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1 Introduction and outline of the main results 

1.1 Some general remarks 

In recent years, much progress has been achieved in symplectic geometry and the 
variational theory of Hamiltonian dynamics. The variational existence theory for 
periodic solutions of Hamiltonian systems initiated by P. Rabinowitz, [35, 36], and 
Gromov's theory of pseudoholomorphic curves in symplectic geometry, [26, 27], 
are corner stones for this development. 

A few years after Rabinowitz's seminal work, Conley and Zehnder, [7], 
observed that the variational methods can be successfully used in studying sym- 
plectic fixed point problems. This lead them to the solution of one of the Arnold 
conjectures, [3, 4]. 

Motivated by an influential paper by Witten, [45], Floer was able to merge the 
variational and Gromov's elliptic theory, which lead to the so-called Floer homol- 
ogy for the Lagrangian intersection problem, [15, 16, 17, 19, 20], see also [18, 28], 
for the corresponding Ljusternik-Schnirelmann theory, and [34, 38] for a survey. 

In their study of periodic solutions of Hamiltonian systems with prescribed 
energy, [9], Ekeland and Hofer introduced an interesting, very rigid invariant for 
a convex energy surface. In [10, 11], motivated by [42], and [32], it was observed 
that Hamiltonian dynamics can be effectively used in studying symplectic rigidity 
phenomena. In [11], for example, infinitely many new symplectic invariants, 
so-called symplectic capacities have been constructed using the variational theory, 
see also [14, 29, 31, 44]. 

The aim of our series of papers on symplectic homology is concerned with 
combining Floer homology and Capacity theory. This will lead to a variety of new 
symplectic invariants, and interesting applications. 

In the present paper SH I we construct a theory for open bounded subsets of 
111". This construction already exhibits the key points of any more general theory. 
The present theory could presumably also be constructed using generating func- 
tion type techniques as in [44]. However, such techniques can in general not be 
carried through on more general manifolds (at least not at the moment). The 
second paper SH II, [22], extends the theory to more general symplectic manifolds, 
which turns out not to be very difficult. Jointly with K. Wysocki we give applica- 
tions of SH I, II in [24, 25]. In [24] we compute the symplectic homology of simple 
shapes and prove Gromov's conjecture concerning the classification of symplectic 
open polydisks. Moreover, we make some statements about the space of symplectic 
embeddings from one polydisk into another. In [25], we apply the more general 
results to show the invariance of the action spectrum of suitable symplectic 
manifolds with a contact type boundary. This particular application belongs to 
a circle of ideas concerned with the question what does the interior of a symplectic 
manifold know about its boundary. A particular striking phenomenon is the 
Benci-Sikorav rigidity for sets of the form T" x U in T*(T"), [5], [41]. For this 
type of problem see for negative as well as positive results, [12, 13, 14]. 
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1.2 Periodic hamihonian trajectories in a symplectic riqidity theory 

Symplectic homology is a device to detect and measure symplectic rigidity. An 
important ingredient is the study of periodic orbits of Hamiltonian systems and 
closed characteristics on Hamiltonian energy surfaces. In this paper we shall deal 
only with the C"-case and refer the reader to SH II for the general case. 

Let us view ~" as a 2n-dimensional lR-vectorspace. We denote the usual 
complex Hermitian inner product by (*, *). Associated to (*, *) we have the real 
inner product (*, *) = Re(*, *) and the symplectic form co = Im(*, *). 

A smooth real hypersurface S in ~" carries an important structure induced by 
the symplectic form co. Namely define a one-dimensional distribution ~s---~S by 

(1) ~ s  = {(x, ~)~TS I co(~, q) = 0 for all ~leTxS} . 

The integral curve through x ~ S  will be denoted by L s ( x ) .  If S is compact, the 
closed integral curves Ls(x)  ~-S 1 are of particular interest. This collection of closed 
integral curves, also called periodic Hamiltonian trajectories, will be denoted by 
6~(S). An element in ~(S), say P, carries a numerical value A(P)elR defined as 
follows. First of all, we may assume that S is connected. Then C"\S (assuming S to 
be compact) has in view of Alexander duality a unique bounded component Bs. We 
take a smooth map H: C"---~IR such that 

S = H-I(O),  dH(x) + 0 for x ~ S  

inf H (x) < 0 .  
x ~ B  s 

Then the Hamiltonian vectorfield XH defined by 

ix~co = dH 

defines a nowhere vanishing section of ~fs--~ S and hence an orientation. Having 
this orientation in mind we have a canonical orientation of PE~(S) in view of 
TP = ~s[P. We define 

A(P) = ~ ~ I~ 

for P e ~ ( S ) ,  where 2 is any 1-form on ~" satisfying d2 = co. 
Given a symplectic diffeomorphism T: C" ~ C" we have the following rules 

(2) A(P) = A(T(P))  

( T T ) Af s = ~f  ~(s) 

~ ( q , ( s ) )  = ~ ' ( ~ ( s ) ) .  

The crucial fact, which we will explore in this and the following papers, is that 
periodic trajectories occur naturally as obstructions in a symplectic rigidity theory. 
The following heuristic considerations clarify this statement. 

Let us start with Gromov's celebrated Squeezing theorem, [26, 271. Relying 
strongly on his theory of pseudoholomorphic curves, Gromov showed that the 
r-ball Ba"(r) can be symplectically embedded into the R-cylinder Z2"(R): = B2(R) 
x G"- 1 if and only ifR => r. In [10] this result is proved using the variational study 
of periodic orbits of Hamiltonian systems. The occurrence of periodic solution 
seems to be absolutely unexpected in particular in view of the original proof of the 
squeezing theorem. In order to shed some light on this fact, let us assume we have 
an optimal embedding of some open bounded set U into G2n(a). Optimal here 
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means that there is no such symplectic embedding for R' < R. Without loss of 
generality we may assume U c Z2"(R). In addition let us also assume that U is 
bounded with a smooth boundary ~U. 

Next we try the impossible: Squeezing U into some smaller cylinder. Symplectic 
isotopies are generated by (time-dependent) Hamiltonians. Locally, the optimal 
way seems to be the following: One tries to push points in OU r~ ?~Z2"(R) into 
ZZ"(R) by taking a Hamiltonian vectorfield which points inside ZZ"(R) at points in 
c3U C3 63~Tzn(R) and which is allowed to point outside of Z2n(R) a t  points of f)z2n(R) 
which stay away from U. (However the vectorfield should be sufficiently small 
there.) A Hamiltonian H achieving all that will increase along the integral curves of 
~q~ov on the leaves in 0U c~ ~?Z2"(R) and perhaps will be decreasing on the parts in 
c3zzn(R) staying away from U. Obviously the only local obstruction is a common 
close characteristic contained in ~U n ~Z2"(R), i.e. g~(~U) c~ ~((?Z2"(R)) contains 
a closed characteristic Po satisfying Po c ~U c~ 63zzn(R). In fact in the case that 
such a Po exists the Hamiltonian H has to be strictly increasing along P0 which is 
absurd. Assuming N(r?U) c~ r = 0 we can construct a Hamiltonian close 
to every section ~ x {a}, ae~?"- 1. Using a partition of unity in the section para- 
meter aeC"  1 only, one can globalize this construction (at least for nice sets). 
Hence if r ~ ~(0Z2"(R)) = 0 we can construct a Hamiltonian H such that the 
associated t ime-l-map 7 ~ satisfies 7J(LT) c zzn(R) implying that U was not optimal- 
ly squeezed contrary to our assumption. So our element in 5~(0U) turns out (in our 
simple minded heuristics) to be an obstruction for the squeezing problem (under 
favourable assumptions). Surprisingly it will turn out that there is real mathematics 
behind this consideration! 

