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0 Introduction

We express the solution to the Cauchy problem of the wave equation

{Du=0
Uit=0 = Jo, Up=0 =Gy

u(t) = Eo(t)go + E1{t)g:1 .

Then the LP-estimate (Peral [10]) and the LP-L%-estimate (Strichartz [14]) of the
operators E(t) (j = 0,1) are well known. These estimates are used to show the
regularity properties of the solution (L?-estimate) and to prove the existence of the
global solution in case that the wave equation has such perturbations as semi-
linear term or potential term (LP—L%-estimate).

The subject of this paper is to extend them to more general hyperbolic
equations

Pu=20
(CP { ; .
) D{u|t:0=gj (]=0= 135m—1)

as

Here the operator P = P(D,, D,) is associated with a homogeneous polynomial
p(t, &) = (t — @(&)). . .(t — @(&)) of order m ((1, £) € R x R"), and the character-
istic roots {¢,;}1-, are ordered as @,(¢) > ... > @,(&) (¢ + 0). Then the solution

m~—1
u(t) = 2 Ej(t)g;
j=0
to the problem (CP) is of the form

() E()= Y F'e™®a, &)F
I=1

* Dedicated to Professor Tosinobu Muramatu on his sixtieth birthday
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(j=0,1,...,m— 1), where the functions a, ; is homogeneous of order — j and
F (resp. F ') denotes the Fourier (resp. inverse Fourier) transform. Since we can
see that the symbol } | €"*"©q; ;(¢) has no singularity at the origin, our problem
is reduced to

Question. When is the operator
M(D) = F'm(&)F; m(§) = €291 1(&)

L?-bounded (1 < p < o0 ) or LP~L¥-bounded (1 < p £ 2, 1/p + 1/p’ = 1)? Here the
function ¢ (&) e C*(R™\ 0) is homogeneous of order 1 and positive, and the function
x(€) e C*(R") equals to 1 for large [£| and vanishes near the origin.

We remark that the general LP-L%boundedness (1 < p £ g < o) is obtained
from the analytic interpolation of the L? and LP-LF-boundedness, and the LP—L4-
boundedness (1 < g < p < o0 ) cannot be obtained unless M, (D) = 0 (H6rmander
[6, Theorem 1.1]).

In this question, geometrical properties of the hypersurface

I={teR" ) =1}

are important since the singularity of the kernel of the operator M (D) is related to
them. There is an answer to the question above in a favorable case, due to Littman
[8], Brenner [4] and Miyachi [9].

Theorem A. We assume that the Gaussian curvature of the hypersurface X never
vanishes. Then

1 1
(@) The operator M,(D) is LP-bounded provided k = (n — l)lI; - 5’

, 1 1
(b) The operator M (D) is LP~L? -bounded provided k = (n + 1)(; — E)

These results are optimal in the sense that the operator M (D) with (&) = |£] is

1 1
not LP-bounded (resp. LP-L¥-bounded) provided k < (n— 1)!;— 5' <resp.

k<(n+ 1)(% — %))

When we estimate the solution to (CP), the case m = 2 (e.g. wave equation)
corresponds to the case that the assumption of Theorem A is satisfied (Remark 3).
But, to higher order equations, we must remove the assumption on the hypersur-
face X. Recently, there are some papers dealing with this subject (Beals [2], Seeger
et al. [12], Sugimoto [16]). Especially (a) in Theorem A has been proved without
the assumption [12].

Then our next aim is to prove (b) similarly without the assumption, but we
claim in this paper that it is impossible. This is the essential difference between the
L”-boundedness and the L?-L?-boundedness.

Before going into details, we shall begin with a trivial result. If we combine the
LP-L? and L?-L”-boundedness of the Riesz potentials (Hardy-Littlewood-
Sobolev’s theorem, see Stein [137]) with the L*-boundedness of the operator M (D)
(Plancherel’s theorem), we have
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(b’) The operator M (D) is LP~LP -bounded provided k = 2n<% — %—)

There is a great gap between (b) and (b'), but the following result, due to Brenner
[5], fill it to a certain degree.

Theorem B. Let p = ming,crank ¢"(¢). Then the operator M, (D) is LP-L”-

bounded provided k = (2n — p)(% — %)
We remark that we obtain the inequality 0 < p < n — 1 from the homogeneity of
the function ¢(&). The most favorable case p = n — 1, which is equivalent to the
condition that the Gaussian curvature of the hypersurface X never vanishes,
corresponds to (b) and the most unfavorable case p = 0 to (b').

