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1 Introduction and outline of the main results

1.1 Some general remarks

In recent years, much progress has been achieved in symplectic geometry and the
variational theory of Hamiltonian dynamics. The variational existence theory for
periodic solutions of Hamiltonian systems initiated by P. Rabinowitz, [35, 36], and
Gromov’s theory of pseudoholomorphic curves in symplectic geometry, {26, 27],
are corner stones for this development.

A few years after Rabinowitz’s seminal work, Conley and Zehnder, [7],
observed that the variational methods can be successfully used in studying sym-
plectic fixed point problems. This lead them to the solution of one of the Arnold
conjectures, [3, 4].

Motivated by an influential paper by Witten, [45], Floer was able to merge the
variational and Gromov’s elliptic theory, which lead to the so-called Floer homol-
ogy for the Lagrangian intersection problem, [15, 16, 17, 19, 20], see also [18, 28],
for the corresponding Ljusternik—Schnirelmann theory, and [34, 38] for a survey.

In their study of periodic solutions of Hamiltonian systems with prescribed
energy, [9], Ekeland and Hofer introduced an interesting, very rigid invariant for
a convex energy surface. In [10, 11], motivated by [42], and [32], it was observed
that Hamiltonian dynamics can be effectively used in studying symplectic rigidity
phenomena. In [11], for example, infinitely many new symplectic invariants,
so-called symplectic capacities have been constructed using the variational theory,
see also [14, 29, 31, 44].

The aim of our series of papers on symplectic homology is concerned with
combining Floer homology and Capacity theory. This will lead to a variety of new
symplectic invariants, and interesting applications.

In the present paper SH I we construct a theory for open bounded subsets of
€". This construction already exhibits the key points of any more general theory.
The present theory could presumably also be constructed using generating func-
tion type techniques as in [44]. However, such techniques can in general not be
carried through on more general manifolds (at least not at the moment). The
second paper SH II, [22], extends the theory to more general symplectic manifolds,
which turns out not to be very difficult. Jointly with K. Wysocki we give applica-
tions of SH I, I in [24, 257]. In [24] we compute the symplectic homology of simple
shapes and prove Gromov’s conjecture concerning the classification of symplectic
open polydisks. Moreover, we make some statements about the space of symplectic
embeddings from one polydisk into another. In [25], we apply the more general
results to show the invariance of the action spectrum of suitable symplectic
manifolds with a contact type boundary. This particular application belongs to
a circle of ideas concerned with the question what does the interior of a symplectic
manifold know about its boundary. A particular striking phenomenon is the
Benci-Sikorav rigidity for sets of the form T"x U in T*T", [5], [41]. For this
type of problem see for negative as well as positive results, [12, 13, 14].
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1.2 Periodic hamiltonian trajectories in a symplectic rigidity theory

Symplectic homology is a device to detect and measure symplectic rigidity. An
important ingredient is the study of periodic orbits of Hamiltonian systems and
closed characteristics on Hamiltonian energy surfaces. In this paper we shall deal
only with the C"-case and refer the reader to SH II for the general case.

Let us view €" as a 2n-dimensional R-vectorspace. We denote the usual
complex Hermitian inner product by (%, ) . Associated to (%, x} we have the real
inner product (*, x> = Re(*, *) and the symplectic form w = Im(x, *) .

A smooth real hypersurface S in €" carries an important structure induced by
the symplectic form w. Namely define a one-dimensional distribution ¥s—S by

1) PLs={(x,5)eTS | w(&, ) =0 for all neT,S} .

The integral curve through xeS will be denoted by Lg(x) . If S is compact, the
closed integral curves Lg(x) ~S* are of particular interest. This collection of closed
integral curves, also called periodic Hamiltonian trajectories, will be denoted by
2(S). An element in 2(S), say P, carries a numerical value A(P)eR defined as
follows. First of all, we may assume that S is connected. Then €"\S (assuming S to
be compact) has in view of Alexander duality a unique bounded component Bs. We
take a smooth map H: €"— IR such that

S=H '), dH(x)+0 for xeS
inlg H(x)<0.
Then the Hamiltonian vectorfield X defined by
iXHCU = dH

defines a nowhere vanishing section of ¥s— § and hence an orientation. Having
this orientation in mind we have a canonical orientation of Pe#(S) in view of
TP = Ys|p. We define

AP = Al

for Pe2(S), where A is any 1-form on C" satisfying di = w.
Given a symplectic diffeomorphism ¥: €"~> C" we have the following rules

2) A(P) = A(¥Y(P))
(Tlp)gs = .S,”q,(s)
P(P(S) = ¥Y(2(S)) -

The crucial fact, which we will explore in this and the following papers, is that
periodic trajectories occur naturally as obstructions in a symplectic rigidity theory.
The following heuristic considerations clarify this statement.

Let us start with Gromov’s celebrated Squeezing theorem, [26, 27]. Relying
strongly on his theory of pseudoholomorphic curves, Gromov showed that the
r-ball B?"(r) can be symplectically embedded into the R-cylinder Z**(R):= B*(R)
x €* 1if and only if R = r. In [10] this result is proved using the variational study
of periodic orbits of Hamiltonian systems. The occurrence of periodic solution
seems to be absolutely unexpected in particular in view of the original proof of the
squeezing theorem. In order to shed some light on this fact, let us assume we have
an optimal embedding of some open bounded set U into Z2>*(R). Optimal here
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means that there is no such symplectic embedding for R’ < R. Without loss of
generality we may assume U = Z2"(R). In addition let us also assume that U is
bounded with a smooth boundary ¢U.

Next we try the impossible: Squeezing U into some smaller cylinder. Symplectic
isotopies are generated by (time-dependent) Hamiltonians. Locally, the optimal
way seems to be the following: One tries to push points in U ~ 8Z*"(R) into
Z?"(R) by taking a Hamiltonian vectorfield which points inside Z2*(R) at points in
U n 0Z*"(R) and which is allowed to point outside of Z2*(R) at points of Z2"(R)
which stay away from U. (However the vectorfield should be sufficiently small
there.) A Hamiltonian H achieving all that will increase along the integral curves of
#,u on the leaves in U n 6Z*"(R) and perhaps will be decreasing on the parts in
0Z*"(R) staying away from U. Obviously the only local obstruction is a common
close characteristic contained in U n 6Z%*(R) , i.e. Z(0U) n P(6Z*"(R)) contains
a closed characteristic P, satisfying P, = U n 8Z2"(R). In fact in the case that
such a P, exists the Hamiltonian H has to be strictly increasing along P, which is
absurd. Assuming 2(0U) n 2(0Z**(R)) = @ we can construct a Hamiltonian close
to every section € x {a}, ae@€"'. Using a partition of unity in the section para-
meter aeC" ! only, one can globalize this construction (at least for nice sets).
Hence if #(0U) ~ P(0Z*"(R)) = § we can construct a Hamiltonian H such that the
associated time-1-map ¥ satisfies ¥(U) = Z*>"(R) implying that U was not optimal-
ly squeezed contrary to our assumption. So our element in 2(0U) turns out (in our
simple minded heuristics) to be an obstruction for the squeezing problem (under
favourable assumptions). Surprisingly it will turn out that there is real mathematics
behind this consideration!

To make this more precise we recall the well-known fact that closed character-
istics on hypersurfaces and periodic solutions of Hamiltonian systems with pre-
scribed energy are closely related (the dual character of time and energy in
Hamiltonian mechanics).

The crucial phenomenon for our construction is the following fact exhibited in
[32]: Given some open bounded set A of €* and a Hamiltonian H: €C"— [0, + o0),
which vanishes on A, but grows sufficiently fast outside of A, the associated
Hamiltonian system x = Xy(x) , will have many 1-periodic solutions (nontrivial
ones) geometrically close to dA. Here “close” depends on the growth rate of
H outside of A. These 1-periodic solutions can be found as critical points of
a functional on the loop space of €". This is the so-called principle of the least
action. It is a difficult variational principle, due to the fact that it is indefinite in the
sense that the Morse indices of the critical points are always infinite.

This difficulty is handled by Floer’s elliptic Morse theory, see [26, 27] for more
information. The elliptic Morse theory combines Gromov’s theory of pseudo-
holomorphic curves [26, 27] with Conley’s idea of connection matrices for flows.
Our main construction merges the theory of symplectic capacities, 10, 11, 32, 437,
with elliptic Morse theory.

Before we go into more details we give an outline of symplectic homology in the
next sections.

1.3 The Conley-Zehnder index

We denote by Sp the group of linear symplectic maps in (C", w). Sp* is the subset of
Sp consisting of all symplectic maps which do not have 1 in their spectrum. Let
ny = 7,(Sp, {Id}) be the fundamental group. It is well known that m;~Z. As
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a generator we take the class — called Maslov class — given by the loop
eZnit 0
o(t) = ) , te[0,1]
0 1
with S! = R/Z. We define a homomorphism i n;—Z by u([d]) = 1.
Next consider smooth arcs ¥: [0, 11— Sp satisfying
(3) P(0)=1d, WP(1)eSp*.

We call two such arcs ¥ and @ equivalent provided there is a smooth map
F: [0, 1] %10, 17— Sp such that

4) FO,0)=%¥(), F(Q,t)= ()
F{0,1]x{1}) < Sp*
F([0, 17 % {0}) = {1d} .

We denote by .« the set of equivalence classes. Let us denote by «, f the following
two arcs

e

enit 0
a(t) =
0 eﬂ:it
and
e ‘Re + ie'Im 0
enir
Blo) = )
0 enit

We observe that 7, acts on & by
7y X A—A: [o][P] = [0 D]
(0 P)(t) = a(t) (1) .
We have [8, 21, 39, 40]
Theorem 1 There exists a unique map ucy: S&—Z satisfying
tez([o] [P]) = 2 + pc([P)
pez([a]) = n
pez([Bl) =n—1.

Next we introduce the class # of smooth Hamiltonians H: St x €*—R such that

(5) H|(S'xU)< 0
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for some open bounded set U < €" (possibly U = @). Moreover there exists
a (*, *y-positive definite matrix A such that

(6) [H'(t,u) — Aullul"*—>0 as ju =+ o

uniformly for teS!, where H' is the {x, *)>-gradient with respect to the u-variable.
Moreover the linear Hamiltonian system

(7N —ix = Ax, x(0)= x(1)
has only the trivial solution. Further there exists a constant ¢ > 0 such that
(8) |H"(t, u) h| < clh| for all teS!, ueC", heC”
H/
‘%(t, w)| < c(l + Ju) for all (f,)eS! xC" .

We call a Hamiltonian H e 5 regular if all 1-periodic solutions are non-degenerate,
ie. the linearization of the time-1-map ¥y at x, = x(0), where xe%y = {x:
S'—C€" | x = Xy (x)}, belongs to Sp*. Denote the collections of all regular Hamil-
tonians by . If He#, ., and xe%y then the linear Hamiltonian system

h(t) = Xy (x(1)) h(2), [0, 1]
defines an arc t— ¥¥, W = Id, with Y¥eSp*. Hence we can define an index
Ind(x, H) by letting
©) Ind(x, H) = pcz([¥"]) -
Definition 2 For HeJ#,,, we call Ind(x, H)eZ as given in (9) the Conley-Zehnder
index of the 1-periodic solution x of X = Xy (x).

So, in some sense Ind(x, H) gives a local information concerning a periodic orbit x.
In order to give relations between this local information we need Instanton
homology or the so-called Floer homology. It has been previously exploited by
Amann-Zehnder, [2], and Conley-Zehnder, [8], that asymptotically quadratic
Hamiltonians admit a good existence theory.

1.4 Instanton homology

We denote by ¢ the collection of all smooth t-depending w-calibrated almost
complex structures J such that
J{t,uy=1i for |u|large and teS*.
w-calibrated means that
g.l(ta u) (ha k) = (l)(h, J(ta u) k)

defines a (teS!)-depending Riemannian metric on €" which is standard outside of
a compact set.