To make this more precise we recall the well-known fact that closed character- 
istics on hypersurfaces and periodic solutions of Hamiltonian systems with pre- 
scribed energy are closely related (the dual character of time and energy in 
Hamiltonian mechanics). 

The crucial phenomenon for our construction is the following fact exhibited in 
[32]: Given some open bounded set A of II;" and a Hamiltonian H: ~"- - ,  [0, + oo), 
which vanishes on A, but grows sufficiently fast outside of A, the associated 
Hamiltonian system ~ = XH(X), will have many 1-periodic solutions (nontrivial 
ones) geometrically close to (?A. Here "close" depends on the growth rate of 
H outside of A. These 1-periodic solutions can be found as critical points of 
a functional on the loop space of ~". This is the so-called principle of the least 
action. It is a difficult variational principle, due to the fact that it is indefinite in the 
sense that the Morse indices of the critical points are always infinite. 

This difficulty is handled by Floer's elliptic Morse theory, see [26, 27] for more 
information. The elliptic Morse theory combines Gromov's  theory of pseudo- 
holomorphic curves [26, 27] with Conley's idea of connection matrices for flows. 
Our main construction merges the theory of symplectic capacities, [10, 11, 32, 43], 
with elliptic Morse theory. 

Before we go into more details we give an outline of symplectic homology in the 
next sections. 

1.3 The Conley-Zehnder index 

We denote by Sp the group of linear symplectic maps in (IE", co). Sp* is the subset of 
Sp consisting of all symplectic maps which do not have 1 in their spectrum. Let 
nl = nl(Sp, {Id}) be the fundamental group. It is well known that rq~-Z. As 
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a generator we take the class - called Maslov class given by the loop 

[ e nit 0 ] 
1 

o - ( t )  = . , t e [ O ,  1 ]  

0 1 

41 

two arcs 

and 

[e.i  :1 enlt 
~(t) = ". 

0 it 

/~(t) = 

We observe that nl acts on d by 

-e-~Re + i eUm 0 

0 e nit 

enit 

(a@)(t) = a(t) ~ ( t )  . 

We have [8, 21, 39, 40] 

Theorem 1 There ex is t s  a unique map I~cz: d - - -~Z  satisfying 

#cz(Ea] [~]) = 2 + #cz([,i~]) 

/ ~ c z ( [ ~ ] )  = n 

~ c z ( E / ~ ] )  = n - 1. 

Next we introduce the class ~ of smooth  Hamil tonians H: S 1 x ~"---~IR such that 

(5) H I(S ~ x [2) < 0 

w i t h  S 1 = IR/TZ. We define a homomorph i sm #: nl---~Z by/~([a])  = 1. 
Next consider smooth  arcs ~:  [0, l]---~Sp satisfying 

(3) W(0) = Id, W(1)eSp* . 

We call two such arcs 7 j and tb equivalent provided there is a smooth  map 
F: [-0, 1] • [0, 1] ~ Sp such that 

(4) F(0, t) = 7'(t), F(1, t) = ~(t) 

F([0,  1] x {1}) c Sp* 

F([0, 1] x {0}) = {Id}.  

We denote by ~r the set of equivalence classes. Let us denote by a, fl the following 
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for some open bounded set U c IE" (possibly U = 0). Moreover there exists 
a ( , ,  , ) -posit ive definite matrix A such that 

(6) I n ' ( t , u ) - Z u l l u l - 1 - - - , O  as l u l - - ' +  oo 

uniformly for t e S  ~, where H'  is the (*, , ) -gradient  with respect to the u-variable. 
Moreover the linear Hamiltonian system 

(7) - i 2 = A x ,  x ( 0 ) = x ( 1 )  

has only the trivial solution. Further there exists a constant c > 0 such that 

(8) [H"(t, u) hi < clhl for all t ~ S  1 , u e ~  n, h e C  ~ 

c~H' u) 
(t, _< c(1 + lul) for all (t, u ) e S  1 x C" . 

We call a Hamiltonian H e o ~  regular if all 1-periodic solutions are non-degenerate, 
i.e. the linearization of the t ime-l -map ~n  at x0 = x(0), where x e ~ n  = {x: 
$1 ~ C ~ I 2 = Xn~(x)  }, belongs to Sp*. Denote the collections of all regular Hamil- 
tonians by 9r If H~o~reg and x e # n  then the linear Hamiltonian system 

l~(t) = X ' n , ( x ( t ) )  h(t) ,  tel0,  1] 

defines an arc t---~ ~u~, ~o n = Id, with ~feSp* .  Hence we can define an index 
Ind(x, H) by letting 

(9) Ind(x, H) = I~cz ( [ ~ n ]  ) .  

Definition 2 For HeJef~eg we call Ind(x, H)~TZ, as given in (9) the Conley-Zehnder 
index of the 1-periodic solution x of 2 = Xnt(x) .  

So, in some sense Ind(x, H) gives a local information concerning a periodic orbit x. 
In order to give relations between this local information we need Instanton 
homology or the so-called Floer homology.  It has been previously exploited by 
Amann-Zehnder, [2], and Conley-Zehnder, [8], that asymptotically quadratic 
Hamittonians admit a good existence theory. 

1.4 Ins tanton homology 

We denote by J the collection of all smooth t-depending co-calibrated almost 
complex structures J such that 

J ( t , u ) =  i for l u [ l a r g e a n d t e S  1.  

co-calibrated means that 
gj(t ,  U) (h, k) : = co(h, J (t, u) k) 

defines a (teS1)-depending Riemannian metric on t12 n which is standard outside of 
a compact set. 

For Hegfreg and J e J  consider the partial differential equation with asymp- 
totic boundary conditions ( V j H  is the gradient for the second variable for the inner 
product gs(t,  u) = co o (Id x J(t ,  u))) 

(10) us - J ( t ,  u )u ,  - (VjH)(t, u) = 0 
u: IR x $1---~1~" 

u ( s , * ) - - , x  +- as s - *  _+ oo , 
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where x -+ e ~ u  and the limits are in the Cl-sense ( ~ C  ~ sense via elliptic regularity 
theory, see [33]). The solutions of (10) can be considered as zeroes of a smooth 
nonlinear Fredholm map ~u.J: ~l 'P(x- ,  x+)---*LP(Z, C") for some p > 2, see the 
later chapters. The Fredholm index satisfies, [15, 34, 38, 39, 40] 

Theorem 3 For every zero u of ~u,s the linearization 0~,s(u): HI'v(Z, ~")--* 
LP(Z, 1I?") has the Fredholm index 

Ind(a~,s(U)) = Ind(x , H) - Ind(x +, H ) .  

