unity of Li t t lewood-Paley.  For  more information 
about  these spaces, see, for example, Bergh and L6fstr6m [-3]. Then the following 
lemma is important ,  which is a special case of [3, Theorem 6.4.4]. 

Lemma 1 We have the continuous inclusions L p c B~ (1 < p < 2) and Bp,,2~ ~ L p' 
(2 < p' < ~) .  

By virtue of this lemma, our problem is reduced to the proof  of the estimate 

(1.1) II Mk(D)~s(D)u II L,,, < c II u I/,y 

with k = 2n ~(~-) ) \ P -  . Here the constant  C is independent  of the 

numbers  j = 1, 2 . . . . .  If we write 

+s(~) = 4~s(~) 7~ ( ~ )  

with a function 7J(t) ~ C~  (t > 0), we may  prove estimate (1.1) with the opera tor  
# j (D)  replaced by 7J(~o(D)/2J). Since estimate (1.1) with p = 2 is trivial by the 
Plancherel theorem, the estimate with p = 1 yields the general case by the analytic 
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interpolation. Hence, all we have to show is the L~-estimate for the kernel of the 
operator Mk(D)~(qo(D)/2J), that  is, the estimate 

n - 1  
with k = n - - -  

,/(22) �9 

On the other hand, 

-<C 

by the compactness of the sphere S ~ 1 and the 
rotation invariance of the geometrical properties, we may a s s u m e  mk(~)= 
eieCr with a homogeneous  function ak(( )  of order - - k  supported in a 
sufficiently small open conic ne ighbourhood of the point  e, = (0 . . . . .  O, 1) e S "-  1. 
Then we have only to pay attention to x near the point  - Vq~(e,) e R", because the 
equality 

1 ~(~) 

holds for all positive integer I. Here 

L -  

and L* is the transpose of L. 

(x + V~0). Vr 
i l x  + Vq~l 2 

Now, we may express the hypersurface Z locally as 

X = {(y, h(y)); y ~ U} 

by the implicit function theorem since Euler's identity q~(e,) = e," Vq~(e,) > 0 yields 
r = q0(e,)> 0. Here U c R "-1 is an open ne ighbourhood of the origin 
and h: U ~ R is a real analytic function. The strictly convexity of the hyper- 
surface 22 (Remark 2) implies that the function h is concave and the map 
h': U ~ h ' ( U )  c R "-1 is homeomorphism.  

In this situation, we shall rewrite estimate (1.2) in terms of the function h. For  
x near the point  - Vq~(e,), we define z ~ U by Z ~ (z, h(z))  = v - l (  - x / ] x t ) .  Here 
the map 

v : 2 2 ~ p ~  V~~ e S " - I  
IVq~(p)l 

is the Gauss map of the hypersurface 22. If we write x = (x', x.), x' = (xl . . . . .  x ._  1), 
it is equivalent to the equality 

X r 
h'(z)  - 

Xn 

because of the trivial equality - x/ I  x[ = V q~/IVcpl(z, h(z))  and of the fact that  the 
vector ( - h'(z), 1) is normal  to the hypersurface Z at the point  (z, h(z)).  We remark 
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that  the variable x.  is away from 0 by Euler 's identity again. Then, by the change of 
variables ~ w-. (ty, th(y)) and t ~-~ x .  1 t (t > 0, y 6 U), we have 

~0(~) 

Here 9 e C ~ ( U )  is a function which is suppor ted  in a sufficiently small neighbour-  
hood of the origin. Hence, we have for x near  the point  - Vq~(e,) 

=<CSo {! eit'';'+h(')-h''z''y,g(y)dy'~( \2~f~x~/l~t "-'-k dt 

2-r2. . ' 0 

where 

(1.3) I ( t ; z )  = ~ e'tE(Y;Z)9(y)dy; E(y;z )  = h(y) - h(z) - h ' ( z ) ' ( y  - z ) .  
R n - I  

I f  we combine  this inequality with the est imate 

(1.4) [I(t,z)[ < Ct .~(r) (t > O,z~  U ) ,  

we have est imate (1.2). 
Now,  we shall prove  est imate (1.4). We rewrite equality (1.3) with the polar  

coordinates  as 

l(t;  z) = ~ G(t; z, ~o)dm; G(t; z, m).= S e"r(P;z'w)fl(p; z, m ) d p ,  
S ~ -  2 0 

where 

F ( p ; z , m )  = h(poo + z) - h(z) - ph'(z).~o, fl(p; Z, cO) = g (pe )  + z ) p  n-  2 

For  the sake of simplicity, we shall often abbreviate  parameters  z and o~. We split 
the function G(t) into the following two parts: 