Theorem B, however, makes no contribution towards the boundedness of the
operator M, (D) with

2 @)=+ &Y+ - + ENHVEN, (N=1,2,..)

since p = O (resp. p = n — 1) provided N = 2 (resp. N = 1). Is this result optimal for
this special case?

In Sect. 1, our main theorems (Theorems 1 and 2) say that a geometrical
property of the hypersurface £ has an essential effect on the LP—L"-boundedness.
As a special case, we have

Theorem C. The operator M, (D) with (&) as equality (2) is L>~L” -bounded if and

n—1 1 1
ifk={2n— p—
oy i “<n N ><p 2)

This result suggests that Theorem B is not necessarily a good scale which inter-
polates the results (b) and (b').

In Sect. 2, we shall show that the geometrical property stated in main theorems
is derived only from the order of the operator P in (CP) under a convexity
condition for characteristics (Theorem 3). Because of this fact, we can easily apply
our theorems to the problem of higher order equations, and show a priori estimates
for them (Theorem 4). They are extension of the results of Strichartz [15] which
treats the wave equation.

1 LP-L” -estimates

Let X be a hypersurface in R” and let T be a tangent hyperplane at the point p e Z.
Then for any plane H that contains the normal line of X at p, the line
T~ H tangent to the curve X n H. We denote the order of this contact by y(Z;
p, H), and set

7(2) =supy(2;p, H).
p.H
For example, we have y(2) = 2N for the hypersurface ¥ = {¢ € R"; ¢(&) = 1} with
P =EN 4+ N+ F EMEN(N =1,2,..)
Now, we shall state the boundedness of the operator M, (D), which is an answer
to question in introduction.
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Theorem 1 We assume that the hypersurface £ = { e R"; (&) = 1} is convex. Then
the operator M (D) is LP~L?-bounded (1 <p <2, 1/p+ 1/p'=1) provided

2m—1D\/1 1
S S ) | (e
kz(" 1) ><p 2)

Remark 1 1f the Gaussian curvature of the hypersurface 2 never vanishes, then X' is
convex (Cf. Kobayashi and Nomizu [7, Chap. 7]} and y(2) = 2. Accordingly,
Theorem 1 contains (b) in Theorem A as a special case.

Remark 2 The convexity, real analyticity, and the compactness imply that the
hypersurface X is strictly convex, that is, every tangent plane of £ never lies on
¥ except for the tangent point. Then the order y(Z) is finite and even.

This result is optimal in the following sense.

Theorem 2 The operator M (D) with @(&) = (W 4 E3V 4 - 4 E2N)IEN

. -1
(N=1,2,...)is not LP~LP -bounded provided k < <2n 1 N ><% - %)

We shall prove Theorem 1. Since the case n = 1 is trivial, we may assume n = 2. In
the following, the capital “C” (with some suffices) in estimates always denotes
a positive constant (depending on the suffices) which may be different in each
occasion.

First of all, we introduce the Besov spaces Bj, , defined by the norms

0 1/q
lvlies , = < Y (2jsJIF_‘¢j(€)Fvlle)“) :
j=0

Here {®;}52, is a partition of unity of Littlewood—Paley. For more information
about these spaces, see, for example, Bergh and Lofstrém [3]. Then the following
lemma is important, which is a special case of [3, Theorem 6.4.4].

Lemma 1 We have the continuous inclusions L? = BY, (1 <p <2)and By , < L”
2=p <)

By virtue of this lemma, our problem is reduced to the proof of the estimate

(1.1) IM(D)®;(D)ulir = Cllul L
with k = <2n _ 2 D)(l - 1) Here the constant C is independent of the
&) J\p 2
numbers j = 1, 2,. ... If we write
o0 2% (%)

with a function ¥(1) e C§ (¢ > 0), we may prove estimate (1.1) with the operator
®@;(D) replaced by ¥(p(D)/2’). Since estimate (1.1) with p = 2 is trivial by the
Plancherel theorem, the estimate with p = 1 yields the general case by the analytic
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interpolation. Hence, all we have to show is the L*-estimate for the kernel of the
operator M, (D) ¥ (¢(D)/2’), that is, the estimate

(12) ]IF -1 [mk(é)vf(‘”—z(?ﬂ(x)

n—1

7(Z)°
On the other hand, by the compactness of the sphere §" ' and the
rotation invariance of the geometrical properties, we may assume m(¢) =
e ® g, (£) with a homogeneous function a,(¢) of order — k supported in a
sufficiently small open conic neighbourhood of the point e, = (0,. . .,0,1)e S" 1,