Given HeoVfreg and J e J  it is shown in Sect. 3 that for every multi index ~ there 
exists a constant c, such that for every pair (x , x+)e3~u x 3~u a solution of (10) 
satisfies 

(11) [(D~u)(s,t)l<G for all ( s , t ) eZ .  

Moreover, in Sect. 5 it is proved that given J e J  there exists a Jarbi trar i ly close to 
J in C a, and identically equal "i" outside some compact set such that the operators 
0n.j have 0 as a regular value. Consequently for such a regular feJr~g (H), 
HeoVf, og the solution set of (10) has a structure of a finite-dimensional manifold. 
We denbte this manifold for He~reg and J e ~ g ( H )  and x - , x + e ~ u  by 
Jg(x- ,  x+; H, J). In view of Theorem 3 we have 

(12) dim ~ ' ( x - ,  x+; H, J) = Ind(x-,  H) - Ind(x +, H) . 

Moreover all those manifolds are orientable. Using the so-called glueing construc- 
tion, see [17, 19, 34], there is a natural way to produce an orientation of 
Jg(x, z; H, J ) ,  provided one is given for ~g(x, y; H, J) and ~g(y, z; H, J ) .  This is 
related to the fact that given a trajectory in J /(x,  y) := Jl(x,  y; H, J) and one in 
Jt'(y, z) there exists one geometrically close to its union which lies in Jt'(x, z) and 
can be found by an implicit function theorem. A choice of orientation compatible 
with the above natural procedure is called a coherent orientation, see [21], and 
Sect. 5 of this paper. 

Now following [16, t9], we define for a~IR u { + ~ } the graded free Abelian 
group 

(13) C"(H, J) = @ C~ 
keZ 

= @ Z x ,  

where the sum in the second line is taken over all x e ~ u  satisfying On(x) < a and 
Ind(x, H) = k. Here 

1 2 (  dx --o ~ Ou(x) = ~ ! -- i2, x )  ~ H(t, x(t)ldt. 

Next we define a group homomorphism 6: C~,--+ C~_ 1 by 

(14) Ox = ~z (x ,  y)y ,  

where the sum is taken over all those y e ~ n  satisfying Ind(y, H) = Ind(x, H) - 1. 
Here z(x,y)eTZ is obtained as follows. We consider for y e ~ u  as above the 
1-dimensional (perhaps empty) manifold Jt'(x, y; H, J) which carries an orientation 
(coming from the choice of a coherent orientation). All orbits in Jg(x, y; H, J) are 
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components of the type 

(15) 

and put 

(16) 

o(u) = r(u) [us]  

~(x, y) = Z ~(u), 

where the sum is taken over all points in the reduced connecting orbit space 

./if(x, y; H, J ) : =  Jl[(x, y; H, J ) / N  , 

where we divide by the N-action. The crucial result proved in [16, 17, 19] is 

Theorem 4 c~ 2 = 0. 

Let us denote by JV" the product ~ • J and by ~#reg the subset consisting of all 
pairs (H, J)c~Ar such that the associated first order elliptic partial differential 
equation of type (10) can be formulated as the problem of finding zeroes for 
a regular Fredholm section. In particular He~reg and JeJ-reg(H ). For (H, J)ff,/[/'reg 
and - o o  < a _ < b _ <  + oo we define 

(17) C[,a'b)(H, J ) '=  Cb, (H ,  J ) /  C , ( H ,  J )  

with the induced boundary operator (? and put 

(18) SE"'b)(H, J) = kern(~k)/Im(Ok+ 1) 
p[a, b) ,,r~[a, b) with Ok: Ck --*tbk-1. Moreover we put 

(19) Sr,~'b)(H, J) = 

1.5 Monotonicity 

Consider (K, ,T), (H, J)eJV'reg. We define a partial ordering by 

(20) (H, J) < (K, J):<=> H(t, x) < K(t, x) 

for all tES 1 and xeC". A monotone homotopy between pairs (H, J) and (K, J)  in 
�9 /V're~ is a pair (L, J) consisting of  a smooth map L: Ill • S 1 • II?"---, IR and a smooth 
map (s, t, u)--~ J(s, t, u), where J(s, t, u) is an (,)-calibrated complex multiplication on 
II?" such that for suitable So > 0, R > 0 

(21) J(s, t, u) = i for [ul > R 

](s, t, u) = J(s, u) for s < --So 

J(s, t, u) = J(s, u) for s > So. 

r J) o k ~l l ,  . 
keZ 

isolated and Jt'(x, y; H, J) decomposes into several 
{p*u [ peN},  where 

(p ,u )  (s, t) = u(s + p, t) 

is the natural N-action. Each component of the form { p * u l p 6 N }  has two 
orientations, namely o(u) from the coherent orientation, see Sect. 4, and the 

0u 
orientation given by [us], with us = ~s" We define z(u)~{1, - 1} by 
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Moreover  

(22) (?L 
Os (s , t ,u)=>O 

45 

L ( s , t , u ) = H ( t , u )  f o r s <  - S o  

L ( s , t , u ) = K ( t , u )  f o r s > s o .  

Further  there exists 
a (*, , ) -posi t ive  definite matrix such that 

(23) A (s) = A ( -  So) 

A(s) = A(so) 

d 
dss A (s) >= 0 

and the following is satisfied 

a smooth  map IR---~LP~(IIY):s--,A(s) associating to s e n  

for s = < -So  

for s > So 

(24) If the linear Hamil tonian system - i 2  = A(g)x on (0, 1) has 
a nontrivial solution satisfying x(0) = x(1) for some 

d S=g geIR then ~ A(s) is positive definite. 

Finally all these data are required to satisfy the estimates 

(25) [L'(s, t, u) - A(s)ul [ul- 1--*0 

d u 
0 g , ( s , t , u ) _ ~ s s A ( S  ) l u l_ l_ ,0  

uniformly in (s, t) as lul--* + oo and there exists a constant  c > 0 such that 

(26) ~ L'(s, t, u) < c(1 + [u[) 

[L"(s, t, u)hl < clhl 

for all (s, t, u)elR x S 1 x C" and her 
Given such a mono tone  h o m o t o p y  (L, J) between (H, J)e,~rreg and (K, f)eJV~e, 

with H __< K we consider the partial differential equation 

(27) us - J(s, t, u)u, - (VyL)(s, t, u) = 0 

u(s ,*)- - -~xe~u as s-- ,  - oo 

u( s ,* ) - -*xe~K as s-- ,  + oo . 