Gl(t) = eitF(')fll(p,t)dp; f l l ( p , t ) =  fl(p)tp(t~(Z)p), 
0 

G2(t) = eltF(~ t)dp; fl2(P, t) = fl(p)(1 - O)(t•(Z)p), 
0 
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where the function O ( p ) � 9  C~(R)  equals to 1 for large p and vanishes near  the 
origin. The est imate for the par t  G2(t) is easy. In fact, we have 

162(01 _-< ~ 1fl2(P, t ) ldp  
0 

=< C ~ Ip"-2(1 - @XtTIZ)p)ld p 
0 

n - I  

<_ Ct  ,~(z) 

On the other hand, integrat ion by parts  yields 

G1 ( t) = ~f eitV~P)(L * )l fll (p, t) dp 
0 

for I = 0, 1, 2 . . . . .  Here 
1 

L -  
i tF ' (p)  Op 

and L* is the t ranspose of L. By induction, we can easily have 

~-t i V ~ . . . . .  p F (=') F (sp) U 
. . . . .  0p" 

where the summat ion  ~, is a finite sum of r, p, sl . . . . .  sp > 0 which satisfy 
r + sl + . . . + s p =  l + p. T h e n  we  shall use 

L e m m a  2 Le t  6 > 0 be sufficiently small. Then there exis t  constants  C, C,, > 0 such 
that the es t imates  

[F'(p)] >= CO 7~:~) 1, 

IF(m)(p)l < C m p l - m ] F ' ( p ) ]  

hold for  0 < p <= 6, [z] _-< 6, co �9 S =-2, and m = 0, 1, 2 . . . .  

Proof. The following proof  is essentially due to Randol  [11, Lemmas  4, 5]. First we 
note that  the function F(p)  is real analytic for fixed z and co. For  the expansion 

oo j 
F(p) = ~ i = 2  aj(z, co)p , we set 

r~(p) = ~., I jaj(z ,  co)lp j - 1  . 
j=2 

Since the definition of the order  7(Z) yields Vy(~) aj(z, co)[ 4: 0, we have the ," ~ j = 2  

estimate 

(1.5) n(p) ~ Cp y(z)- 1 

for 0 _< p < 6, Izl < 6 and co �9 S"-  2. Here  6 > 0 is sufficiently small and the constant  
C is independent  of p, z and co. Accordingly all we have to show is the estimates 

(1.6) IF'(p)I > O n ( p ) ,  

(1.7) IFr ~ C m p ' - m r c ( p ) .  
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j~ 
Now,  we write F(m)(p) = Zj=m(j Z m)! aj(z, to)p j-re. Then we can easily have 

~(~) j! ~o)pj-m j~=m (J Z m)! a j (z ,  ~ Crop 1 -mTt(p) . 

As for the remainder  term, we use Cauchy ' s  est imate,  that  is 

~ j  - -  m ) :  j! ~o) ~ a j ( z ,  < (26) -(j-ml max [F(m)(ff)[ 
[gl=2a 

< c=(2a)-(J-m).  

Here the cons tant  Cm is independent  of z, co and j. Then we have 

( 1 . 8 )  " - 5 c m  
1 ( J  j = ~ ( ~ ) +  t 

< C p r ( ~ ) + l - m  

< Cmp2-mr~(p) 

for 0 < p < 6. Here we have used estimate (1.5). Combining these estimates, we have 
estimate (1.7). On  the other  hand, by the concavity of the function h(y) and the equality 
F'(0) = 0, we can see that  the function IF'(p)l is non decreasing. Hence we have 

IF '(p)I  = max  ]F'(t)l 
O<t<p 

7(~) 1 j=, (,g~) +1 ] > max ~ jaj(z,@d- - max  jaj(z,~o)d -1 
O < t ~ p  j=2 O ~ t < p  

r(~)=2 t j -  1 > max ~ja j ( z ,@p J-1 - 6 1  max  Itn(t)J 
O<t<l j O ~ t < p  

>_ (C  - -  C l p ) 7 : ( p )  . 

~,(,Z) j -  1 Here we have used the compat ib i l i ty  of norms  m a x o < t < l l ~ = t k j t  [ and  
xp~(~) it. I ,~, ~r(z) ~n,4 used es t imate  (1.8) with m = 1. Thus we have es t imate  (1.6) Z.,j= 1 t'UI . . . .  , ~ 
for sufficiently small  p and finished the p roo f  of L e m m a  2. 