Then we have only to pay attention to x near the point — Vo(e,) € R", because the
equality

F“[mk(é)‘l’<¢2(§)>](ﬂ

= (2;" [etr ey (ak(é)a"<“’2(f) ))dé

R

<C
LCE

with k = n —

holds for all positive integer I. Here

B {(x + Vo) V¢
~ilx + Vol?

and L* is the transpose of L.
Now, we may express the hypersurface X locally as

Z={( h(y);, ye U}

by the implicit function theorem since Euler’s identity @(e,) = e,* Vo(e,) > 0 yields
@ (e,) = @le,) >0. Here U< R"™! is an open neighbourhood of the origin
and h: U—- R is a real analytic function. The strictly convexity of the hyper-
surface £ (Remark 2) implies that the function h is concave and the map
h': U- k' (U) < R"! is homeomorphism.

In this situation, we shall rewrite estimate (1.2) in terms of the function h. For
x near the point — Vo(e,), we define ze U by X 3(z, h(z)) = v~ ! (— x/|x|). Here
the map

Voo) o,
Vo) <>

is the Gauss map of the hypersurface 2. If we write x = (X, x,), X' = (X{,. « .» Xu—1),
it is equivalent to the equality

V:23p >

’

= -2

h'(z) = X

because of the trivial equality — x/|x| = Vo/|Ve|(z, h(z)) and of the fact that the
vector (— K'(z), 1) is normal to the hypersurface X at the point (z, h(z)). We remark
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that the variable x, is away from 0 by Euler’s identity again. Then, by the change of
variables & — (ty,th(y)) and t — x,, 't (t >0, ye U), we have

—l[mk@)v'("’(é)ﬂ( )

(X k~n w©
=" [ [ertnthm=n@ -1k
Qn o

Here g € C§(U) is a function which is supported in a sufficiently small neighbour-
hood of the origin. Hence, we have for x near the point — Vo(e,)

‘ [ k(f)sv<“’@)](x)
C}O {j‘eir(x,r1+h(y)~h’(z)-y)g(y)dy} lp(zitx )tn—lﬂc

* t
1 t _ tn—l—k
{ (&2) <2’x,,)

x ; t
z(zft;zw(ﬂ}m—k
) Xn

iy )g(y)dtdy

lIA

dt

dt

dat ,

where

(13) I;2)= [ e9g(n)dy; E(y;2)=h(y)—h(2) = K@) (y—2).
Rn-1
If we combine this inequality with the estimate
n—1

(1.4) [(t,2)| < Ct @ (t>0,zeU),

we have estimate (1.2).
Now, we shall prove estimate (1.4). We rewrite equality (1.3) with the polar
coordinates as

I(t;z)= | G(t;z, wydw; G(t;z, w). _fe“”’”w)ﬁ(p,z, w)dp ,

sn-2

where

F(p;z,0) = hpw + z) — h(z) — ph'(2) @, Blp; 2, w) = glpw + 2)p" " * .

For the sake of simplicity, we shall often abbreviate parameters z and w. We split
the function G(¢) into the following two parts:

Gy0) = [ e OBy(p,0)dp; Br(pat) = PO)W(17ETp)

G20 = | OB, (p, t)dp; Balp.0) = Blp)(1 — Y)(7FIp)



Higher order hyperbolic equations 525

where the function y(p) e C*(R) equals to 1 for large p and vanishes near the
origin. The estimate for the part G,(t) is easy. In fact, we have

|G, = [ 1B2(p, )ldp
0

w i
SCllp" (1 = y)tr®p)ldp
o]

On the other hand, integration by parts yields

a0

Gi(t) = [ " O(L*)'By(p, 1) dp

<

for | =0,1,2,.... Here
1L 9
itF'(p) dp

and L* is the transpose of L. By induction, we can easily have

iV FGv,  FG») o
=(-}Yc e (P) s s
<t> Z F.PsS1,...,5p (Fr)l+p (P) ap,

where the summation ) is a finite sum of r, p, sy, ..., 5, = 0 which satisfy
r+s;+ - +5s,=1+ p. Then we shall use

Lemma 2 Let 6 > 0 be sufficiently small. Then there exist constants C, C,, > 0 such
that the estimates

|F'(p)l 2 Cp?® 71,
[F™(p)| £ Cp ~™|F'(p)]
hold for 0 £ p <6, 1z| £ 6, weS" 2, and m=0,1,2.. ..