Again it is shown that  there is a C ~- apriori estimate for solutions of (27) 
independent of the choices of x e ~ u  and y e a r .  Further  it is shown that  there are 
always generic mono tone  homotopies  so that the solutions of (27) can be con- 
sidered as regular zeroes of some nonlinear Fredholm operator.  The combinatorics 
of the solutions of (27) can be used to construct  natural  homomorphisms  

(28) s~,b~(/t, j)--,  S~,",b'(K, Y) 
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which are independent (!) of the chosen generic monotone homotopy (see the later 
sections). 

1.6 Symplectic homology 

By the preceding results we have for numbers - ~ < a < b -< + oe constructed 
a functor S E"'b) from the partially ordered set (W~og, < ), viewed as a category, into 
the category of graded Abelian groups. 

Next assume U ~ 112" is a given bounded open set. Denote by ~4r~g(U) the 
collection of all pairs (H, J) e ~ g  satisfying 

(29) H I(S x x LT) < 0 .  

It will be shown later that for (H, J), (K, f)eJIrr~g(U) one can construct an 
(A, J)eJV'~g(U) satisfying 

(30) (H, J) __< (A, J) 

(K, Y) < (A, Y). 

In other words JZr~g(U) is a directed set. Associated to this directed set we have the 
functor obtained by restriction 

(31) (J~reg(U), < )_~"", f#Ab . 

Here (gAb is the category of graded Abelian groups. We define the symplectic 
homology (with coefficient in Z) of an open bounded set U c IE" by 

(32) S~'b)(U) = lim S~'b)(H, J) ,  
) 

where the direct limit is taken over Jg'reg(U). 
We should note that we could tensorize the chain complex in (13) by any 

Abelian group G first, before we carry out the previous construction. This would 
lead to symplectic homology with coefficients in G. 

S~,"'b)(U) measures symplectic properties of U as a subset of I/3". We denote by 
the compactly supported symplcctic diffeomorphism group in ~". Given 

(H, J)eJV'~eg(U) and T e ~  we define a pair (H~e, J~,)~J~e~(T(U)) 

(33) HAt,  u) = H(t, !P- l(u)) 

Jv,(t, u) = T T ( T -  l(u)) J(t, ~ -  l(u)) T T -  X(u). 

If u solves the partial differential equation associated to (H, J) then T(u) solves the 
partial differential equation associated to (H~,, J~,). We note that 7/induces via (37) 
a bijection 

xro~(u) ~ Xro~( ~o(V)). 

Obviously it follows immediately that 7 j induces an isomorphism 

(34) ~ :  St~176 * * �9 

If U c V are both bounded open subsets then 

~%,(v) = Jvr~ 



Symplectic homology I 47 

This gives a natural map called monotonicity morphism 

(35) S[~,b)(v ) ram)S[,ga, b)(u) . 

Next assume ~v~@ and U, Vare bounded open subsets of C" such that ~v(U) ~ V. 
We define a group homomorphism ~v*: s~,b)(v) --~s~,b)(u) by the factorization 

s~,b>(v) , sr,a'b>(U) 

(36) . m ~  / ( • . ) - '  

s t~ 

The previous construction of S~ 'b) and 7/* turns out to have many useful proper- 
ties. For example 

Theorem 5 Assume 7"s(U) c V for  se[0, 1] where U and V are bounded open sets in 
~"  and s--~ ~Ps is a smooth arc in 9 .  Then the map 

s--~ 7 '*emor(S~ 'b ) (V) ,  S~'b)(U)) 

is constant. 

This property will be referred to as isotopy invariance. 
Next assume a triplet of numbers is given, such that - oo < a _< b _< c < + ~ .  

We have an obvious exact triangle d a, b, c(H, J) for every (H, J)~ Jffreg, induced by the 
short exact sequence 

0---* C [a' b)( H, J) ~ Ct"'~ J) ---* C [b' ~)( H, J) ---* 0 .  

This gives an exact triangle A~,h,c of symplectic homology groups. 

Theorem 6 Given an open bounded subset U o f  (E" we have an associated triangle 
A~,b,~(U) for  numbers - o0 < a <_ b <- c <_ + ~ , namely 

s~,o,~>(u)- , st,o,~>(u) 

(37) 8 , ~ k  x / 

S~, ~) 

Moreover a t p ~  with tP(U) c V induces a map ~v.: A.,b,~(V)---)A.,b,~(U). 
Next we observe that for numbers - o o < a _ < b _ <  + c ~ ,  and - c ~ < a '  
b' ~ + oo with a ~ a', b ~ b', and (H, J)6X~eg we have a natural morphism 

(38) C[,a'b)(H, J) --)Ct. ~'' o')(H, J) 

inducing natural maps. In fact 

Theorem 7 Let  U ~ C" be an open bounded set and let - ~  < a < b < 
c<= + oo , - oo < a' < b' <_ c' < + oo be numbers satisfying 

- a < a ' ,  b < b ' , c < c ' .  
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Then there ex is ts  a natural  homomorphism 

(39) A,,b,c(U)---* A,,,b, c,(U) . 

It turns out that for 7~(U) c V, ~ueN the following diagram commutes 

& , b , c ( v ) -  , A.,b,c(U) 

1 1 
A~, b, c,(V) , ~o,.b,,c,(g) 

qJ* 

All the previous properties will be proved in the following. In this paper we shall 
not give any application, but refer the reader to the forthcoming papers [24, 25]. In 
[24] we compute the symplectic homology of some simple shapes and prove the 
conjecture of M. Gromov concerning the symplectic classification of open poly- 
disks. Moreover we study the space of symplectic embeddings of one polydisc into 
another. In [22] we generalize the present results to more general symplectic 
manifolds and apply these in [25] to prove some results concerning the symplectic 
stability of the action spectrum, a problem which has to be seen in relation to the 
"theme" what does the interior of a symplectic manifold know about its boundary, 
see also [12, 13, 14]. 

2 Apriori estimates 

2.1 A version o f  the m a x i m u m  principle 

Let Z = IR • S 1 and assume c~: Z -MR is a smooth map. Given 6 > 0 we denote by 
F~ the set of all bi-infinite sequences (Sk)k~Z satisfying 

(40) 0 "~ S k + 1 - -  Sk ~ (~ 

Sk---~ 4- ~ as k---*___ oo . 

Given s = (Sk)~F~ we define 

(41) [~]s .=  sup{~(Sk, t) [ k~Z,  teS  1} 

and put 

(42) [c~]~ := inf{[~]" [ s~F~} . 

Clearly [c~]oe(- oo, + oo ]. 

Proposition 8 Assume  constants  a, b, 2 > 0 and 6 > 0 are given such that 

(~22 < n 2 . 