If we use L e m m a  2 and the es t imate  

a ~  t) Cph-2-r 
Tpj ,  (p,  < , 

we have for large number  I and  a cons tan t  c > 0 

C ~IF(*')  F(*~ ) r t) dp 
= ' Op' tP, 

<-- TC ~p._2_l~(X)d p 

ct ~'(~) 

n - I  

~_ Ct ~(z) . 

Hence we have es t imate  (1.4) and  finished the p roof  of Theorem 1. 
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In the next place, we shall prove Theorem 2. For positive 
f e  Cg(R"-~)  and 4)~ C~(R) such that f(0), ~b(1) 4= 0, we set 

u~(x) = (2~)~2 j('n2Nl-n)(1 ~)F ~[f(2 ~(" ~ -  ~){')q~(2 J{.)](x), 

functions 

�9 , ~o i w h e r e { = ( { ' , { , ) , { ' = ( ~ , . .  { ,_~) .Thenwecaneas i lysee tha t these t{uj} j=  o s 
bounded in the space L ~. On the other hand, if s u p p f  and supp q~ are sufficiently 

s m a l l a n d k < ( 2 n  n - 1 ) ( ~  1)  h N - ~ , t e set {M~(D)uj}7= o is not bounded in the 

space L p', that is, the estimate 

(1.9) ]1Mk(O)ua(x)[Ir~' > C2 j{(2" = 

?I 1)(1 

holds for a constant C > 0. In fact, we have for large numbers j 

Mk(D)uj(x) = 2 j(n2NI ")(I-lp) I e'(~'r162162 kf(2 j ( lu-  t)~,)~(2_i~,)dr 

2j{(" n - l ~ l  k~ i(2J(1 1 )  ~' = 2N I~- 3je 2u ~'.r 2Nr162 

f(r  qb(~,) X d~ 
J 

1 ( 2 - 2 ~ ' ,  ~.)1 ~ 

(x = (x',x,),  x' = (x~ . . . . .  x ,_ ~)). Hence, we have 

II Mk(D)uj(x)I[ gv' = 2J(n2N1 - n) ~, [I Mk(D)u~( 2j(~ 0x ' ,  2-~x.) I I  

where 

=2J{(2" ,_ 1](1 ~ ] _ k } A j  2N I\p 2 j 

A j =  ~e i~'~+2'~t2 ~r162 f(~')q~(~")j d~ LP'(R:) 

1(2 2N~', ~n)l k 

J f (~ ' ) , (~.)  
> ~cos(x.~+2Jfp(2 2N~',~,)) J 

I(2-zNU, ~.)[k 

LV '  

d~ L.'(a-) 

If we notice the equality 
a + )1/(2N) 

= r  ~ 1  + " ' + ~ . - , )  )1 
+ ~-~ ~ - 1 S(1 - o ) (o (~F '  + . . .  + ~LN1) + ~.~)~/(2~)-~d0 

0 
~2N ~2 x( r  x + "" ' + ~ . - 1 f  , 

J f(~')cD(~n) d~ Lf(R~,) = jCOS(X'~+2J(~o(2 2Nr162 J 
1(2 2N{', {,)[k 
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we have for x sufficiently close to the origin 

f (~ ' )O(~ , )  ~cos(x-  ~ + 2 J ( ~ 0 ( 2 - ~  ', ~.) - ~,)) 
J 

1( 2 2N~', {n)[~ 

d~ 

1 f(~')q~(~.),~ 
=2>-I [ ~  a g ,  

which implies inf~Aj 4 = 0. Then we have est imate (1.9) and finished the p roof  of 
Theorem 2. 

2 Hyperbolic operators with convex characteristics 

We shall apply  the results given in the last section to the prob lem of higher order 
hyperbol ic  equations.  In the rest of this paper,  P = P(Dt, D~) denotes a homogene-  
ous constant  coefficient partial  differential opera to r  of degree m in D~, D . . . . . . .  D~,, 
which is strictly hyperbolic,  that  is, the symbol  p(27, ~) is factorized as 

p(27, ~ )  = (27 - -  ~ 0 1 ( ~ ) ) . . . ( 2 7  - -  (Prn(~)) ;  ( P l ( ~ )  > " ' "  > ~ 0 r n ( ~ ) ( ~  :~= 0 ) .  

We shall say that  the opera to r  P satisfies the convexity condit ion provided all the 
Hessians ~o}'({) (1 = 1 , 2 , . . . ,  m) are semi-definite for ~ 4= 0. Then the following 
theorem is fundamental .  