For He #,,, and Je # consider the partial differential equation with asymp-
totic boundary conditions (V,H is the gradient for the second variable for the inner
product g,(t, u) = wo(Id x J{t, w)))

(10) u, — J(t, wu, — (V,H)(t, w) =0
u:RxS'—C"
u(s,*)—x* as s— + oo,
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where x * €2y, and the limits are in the C*-sense (= C™ sense via elliptic regularity
theory, see [33]). The solutions of (10) can be considered as zeroes of a smooth
nonlinear Fredholm map 0 ;: #"7(x~, x")— LPZ, C") for some p > 2, see the
later chapters. The Fredholm index satisfies, [15, 34, 38, 39, 40]

Theorem 3 For every zero u of 0Oy, ; the linearization 0y ;(u) H"?(Z,C") —
L”(Z, ©") has the Fredholm index

Ind(@y ;) = Ind(x ", H) — Ind(x*, H) .

Given He#,., and Je ¢ it is shown in Sect. 3 that for every multi index o there
exists a constant c, such that for every pair (x, x")ePy x 2y a solution of (10)
satisfies

(11) [(D*u)(s,t)| S ¢, forall (s,t)eZ.

Moreover, in Sect. 5 it is proved that given J€_¢ there exists a J arbitrarily close to
Jin C*, and identically equal “i” outside some compact set such that the operators
Oy,j have 0 as a regular value. Consequently for such a regular Je 4., (H),
Hed#, ., the solution set of (10) has a structure of a finite-dimensional manifold.
We denote this manifold for Hes#,, and Je #(H) and x7,x" Py by
M(x~,x%; H,J). In view of Theorem 3 we have

(12) dim #(x~, x*; H,J) = Ind(x~, H) — Ind(x*, H) .

Moreover all those manifolds are orientable. Using the so-called glueing construc-
tion, see [17, 19, 34], there is a natural way to produce an orientation of
M(x,z; H,J), provided one is given for .#(x, y; H, J} and .#(y, z; H, J) . This is
related to the fact that given a trajectory in #(x, y) := #(x, y; H, J) and one in
My, z) there exists one geometrically close to its union which lies in .#(x, z) and
can be found by an implicit function theorem. A choice of orientation compatible
with the above natural procedure is called a coherent orientation, see [21], and
Sect. S of this paper.

Now following [16, 197, we define for aeR U { + o } the graded free Abelian
group

(13) “(H,J)= @ C§

keZ

=@Zx,

where the sum in the second line is taken over all xe 2y, satisfying @5(x) < a and
Ind(x, H) = k. Here

Dy(x) = ; — X, xydx — j H{t, x(t))dt
(4] 0

NI*—*

Next we define a group homomorphism ¢: Ci— Ci_; by

(14) ax =Y 1(x, yy,

where the sum is taken over all those y € 2y satisfying Ind(y, H) = Ind(x, H) — 1.
Here 1(x, y)eZ is obtained as follows. We consider for ye#, as above the
1-dimensional {perhaps empty) manifold .#(x, y; H, J) which carries an orientation
(coming from the choice of a coherent orientation). All orbits in .#(x, y; H, J) are
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isolated and .#(x, y; H, J) decomposes into several components of the type
{p*u | peR}, where

(pxu)(s, ) = u(s + p, 1)

is the natural R-action. Each component of the form {pu|peR} has two
orientations, namely o(u) from the coherent orientation, see Sect. 4, and the

A
orientation given by [u], with u, = %L—l We define t(u)e{l, — 1} by
s

(15) o(u) = t(u) [u]
and put
(16) tx, y) = ), t(w),

where the sum is taken over all points in the reduced connecting orbit space
M(x,y; H J):= M(x, y; H J)/R

where we divide by the R-action. The crucial result proved in [16, 17, 19] is

Theorem 4 0 = 0.

Let us denote by 4" the product s# x # and by 4., the subset consisting of all
pairs (H, J)e./” such that the associated first order elliptic partial differential
equation of type (10) can be formulated as the problem of finding zeroes for
a regular Fredholm section. In particular He#,., and Je #,.,(H). For (H, J)e N,
and — o0 <a<bh=< + oo we define

17 CleP(H, J):= C%(H, J)/Ci(H, J)
with the induced boundary operator J and put

(18) St (H, J) = kern(d,)/Im(é + 1)
with 8, C*" ™" Moreover we put

(19) SEOH, )= @S¢ V(H, J) .

ke?

1.5 Monotonicity
Consider (K, J), (H, J)eN e We define a partial ordering by
(20) (H,J)<(K,J):< H(t, x) < K(t, x)

for all teS* and xeC". A monotone homotopy between pairs (H, J) and (K, J)in
Nreg 18 @ pair (L J) consisting of a smooth map L: R x §! x €*— R and a smooth

map (s, t, u)— J(s, t, u), where J(s, t, u) is an w-calibrated complex multiplication on
€" such that for suitable s, >0, R >0

(21 JGs, t,u) =i for lu 2 R
JGs, t,u) = J(s, u) fors< —s

f(s, tu) = Jis, u) forsz=s,.
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Moreover

22 oL

22 oL (w0
os

L(s,t,uy=H(t,u) fors=< —s,

L(s,t,u) = K{t,u) fors=sq.

Further there exists a smooth map R—%r(C"):s— A(s) associating to seR
a (*, *y-positive definite matrix such that

(23) A(s) = A(—sy) fors £ —sg
A(s) = A(so) for s = s,
d
ﬁA(s) =0

and the following is satisfied

(24) If the linear Hamiltonian system —ix = A(§)x on (0, 1) has
a nontrivial solution satisfying x(0) = x(1) for some

d
SeR then 7 A(s) is positive definite .
S .

Finally all these data are required to satisfy the estimates

(25) \L'(s, 1, u) — A(S)ul ju] "' —0

o d 1
‘&L(s,t,u)—E;A(s)u |u|~*—0

uniformly in (s, t) as |u|— + oo and there exists a constant ¢ > 0 such that

(26) J .,
\& L'(s,t,u)

|L"(s, t, wh| = clh|

for all (s, t, yy)eR x S x C" and heC". ) N
Given such a monotone homotopy (L, J) between (H, J)e A, and (K, J)e AN,
with H £ K we consider the partial differential equation

(27) ug — J(s, t, uy, — (ViL)(s, t,u) = 0

< c(l + fu))

u(s, ¥) > xePy as s— — ©
u(s, *)—»xePyx as s— + oo .

Again it is shown that there is a C®- apriori estimate for solutions of (27)
independent of the choices of xe 2y and yePy. Further it is shown that there are
always generic monotone homotopies so that the solutions of (27) can be con-
sidered as regular zeroes of some nonlinear Fredholm operator. The combinatorics
of the solutions of (27) can be used to construct natural homomorphisms

(28) SO (H, J)— SEV(K, J)
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which are independent (!) of the chosen generic monotone homotopy (see the later
sections).

1.6 Symplectic homology

By the preceding results we have for numbers — o0 <a £ b < + oo constructed
a functor S™? from the partially ordered set (#,.q, < ), viewed as a category, into
the category of graded Abelian groups.

Next assume U <= €" is a given bounded open set. Denote by A (U) the
collection of all pairs (H, J) e A, satisfying

(29) H|S'xU) <0.

It will be shown later that for (H,J), (K, J JEAN;((U) one can construct an
(A, J)eN,(U) satisfying

(30) (H,J) < (A, J)
(K,J)<(4,J).

In other words A, (U) is a directed set. Associated to this directed set we have the
functor obtained by restriction

(31) (Mg V), )25 44b

Here % Ab is the category of graded Abelian groups. We define the symplectic
homology (with coefficient in Z) of an open bounded set U < €" by

32
(32) SeU) = lim S@Y(H,J),

where the direct limit is taken over A/, (U).

We should note that we could tensorize the chain complex in (13) by any
Abelian group G first, before we carry out the previous construction. This would
lead to symplectic homology with coefficients in G.

§i#9(U) measures symplectic properties of U as a subset of €". We denote by
9 the compactly supported symplectic difftomorphism group in €". Given
(H, J)eN ;e (U) and ¥eZ we define a pair (Hy, Jy)e N, (F(U))

(33) Hylt,u) = H(t, ¥~ Yu)
Jo(t,u) = TY(P ') J(t, ¥~ '(u) TY (u).

If u solves the partial differential equation associated to (H, J) then ¥(u) solves the
partial differential equation associated to (Hg, Jy) . We note that ¥ induces via (37)
a bijection

N e U) > N f(F(U)) .
Obviously it follows immediately that ¥ induces an isomorphism
34) Y, S@U) S0 (P (U)) .
If U < V are both bounded open subsets then

'/Vreg( V) < reg(U) .
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This gives a natural map called monotonicity morphism

%) sEv () 2, 10 (V).

Next assume Ye2 and U, V are bounded open subsets of € such that ¥(U) < V.
We define a group homomorphism ¥*: S%2(F) —S&"(U) by the factorization

S[a b)(V S[a b)

(36) \ / (#2)"

steP (¥ (U))

The previous construction of S¥°? and ¥* turns out to have many useful proper-
ties. For example

Theorem 5 Assume ¥ (U) = V for s€[0, 1] where U and V are bounded open sets in
C" and s— ¥, is a smooth arc in 9. Then the map

s— P¥emor (S&P(V), S&H(U))
is constant.

This property will be referred to as isotopy invariance.

Next assume a triplet of numbers is given, such that — 0 <a<b<c =< + w.
We have an obvious exact triangle 4, ,, (H, J) for every (H, J)e 4., induced by the
short exact sequence

0— C*"(H, J)— C*YH, J)— C*YH, J)—0 .
This gives an exact triangle 4, . of symplectic homology groups.

Theorem 6 Given an open bounded subset U of €" we have an associated triangle
Aap. {U) for numbers — o0 <a<b=cZ+ o, namely

SO (U) —— SEU)
(37) Ox
St

Moreover a Ye2 with Y(U) « V induces a map P*: 4, (V) —4,4.5 {U).
Next we observe that for numbers —ww<a<bhb<£L +w, and —w<d
SV <+ o0 witha<a, b<b,and(H J)eAt,, we have a natural morphism

(38) Cla¥H, J) —-C&"(H, J)
inducing natural maps. In fact

Theorem 7 Let U <« C" be an open bounded set and let — 0 <a=bhg
cE + 0, —o<ad 2b £ £+ o be numbers satisfying

—agd,bgb,cLc.
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Then there exists a natural homomorphism
(39) Aa,b,c(U)_’Aa’,b’,c'(U) .
It turns out that for Y(U) c V, Y2 the following diagram commutes

ql*
Aap, (V) —— Aoy, (U)

J l

Aoy (V) o Aarp e (U)

All the previous properties will be proved in the following. In this paper we shall
not give any application, but refer the reader to the forthcoming papers [24, 25]. In
[24] we compute the symplectic homology of some simple shapes and prove the
conjecture of M. Gromov concerning the symplectic classification of open poly-
disks. Moreover we study the space of symplectic embeddings of one polydisc into
another. In [22] we generalize the present results to more general symplectic
manifolds and apply these in [25] to prove some results concerning the symplectic
stability of the action spectrum, a problem which has to be seen in relation to the
“theme” what does the interior of a symplectic manifold know about its boundary,
see also [12, 13, 14].

2 Apriori estimates

2.1 A version of the maximum principle

Let Z = R x S* and assume «: Z— R is a smooth map. Given § > 0 we denote by
I's the set of all bi-infinite sequences (s, hez satisfying

(40) 0<s41— 8590
Ss— + oo as k— 4+ o0 .

Given s = (s;)els we define

(41) [o]* = sup{als;, t) | keZ, teS'}
and put
(42) [o]s = inf{[a]* | sels} .

Clearly [a]se(— o0, + o ].
Proposition 8 Assume constants a, b, A 2 0 and 6 > 0 are given such that
8* A< n?.
Then there exists a constant C = C(a, b, 4, ) > 0 such that every smooth map

o Z— R with
—do—Ae<a on Z

[als< b
satisfies
sup{a(s,t) | (s, )eZ} < C.
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Proof. Let Q:= (x,y)xS' with — o0 < x<y< + o and y — x £ 8. Then
yi=m(y —x) 7
is the smallest eigenvalue of the eigenvalue problem
—Au=yu on £, u=0 on 0Q
with associated eigenfunction u(s, t) = sin{(s —x) (y —x) ™ *n). By assumption
A<t Sy —x) 2.