Then there ex is ts  a constant  C = C(a, b, 2, c5) > 0 such that every  smooth  map 
~: Z---* IR with 

- A ~  - 2~ < a on Z 

[c~]~ < b 
satisf ies 

sup{~(s, t) I (s, t ) e Z }  < C . 
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Proo f  Let O : =  (x, y) x S  1 with - o o  < x < y <  + ~  a n d y - x < a .  Then 

71 1 =  rc2(Y - -  X)  2 

is the smallest eigenvalue of the eigenvalue problem 

-Au=yu  on f2, u = 0  on c?O 

with associated eigenfunction u(s, t) = sin((s - x )  (y - x ) -  1~). By assumption 

2 < :re20-2 =< 7zZ(y _ x )  2 . 

Let s = (Sk) c Fa be a sequence satisfying 

sup{~(Sk, t) ] k e ~ ,  t e S  1} < b 

and put x = Sk and y = Sk+I. Then with f2 = (x ,y )  x S  1 we have 

(43) --Ac~--2~ < a on f2 

c~<b  one?f2.  

As a consequence of the classical Kre in -Ru tmann  result, see [1], the maximum 
principle is valid for (43) provided 2 < 71 = V1(~2). If 

- A f t  - A f t  = a on O 

fl = b o n ~ 2  

then ~ < fi on ~ and fl is clearly independent of the t-variable in S 1. Consequently it 
satisfies 

- f l " - 2 f l = a  on(x ,y)  

fi(x) = fi(y) = b . 

With a : =  ( y - x ) 6  -~ e(0, 1], assuming without  loss of generality that x = 0 we 
define 

~(s) = /~ (o~) .  

Then 

If ff solves 

- f i "  -a22]~  = a2a on (0, 6) 

~(0) = ~ (a )=  b .  

- /~" - 2 ~  = a on (0, a) 

~(0) = ~ ( a ) =  0 
~ 2  

we deduce/7  > 0 since 2 < ~ .  Moreover  fi > 0. Hence on (0, 6) 

-~"-a~  =< -~"-2~2~ = ~2a =< a = - ~ " - 2 g  

and fl = ff on {0, 6}. This implies/~ < ft. Consequently 

sup c~(s, t) < sup fi(s) < sup if(s) = : C(a, b, 3, 2) . 
(s,t)E(? sE[x ,y]  se[x, yl 

Since k was arbitrarily chosen we infer 

sup c~(Z) __< C(a, b, 6, 2) . [] 
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2.2 Variational es t imates  

Assume L: IR x S 1 x C"----~IR is smooth  and satisfies 

~L 
(44) ( s , t , u ) > 0  on I R •  l x C "  

0s 
and 

(45) IL'(s, t ,  u ) l  < c ( 1  + l u l )  on IR x S x x C " .  

Moreover  we assume that there exists a suitable So > 0 such that 

(46) H(t ,  u) = L(s, t, u) for s < - S o  

K ( t , u ) =  L ( s , t , u )  f o r s < s o ,  

where H, K e ~ .  Further  J is a (s, t)-depending ~o-calibrated almost complex 
structure satisfying 

(47) J(s, t, u) = i for lul large 

J(s, t, u) = J(t ,  u) for s < - S o  

J(s, t, u) = Or(t, u) for s > So. 

N o w  consider a smooth  solution u: IR x $1---~" of  

(48) us -- J(s, t, u) ut - (VyL)(s, t, u) = 0 .  

We have 

Lemma 9 Let  J and L be as described above. Then there exis t  real constants  
- 0o < cl < cz < + oo such that every solution u: Z---~C" of(48) satisfying 

(49) inf ~L~s)(U(S)) > -- ~ ,  sup ~OU~)(U(S)) < + oO 
s e l R  s e ~ .  

fulf i l ls  

(50) CL(~)(U(S))e[Cl, C2] for all s~lR . 

Here u(s)(t):= u(s, t) and fo r  a smooth  loop x: S1---~C" 

1 1 
(51) ~L(~)(X) = -~ ! ( -- iYc, x ) d t  -- j L(s, t, x(t)) dt . 

0 

Proof .  We compute  

d i O L  
- -  - - II ~ L ~ A U ( S ) ) ] l s , u < s )  �9 ds q~L~)(U(S)) = ~ s  (s, t, u(s, t))dt ' 2 

0 

Here for a smooth  loop x and sE]R 

1 

Ilhllff, x = j" gy(s, t, x(t))(h(t), h(t))dt  . 
0 

By our assumption on J this is equivalent to the usual LZ-norm, where 
the equivalence is uniform in x and s. By assumption the map  S--~L~)(U(S)) is 
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decreasing. Hence 
lira ~n(u(s) )  = sUp~L(s)(U(S)) 

S ~  oO $ E ~  

lim ~K(U(S)) = inf ebL(s)(U(S)) . 

By assumpt ion  we find a sequence Sk--* + oO such that  for the usual L2-gradient 
and Xk = U(Sk) we have 

(52) I1'P;~ (xk)II L2 ~ 0 .  

Here let q~: denote  the usual LZ-gradient. If (llXkllr2) is bounded  we infer f rom (52) 
that  ([IXk[Inl,2) is bounded,  which immediately implies via (52) that  (Xk) is precom- 
pact in H1'2(S 1, •"). Hence without  loss of generality we may  assume Xk---~X in 
H1'2(S  1, C"), where x solves 

(53) ~ = x,,t(x), x(0)  = x ( 1 ) .  

For  solutions of (53) we have a C~176 estimate f rom which we can obtain  c2. 
Similarly one constructs Cl by studying (U(Sk)) for a suitable sequence Sk ~ -- oe.  So 
arguing indirectly let us assume that  [IXkIIL2--~ (which we may  after taking 
a subsequence). Define Vk = Xk/HXklIL2 and };k ~- I lXk l lL  2" Then 

d 1 
_ . _ , o __+ g 2 

1~tVk ~ K (t, ZkVk) 0 in . 

If K '  is asymptot ic  to the positive definite matr ix  B we infer immediately  that  after 
taking a subsequence Vk converges in H ~'2 to some v with IIVNL~ = 1 satisfying 

(54) - ib = By  with v(0)-= v(1).  

By our assumpt ion  of (7) the only solution of (54) is v = 0 contradict ing 11 v IIL~ = 1. 
NOW define 

cl = inf {cbK(x) [ d~K(X) = 0} 

C2 = sup{q~n(X) [ dq)n(x)  = 0} . 

Then - oo < cl  < cz < + oo by construct ion and ~L{~)(U(S))e[Cb C=] for all seIR. 
[] 

In order  to obta in  some sharper  est imates we impose some more  hypothesis  on L. 
Assume L and J satisfy (44)-(47). Moreove r  suppose there exists a smooth  arc 
s---, A(s)  of positive definite matrices A ( s ) e S f , ( I C " )  satisfying 

(55) A ( s ) =  A ( - -  So) f o r s <  - S o  

A(s)  = A(so) for s _> So 

~-~As (s) > on IR . 0 

Fur ther  A is assumed to satisfy the following "regulari ty" requirement  

(56) If the linear Hami l ton ian  system - i2 = A(g)x  on (0, 1) 
has a nontrivial  1-periodic solution for some 

~elR then ds A(s)  is positive definite. 
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Finally the data  A and L is related by the following requirement  

(57) IL'(s, t, u) - A(s)ullul 1 -----~ 0 

L' d A(s)u [u 1-1 8s (s, t, u) - - - ,  0 

uniformly in (s, t)elR x S 1 as [u[--~ + 0o. 