Proof. The following proof is essentially due to Randol [11, Lemmas 4, 5]. First we
note that the function F(p) is real analytic for fixed z and w. For the expansion
F(p) =77, aj(z, w)p’, we set

7(2)

= ) ljajz0)p’ " .

j=2

Since the definition of the order y(Z) yields ) 7%} |a;(z, w)| + 0, we have the
estimate

(1.5) n(p) 2 Cp'® !

for0 < p < 4,lz) £ 6and weS" 2 Here § > 0 is sufficiently small and the constant
C is independent of p, z and w. Accordingly all we have to show is the estimates

(1.6) |F'(p)l 2 Cn(p),
(1.7) |[F™(p)| = Cup' "™n(p) .
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o '
Now, we write F™(p) =3 2 T J T 1a;(z, w)p’ ™. Then we can easily have
—m
¥ j’
aj(z, w)p’ ™" < Cpp' "nlp) -
j=m (] - m)‘

As for the remainder term, we use Cauchy’s estimate, that is

L w)’<(26) 6= max [F()
(j —m)! [t1=24
< €200

Here the constant C,, is independent of z, w and j. Then we have

<C, 4
T @1 \20

< Cmpy(2)+1 -m
< Cpp®~"n(p)

for 0 < p < 4. Here we have used estimate (1.5). Combining these estimates, we have
estimate (1.7). On the other hand, by the concavity of the function h(y) and the equality
F’(0) = 0, we can see that the function |F’(p)| is non decreasing. Hence we have

|F'(p)| = max |F'(t)|

22}

)

ji= y(l)+1(]" )1

—m

(1.8) aj(z, w)p’

0st=<p
(%) ) x© .
> max | Y jajz,w)t/” '~ max Y jajzo)t !
osisplj=2 ogesp li=y@+1
y(Z) ) .
> max | Y, jajz,w)p’ /7 = C, max |tn(r)]
0=tL1|j=2 0st=p

= (C = Cip)n(p).

Here we have used the compatibility of norms maxg«, < IZW) kjt'~'| and
"2’ 1 1k;l on C7®, and used estimate (1.8) with m = 1. Thus we have estimate (1.6)
for suﬂ‘imently small p and finished the proof of Lemma 2.
If we use Lemma 2 and the estimate

"By
ap”

(p, )| =Cp" 277,

we have for large number [ and a constant ¢ > 0

F(Sl) .F(sp) rﬁ1
m_t,zj e (P) 5 e 0] de
C
T

II/\

0
j‘ n— 2—ly(£)dp
RS

n—1

< Ct @) .

Hence we have estimate (1.4) and finished the proof of Theorem 1.
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In the next place, we shall prove Theorem 2. For positive functions
fe CPR" ')yand @ e CF(R) such that f(0), @(1) * 0, we set

wuw=amﬁi%*”x“bF*Tf@“ﬁ”kv¢@ﬂanuu

where & = (&, &,), &' = (&4, . .., &,—1). Then we can easily see that the set {uj};.io is
bounded in the space L?. On the other hand, if supp f and supp @ are sufficiently

—1\/1 1
small and k < <2n I ><~ - 5), the set {M,(D)u;} ;_, is not bounded in the

N p
space LP, that is, the estimate

; L YRS W
(19) MOy 1oz €21 G )
holds for a constant C > 0. In fact, we have for large numbers j

M, (D)u;(x) = TR ) ete@g v Ve g, ae

_ G2 et )

(LS
[PRETAAL

(x =(x, x,), X' =(xy, ..., Xs—1)). Hence, we have

g

M@wmuww=f%?”ﬁuMmmmﬂﬁ”%nﬁmw

Lp’
_ A G- =k
where
4 - j.e.-(x.uzlw(z'ﬁ.f::nnm g
e e g
= ||fcos(x- &+ 21@(2‘%5', fn))f(—é;mi@“dé :
[P R AT
= [Jeostee + 2@ W g — g LG g
@ Wy ek T
If we notice the equality
Q&) = (63N + -+ 4 &N, 4 gmyvem
1
=&t gy & E e+ 80
1 /1 L
_______1 1_96 2N+_+_'2llj +"3N1/(2N)~2d6
*JNQN )y )6 &)+ &)

x(E 4+ -+ 8N
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we have for x sufficiently close to the origin

feos(x-¢ + 2f((p(2'5!7V§’, &) — 5,‘))_&;12@(15
I [(PL(M) 2 e, &)
gideév

which implies inf;4; + 0. Then we have estimate (1.9) and finished the proof of
Theorem 2.