Let s = (s;) < I's; be a sequence satisfying

sup{a(s,, t) | keZ,teS'} < b
and put x = s, and y = s, 4. Then with Q = (x, y) x S' we have
(43) —Ade—Adu<a onQ

a<b onoQ.

As a consequence of the classical Krein—Rutmann result, see [1], the maximum
principle is valid for (43) provided 4 < y; = y(Q). If

—Af—if=a onQ
p=b ondQ

then « < fon 2 and S is clearly independent of the t-variable in S'. Consequently it

satisfies
—p"=Af=a on(x,y)

B(x)=py)=">b.
With ¢ := (y —x)6 '€(0, 1], assuming without loss of generality that x = 0 we
define ~

Bls) = Blos) .
Then R R

—B" —¢?2B =0?a on(0,9)

By =ho)="».

If B solves

—f"—Af=a on(0,0)

p0) = o) =0

we deduce [? = 0 since A < % Moreover B = 0. Hence on (0, 9)

—f—8fs —f' i f=0c*asa= —f —if
and f = B on {0, 8}. This implies B < B. Consequently
sup_a(s, 1) < sup f(s) < sup f(s)=:Cla,b,6,2).

(s, t)ef sefx,y] selx,y]

Since k was arbitrarily chosen we infer

supa(Z) < C(a, b, 8, 1) . O
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2.2 Variational estimates

Assume L: R x S! x C—IR is smooth and satisfies

oL
44) a—(s,t,u)go on RxS'x@"
s
and
45) IL(s, ,u)| <c(l+u) on RxS'xC".

Moreover we assume that there exists a suitable s; > 0 such that
(46) H(t,u) = L{s,t,u) fors=< —s,
K(t,u) = L(s,t,u) fors=<sg,

where H, Kes#. Further Jis a (s, t)-depending w-calibrated almost complex
structure satisfying

47) j(s, tuy=i for |u| large
f(s t,uy=J(t,u) fors< —s,
(stu) Jit,u) fors=s,.
Now consider a smooth solution u: R x §*—C" of
(48) ug — Jis, t, u) u, — (ViL)(s, t,u) = 0 .
We have

Lemma 9 Let J and L be as described above. Then there exist real constants
— 0 < ¢y Sc¢y; < + oo such that every solution u: Z— C" of (48) satisfying

(49) innfl D s(u(s) > — oo, sup Ppu(s) < + ©
S€ seR

Sulfills

(50) @ u(s)elcy, c;] for all seR .

Here u(s)(t): = u(s, t) and for a smooth loop x: S'—C"

11 '
(51) D (x) = —2~j {—ix, x>dt — j L(s, t, x(t)) dt
0 0
Proof. We compute
d i 5
s Py (u(s)) = J (S t, u(s, )dt — | P 12 us) -
00

Here for a smooth loop x and seR

Ikl . = Igj(s t, x(£)(h(z), h(t))dt .

By our assumption on J this is equivalent to the usual L2-norm, where
the equivalence is uniform in x and s. By assumption the map s— @ (u(s)) is
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decreasing. Hence
lim @y (u(s)) = su]g Dy (u(s)

L hndianlies]

lim @g(u(s)) = inﬂE Drsy(u(s)) .

s+

By assumption we find a sequence s,— + oo such that for the usual L?-gradient
and x; = u{s,) we have

(52) [Pk (xi) 12— 0 .

Here let @ denote the usual L?-gradient. If (|| x|l .2) is bounded we infer from (52)
that (]| x|l 1.2} is bounded, which immediately implies via (52) that (x,) is precom-
pact in H2(S*, €"). Hence without loss of generality we may assume x;—Xx in
HY2(S', €, where x solves

(53) X = Xg (x), x(0)=x(1).

For solutions of (53) we have a C*-apriori estimate from which we can obtain c,.
Similarly one constructs ¢, by studying (u(s,)) for a suitable sequence s, — — 0. So
arguing indirectly let us assume that |[x.];>—00 (which we may after taking
a subsequence). Define v, = x;/|xll.2 and 4, = {|x,] 2. Then

4 1K’(t)t) 0 in L?

— U — = , ) — 0 in L%,

dt " A Kk
If K’ is asymptotic to the positive definite matrix B we infer immediately that after
taking a subsequence v, converges in H!'? to some v with |v].2 = 1 satisfying

(54) —ip=Bv with v(0)=0o(l).

By our assumption of (7) the only solution of (54) is v = 0 contradicting |[v]|;: = 1.
Now define

¢y = inf {@g(x) | dPx(x) = 0}
¢y = sup{Py(x) | dPy(x) =0} .

Then — o0 < ¢; £ ¢, < + oo by construction and @, (u(s))e[c,, c,] for all seR.
|

In order to obtain some sharper estimates we impose some more hypothesis on L.
Assume L and J satisfy (44)—(47). Moreover suppose there exists a smooth arc
s— A(s) of positive definite matrices A(s)e £r(C") satisfying

(55) A(s)= A(—50) fors=< — s
A(s) = Alse) for s 2 sq
a—A(s) =20 on R .
0s

Further A4 is assumed to satisfy the following “regularity” requirement

(56) If the linear Hamiltonian system — ix = A($)x on (0, 1)
has a nontrivial 1-periodic solution for some

d
$eR then I A(s) is positive definite.
N s=§
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Finally the data A4 and L is related by the following requirement
(57) L' (s, t, u) = A(s)ullul "' —0

; L'(s, t,u) — iA(s) ul~'—0

uniformly in (s, f)eR x S* as |uj— + oc.

Lemma 10 Assume L,J and A satisfy (44)—(47), and (55)—(57). Then for a given
constant ¢ > 0 there exists a constant d > 0 such that

1oL
(58) [P () 12, + f (s xdr < c

for a number seR and a loop xe H"*(S', €") implies
Ixlgiz<4d.

Proof. Without loss of generality we may assume that | | , is replaced by the
usual L?-norm and @, denotes the usual L2-gradient. (Here we use the properties
of J) Since @, is independent of selR for s £ — 50 and s = s, we may assume
arguing indirectly that there exist sequences (sk) c R, (x;) = HY2(S1, € satisfy-
ing
(59) Sk 505 | XkllL2— + 0

1oL

[Prso Xz S ¢ (e b, Xk ()dt S ¢ .

o 0s
Observe for (59) that the boundedness of ([x.}/.2) immediately implies a H' *-
bound in view of the properties of L and [Py, (xy) |2 <c. Now we define

v, = X/l %]l 2 and argue as in Lemma a to find a subsequence of () converging in
H"? to some v satisfying

(60) —iv = A(se)v on (0, 1)
v(0) = v(1)
[oflpz=1.

d
Hence we must have (E;A>(s0) = ¢ld for a suitable ¢ > 0. By assumption we have

(61) ¢z

2R

(sk,t x())dt .

© ey

Moreover we compute

(62) s t,u) =

L /oL oL

EE <ka? (S, L, ))u), “>dV + 'a: (ss L, 0)

L/ar dA
= f< (s, t, yu) — (s)yu u>dv

0

1 /dA oL
+ 3 <—&: (S)u, u> + ~é-s—(s, t, 0).

oL
0s
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For every t > 0 there exists a constant ¢, > O such that

oL d
g & bow) — - Als)u)
M

h < thul + ¢,
oS

(63) ‘

for all (s, t, u) and y. This implies for k large enough

(/

L
— {Sk. 1, X, (1)) dt
0Os
1

1
elxi iz — = tlxel f2 — elixi] 2 — sup ,f”* (s, t, 0)dt
2 seR O ’\S

—%)uk@»ammu-é.

. £ . .
Taking 1 = y we obtain a L?-bound on (x,) contradicting the fact that

[xil2— + o0 .
This completes the proof of Lemma 10. |

Proposition 11 Assume L, J and A are as described above (see Lemma 10). Given
6 > 0 there exists a constant cs€IR such that for every solution of (48) satisfying

(64) — 0 < Sinng Dy (uls), sup Pp,(u(s) < +

we have ) o

(65) [lulls = ¢

Proof. From Lemma 9 we know the existence of numbers — oc < ¢y £

¢; < 4+ o such that @, (u(s)elc;, c,]. Hence for every pair of numbers
—w <aib< +w

b

(66) j‘ I:'d)i(s)(u(s))sz,u(s) + j% (Sa la u(s, t))dt]ds
0 J

a

¢, —¢=:C.

. d .
Define s, = kZ and put T = 15 5. Then using (66) we find s, € [§, — 1, § + 7] such

that x; = u(s,) satisfies

1oL el
H(p/L(sk)(xk)Hszk,xk + ja (51 &, X (Dde £ 82671 .
50

In view of Lemma 10 we find a constant J((S) such that || x;fly: < J(é) . Using the
compact embedding H'*2(§!, €") 5 C°(S!, C") we find a constant ¢; such that
(67) xillco < ¢s .

Now observe that £6 < 5,4, — 5, = % 6. Hence

[lulls < cs . O
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2.3 A CPC-estimate
Our aim is to derive a C%-estimate for solutions of
ug — Jis, t, ) u, — (V;LYs, t, u) = O
w Z2—-C"

under suitable assumptions on J,L and u. We list our assumptions. J is
a (s, )eR x S*-depending smooth w-calibrated almost complex structure such that

(68) J(s, t, u) =i for |u| large
uniformly in (s, t) and
(69) JGs, 1, u) = J(so, t, u) for s = so

JGs, t,u) = J(— s, t,u) fors< —s,.
Moreover
(70) Lstwz0

0Os
H(t,u)= L(s,t,u) fors< — s,
K(t,u) = L(s,t,u) fors=s,.
There exists a regular arc s—A(s) as described in (55) and (56) such that
(71) IL'(s, t, u) — A(s)ulu| "' —0

oL d
—é;(s, t,uy — I A(s)u

U=t —0
uniformly in (s, t) as |u|— + oo . Moreover we have the estimates

1) v

= o1+ ful)

I (s, t, w)h| < clh|

for all (s, t, w)eR x S x C" and heT".
Our main result in this section is

Theorem 12 Assuming (68)—(72) there exists a constant d := d(L, J } > 0 such that
every solution u of

Uy — J(s, £, wyu, — (VSL)(s, t, u) = 0
with

sin]£ Pr(U(s) > — o0, supPpyuE) < + oo
€ seR

satisfies
sup |u(s, )} <d.
Sup lu(s, )l =
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Proof. Pick a smooth map ¢:R—[0, + o0) satisfying
e(s)=0 fors<R>+1
@'(s) >0 forRZ+1<s<R*+2
9(s)=1 fors=R*>+2.
We find a constant ¢, > 0 such that
(73) @'(s)s £ ¢(s) + ¢, for all seR.
Define a(s, t) = @{u(s, £)]?) for (s, t)eZ and let
I'={(s,0)eZ | |u(s, t)] > R} .
On I we have for a solution u of (21)

ug— i+ L'(s,t,uy=0.
Hence

74 )
74 Uy — Uy — 7 L'(s, t,u) — L"(s, t, )u, =0
s

0
iUg + ty — ia L'(s, t,u) — iL"(s, t, u)u, = 0 .

Adding up the two equations in (74) gives on I the estimate
[4ul = c2(1 + [ul + Jud + |udl)

for a suitable constant ¢, > 0 independent of u. Hence we have on Z for a suitable
constant ¢; >0

lo"(|ul) <, 4u)]
< (Ul ez (1 + Jul + fugl + ludd))lul
< @'(ul?)(ea(l + [ul?) + [Vul?) .
Using (73) gives on Z
(75) | (ul?)<u, Aud| < cao + cseq + 3 + @'(ul?) [Vul® .
Next we compute
Ao = 4" ([u]?) (Cu, us)® + Cu, ud?) + 204Vl + 20'(u?) Cu, du)
2 2¢'([u*)[Vul* — 2¢'(ul?) [Vul* — 2c32 — 2(csey + c3) -
Hence for a:= 2(cs¢y + ¢3) , a constant only depending on L and J we infer
(76) —Au—2c;a<a onZ,
where 2¢; is also a constant only depending on L and J. Let § > 0 be so small that

77) Qs < 2572
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In view of Proposition 11 we find a constant ¢; such that

(78) Llulls = cs
for every solution u satisfying the hypotheses. This gives a constant b > 0 such that
(79) lo(u?)]s < b

for every such u. Now we apply Proposition 8 and find a constant ¢ = c(a, b, 2c3, 6)
> 0 only depending therefore on L and J s.t.

sup o(u(s, ) < c.