L e m m a  10 Assume L, J and A satisfy (44)-(47), and (55)-(57). Then for a given 
constant c > 0 there exists a constant d > 0 such that 

1 8L 
(58) [14)k(s)(x) 1]~2x + ! ~s (S, t, x(t))dt <= c 

for a number selR and a loop xEHI'2(S 1, (~n) implies 

I[xlr,,,,2 _-< d .  

Proof. Without  loss of generali ty we m a y  assume that  ]l IIs, x is replaced by the 
usual L2-norm and q~(s) denotes the usual L2-gradient. (Here we use the propert ies 
of  3*.) Since q~LIs) is independent  of sclR for s < - So and s >__ So we may  assume 
arguing indirectly that  there exist sequences (Sk) ~ lR, (Xk) c H1'2(S 1, ~ ' )  satisfy- 
ing 

(59) Sk---~So, Ilxkll,~--' + 

~.SL 
II~k(s~)(xOIIL2 < c, !T,s (Sk, t, xk(t))dt < C . 

Observe  for (59) that  the boundedness  of (llx~llL~) immediately implies a H a'2- 
bound  in view of the propert ies  of L and IIq)'L(s~)(Xk) I[L~ < C. Now we define 
vk = xk/[IxkllL~ and argue as in L e m m a  a to find a subsequence of (Vk) converging in 
H 1, 2 to some v satisfying 

(60) - ib = A(so)v on (0, 1) 

v(0) = v(1) 

11~ll,.2 = 1 .  

H e n c e w e m u s t h a v e ( d A ) ( s o ) > e l d f o r a s u i t a b l e e  > 01By assumpt ion  we have 

1 8L 
(61) c > ! ~ s  (Sk, t, Xk(t))dt. 

Moreover  we compute  

o \ ?S (s' t' vu)' u dY + ~ss (S, t, o) 

/ S L '  dA \ 

l ( d A  ) ~ s  
+ ~ T s  (s)u,  ~ + (s, t, o) . 
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Fo r  every  r > 0 there  exists  a c o n s t a n t  c~ > 0 such tha t  

OL' d A(s)(TU) (63) ~ss (s, t, ~,,u) - ds  <= 71~ul + c= 

for all (s, t, u) and  7. This  impl ies  for k la rge  e n o u g h  

1 a L  
c > ! ~s (Sk, t, Xk(t))dt 

1 1 2 ~.~L 
=> -4 ~ilxktl~2 - ~ rllxkilg2 - c~lLxkllL2 - SUPs~e oJ ,Z2,.cs (s, t, o)dt 

->_ - ~ LlxkllL --  C~IIx~IIL2 --  ~: �9 

T a k i n g  z = ~ we o b t a i n  a L 2 - b o u n d  on  (Xk) c o n t r a d i c t i n g  the fact  t ha t  

Ilxkllg=--* + oO . 

This  comple t e s  the p r o o f  of  L e m m a  10. []  

P ropos i t ion  11 Assume L, J and A are as described above (see Lemma 10). Given 
> 0 there exists a constant co~IR such that for every solution of(48)  satisfying 

(64) -- oo < inf CI)L(,)(U(S), sUp~L(s)(U(S)) < -t- O0 
s~rR. S~IR 

we have 

(65) [ lul ] ,~ < c~.  

Proof F r o m  L e m m a  9 we k n o w  the exis tence  of  n u m b e r s  - o c  < c~ __< 
c2 < + oc such t ha t  4)L(~)(U(S))C[C~,C2]. H e n c e  for  every  pa i r  of  n u m b e r s  
- o o  < a < _ b <  +c~ 

,66, 

C2 - -  C 1 ~ 1  C . 

Define Sk = k-6 and  p u t  r = i~ b. T h e n  us ing  (66) we find SR ~ [Sk --  Z, Sk + Z] such 
4 

tha t  Xk = U(Sk) satisfies 

l a L  

0 ~;S 

In view of  L e m m a  10 we f ind a c o n s t a n t  if(6) such tha t  IlxkllH,,~ < d(O) ,  U s i n g  the 
c o m p a c t  e m b e d d i n g  HI'Z(s  ~, ~ " ) ~  C~ ~, r we f ind a c o n s t a n t  c6 such t ha t  

(67) ]IXk[ICO < CO �9 

N o w  obse rve  t ha t  ~3  __< sa+l  - Sk < 6 6 .  H e n c e  

[ l u l ] ~ < c o .  [] 
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2.3 A C~ 

O u r  aim is to derive a C~ for solut ions  of  

us - J(s, t, u) ut - (V/L)(s, t, u) = 0 

u: Z---~C" 

under  suitable a ssumpt ions  on  J , L  and  u. We  list our  assumpt ions .  J is 
a (s, t )6IR x S l -depend ing  s m o o t h  co-calibrated a lmos t  complex  s t ructure  such that  

J(s, t, u) = i for [u[ large (68) 

un i formly  in (s, t) and  

(69) 

M o r e o v e r  

(70) 

J(s,  t, u) = J(so, t, u) 

5(s, t, u) = J(  - so, t, u) 

f o r  s = > s o 

for s < - So �9 

OL 
c~ (s, t, u) > 0 

H ( t , u ) = L ( s , t , u )  fors__< - S o  

K ( t , u ) =  L(s , t ,u )  f o r s ~ s o .  

There  exists a regular  arc s---~A(s) as described in (55) and  (56) such that  

(71) [L'(s, t, u) - A(s)u[ [u[- 1 ___. 0 

~L '  d lul- & (s, t, u) - ~ A (s) u 1 __~ 0 

uni formly  in (s, t) as lu[--~ + oo. M o r e o v e r  we have the est imates 

(72) ~t L'(s, t, u) < c(1 + lul) 

IL"(s, t, u) h[ < clhl 

for all (s, t, u ) e R  x S 1 x C" and  h e G  ". 
O u r  main  result in this section is 

Theorem 12 Assuming (68)-(72) there exists a constant d : =  d(L, J) > 0 such that 
every solution u of  

u~ -- J(s, t, u)ut - (V jL)(s, t, u) = 0 

with 

satisfies 

inf~Lts)(U(S)) > -- o0, sUp~Lts)(U(S)) < + O0 
s~]R SE]R 

sup [u(s, t)[ =< d .  
(s, t)~Z 
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P r o o f  Pick  a s m o o t h  m a p  qo:IR---*[0, 

~o(s) = 0 

~0"(s) > 0 

~o'(s) = 1 

W e  find a c o n s t a n t  Cl > 0 such  t ha t  

(73) ~o'(s)s < ~o(s) + c l  for all s ~ l R .  