2 Hyperbolic operators with convex characteristics

We shall apply the results given in the last section to the problem of higher order
hyperbolic equations. In the rest of this paper, P = P(D,, D,) denotes a homogene-
ous constant coeflicient partial differential operator of degree min D,, D, ,,. .., D,,
which is strictly hyperbolic, that is, the symbol p(z, £) is factorized as

Pt 8) = (= @1(€). . .(t = @u(O)) @1(8) > -+ > () (£ +0).

We shall say that the operator P satisfies the convexity condition provided all the
Hessians ¢/ (&) (I = 1,2, ..., m) are semi-definite for ¢ # 0. Then the following
theorem is fundamental.

Theorem 3 We assume that the operator P satisfies the convexity condition. Then
there exists a polynomial o() of order 1 such that ¢,,2(&) > a(£) > @+ 1(E) (Ifmis
even) o a(&) = QP+ 1y2(E) (if m is odd). Moreover, the hypersurfaces X, = {¢ e R™,
&)= + 1} with &) =e&)—a) (+£(m+ 1)/2) are convex and
y(&0) = 2[m/2].

Remark 3 The hyperbolicity of the polynomial p(z, &) implies that the Hessians
@1(¢) and ¢, () are always semi-definite (¢ + 0). (See, Atiyah et al. [1, Corol-
lary 3.23].) Especially in the case m = 2, we obtain y(Z) = y(Z,) = 2 which implies
that the Gaussian curvature of them never vanishes.

We shall prove Theorem 3. In order to prove the first half, we shall use the
following lemmata.

Lemma 3 Let I' be an open convex cone, and let E be the edge of I, that is,
E={g T +tncl forallteR}. If E= {0}, then the set I'\O is contained in an
open halfspace.

Proof. Let K be the dual cone of I', that is, K = {x; x*£ 2 Ofor all £ e I'}. Then
E = {0} implies that K has a non-empty interior. (See, Atiyah et al. [1, p. 124])
Hence, we have I'\0 < {{; a+ ¢ > 0} for some a e R".

Lemma 4 We have 9)(&) = — @1 (=& forl=1,2,..., [(m+ 1)/2].

Proof. We note p(1,&) = (—1)"p(—1, —&). In other words, for any [ there exists
some j such that ¢,(&) = — @(—¢). We claim ¢, (&) = —@,,(—&). In fact, if assume
@1(&) = — @p(— &) for some k %+ m, we have @,,(£) = —¢;(—¢&) for some j+ 1. On
the other hand, for £+0 we have @, < @(é)= —¢(—¢) so that
01(8) < —@(—&) = @;(£), which contradicts the choice of ¢,. Then, by the same
argument, we have successively ¢,(6) = — @1 (=& forl=2,3,. .., [(m+ 1)/2]
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First we assume that m is even. Since @, »(£) is semi-definite for ¢ =+ 0, say
positive semi-definite, the cone Iy, = {(t,£); T > @u2(&)} is convex. On the other
hand, by Lemma 4, the edge E of the cone I, is also the edge of the cone
Fpais = {(1,8); 1< @mz+1(E)} so that E = {0} by the inequality ¢,(¢) >
Oz +1(&) for & £ 0. Then, by Lemma 3, there exists a polynomial a(¢) of order
1 such that I',,x\0 = {(z, &); T > (&)}, in other words, @2 (&) > () for & + 0. By
Lemma 4 again, we have @,,,() > a(&) > @z +1(&) for £ + 0. In the case that
@n2(£) is negative semi-definite, we have similarly @ (¢) < a() < @mz+1(S),
which contradicts the choice of @2 and @2+ 1.

Secondly we assume that m is odd. From Lemma 4, we obtain the equality
Om+12(E) = — @pm+ 1y2(—&). Then we can see that the function @+ 12 is convex
and concave, therefore it is a polynomial of order 1.