(s,t)eZ
Hence for a suitable d > 0

sup fu(s,t)| £d
(s.1)eZ

as required. 0

The previous method of obtaining C°-bounds in a noncompact symplectic mani-
fold has many more applications, [6]. We thank K. Cieliebak for many stimulating
discussions.

2.4 C®-estimates

This section is quite standard provided one has the C°-estimates from the previous
section. We include it for the convenience of the reader and allow ourselves to be
somewhat sketchy. The key point is a bubbling off analysis going back in the
harmonic map case to Sacks and Uhlenbeck, [37], and in the pseudoholomorphic
curve case to Gromov, [26].

We consider the partial differential equation

(80) ug— J(s, t, wu, — (ViL)(s, t,u) =0,

where J and L are as described in the previous section. In view of theorem we find
a constant d > 0 such that for every solution of (80) satisfying

(81) in“t; Dy o(uls) > — oo, supPr(uls) < + w

seR

we have the C%-estimate
(82) sup {|u(s, )| (s, )eZ} <d .

The crucial estimate for finding uniform C®-estimates is a uniform estimate for
[Vu|. We need the following useful topological lemma from [30].

Lemma 13 Let (X, d) be a metric space. Equivalent are the following statements.

1) (X,d) is complete
i) For every continuous map ¢ : X — [0, + o0), a given point x € X and a number
e > 0 there exist x' € X and ¢ > 0 such that

(@) & = eand p(x)e = P(x)e
(b) d(x, x") £ 2¢
(©) 2¢0(x"y = ¢(y) for all yeX withd(y,x) < ¢ ]

The main result of this section is
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Theorem 14 There exists a constant d >0 such that for every solution of (80)
satisfying (81) we have

|Vu(s, 1) <d for (s, 1)eZ .

Proof. Arguing indirectly we find a sequence (z,) = ((s,, t;)) and a sequence (uy)
such that u, solves (80) and (81) and

(83) |t {5k ER)|— + o .

We know from Theorem 12 that

(84) lue(s, )| < d  for (s, t)eZ
and from Lemma 9

(85) b o(ur(s)elcq, c;] for selR .

From (85) we deduce for every solution of (80), (81)

+oc 1
(86) j j. (Jf(g’ l’ u(S, l))(uS(S’ t)" us(ss l))det é Cr —Cy .

—w O
From this we deduce using the properties of J
(87) [luf?dsdt < ¢

VA

for a suitable constant ¢>0 independent of u. Choose a sequence (¢) = (0, + )
satisfying
(88) &0,  eVu(si, )| — + oo .

In view of the topological Lemma 13 we may slightly modify the data and may
therefore assume in addition

(89) [Vi(s, 1) | < 2{Vuy(sy, )]

for all (s, )eR? with (s, 1) — (S )| < &, where we consider u, periodically ex-
tended over R? in the second variable. Now we define

(s, £) = U (S T) + Ac (s, 1)
A = [V (si, 1)l -
We define R, = ¢4, and observe that R,— + oc. Then for |(s, t)| £ Ry
(90) [Vue(s, )] = A (V) (s, + A 1), (6 + A¢ '0)]
S22 =2,

Moreover for k large enough

%)
1) Bik |<5; Uk )(S, f

2
dsdt £ ¢ .
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Further

0 - 0
(92) 0= v — J(sp + Ac 18,1, + A¢ 1L, 00— 4
Os ot

— A VL) (s + A s b+ A Tt o)

Without loss of generality we may assume £, — t,. Since J is independent of s for
large |s| we may also assume that in the J expression s, — s, for some s, R, as well
as t,— to. Using the gradient bound in (90) it follows from standard linear theory
(and a perturbation argument) that (v,) is Cfs.-bounded. Hence after taking a sub-
sequence we may assume

93) vy—v in Ciy
[Vv(0,0)| =1
[Vu(s, )] £2 for (s,t)e R R=C
fo(s, 1) =d for(s,t)eRA R

and

(94) s — J(so, to, V), =0 on R? .
Now (91) implies that in addition to (93) and (94)

95) | lod?dsdt < o .

R2

In view of (94} and (95) a removable singularity theorem applies, see [26]. Hence we
obtain a smooth map v:8*—€", $* = € U { + o }, which is nonconstant and
satisfies R

(Tv)i = — J(sq, to, V)T on §2.

Since wo(ld x J(sg, to, *) =:¢g defines a Riemannian metric we infer that
0> jsz v*w. On the other hand by Stokes’ theorem for a suitable 1-form A

fr*o= [dw*)=[v*1=0.
$2 52 ?

This contradiction proves our assertion. O
Rudimentary linear theory gives now using Theorem 14, — see [17, 19, 28] -

Theorem 15 Under our standing assumption there exists for every multiindex
o a number d, > 0 such that for every solution u: Z—C" of (80) satisfying (81) the
Jollowing holds

(D) (s, t)| =d, forall (s,t)eZ.

3 Transversality and compactness

3.1 Regular Hamiltonians

Recall that the set of Hamiltonians 5 consists of all smooth maps H: S* x €"—IR
having the following properties:

(96) H|(8'xU)<0
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for some open set U < €". Moreover there exists a {*, *)-positive definite matrix
A such that

(97) |H'(t,u) — Au||u| " '—>0 as|u— + ©

uniformly for teS! and

(98) {H"(t, uyh| < c(h)
\gi H(t,u)| < c(1 + |u])

for a suitable constant ¢ > 0 and (¢, u)eS* x €" and heC". Further the matrix A4 is
required to satisfy

(99) The ordinary differential equation — iv = Av on (0, 1)
has no nontrivial solution satisfying v(0) = v(1).

As a corollary of Lemma 10 we have

Lemma 16 Given He# there exists a constant ¢(H) > O such that every 1-periodic
solution of % = Xy (x) satisfies |x(t)| < c¢(H) for teS".

Following a construction already used in [17] we denote by CX(S' x C*, IR) the
Banach space of all smooth maps 4: S' x €"— R such that

o0

(100) 141, := Z gl hllexstxenry < O .

k=0
Here £ = (g) is a sequence of positive numbers and
[hlckstcammy = 2,  sup{(D*h(t, u)) .
laf sk (tow)

If (¢,) converges sufficiently fast to zero the space consisting of all restrictions of
maps u in C® to a ball By is dense in L%(By) , see [17].

Now let & = (g) be a sufficiently fast decreasing sequence. If Hye # and 4eC°
then Hy + Ae#.

Proposition 17 There exists for given Hoe# a residual set I' < C> such that for
every HeHq + I' all 1-periodic solutions are nondegenerate, i.e. H is regular.

Proof. Consider the separable Banach space
B .= HVY(SL,CYx C2(S* x C, R) .

We define
Ti={(x, )| %=Xy, + Xs(x)}
and
F:#—L2(S, €
Fix, )= — X+ Xpg_, (x)+ X4(x).

Then for fixed AeCZ, the map F(*, 4) is a nonlinear proper Fredholm operator of
index zero. Using the density assertion for C{ it is an easy exercise to show that
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DF(x, A): #— L*(S!, €")is onto for every choice (x, 4) €¢#. Moreover for (x, 4) €X
the kernel Kern(DF(x, 4)) splits. Therefore 2 is a smooth submanifold of #. The
projection map n: 2— CZ: (x, A)— 4 1s a smooth nonlinear Fredholm map of
index zero. Using the Sard—Smale-theorem there exists a residual set I' of regular
values for z. Trivially for 4el” the map H, + 4 is regular. |

Assume A,el” such that ||4,],—0. Then there exists ¢ > 0 such that for every
1-periodic solution of some X = Xy (x) + X4, , (x) we have [x(1)| < ¢ for all teS™.
Using this fact we have the following corollary:

Corollary 18 Given H, e 3 there exists a constant ¢ > O and a sequence (4,) < CF
with supp(4,) < S* x B, such that | A¢|,— 0 and H, + A, is regular for every keN.

For the following we introduce the space #,., by
Definition 19 7., is the subset of # consisting of all regular Hamiltonians.
In view of Corollary 18 4., is dense for the strong C*-Whitney topology.
3.2 Regular trajectory spaces
Assume He#,.,. We study for given Je ¢ the partial differential equation
ug — J(t, wu, — (V;H)(t,u) = 0
u:Z—-C"
u(s)—x* ass— + oo,

where x * €2y = {x| x is a I-periodic solution of X = X (x)}. For p > 2 we define
BHP(x,x7) by
BLP(xT,xT)i=uy + WHP(Z, €Y,

where uq: Z— €" is a smooth map satisfying
(s, t) =x (t) fors< — s
ug(s, t) = x*(t) for s = s¢
for a suitable so. Then we define 0y ,: 8" P(x~, x*)— L?(Z, C") by
(O, s )(s, 1) = ug(s, 1)y — J(t, uls, 1) uds, t) — (V,H)L, u(s, 1) .

From results in [15, 17, 18], see also [34, 38], we know that Jy ; is a smooth
Fredholm operator, where the index is given by the difference of the
Conley—Zehnder index of the periodic orbits x~, x*. This we will explain later.
Our aim is to show that for given He ., a generic choice of J will result in the
fact that for all pairs (x 7, x ") zero will be a regular value for é,; ;.
Consider the manifold & consistig of all real linear j; €"—C" such that

we(Id xj) = g; is a Riemannian metric and j2 = — 1. Let jo,e& and denote by
&, the set of all R-linear maps ¢: €"— € such that
(101) w(ph, k) + wh, pk) =0

Jo® + ¢jo=0.

Then &, is a vectorsubspace of #g(C") and for $e.% the map
(102) J=Joexp(—Jod)
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belongs to &. In fact for every j close to j, we have the representation (102) for some
¢ close to zero.

Now let Je # be given. Then J(t, u) is smoothly depending on (z, u) and
J(t, u) = ifor |u| large. Assume X: S' x €"—.#x(C")is a smooth map with compact
support such that | X (¢, u)] 1s small and

w(X(t, wh, k) + wh, X(t, uyk) =0
Jt, X (t,u) + X, wyJ{t,u) =0 .

Then J(t, u) = J(t, u) exp( — J(t, u) X (t, u)) will be a new structure in #. Again we
choose a quickly decreasing sequence ¢ = (&) of positive numbers and define for
given R > 0 the Banach space .#/(R) , consisting of all smooth X as above with
X(t,u) = 0 for all reS! and |u| = R with

HXHt: ZPkHXHCk< + o0 .
k=0

We denote by UJ(R) for § > 0 sufficiently small the set of all J defined by

J(t, u) = J(t, u) exp( —J(t, )X (t, u)) ,

where | X, <6 and X(t, u) =0 for jul = R. U} is an open subset of a Banach

manifold. It has been proved in [23]
Theorem 20 Let He #, ., and Je #. Let R > 0 such that
x()| <R —1 forall teS'

for every xePy. For 6 >0 sufficiently small put U:= U}(R) as defined above.
Then there exists a residual set I' = U such that for every Jel the operator
O,ye B P(x~, xT)—>LP(Z, C") for p > 2 has zero as a regular value for every choice
x ,xtey.

For the next result let Je ¢ and He #, . For xe?y we consider

gr(x) = {(t, x(t)) | teS'} .

For © >0 let U.(x) be the t-neighbourhood of gr(x) in S' x €". For t > 0 suffi-
ciently small we have U.x)nU.(g)= ¢ for x=+y, x,yePy Let U(H)=
st.@ Hl]r(x)‘

Consider the Banach space
CZ(U(H), R) = {4eCP(S' x €', R) | 4] U.(H) =0,
supp(4) = S x B>(R)} .

Let R >0 be chosen in such a way that xe®, satisfies the apriori estimate
Ix()] £ R —1. We find a 6 > 0 such that ||4]|, £ § and AeC*(U.(H), R) implies
that ., 4 = Py.

Denote by 77; the open d-neighbourhood in C*(U,(H), R) of zero. We have

Theorem 21 Let Je ¢, HeH#,p, R >0, and ¥ be as described above. Then there
exists a residual subset I' = ¥ such that for every Ael the pair (H + A,J) is
regular, i.e. belongs to N,,.