Theorem 3 We assume that the operator P satisfies the convexity condition. Then 
there exists a polynomial ~(~) of  order  1 such that  ~Om/2 (~) > ~(~) > ~Om/2 + 1 (~) (if m is 
even) or ~(~) = ~&m+ 1)/2(~) ( i fm is odd). Moreover, the hypersurfaces St -- {~ ~ R"; 
~ , (~) - -  _+ 1} with (o,(~) = ~o,(~)- ~(~) (l:~ (m + 1)/2) are convex and 
?(2;,) < 2[-m/23. 

Remark 3 The hyperbolici ty of the polynomial  p(z, ~) implies that  the Hessians 
~0~(~) and ~o"(~) are always semi-definite (~ 4= 0). (See, Atiyah et al. [1, Corol-  
lary 3.23].) Especially in the case m = 2, we obtain ?(2;1 ) = ?(2;2) = 2 which implies 
that  the Gauss ian  curvature  of them never vanishes. 

We shall prove  Theorem 3. In order  to prove  the first half, we shall use the 
following lemmata ,  

L e m m a  3 Let  F be an open convex cone, and let E be the edge of  F, that is, 
E = {q; F + trl c F for  all t ~ R}. I f E  = {0},. then the set f f \O  is contained in an 
open halfspace. 

Proof. Let K be the dual cone of F, that is, K = {x; x '  ~ > 0 for all ~ ~ F}. Then 
E = {0} implies that  K has a non-empty  interior. (See, Atiyah et al. [1, p. 124].) 
Hence,  we have F \ 0  c {~; a"  ( > 0} for some a E R". 

L e m m a  4 We have r = - r  1 = i, 2 , . . . ,  [(m + 1)/2]. 

Proof. We note p(z, ~ ) =  (-1)rap(--27, --~). In other words, for any I there exists 
some j such that  r = - r  We claim rpl(~) = -~om(-~) .  In fact, if assume 
r = --~0k(--~) for some k 4= m, we have ~0m(~) = --~0j(--~) for some j 4: 1. On 
the other hand, for ~ 4 : 0  we have ~0m(()<~0k(~)=--r  SO that 
~o1(~) < -r  = r which contradicts the choice of r Then, by the same 
argument,  we have successively ~0,(~) = - r 1 ( -- ~) for l = 2, 3 . . . . .  [(m + 1)/2]. 



Higher order hyperbolic equations 529 

First we assume that  m is even. Since ~o'~/2(4) is semi-definite for ~ 4: 0, say 
positive semi-definite, the cone F,,/z = {(z, ~); z > q)m/2(~)} is convex. On  the other 
hand, by Lemma 4, the edge E of the cone Fm/2 is also the edge of the cone 
Fro~2+1 = {('c, 4); z < qOm/2+l(4) } SO that E = {0} by the inequality q),,/2(~)> 
~0,,/2+1(~) for 4 # 0. Then, by Lemma 3, there exists a polynomial  e(~) of order 
1 such that F,,/2\O = {(z, 4); z > ~(~)}, in other words, ~0,,/2(~) > ~(~) for ~ # 0. By 
Lemma 4 again, we have q~m/2(O > ~(4) > q~,,/2+1(4) for ~ + 0. In the case that 
q~L/2(~) is negative semi-definite, we have similarly ~0,,/2(0 < c~(~)< ~o,,/2+1(0, 
which contradicts the choice of ~om/2 and q~,,/2 + 1. 

Secondly we assume that m is odd. F r o m  Lemma 4, we obtain the equality 
q)(m+ 1)/2(0 = - ~o(m+ ~)/2(-~).  Then we can see that the function ~o(m+ 1)/2 is convex 
and concave, therefore it is a polynomial  of order 1. 

In the next place, we shall prove the latter half of Theorem 3. We assume 
?(Iz; p , H )  > m' = 2[m/2]  for some I, p and H. After an appropriate  rotation, we 
may express the hypersurface 22~ locally as 

I~ = { ( y , h ( y ) ) ; y e  U = R " - l }  , 

where p = (0, h(0)). We set 

V(p)  = h(pr - h(O) - p h ' ( O ) ' o  

for p > 0 and toeS  "-2. Then we have F(p) = o(p m') for some ~oeS "-2. We remark 
that F(p)  does not identically equal to 0 by the compactness and real analyticity of 
Zl. If  we set /5(z, 4) = p(z + ~(~), 4), we have /5( _ 1, 4) = 0 with 4, = h(4') = 
h(O) + ph'(O) 'e)  + F(p )  (4 = (r ~,), 4' = (41 . . . . .  4n-1) = pr Then we have the 
identity 

F ( p ) m ' +  b l ( p ) F ( p )  m' ~ + b2(p )F(p)  " ' - 2  + . . .  + b,.,(p) =- O. 