Def ine  co(s, t) = q)(lu(s, t) l 2) for  (s, t)EZ and  let 

F = {(s, t ) E Z  I lu(s, t)[ > R} . 

O n  F we have  for  a s o l u t i o n  u of  (21) 

u~ - iu,  + L ' ( s ,  t ,  u)  = 0 . 

Hence  

(74) c~ 
uss - -  iust - -  ~ s  L ' ( s ,  t ,  u)  - -  L " ( s ,  t ,  u )u~ = 0 

iu~, + u,t --  i~ t  L'(s,  t, u) - iL"(s ,  t, u)ut  = 0 . 

A d d i n g  up  the two  e q u a t i o n s  in (74) gives on  F the e s t ima te  

IZul < cz(1 + lul + lu,I + luA) 

+ oo ) sa t i s fy ing 

for  s < R2 + 1 

for  R E + I < s < R  z + 2  

for  s > R E + 2 .  
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for a su i t ab le  c o n s t a n t  c2 > 0 i n d e p e n d e n t  of  u. H e n c e  we have  on  Z for  a su i t ab le  
c o n s t a n t  c3 > 0 

Iqr Au)l 

-<_ ~0'(lul2)(c2(1 + lul + lusl + lu,I))lul 

< r + lul 2) + IVul2) .  

Using  (73) gives on  Z 

(75) W(lulZ)(u, An)! < c3~ + c3q + c3 + ~o'(lul z) IVul 2 �9 

Nex t  we c o m p u t e  

Z ~  = 4~o"(lulZ)((u, us)  z + (u ,  u , )  z) + 2q)'(lu[i)lVul z + 2q)'([ulZ)(u,  A u )  

> 2~o'([ulZ)lVu[ 2 - 2~p'(lu] 2) [Vul 2 - 2c3cr - 2(c3cl + C3) �9 

Hence  for  a : =  2(c3cl + c3) , a c o n s t a n t  on ly  d e p e n d i n g  on L a n d  J we infer 

(76) - Act -- 2C3Cr =< a on  Z , 

where  2c3 is a l so  a c o n s t a n t  on ly  d e p e n d i n g  on  L a n d  J .  Let  6 > 0 be so smal l  t ha t  

(77) 2c 3 < ~ 2 ~ - 2  . 
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In view of Proposition 11 we find a constant ca such that 

(78) [lul]~ =< c~ 

for every solution u satisfying the hypotheses. This gives a constant b > 0 such that 

(79) [~o(lu12)]~ __< b 

for every such u. Now we apply Proposition 8 and find a constant c = c(a, b, 2c3, 6) 
> 0 only depending therefore on L and J s.t. 

sup ~o(lu(s, t)I 2) 5 c .  
(s , t )eZ 

Hence for a suitable d > 0 
sup tu(s, t) l =< d 

(s,t)eZ 

as required. [] 

The previous method of obtaining C~ in a noncompact symplectic mani- 
fold has many more applications, [6]. We thank K. Cieliebak for many stimulating 
discussions. 

2.4 C~-estimates 

This section is quite standard provided one has the C~ from the previous 
section. We include it for the convenience of the reader and allow ourselves to be 
somewhat sketchy. The key point is a bubbling off analysis going back in the 
harmonic map case to Sacks and Uhlenbeck, [37], and in the pseudoholomorphic 
curve case to Gromov,  [26]. 

We consider the partial differential equation 

(80) u~ - J(s, t, u)u, - (VjL)(s,  t, u) = O, 

where J and L are as described in the previous section. In view of theorem we find 
a constant d > 0 such that for every solution of (80) satisfying 

(81) inf ~bLt~)(u(s)) > -- oc, sup ~c~s)(u(s)) < + o~ 

we have the C%estimate 

(82) sup {lu(s, t)l ](s, t )EZ} <= d .  

The crucial estimate for finding uniform Ca-estimates is a uniform estimate for 
IVul. We need the following useful topological lemma from [30]. 

Lemma 13 Let (X, d) be a metric space. Equivalent are the following statements. 

i) (X,  d) is complete 
ii) For every continuous map 4) : X --* [0, + oe ), a given point x ~ X and a number 

e > 0 there exist x' ~ X and e' > 0 such that 

(a) g <= ~ and 4)(x')g > O(x)e 
(b) d(x, x') < 2e 
(c) 2q~(x') > (o(y) for  all y ~ X  with d(y, x) < d. [] 

The main result of this section is 
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Theorem 14 There  exis ts  a cons tan t  d > 0 such that  fo r  every solut ion o f  (80) 
satis fying (81) we have 

]Vu(s, t)[ __< d for (s, t )~Z . 

Proof.  Arguing indirectly we find a sequence (Zk)= ((Sk, tk)) and a sequence (Uk) 
such that  Uk solves (80) and (81) and 

(83) [Uk(Sk, tk)[---+ + OC . 

We know from Theorem 12 that  

(84) [Uk(S, t)[ < d for (s, t ) eZ  

and from L e m m a  9 

(85) 45L~s~(Uk(S))~[Cl, C2] for s t i r .  

F rom (85) we deduce for every solution of (80), (81) 

+cc 1 
(86) ~ ~ g.i(s, ~, u(s, t))(u~(s, t), u~(s, t ) )dsdt  <= c2 - Cl �9 

coO 

From this we deduce using the propert ies  of a; 

(87) ~ !u,I 2 dsd t  < ( 
Z 

for a suitable constant  ( > 0  independent  of u. Choose a sequence (ek) c (0, + oO ) 
satisfying 

(88) e ~ O ,  ekiVuk(sk, tk)l---' + O0 . 

In view of the topological  L e m m a  13 we may  slightly modify the data  and may  
therefore assume in addit ion 

(89) IVUk(S, t) I <= 2lVUk(Sk, tk)[ 

for all (s, t)elR 2 with j(s, t) - (Sg, tk)] < ek, where we consider Uk periodically ex- 
tended over IR 2 in the second variable. N o w  we define 

vk(s, t) = uk((sk, tk) + ;~; ' (s, t)) 

We define Rk = ~k2k and observe that  Rk- -"  + o0 . Then for j(s, t)l <= Rk 

(90) IVVk(S,  t)l = ;~k l l(Vblk)((Sk -}- 2 k  1S), (t k -1- 2 k l t ) )  1 

=< 22k-12k = 2 . 

Moreover  for k large enough 

(91) ~ ~s Vk (S, d sd t  <= e .  
RR k 
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Fur ther  

(92) 
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0 
0 : ~S vk -- ~(sk at- ~ ls' tk + ~'~- lt' Vk)-fft vk 

-- 2 ; l (V jL) (Sk  + 211s, tk + ~ . [ l t ,  vk) . 