Theorem 21 is proved with the help of 3.1 in [23] in [40] for a related case.
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Summing up there is a plentiful supply of data in .4,, for which we have the
following theorem.

Theorem 22 Given any regular pair (H,J)eN,, and x~,x"€Py the set
M(x",x*, H,J) defined by

M, x H D)={uZ—>C"|u(s,x)—>x* as s>+ «©
in C*(S', €") and u, —J(t, wu, —(VH)(t, u) = 0}

carries in a natural way the structure of a finite dimensional manifold induced from
BYP(x",x¥), p > 2. This structure does not depend on the choice of p by elliptic
regularity theory. Moreover

dim #(x",x*; H,J)=Ind(x", H) —Ind(x", H) .

3.3 Monotone homotopies
Let (H, J) and (K, J) be elements of Nree- We define a partial ordering by
(103) (H,J)S (K, J): <H(t, x) <K@, x) forall (t,x)eS'xC".

Given two pairs satisfying (103) we call a pair (L, J) a monotone homotopy
between (H, J) and (U, J) provided L: R x S' x C"—R is a smooth map satisfying
for suitable s, >0

(104) L(s,t,u) = H(t,u) fors < —sq
L(s,t,u) = K(t,u) forsz= s,

oL

—(s,t,u) =0 for all (s, t, u) .

Os
Moreover there exists a smooth map 4: R— %R (C" associating to a number
s a positive definite (for {*, *>) matrix satisfying
(105) If —ix = A(§)x and x(0) = x(1) for some non zero x and

d
§eR then I A(s) is positive definite.
s

s=3

Further the data 4 and L satisfies
(106) [L'(s, t, u) — A(s)u| |Ju) "' — O uniformly as ul = + oo

°o d 1 )
iégL (s, t, u) s A(S)u| [u|”*— Ouniformly as |uf - + o

5,
]~ L'(s,t,u)] £ c(1 + ul)

ot
IL"(s, t, u)h| < clh]

for all (s, t, u) and h. Moreover the map (s, t, u)— J(s, t, u) associating to (s, t,u)
€R x 8! x C" a w-calibrated structure is smooth and satisfies

(107) J(s, tu)y =i for |u| large
f(s, t,u=Jt,u) fors< —s

f(s, tu) = f(t, u) fors=s,.
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In view of Sect. 2 the solutions of the partial differential equation associated to
(L, J), see the introduction, satisfies a uniform C®-bound.

Similarly to Theorem 20 we have the following transversality theorem which is
in fact somewhat easier.

Theorem 23 Given a monotone homotopy (L, J) there exist constants R > 0, sq > 0,
and a sequence (J,) with

(108) Jils, t,u) =i for luj = R
fk(s, tbu=J(tu fors=< —sq
fk(s, t,u) = J~(t, u) forsz=sg

with )

Jy—J inC®

and (L, J) is regular for every keN.

Regular of course means that the first order elliptic operator Oy j,) has zero as
a regular value for every choice of asymptotic boundary conditions xe Py, yePy. We
denote by A, (H, J; K, J) (for (H, J), (K, J) eNregand (H,J) = (K, J)) the set of
reqular monotone homotopies between the two pairs.

We note that we could also formulate a stronger version of Theorem 23 similar to
24. Namely there exists a neighbourhood U (J) containing a residual set I' such
that (L, J) e./Vreg(H J, J)for Ler.

Similar as in Subsect. 3.2 we arrive at

Theorem 24 Given (L, f)eMeg(H, J; K, f) there exists for given xe Py and yePy
a natural finite dimensional manifold

M(x,y; L, J) = {u: Z— C" | u is smooth u(s, *)—> x as s » — o0
u(s,x)> yass— + oo in C*(§',C")
and u;, — J(s, t, u)u, — (V;L) (s, t,u) = 0}

Moreover .
dim A (x,y; L,J)=Ind(x, H) — Ind(y, K)

and necessarily if M(x,y, L, J) =+ ¢ the inequalities
Ind(x, H) 2 Ind(y, K), @xu(x)= Pk(y)
hold.

3.4 Compactness

Let (H, J)eA,,, and consider #(x~,x" ; H, J) for a choice of x™, x* e2y. We
assume that

(109) 0<Ind(x", H)—Ind(x* ,H)<2.

Hence # := #(x~,x" ; H, J) (assuming # + ¢) is a manifold of dimension 0, 1
or 2. We have a natural IR-action on . defined by

(110) (pxu)(s, t) = u(s + p, t)
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for seR and ue#. If x~ = x" the space .# consists precisely of the point
[(s,t) —>x7(t) Jand R acts trivially. If x~ # x* then the R-action is free and the
quotient space .# = .#/IR has dimension one less than .:

(111) dim(#) = dim(#) + 1 if dim(#) = 1.

Having the C*-bounds from Sect. 2 the analysis in [16, 17, 19], see also [34, 38],
leads to the following conclusion.

Theorem 25 Let (H, J)e N, If dim M =1 then M is a compact manifold, i.e.
consists of finitely many points.

Next consider the case dim.# = 2. Then .# is 1-dimensional and decomposes into
components either diffeomorphic to S* or (0, 1). The crucial point is to understand
the meaning of its ends in geometrical terms. This has been analysed in [16, 17, 19].
We follow the description in [34]. (We oppress the data (H, J)eA,., in the
notation.)

Theorem 26 Let x, y, ze Py with Ind(x, H) = Ind(y, H) + 1 = Ind(z, H) + 2. Then
there exists a local diffeomorphism # from an open subset O of
M (x, y)x My, z) x R into M (x, z) such that

1) Given a compact subset K oleA(x, y)x M (y, z) there exists a number o(K ) such
that K x[6(K), 0 )<= O
il) There are lifts

#la #2: (9——),/”()C,Z)

such that for every pair (uy,uy)eM(x,y)x My, z) with @y(u,(0))=
3 (@u(x) + Pyu(y)) and @ u(u5(0)) = 3 (Pu(y) + Pu(z)) the maps # (4, 45, p)
converge in Cio, to u; as p—> + co . (Here 1 is the element in M corresponding to
uin M).

iil) Let M = U.//[(X y), where the union is taken over all pairs (x, y)ePy x Py
satisfying Ind(x, H) — Ind(y, H) = 2. Let O « M be the image of all maps # as
constructed above. Then M\ O is compact.

Geometrically Theorem 26 identifies the ends of the components in 4 (x, z)
diffeomorphic to (0, 1) with broken trajectories from x to z “factorizing” over y. We
have the following figure explaining this.

T
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The maps # are not natural, however given orientations of .#(x, y) , #(y, z)
they induce a natural orientation of .#(x, z) which is not depending on the choice
of # aslong as # is obtained from the glueing procedure as explained in [17, 19].

In order to obtain symplectic homology with arbitrary coefficients we have to
orient the .#(x, y)’s so that the orientations are preserved and compatible with the
glueing procedure. This is done in the next section.

4 Symplectic homology

4.1 Coherent orientations

Let (L, f)eﬂ,eg((H, J);(K,J)). Note that this includes the special case
(H, J)eN ey For xe?y and ye#y and p > 2 we consider the previously intro-
duced Fredholm map

01,5:B"P(x,y)—> L"(Z,C"),

where the space 87 has been previously constructed. If ue #(x, y; L, J) denote
by
Li(u): HYY(Z,C")— L¥*(Z, C")

the linearization at u. Since (L, J )N, the linearization is a surjection and the
tangent space of #(x, y; L, J) at u is precisely the kernel of &7 j(u), ie.

T, #(x,y; L J)={u}xkern(d; j(u)).

For a finite dimensional R-vectorspace E let A™E:=EA ... A E(dimE-
times) with the convention A ™*{0} = R. With the definition of the determinant
of a Fredholm map, see [22], we have

Det (0, j(u))
1= (A ™ kern(0y, j(u))) ® ( A ™*cokern(dg, j{(u)))*
= (A ™ kern (g, j(u)) ® R*
=(A™NT, H#(x,y; L)) ®R*
~ A™T, M(x,y;,LJ)) .

Letting u vary over #(x, y; L, J) we obtain the determinant bundle of the family of

linear Fredholm operators u— 07, j(u), which is isomorphic to the maximal wedge

of the tangent bundle T.# (x, y; L, J). Hence an orientation of
Det(y,5(*))— M (x, y; L, J)

is equivalent to an orientation of .# (x, y; L, J). _

To recall the results in [21] (we note that we studied in [21] J-operators and
here d-operators, which of course does not make any difference) let us define the
asymptotic operators of 87, j(u). In order to simplify notation we put T := 07 j(u).
Then the asymptotic operators T * are defined by

T*: H"*(S!, C")— L2(S', C")
(TEh)(1) = — J( & 00,0) h(t) = (D3J (& 00,1, x* (1)) (1)) x* (£)
— D3(V;L)( £ oo, t, x*(t)) h(t),
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where x~ = x and x* = y. The operators T * are selfadjoint unbounded oper-
ators in L%(S!, €") for suitable L?-inner products. Namely

(h k)= =[g;( £ oo,tx*(t))(h(t), k(r))dr .
0

The operators of “type” T belong to the class 2 introduced in [21]. To make this
precise consider the two point compactification R={—oc}u RuU {+ 0}
equipped with the unique differentiable structure turning the homeomorphism

hR—[-—1,1]
defined by
+1 fors= + w
o =| A,
S(l + SZ)Aj or se

into a diffeomorphism. Let us put Z = R x S'. For J(z) being an w-calibrated
complex structure depending smoothly on zeZ we have asymptotic structures
(J(+ o0, #)) depending on teS!. Associated to J there is an inner product (*, *);
on L*(Z, €C") given by

(112) (h k)y = [ wo(h(s, 1), J(s, t) k(s, t))dsdt .
Z

Moreover we have asymptotic inner products given by

(113) (h k), = [o(h(t), J( £ ©,t) k(t))dt .
S1

% consists now of all first order partial differential operators defined by
(114) (Tu)(s, t) = us(s, t) — J(s, 1) uils, t) — A(s, thu(s, 1) ,

where (s,t)eZ. Here J is as described above and the map Za(s t)—
A(s, t)e £R{C") is smooth such that the asymptotic operators defined by

(115) (T*h)(t)= — J( £ oo, t)h(t) — A( + oc, t)h(t)
satisfy |
(116) kern(T *) = {0}

(T*h k) =(h T*k),

and are selfadjoint operators in L*(Z, €") with domain H':?(Z, C") (for the
particular inner products). Here one should note that the operators d;,_;(u) intro-
duced previously induce operators in L2(Z, C").

Fixing asymptotic operators o, f we consider the set §, ; consisting of all
operators 7in Zwith T~ = «, T* = B, equipped with the topology induced from
Pr(HV*(Z,C"), L*(Z, €C"). The natural determinant bundle over .5 (all T in
0. s are Fredholm operators) is trivial and hence orientable, see [21] for more
details.
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Given asymptotic operators «, §, v and having orientation for Det(, ;) and
Det(0g, ,) there is a naturally induced orientation for Det(,,,) obtained by glueing,
see [21]. Formally

(117) Oug# 0= s, -

A coherent orientation is a choice of orientation for every 8, 4 such that the formula
(117) holds for every triplet of asymptotic operators. Consider the group I’ consist-
ing of all maps f associating to a pair (2, ) of asymptotic operators a number
f(a, B)e{— 1,1} such that

(118) S BY S (B 7) = f (2 7)

holds for all triplets («, 5, 7). It has been shown that the group I' acts freely and
transitively on the set of coherent orientations by

(fo) (@, B) = f(a. f)o(x, B)

where a(a, f§) is the (coherent) orientation for 6, ;.

Having fixed a coherent orientation ¢ and tdkmg a pair (L, J)eereg(H J: KJ)
the manifold # (x, y; L, J) for xe Py, ye®Py carries an orientation in view of the
previous discussion.

First assume (H, J)E./Vreg is given and a coherent orientation . Let x* e 2y
with Ind(x™, H) — Ind(x* , H) = 1. Then

dim//l(xw,x+ (H,J)=
#,/l(x*,xﬂH,J)< 0 .