In the next place, we shall prove the latter half of Theorem 3. We assume
yWZy; p, H) > m' = 2[m/2] for some I, p and H. After an appropriate rotation, we
may express the hypersurface 2, locally as

= {(nh(»)yeUcR"},
where p = (0, h(0)). We set
F(p) = h(pw) — h(0) — ph'(0)* w

for p > 0and we$"~ 2. Then we have F(p) = o(p™) for some we $"~ 2. We remark
that F(p) does not identically equal to 0 by the compactness and real analyticity of
. If we set p(r, &) = p(t + a(¢), &), we have p(+ 1,&) =0 with &, =h(l') =
R(0) + pH (0)- @ + F(p) (¢ = (&, &), & = (&4, .. ., €n-1) = pw). Then we have the
identity

F(p)™ + by(p)F(p)™ "' + by(pF(p)" 2+ - + bu(p)=0.

Here b;(p) is a polynomial of order jat most. f b,y = by =" = by =0 and
by # 0, it is reduced to

F(p)(F(p)" "' + by(pF(p)™ ">+~ + b —1(p)) = — bu(p) .

The left hand side of this equality is o(p™ ) while the right hand side is a polynomial
of order m”( < m’) at most. This is a contradiction, and we have Theorem 3.
Now, we shall consider the Cauchy problem

Pu=f
CP .
(CP) {D{uFO:O (j=014L...,m—1).

The solution to it is expressed as
t

(2.1) u(t) = [Ep—1(t — 1) f(t)dr,
(4]

where the operator E,, _ 1 (t) is given by equality (1) in introduction. If we combine
Theorem 1 with Theorem 3 and notice the equality

[Em-1(0g](x) = t" " [Em-1(1)(g(t-))1C ' X)

LP—L ”-estimates for the operator E,,_(t) are reduced to those for the operator
M (D) with k =m — 1 and y(Z) = 2[m/2]. Here we have used the fact that the
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operator F ~1¢™@F is nothing but a translation. Accordingly, we have easily the
estimate

22) | Ep—1(00glims, < Cem 127G~ 2) [ g |y

. n—1\/1 1
=1 =) (-3

From this estimate, we can obtain a priori estimates for the problem (CP’). For
example, equality (2.1) and estimate (2.2) yields the estimate

140y ry < CJ (= ™26 D f @)y,
[4]

< Clepm = =276 D () -

On the other hand, the boundedness of the Riesz potential of dimension 1 says that
convolutions with [t]*~! are LYR)}~L?(R)-bounded (1 < gq<2,1/q+ 1/qg'=1)

1 1
provided o = 2(5 — E) (See Stein [13, Chap. 5, Theorem 1].) If we use it with

1 1
a=m— 2n<— — —), we have
p 2

—1\/1 1
Theorem 4 Let indices 1 <p,g<2 be as m— 1= <2n 1 )(— — —),
[m/21)\p 2
1 1 11 ,
2l-—<)=m—2n|—-—=<), and let l/p+1/p'=1/g+ 1/d =1, seR. We
q 2 p 2
assume that the operator P satisfies the convexity condition. Then there exists
a constant C such that the solution u to problem (CP’) satisfies the estimate

”“”L"'(R,;H;,(R;)) S CU S va,; Hyre)
for any given data f.

Remark 4 Theorem 4 with the case of the wave equation is given by Strichartz [15,
Theorem 1].

Remark 5 Assumptions for indices in Theorem 4 implies m < n + 1.

It is a routine work to prove existence and uniqueness for semi-linear equations
by the method of iteration using a priori estimates. For example, we shall consider
the problem

Pu= H(u)

CP’ ; )
( ) {D{u;tzozgj (‘]=0,1,...,M*1),

where H(*) = H(*, t, x) is a scalar function.

Corollary 1 Let indices p, q, P, q’, s be the same as in Theorem 4, and let the following
assumptions be satisfied:

[I] (convexity) The operator P satisfies the convexity condition.
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[11] (non- linearity) For any ue LY(R,; H5(R%Y)), the non-linear term satisfies
H(u)e LY(R, (R )) Moreover, for any & >0, there exists a decomposition
— 0 =t < tl © < b, = o0 such that the estimates

[ H(W) = HO) | gy; mmey) < el — vll e, my ey

holds for the intervals 1; = (t; ;. ) (j =01, L k—1).

[III] (regularity) The solution Z; ' E;(t)g; of the assoczated linear problem (CP) in
introduction is in the space L¥ (R,; H;, (RL)).

Then the problem (CP") has a unique solution in LY (R,; H(R%)).

The proof of this result is carried out in the same way as that of Theorem 2 in
Strichartz [14] which treats the wave equation. Hence, we shall omit it.
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