Here bj(p) is a polynomial  of order j at most. If b,,, - b,,,_ 1 = "'" = bin,, + 1 - 0 and 
bin,, 7~ O, it is reduced to 

F ( p ) ( V ( p )  m''-~ + b~(p)F(p)  m''-2 + . ' '  + b,,, ,_~(p)) =- - bm,,(p).  

The left hand side of this equality is o(p" ' )  while the right hand  side is a polynomial  
of order m"( < m') at most. This is a contradiction, and we have Theorem 3. 

Now, we shall consider the Cauchy problem 

(CP') ~ Pu = f 
[D[ul ,= o = 0  ( j = 0 , 1  . . . . .  m -  1). 

The solution to it is expressed as 

t 

(2.1) u(t) = ~ Era-1 (t - z)/(z) dz ,  
O 

where the operator  E,,_ 1 (t) is given by equality (1) in introduction. If we combine 
Theorem 1 with Theorem 3 and notice the equality 

[Em-  1 (t)g] (x) = t m- ' [Era - 1  (1)(g(t "))] ( t -  ' x ) ,  

LP-LP'-estimates for the operator  E,,_~(t) are reduced to those for the operator  
Mk(D) with k = m - 1 and ?(22) = 2[m/2]. Here we have used the fact that  the 
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operator F-lei ' (r  is nothing but a translation. Accordingly, we have easily the 
estimate 

(2.2) HEm_l(t)gl]nf,, < CW ~-2"(~-�89 

From this estimate, we can obtain a priori estimates for the problem (CP'). For 
example, equality (2.1) and estimate (2.2) yields the estimate 

t 
[] u(t)II  H~,,(RZ) ~ C ~  (t - -  T) m-  1 - 2n( 1 21-) I[ f(z)[114~d z 

0 

< CJt ["- ~ -2.(~-�89 I]f(t)[]H~ - 

On the other hand, the boundedness of the Riesz potential of dimension 1 says that 
convolutions with It[ "-1 are Lq(R)-Lq'(R)-bounded (l < q < 2,1/q + 1 /q '=  1) 

provided ~ = 2 ( ~ -  ~).  (See Stein [13, Chap. 5, Theorem 1].) If we use it with 

~ = m -  2n(~  - ~ ) ,  we have 

Theorem 4 Let  indices 1 < p,q < 2 be as m - 1 =  2n [ -mTZ)J \p -  ' 

1/p + 1/p '= 1/q + 1/q '= 1, s e  R. We 

assume that the operator P satisfies the convexity condition. Then there exists 
a constant C such that the solution u to problem (CP') satisfies the estimate 

H U H Lr H;.(R~)) ~ C )l f ][ L.(R,; H~(R~)) 

for  any 9iven data f 

Remark 4 Theorem 4 with the case of the wave equation is given by Strichartz [15, 
Theorem 1]. 

Remark 5 Assumptions for indices in Theorem 4 implies m < n + 1. 

It is a routine work to prove existence and uniqueness for semi-linear equations 
by the method of iteration using a priori estimates. For example, we shall consider 
the problem 

Pu = H(u) 

(CP") (Diul ,=o = 9j (J = O, 1 . . . . .  m - 1), 

where H ( ' )  = H ( ' ,  t, x) is a scalar function. 

Corollary 1 Let indices p, q, p', q', s be the same as in Theorem 4, and let the following 
assumptions be satisfied: 

[I] (convexity) The operator P satisfies the convexity condition. 
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[ I I ]  (non-linearity) For any u ~ Lq'(Rt; H~,,(R~)), the non-linear term satisfies 
H ( u ) ~  Lq(Rt; H~(R~)).  Moreover,  for  any e, > 0 ,  there exists a decomposition 
- oe = to < tl  < �9 �9 �9 < tk = oO such that the est imates 

I[ H(u) -- H(v)R] Lq(Xj; H;(R~)) ~ ~ N U -- v II Lq'(I,; H)(R])) 

holds for  the intervals I j  = (tj tj+ l) ( j  = O, 1 . . . . .  k - 1). 

[ I I I ]  (reoularity) The solution ~ " - o  1 Ej( t)9 ~ o f  the associated linear problem (CP) in 
introduction is in the space Lq'(Rt; H'~,,(R~)). 

Then the problem (CP")  has a unique solution in Lq'(R,;  H~,(R])). 

The  p roo f  of  this result  is carr ied  ou t  in the same  way  as tha t  of  T h e o r e m  2 in 
Str ichar tz  [14] which  t reats  the wave equa t ion .  Hence ,  we shall  omi t  it. 
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