For every de(x,x*;H,J) the corresponding component of
M(x",x*;H,J) is given by {pxu|peR} and carries the orientation

o{u) = o(x", x"; H, J)and a natural orientation given by [%} We define a num-
ber 1, (u)eZ by
(119) To(u) [u] = o(u) .
If we take the coherent orientations fo with fel” we have
Tre(u) [ud = fulx ", x5 H, J o (u)ug] -
Hence
(120) Tro() = fulx ", x " H, D)t (u)

Moreover given (L, f)eMeg(H, J;K,J) and xe®y. ye®, with Ind(x, H) —
Ind(y, K) = 0 the set of connecting trajectories is a compact 0-dimensional mani-
fold, see [17, 197, and every we.# (x, y; L, J) carries an orientation 1®1* where
1*(1) = 1. We define a number t(w)e{ — 1, 1} by

(121) o(w) =T, (w)[1 ®1*] .
4.2 Construction of chain complexes

Let us assume ﬁe/f(x, y; H, J) and ﬁeJ/i(y, z; H, J) such that Ind(x, H)=
Ind(y, H) + | = Ind(z, H) + 2, where (H,J)eA,, We have the associated
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figure:

The glueing construction [17, 197, precisely explained in [34, 38], shows that the

ends of .#(x,z) correspond bijectively to broken trajectories. This gives the
following picture

The glueing construction shows immediately that the glued orientation for
u, v, W', v must be related as follows

(122) [ud#[v] = — [ud#[v.].
For any coherent orientation ¢ we have
o(u) #o(v)=o(u)#o(v).

Hence using the definition of 1, we obtain the formula

(123) To(u)t,(v) + 15(0') 7,(v) = 0.
Next assume (L, f)EJV,eg(H, J; K, J)is given. Then let xy, x,€ Py, y,, y,€Px with
(124) Ind(x;, H)=Ind(y, K) fori=1,2

Ind(x,, H) — Ind(x,, H) = 1
Ind(yy, K) — Ind(y,, K) = 1.

Again the ends of A (x4, y,; L, J ) correspond to broken trajectories. See the picture
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Glueing gives
o(w)#a(u)=o(u)#o(w2)
and

(@ 1*]#u] =[u]#[1®1*].
Hence using the definition of 7, we obtain the formula
(125) To(wy) 7.(0) [1 @ 1*¥] #[u] = o (w)#a (¥)
= o(u)#o(wy)
= T,(u)T,(w2) [u] #[1 ® 1*]

= 1,(u)T,(wy) [1 @ 1*¥]# [u]
Hence

(126) T, (w1)T(U) — To(u) To(w2) = 0.

Now let ae( — o, + oo ]. We define for (H, J)eA,.q and keZ the free Abelian
group Ci(H,J) by

127) Ci(H,J)= P{Zx | xePy,Pyu(x) < a, Ind(x, H) = k}
and the graded Abelian group C%(H, J) by
(128) Cu(H,J)= D Ci(H,J).

keZ

For a fixed coherent orientation o we define a boundary operator 0° by

(129) a°: Ca(H, J)— C3(H, J)

0°x = Z Tc(x’ y)y »
Ind(y, H)=Ind(x,H) - 1
where

(130) T,(x, y) = Y 1(w)eZ .

ﬂs.i(x.y:H,J)

We observe that
(131) Tro(% ¥) =f(x, s H, J) (%, y) ,
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where f(x, y)e{ —1, 1} and f(x, ¥) f(, z) = f(x, z). (In fact feI’, the precise nota-
tion should be f(«a, ) where a is the asymptotic operator at x, etc.) Given different
orientations we may apriori obtain different theories. To study this question let
¢’ = fo. We write f in the form

(132) Sl B) = p(a) p(B) ,

where p is a function associating to an asymptotic operator a number in { — 1, 1}.
Given He #,., and Je # we denote by a(x, H, J) the asymptotic operator deter-
mined by (H, J) over the periodic solution xe#y. Having (H, J)e A, fixed we
shall often write a(x) instead of a(x, H, J). We observe that in (132) p is determined
uniquely up to sign. Given a p as in (132) we define a map

Ayt (C4L(H, J), 07)— (CL(H, J), 07)
by
(133) x— plafx))x

for xe?y. We compute using (131) and the fact f(x, y; H, J) = p(a(x)) p(a(y))
with p(x) := p(x(x))

(134) 2p(x) = Z 7o (% y) p(x)y

—Zp )T.(x, y)y
=Zp Y)T.(x, )y
¥y

= ,8%(x).

Hence 4, defines a chain isomorphism. Due to the ambiguity of the choice of the
signs we have the situation

(135) (Ca(H, J),0°) =2 (C%(H,J), )

saying that between two objects there are precisely two isomorphisms. The “double
arrow” is natural. Of course what we would like to have is precisely one arrow
between two different objects. In order to do so we have to construct in some sense
a “double covering” of the category with different lifts for the two arrows.

In order to follow the above scheme we introduce the capped half cylinder
Z.:=Du ([0, + 00 )xS'), where dD=S' is identified with S'x~{0} xS'. We
equip Z, with a complex structure denoted by i which on [0, + oo ) x S* is precisely
the one induced from Z, i.e. ~a~—~> i, b E, where (s, t) are the coordinates on

0s 0t Ot 0s
[0, + ©)xS'. We assume Z, to be a C%-manifold. We write Z, for
Z.u ({+ 0} xS'). For a w-calibrated almost complex structure J for
Z.x C"—>Z, we define a vectorbundle X;— Z, as follows. The fibre over zeZ,
consists of all real linear maps ¢: T,Z.— C" such that

(136) J(2)p — ¢i =

Hence X, < Zg( T,Z,C"). So we may assume X, is a subbundle of
Lr(TZ., Z.xC"). X, splits Ly, where the splitting is smoothly depending on
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X (it is the canonical splitting into complex linear and complex antilinear maps.)
We introduce the Hilbert spaces H?(Z,xC") and L2*(X;) of sections in the
obvious way. Observe that L?(X) is a subspace of L2 Zx(TZ,, Z,x C")). We
introduce a class X, of linear operators L as follows. LeZ(H"*(Z . xT"),
LA ZPR(TZ,, Z.xC"))) is said to belong to X, if there exists a J as above and
a smooth section A: Z— % (C", X;) such that

(Lu)(z) = Tu(z) — J(z) Tu(z)i + A(z)u(z)
for zeZ,. Moreover over Z, = [0, + o )x S! we have that

u

(Lu)(2)<% ) = g—z (5, 1) — J(s,t) py (s, 1) — (A(s, hu(s, t)) <§;>

= 533 (s,1) — J(s, 1) u (s, 1) — A(s, t) u(s, 1)
0s ot

is the restriction of an operator L of class X to Z, . We have following [19]
Theorem 27 Every LeX, is Fredholm. L has the asymptotic operator
h— — J(+ o0, 1) h(t) — A(+ @, 1) h(1) .

Having a fixed asymptotic operator a we denote by 65 the collection of all those
L and put on them the topology induced from ZL(H"“*(Z.xC"),
L*(Zr(TZ., Z.x C"))) . As in [21], one shows that 8¢ is a contractable space. We
denote by o(a) an orientation of the canonical determinant bundle over 05, see
[21]. Using the glueing construction for linear operators as explained in [21], we
have an almost natural procedure to glue an operator Lef with an operator
Tef, ; to obtain some operator L# Te€fdj. Although the glueing is not naturally
the orientation o(f) induced from an orientation o(x) of 65 and o(a, §) of 6, 4 by
the glueing construction does not depend on the glueing parameters.

Consider now pairs (o, 05)) consisting of a coherent orientation ¢ and an
oriented class of operators 65 with orientation o(o,). Assume (o', 85,) is a second
such pair. o and o(a,) determine via glueing an orientation o (o) # a(oo, o) of 05,
We have fo = ¢' and choose a potential p for f according to the following
requirements

o(ap) = p(ag) o(otg) # (2, o)
f(a, B) = p(a) p(B) .

We observe that p is uniquely determined by these requirements. Let us denote this
P BY Pl wo,0.0)- Assume a third pair is given, say (¢”, ag) . We have

o(ag) = Y(ag)o(ao) # (o, xp
(9./) e, B) = Y ()Y (B)
with ¢ = go’, ¢’ = fo. Then
o(xg) = Y (ag) o(ao) # o (o, oo ) # o (oo, o)

= Y (ag) plag)o(ao) # (o, ag) -
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If ﬁ = Ple”.af; a'=ab))a P = P ap; a,a0) WE deduce
plag)o(xo)# o' (a0, %5) = (o) p(xo) o(ero) # (oo, oo
= y(ao) plap)oao) # (f (ao, ag) o' (2o, ag)) -
Hence
plag) = Y(ao) plao) pao) plxo)
which is equivalent to
Y (og) = plag) plog) -

This implies immediately that

or in other words

p(a“,ab’; d,a9) = p(a“,aa; o' ah) p(a’,a(’); o,a9) -
Now we define for a pair (o, 2o) the chain complex
Ci(Ha Jy (01 a())) = (C:::(H9 J)s aa)

and between two different chain complexes a chain isomorphism
Ao ap; a,a0) - = Ap(a’,ap; 0,00y Vid the formula (133). Then

j-(zr',rx('); a,ao): C‘;(H, Ja g, do)—'* C?k(Ha J; 0’9 OCE))

defines a connected simple system.

4.3 Monotonicity homotopies

In view of the naturality of the construction of the chain complexes in respect to the
chosen data (g, ay) we may assume for the following that (o, o) is fixed.

Suppose now (H,J)<(K,J) are both belonging to Nieg and
(L, f)e./V,eg(H, J; K, J). For ae(— o0, o0 ] and dropping (o, o) in our notation
we obtain an induced chain map

¥ iy Ca(H, J)— CHK, )
via the formula ‘
¥ wn(x) = > #(x,y),
yePx
Ind(y, K)=Ind (x, H)=k
where
(X, y) 1= T,(x, y) = Y. T, (W)

with 7, defined in (121) and the sum being taken over all we #(x, y; L, J ). In view
of (126) ¥ (. 7, defines a chain homomorphism.

A crucial point we have to discuss is the following. Given another regular
monotone homotopy the induced map is naturally chain homotopic. This will
allow ourselves to regard Cj, as a covariant functor associating to (H, J) €/}
a graded Abelian group and to an “inequality sign” a chain homotopy class of
maps. So let (Lo, fo) and (L, fl) be elements of A(H, J; K, f) . Arguing as in
Sect. 3 we can construct a regular homotopy of monotone homotopies
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A— (L, J;), 2R such that
(Lo Jy) = (Lo, Jo) fors=<0
(Lo )= (L, Jy) fors=1,
so that the operator (for p > 2)
B RxBP(x, y)— LA(Z, C"): (4, u)— (1, 7,,(1)
has zero as a regular value. We are mainly interested in the cases
Ind(x, H) —Ind(y, K)e{ —-1,0} .

Then Ind(T)e{0, 1} in view of the additional A-parameter and our index formula.
Our aim is to prove the formula

(137) W(lejl) - q](LOvjo) = aA —Aa

for a suitable homotopy operator A. Clearly (137) implies the desired conclusion.
We shall proceed as follows. Firstly we give an explicit definition for A and then
secondly we derive the equality (137). In order to proceed it is useful to define
a coherent orientation for a somewhat larger class of operators. Consider operators

T:RxH“*(Z,C")— L*¥Z, C")
TO,H)=Th+ Aa,
where T is of class X as introduced in Subsect. 4.1 and aeL?(Z, C"). We have an
exact sequence
(138)  0— kern(T)— kern(T)— R — cokern( T)— cokern(T) — 0,
where
di(h) = (o, h)
d,(A, h)=4
ds(A) = da + R(T)
do(h+ R(T))=h + R(T).

A simple algebraic lemma, see [21], shows that (138) induces a natural isomor-
phism

A™* kern(T) ® R ® A™* cokern(T) =A™ kern(T) ® A™* cokern(T) .

Multiplying by (A™* cokern(7))*® (A™* cokern( T))* and using the natural
isomorphisms EQ F~FQ®E, EQE*~R,EQR~E we obtain a natural
homomorphism

(139) Det(T)= Det(T) .

Independent of the choice of aeL? an operator T, has an asymptotics given of
Course by the asymptotics of T. For given asymptotic operators «, § we denote by
9a g the set consisting of all T, with Teb,, # aeL*. We have a glueing procedure, see
[21], which allows to construct for an orientation 4, g of Ha s and an orientation
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6., of 05, an orientation o, s# ., of d,., and similarly for dg,,5 of 6, 5 and o, of
0., & Gy # 04, Of O,,. The isomorphism in (139) produces from an o, a Oq4p- The
following formulae are easily established given a coherent orientation ¢

(o(a, B) # a(B, 7)) = o(o, B)" #(f,7)
=a(o, B) #0(B,7)" .

Here a(a, ) stands for the orientation of the determinant bundle over 0, etc.
Now let xe?y and ye?y with Ind(x, H) —Ind(y, K) = —1. Then the
Fredholm index of the nonlinear operator

B:R x #'7(x, y)— L?(2, C")
B(A, u) = 0y, 5,(u)

is zero. In our generic case the linearization B'(4, w): R x HY 9 (Z,C")— LY Z,C")
is an isomorphism at every zero (4, w) of B. We note that B'(4, w) also induces an
isomorphism R x H"2(Z, €")— L*(Z, C"). For simplifying notation we denote
the regular homotopy A— (L, J;) by A— M(A). For x and y as above we define

M(x,y; M(%)) = {(4, w)|w:Z— C" smooth, ieR
B(A4,w) =0, w(s, ¥)—x as
s— — 00, W(s, ¥)— Y, as s— + 00} .

Under the previous index assumption the manifold #(x,y; M(*)) consists of
finitely many points®, say (4;, w;);=1, . 1 at which B'(4; w;)is an isomorphism. We
take as orientation of Det(B'(4;,w;)) the orientation [1 ® 1*¥]. The coherent
orientation ¢ gives an orientation &(B'(4;w;)). We define a number
(4, wye{ — 1,1} by

(140) (B (Aj, w;)) = (A, w)) [1 @ 1*] .
Finally we define %(x, y)eZ by

1

(141) #(x, y) = Z (45 W)
Then we put
(142) A(x) =Y (%, y)y

A: Ci(H,J) - C&y (K, ),

where the sum is taken over all ye#y with Ind(x, H) —Ind{(y, K) = —1. Our
aim is to verify the formula (137). The proof of (137) is based on a study of
M(x,z, M(x)) for xePy, yePx with Ind(x, H) = Ind(y, K). Since the data is
assumed to be generic a compactness argument(in the spirit of those previously
used) shows that .#(x, z; M(-))decomposes into finitely many components, which
are(taking orientation preserving maps) diffeomorphic to [0, 1], (0, 1], [0, 1),
(0,1) or S, if we consider only the parts of the components in [0, 1] x BV P(x, 2).
This is illustrated by Fig. 1.

! By a compactness argument and regularity
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Fig. 1.

Let us write ¥; = ¥ ;.5 for i = 0, 1. By construction

(¥ ~¥olx)= Z(i’l(x, z) —1o(x, 2))zZ ,

where 7(x, z) = Y T(w) with ;(w) defined in(121) for i = 0, L.

Through every (0,w) or (1, w) where w is as above there goes exactly one
component as depicted in Fig. 1. Let us show that in the formula for ¥, — ¥, only
those w count for which (0, w) or (1, w}) is contained in a component of type [0, 1)
or (0, 1]. So let us assume for example (0, w) lies on a component of type [0, 1]. By
definition

a(w) = To(w) [(1 @ 1%),,] .

The other end of the component corresponds to a (g w') for e€{0, 1}.
Let T: [0, 1] x #*P(x, z)— L? with p > 2 be the obvious maps. Using elliptic
regularity theory we always consider the linearization of T as an operator in
a L?-set up. The first case is ¢ = 0 We know that 6(DT(0, w)) and 6(DT(0, w')) are
related by continuation and also ([1 ® 1*] at (0, w)) and ([ —1 ® 1*] at (0, w')).
Hence

To(w) = —To(w).
If ¢ = 1 we infer similarly
To(w) = T (W) .
%et I)" }s(z) = {(e, w) | There exists a component of type [0,1) or (0, 1) through
& w)l.

We have shown

(¥ —Yolx)= Z < Z 1?1(‘4’)>Z —< z fo(W)>Z .

z (1,w)el’y(z) (0, w)el'g(z)
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(0,w)

(0, w’)

Fig. 2.

Next let (0, w)el'y. The component through (0, w) has a non compact end which
corresponds via glueing and the usual compactness analysis to a broken trajectory

z

(0,w)

\

N\

There are two cases to be considered. The broken trajectory has the form (4, w')

o~

followed by some we#(y, z,K,J) or ue#(x,y, H,J) followed by some
(A, w)eH(y, z, M(x)). Consider the first case.
The orientation ¢(D7(0, w)) and the glued orientation

&(DT(X, W) # a(k, (u))

on a connecting orbit(near the broken one) are related by continuation. Also the
orientation given by ( —1 ® 1*)e kern (DT(0, w)) ® R* and the orientation ob-
tained by glueing 1 ® 1* above (4, w') and u; above ' correspond. Hence

=[(1 ® 1*)0,w} = [(1 ® 1*)(z,w)] # [u]
= (A, w)G(DT (A, w))#1(u)a(u')
= T(A, w)t(u')é(DT(0, w))
= (X, W) () Eo(W)(1 ® 1*)0.m)] -
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Therefore we obtain the formula

°
(A, w)
(143) Tow)= —t(A,w)t(u) for O, w)~ e
L v
°
Similarly
°
l u
(144) To(w) = t(u)t(d,w) for (O,w) ~~» e
L, w)
)
Further
°
1 (4, w)
Ty(w') = (4, w)t(v') for (O,w) e
L
.
(145) and
°
l u
Ti(w)= —t(u)t(4,w) for (,w) e
1 (4, w)
°

Hence we may write ¥ (x) — ¥o(x) as follows:

Y’l(X)—‘Po(X)=Z< > fl(W))Z~Z< ) T~o(W)>Z

z \(1,w)el'y(z) z \(0,w)ely(z)

= -—Z( Y r(u)f(l,w))z

z \(u,{4,w}))

+2< Y %(A,w)r(u))z.

2 \((4,w)u)

77

Here in the first sum over all z with Ind(z, K) = Ind(x, H) the pairs (u, (4, w)) vary

over all broken trajectories of the type

x e

lu
ye

1 (4,w)

zZe
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withInd(y, H) = Ind(x, H) — 1, Ind(z, K) —Ind(y, H) = —1, corresponding to an
end of a component of type [0,1) or (0,1]. In the second sum over z the
z-coefficient is obtained by taking the sum over all broken trajectories of the type

X e

1 (4, w)
Ve

| u

zZ®

with y'e Py, beeing the “end” of a component of type [0, 1) or (0, 1]. Consider
finally components of the form (0, 1). We have to consider the following cases in
identifying their ends with broken trajectories

We obtain the following formulae

a) t(w)t(4 w) = ~ t(u)(4, w)
V. y'ePy

b) tW)t(4, w) = (2, w)t(¥)
yePy, yePy

o) T4 wit(w) = — (A, w)it(W)
y, VePx .

Using the above discussion we may write

Pi(x) — Polx) = Z( Y w4, w))z — Z( Y i4,w r(u))z

z \(u, (4, w)) z  \{(4,w),u)

= =Y ni(x,2)z + Y nolx, 2) .

Here ny(x, z) is obtained by taking the sum over all broken trajectories of the type
(u, (4, w)) and ny(x, z) by taking all broken trajectories between x and z of type
((4, w), u).
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Consider the expression dA(x) — Ad(x). We have

6/1(x)=2< Y f(l,w)r(u))z

z \{((A,w),u)
Ad(x) = z( Y c(u)t(4, w)>z ,
z \{(u,(4,w))

where the second Z in each row is taken over the indicated set of broken
trajectories from x to z. Hence

Ad(x) — 8A(x) =Y ny(x, 2)z — Y no(x, z)z .
This proves
‘I’l—'f’ozaA-Aa

Implying that ¥, and ¥, induce the same map in homology.

4.4 A general construction

In the previous sections we have constructed a covariant functor on (A <)

regy =
associating to a pair (H,J) and a number ae( — o0, + o] a chain complex
(C*(H, J), ¢). We drop the dependence on the choice of a pair (g, ay) in view of our

previous discussion. Moreover to an inequality (H, J) < (K, J) we have a natural
chain homotopy class denoted by

(146) C4(H,J)—~Cu(K. J),
which i1s compatible with the natural inclusion
(147) C%(H, J)— CL(H, J)
for a £ b. For an open bounded U = €" we denote by A4, (U) the subset of
N e consisting of all (H, J) such that H [(S'x U) < 0. For a = (H, J) €4,,(U)
and —w <a<h= + o we define
CE2a) 1= (CL(@)/Co(w), 0) .
In view of our transversality results we have

Proposition 28 (A (U).
VEN 1eg( U) such that

<) is a directed set, i.e. given o, Be N, {U) there exists

Define S%&?(x) = H,(C%¥?(a)). Then

(S0 aetryvy. )

is a directed system of Abelian groups. We note here that we could tensor C&-?)(«)
with any Abelian group G before taking homology. In that case we write

St (e G) 1= Hy (CEM (@) @ G) .
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Hence we have

Theorem 29
(SE-2 o G aen vy

is a directed system of graded Abelian groups.
Now we are able to define the symplectic homology of U as a subset of C”.

Definition 30 Let — o0 <a < b £ + o0 and U be an open bounded set and G be
an Abelian group. The [a, b)-symplectic homology group of the set U in dimension
k with coefficients in G is the Abelian group

SEP(U 6) = lim (S[ (% Gacinwr ) -

Consider intervals [a, b) with — o0 <a < b £ + o0 and write
[a,b)<[a,b) if aZd,b=b.
For [a, b) £ [a, b') we have a natural chain map
(148) CEP(o G)— Cl¥(o G) .
This natural map gives rise to an exact sequence if a triplet of numbers
—w <afbscZ + o is given
(149) 0— C&"(q; G)— C20; G)— CLNe; G)—0.
Passing to homology we have an exact homology triangle 4, , (® G)

S@9 (e G)

(150) ) \

S5 G)

% G)

_—

with 0, being of degree —1. We sum up this result by

Theorem 31 Given an open bounded set U — C" and a triplet of numbers
— o <a=sb=c< + oo weobtain an exact triangle 4, , (U; G).

Proof. Observe that li_r)n preserves exactness.

Corollary 32 Given triplets —oc <a£bs<c¢=< +0 and +0 <d b ¢
£ + oo witha,b)S[d,b) and [b,c) £ [V, ¢') we have a natural map between
exact triangles

(151) Ao, (U; G)— 4z ,.(U; G) .

Next assume U and V are bounded open subsets of €* and U < V. Then we have
a natural inclusion

Hieg(V) & H1eg(U)
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and an induced natural map

(152 SEOV; G) - SEP(U; G,

where “mm” stands for monotonicity map. This gives also

(153) Aa,b,c(V; G) _M) Aa',b’,c‘(Ua G) .

mm s

The maps “—” in (151) and “—=5” commute. Next let us denote by 2 the group of
compactly supported symplectic diffeomorphism in €". Given a = (H, J)eN
and Ye2 we define aye A, by

(154) He(t,u)=H(t, ¥ '(u))
Je(t, ) = TP Hu)J(t, P ' (W) TY Yu).

If u is a solution of the PDE associated to « then ¥(u) solves the PDE associated to
. If aeNeo(U) then awe N ( P(U)). ¥ induces therefore an isomorphism,
denoted by ¥, 4

(153) ¥y u: SEP(U; G) 5 SEV(F (U G)

Y4« 1s obtained in the direct limit by the maps ¥, .(x) = ¥(x), xePy,
o = (H, J). We observe that ¥, , can be considered as isomorphism between exact
triangles A4,,.(U; G) and 4,,.(¥(U), G). Using the monotonicity maps
we define for ¥Ye2 with ¥Y(U) <V the induced morphism W¥*:
S2)(V; G)— SP(U; G) by the factorization

S2)(V: G) p Sled(U; G)
(156) mm YLl

SER(P(U); G)

This gives also a morphism ¥* between exact triangles
(157) Ao,V G) = 400,e(U; G).

From the construction it follows immediately that ¥* commutes with maps of

type (151).

Theorem 33 Let U, V, W be bounded open subsets of C" and ®, ¥eD such that
(V)< V, YV W.

Then we have the commutative diagram

Aa,b,c( W) (Wo(p)* Aa,b,c(U)

(158) p \\ / o*

Aa.b,c(V)
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Proof. Let us denote by my,: SIP(V)— S8 (U) the monotonicity map for
U « V. We have to show

-1 -1 -1
(Yo@)auMpow),w=PssMow,v Vur My vy w.
We have my-gy), w = My vy, w v My vy, w. Hence it suffices to show that
-1 -1
YusMpow),vw)= Mo, v¥zs»
using that (Vo ®)z% = Pzk Yek Given a= (H,J) eNpo( ¥(V)) we have for
B = ag-: the commutative diagram
fa.b) Yar | qlab)
S @) — S (g )

159 l . !
1) SV (fy)—22s  SED(p)

For this observe that we just apply to the first vertical the map ¥ ! also
transforming the complex giving the monotonicity morphism to obtain a mono-
tonicity morphism depicted by the second vertical arrow (recall that the choice of
monotone homotopy does not matter). Passing to the limit in (159) gives

SENP() —L2, slenp)

SER(Y - B(U)—Z SED (9(U)

(We dropped the G-dependence in our notation). The above diagram in (160)
implies the desired conclusion.

4.5 Isotopy invariance

We start with some notation. Let L: R x §* x €"— IR be a smooth map satisfying
for suitable constants ¢ and R > 0

(161) [L(s, t,u)] < c(1 4+ W) forall (st u)
[L"(s, t, u)h| < clh] for all (s, t, u), he@T"
L(s,t,u)= L(o,t,u) forall (s, t u)with|u =R
L(s,t,u)=H(t,u) for s< s
L(s, t,u)=: K(t, u) for s2sq,

where H, Ke #,.,. By our assumption necessarily H — K has compact support. We
call L a homotopy between H and K. We define a number d(1)e[0, + o) by
L
= (nt,u)

(162) d(L) = ij: <(jl) <irla::>: . >dt> dr .
Moreover we put for H, Ke# with H — K compactly supported
(163) d(H, K) = inf {d(L)| L is a homotopy between H and K} .
Next let He ., and ae(— oo, + o0 |. We define #4(a) by

Py(a) = {xePy|Py(x) < a} .
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For —o0c <a=<bhg + o we put
Pulla, b)) = Py(b)\Py(a) .
Given He ., and a, b as above we define the “gap” g(H, [a, b)) by
g(H, [a, b)) = inf{|@y(x) — @u(y)| [xePy([a, b)),

vé2 y\(ZPyulla, b))} .
We have

Lemma 34 Let He ., and — oo <a<bh < + oo, then

g(H,[a,b)e(0, + 0].
Define for H, Ke #,.,

g(H,K,[a,b)) = inf{g(H, [a,b)), g(K, [a b))} .

A crucial result is the following proposition
Propesition 35 Given (H, J), (K, f)eAf,eg with H — K compactly supported and

d(H, K) < g(H, K; [a, b))
there exists a natural map

¢ k. SUP(H, J)— S4P(K, J)

given by the meanwhile usual construction by any homotopy L between H and
K satisfying
d(L) < g(H, K, [a, b))

and an associated reqular almost complex structure having a (s, t)-dependence in the
usual way. Moreover if H,, H,, H; are given with

1
d(Hi, Hi+1) < Eg(H” Hi+ls [(l, b)) fori= 1,2

then
¢(H3.HZ)¢(IIZ,111) - ¢(H3,H,) .
Moreover
¢(H,H)y=1d .
Proof. Let u be a solution of
(164) ug— J(s, t,u)u, — (Vi L)(s, t,u) = 0

u(s,*)—x ass— —
u(s,*)—y ass— + o ,

where xe#y(c) for either c=a or c=»b, respectively. Assume d(L)<
g(H, K, [a, b)) and (L, J) is a regular pair (with the obvious meaning). Then

d 2 L oL
— ¢ = — ||d] — | — (s, 5, 1))dt
ds Listu(s)) Lisy(u(s)) i) (f) a5 (s, t,u(s, t))
1 oL
< [ sup |— (s, ¢, u) ]dt }
0 xeCn N
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Hence
Pk(y) — Pu(x) = d(L) < g(H, K; [a, b)) .

Therefore
Dx(y)e( —o0,c+d(L)],

which implies by the definition of the gap and our hypotheses

Px(y)e( — 0,c¢)
i.e. ye Px(c). Hence we may use the combinatorics of the solutions of (164) to define

a chain map
CY(H, J)—>C¥P (K, J) .

If we take another homotopy with the same properties we deduce that the induced
map is chain homotopic. For this the same argument works as in the section
concerning monotone homotopies. (In fact we construct a homotopy between the
homotopies satisfying for every parameter A€[0, 1] the inequality between d and g.
Then we choose a generic J making the pair a regular homotopy between
homotopies).

Next let L! be a homotopy between H! and H? and L? between H? and H>.
Using L' and L? we can construct a homotopy between H' and H* denoted by
L' # L? satisfying

d(L' # L*) < g(H', H? [a, b))

so that via a glueing argument
¢(H3,H2)¢(H2,H1) = d’(m,m) .
see [38] for a discussion of formulae of the above type, or [19]. Obviously
dmm=1d. O

We shall refer to Proposition 35 as the Stability theorem. It is a crucial ingredient of
the proof of

Theorem 36 Let (¥ )scio,1) < 2 be a smooth arc and U, V < €" bounded open
subsets such that Y (U)c V for all se€[0,1]. For given numbers
—© <a=£b=< + o we have that the induced morphism

()% S4D(V) =S¥ (V)
is independent of se[0, 1).

It suffices to show that for every sqe[0, 1] there exists an open neighbourhood
U(so) in [0, 1] such that for seU(so) we have (¥ )* = (¥,,)*. By definition we
have

Sta. b)( V) Sla b)( V)

\ /(W,

StD(¥,(U))
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Let (H, J)eAN.(U) and consider (Hy,, Jy €N ey (P(U)) N s(V). We observe
that given any (K, J)e A, (V) we can always find (H, J)e A, (U) such that

(Hgw, Jg) = (K, J) for all se[0, 1] .

Hence we have the monotonicity maps from

Se(K, J)y—8 ) (Hy,, Jg,) .

We observe that for s, — s, — 0 we have d(Hy.:, Hy. 0. Hence for |s, — s,
small we have the commutative diagram

Sev(K; J) - S (Hyss, Jgra)
mm D(Hyz, Hya)

S[a'b)(HlIlsla Jl}'sl)
If we can show that
(165) ¢(Hypa, Hpot) = (P, 0 5 Ve o

the proof of the theorem is complete in view of the definition of @*. Hence it
remains to prove (135). For doing so we may assume t—%¥, is a smooth arc in
2 with ¥y = 1d. Let (H, J)eA,, and — o0 <a < b < + co. We have to show
that (¥.)« « = ¢ for 1 close to zero, where ¢ is the “small distance isomorphism”.
Consider the partial differential equation

(166) vy — J(t, v)v, — (V;H) ¢, v) =0

with asymptotic boundary conditions. We are interested in solutions which con-
nect data with the same index. Since the data is generic we have necessarily

v(s, t) = x(t), x€Py.

Next let f:R—[0, 1] be a smooth map such that B(s) = 0 for s < 0 and B(s) = 1
for s = 1, B'(s) > 0 for se(0, 1). For ¢ > 0 smooth, define

(167) Hg(ss t7 u) = H(ta lII(»:—ﬂ%s)(u))
JE(Ss t7 u) = D'Peﬂ(s)(gls—b%s)(u)) J(ta lpz_ti%s)(u))Dqlt;;?%s)(u) .

Then (H*, J®) can be considered as a homotopy between (H, J) and (Hy, Jy ). We
shall see shortly that (HF, J*)e N (H, J; Hy, Jy,) for £ > 0 small. We solve

(168) 0= Ws — Ja(s’ L W)Wt - (VJ‘Hs)(S, L W) >
connecting two critical points of the same Morse index. We define

w(s, t) = Wop(sy(u(s, t)) =: 0(s, u(s, t)) .
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Then
06

(169) 0= (s,u) + Dy0(s, wyus — J*(s, t, O(s, u)) D,0(s, u)u,
0s

- (VJ‘HS)(& L, O(Sv u))

= D,0(s, u)[(us — J(t, wu, — (V,H)(t, u)) + D,0(s,u)" 1 g (s, u)}

=:D,0(s, u) [(us — J(t, wyu, — (V;H){(t,u)) + I'.(s, u)] .

We observe that I',(s, u) = 0 for |s| = 1 and I'.(s, u})~—0 as e— 0. I', is a compact
perturbation. If ¢ — 0 it follows quite easily that the solutions u of (169) converge (if
the Morse index difference is zero) to v, v(s, t) = x{(t), for a suitable xe#y, where
the convergence is in B 7(x, x). If we assume (H, J)eAN,, it follows from the
implicit function theorem that given any xe 2y and putting x, = ¥,(x) there exists
a unique solution w, of (168) connecting x with x, such that the associated u, given
by (169) is close to v. And in view of the compactness these are all solutions. Hence
(H*, J*) 1s regular for & > 0 small and the chain map given by

C'(H,J)— C(Hy, Jy,)

by the map x—V¥.(x), xe?y coincides with the “small distance isomorphism”
chain map. Hence

(P)ss=¢ for |t small. 0O
4.6 Some remarks

Products. Let U = €', ¥V <= €™ be open and put n = I+ m. Let (H, i)eN,e,(U)
and (K, i)eA (V). In view of our discussion in previous chapters we know that
pairs of the above type are cofinal so that S'2(U) or SI**) (V) could be defined by
taking only limits over these classes of pairs. We define H @ K: €C" —IR in the
obvious way and obtain (H @ K, i)e N;ee(U x V). Strictly speaking H @ K does
not belong to the admissible class of Hamiltonians. However, the analysis works as
well here. Obviously

Ci(HxK,i)= | (C*“(H,i)® C(K, i)

ceR
c C*(H,i)® C*(K, i).

This formula can be used to study the symplectic hofnology of a product if the
chain complexes for the factors are known. This will be used in [24], in computing
the symplectic homology of polydisks.

Closed characteristics. If U is a bounded open set with smooth boundary one can
start with a Hamiltonian H: €"— R which satisfies H | U < 0 and having oU as
a regular level surface. The neighbourhood of dU will be foliated by other level
sufaces of H. If H grows fast enough outside of U it will follow that the 1-periodic
solutions of x = X (x) will be close to dU. Taking now a small ¢-dependent
perturbation in a suitable way a nondegenerate 1-periodic solution of the auto-
nomous system will split into 2 nondegenerate 1-periodic solutions of the pertur-
bed system with Conley-Zehnder index differing by 1.

In some sense our limiting process of S*(H, J) with (H, J)eA,,(U) can be
understood as an approximation of the group “S™(Hy)” with Hy(x) =0 for
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xeU H(x)= + oo, x¢ U. In this way one can understand S*'(U) for nice
U in the following way. For every closed characteristic P (perhaps an iterated one)
consider symbols P~, P with numerical values A(P):= |k[1|P|,d1 = o, ie. the
action (multiplicity is k) and a Conley-Zehnder index u(P7), u(P*) with
w(P*)— p(P7)=1.For ae( — oo, + oc ] we define

Ci= PZB

with Be{P*, P~ | P} and A(B) < au(B) = k. The limiting process defines then

a boundary operator on C* This kind of approximation has been constructed in
[10] in order to define symplectic capacities. So the symplectic homology is in some
sense partially generated by closed characteristics, where each closed characteristic

gives a contribution in two consecutive dimensions. This will be made more precise
in [24].

Outlook. The construction we used here takes advantage of some of the special
features of C". Replacing €" by some symplectic manifold with some assumptions
on w and ¢; one can modify the construction in several ways leading to different,
however closely related theories. The techniques are comparable to those which
occurred here. In {227 we will present some of the possible constructions. They will
be illustrated in [25].
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