Without  loss of generali ty we may  assume tk ~ to. Since J is independent  of s for 
large Isl we may  also assume that  in the J expression Sk---~ SO for some soelR, as well 
as tk--" to. Using the gradient  bound in (90) it follows f rom standard linear theory 
(and a per turba t ion  argument)  that  (Vk) is C~oc-bounded. Hence after taking a sub- 
sequence we may  assume 

(93) Vk---~V in Cl~c 

IVv(0, 0)l = 1 

IVv(s, t)l < 2 for (s, t)elR �9 I R ~ C  

]v(s, t)[ < d for (s, t)elR �9 IR 
and 

(94) v~ - J(so, to, v)vt = 0 on 11t 2 . 

N o w  (91) implies that  in addit ion to (93) and (94) 

(95) ~ [vslZdsdt < oo . 
R2 

In view of (94) and (95) a removable  singularity theorem applies, see [-26]. Hence we 
obtain  a smooth  m a p  v: $2-- ,C ", S 2 = ~ w { + ~ }, which is noncons tan t  and  
satisfies 

(Tv) i=  - J(so, to, v) Tv o n S  2.  

Since oJo(IdxJ(so ,  t o , * ) = : g  defines a Riemannian  metric we infer tha t  
0 > Ss2 v*~o. On the other hand by Stokes'  theorem for a suitable 1-form 2 

I = = = 0 .  
S 2 S 2 0 

This contradict ion proves our  assertion. [] 

Rudimenta ry  linear theory gives now using Theorem 14, - see [17, 19, 28] - 

Theorem 15 Under our standing assumption there exists for every multiindex 
a number d~ > 0 such that for every solution u :Z - - -~"  of  (80) satisfying (81) the 

following holds 
[(D~u) (s, t)[ _-< d~ for all (s, t ) e Z  . 

3 Transversality and compactness 

3.1 Regular Hamiltonians 

Recall that  the set of  Hamil tonians  ~ consists of  all smoo th  maps  H: S 1 • C"--fiR 
having the following properties: 

(96) H I (S' x ~7) < 0 
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for some open set U c C ". Moreove r  there exists a (*, , ) -pos i t ive  definite matr ix  
A such that  

(97) In ' ( t ,u )  - Zu l lu l -a - - ,O  as lul---' + oo 

uniformly for t e S  1 and 

(98) IH"(t, u)hl <= e(h) 

~ H ( t ,  < c(1 + ]u]) u) 

for a suitable constant  c > 0 and (t, u)eS  1 x I~" and heqY. Fur ther  the matr ix  A is 
required to satisfy 

(99) The ordinary differential equat ion - ib = Av on (0, 1) 
has no nontrivial  solution satisfying v(0) = v(1). 

As a corol lary of L e m m a  10 we have 

L e m m a  16 Given H E g f  there exists a constant c(H) > 0 such that every 1-periodic 
solution of  2 = Xn,(x) satisfies Ix(t)] < c(H) for t~S 1. 

Following a construct ion already used in [17] we denote by C~(S 1 x II;", IR) the 
Banach space of all smooth  maps  A: S 1 x @"---~ IR such that  

(100) IIAI/~ :=  ~ ~kllhllck(s'•162 oo . 
k = O  

Here e, = (ek) is a sequence of positive numbers  and 

ILhllck(sl •162 = ~ sup (D'h(t ,  u)) . 
i~l<k (t,u) 

If (g-k) converges sufficiently fast to zero the space consisting of all restrictions of 
maps u in C2 to a ball B g is dense in LE(BR) , see [-17]. 

Now let e = (ek )  be a sufficiently fast decreasing sequence. If H o e J f  and A e C ~  
then Ho + A ~o~f. 

Proposition 17 There exists for given Ho62,~ a residual set F c C~ such that for  
every H e H o  + F all 1-periodic solutions are nondegenerate, i.e. H is regular. 

Proof. Consider  the separable Banach space 

We define 

and 

.~ :=  HI '2(S  1, (~n) x C~(S 1 x I~ n, IR) . 

S : =  {(x, A) I Yc = X~o" + / a , ( x ) }  

F: ~.~---*L 2 (S 1 , I~ n) 

F(x,  A) = - Yr + Xno,~(x) + Xa~(x). 

Then for fixed A EC2,  the m a p  F(*, A) is a nonl inear  proper  F redho lm opera tor  of 
index zero. Using the density assertion for C2 ~ it is an easy exercise to show that  
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OF(x, A)" ,~--+ L2(S 1, •n) is onto  for every choice (x, A) e ~ .  Moreover  for (x, A) eL" 
the kernel Kern(DF(x ,  A)) splits. Therefore L" is a smooth  submanifold of ~ .  The 
projection map  ~z: Z - - * C ~ :  (x, A)---,A is a smooth  nonlinear F redho lm map  of 
index zero. Using the Sard-Smale - theorem there exists a residual set F of regular 
values for ~. Trivially for A ~F  the map  Ho + A is regular. 

Assume Ak~F such that  IlAk]l~---,0. Then there exists c > 0 such that for every 
1-periodic solution of some ~ = Xtlo,t(x) + XAk, t(X) we have Ix(t)] < c for all t ~S  1. 
Using this fact we have the following corollary: 

Corollary 18 Given Ho~JF there exists a constant c > 0 and a sequence (Ak) ~ C~ 
with supp(Ak) ~ S 1 x Bc such that HAkH~:--~ 0 and Ho + Ak is regular for  every k~1N. 

For  the following we introduce the space ~(greg by 

Definition 19 9fr~g is the subset of J f  consisting of all regular Hamil tonians.  
In view of Corol lary  18 Yt~eg is dense for the strong U~-Whi tney  topology. 

3.2 Regular trajectory spaces 

Assume HE,kf~reg. We study for given J ~ r  the partial  differential equat ion 

u~ - J(t,  u)ut - (VjH)(t, u) = 0 

u" Z---~ ~"  

u ( s ) - - , x  • as s---~ + oc , 

where x • end ,  = {x [ x is a 1-periodic solution of 2 = Xu,(x)} .  For  p > 2 we define 
N'I 'p(x - ,  x + ) by 

~ l ' ~ ( x - ,  x +) :=  Uo + WI'~(Z,  ~2") , 

where u0: Z---~ r is a smooth  m a p  satisfying 

Uo(S, t) = x - ( t )  for s < - so 

Uo(S, t) = x + (t) f o r s > s 0  

for a suitable So. Then we define c~u,s: ~ a ' v ( x - ,  x + ) - - ' L P ( Z ,  ~") by 

(?~u, j u)(s, t) = us(s, t) - J(t, u(s, t)) ut(s, t) - (V sH)(t, u(s, t)) . 

F r o m  results in [15, 17, 18J, see also [34, 38], we know that (?n,J is a smooth  
Fredho lm operator ,  where the index is given by the difference of the 
Conley Zehnder  index of the periodic orbits x - ,  x +. This we will explain later. 

Our  aim is to show that  for given HE3Cd'reg a generic choice of J will result in the 
fact that for all pairs (x - ,  x +) zero will be a regular value for ~ . j .  

Consider  the manifold g consistig of all real linear j: q; ' -- ,Ir" such that  
co o(Id x j ) =  g~ is a Riemannian  metric and j2  = __ 1. Let j 0 ~ J  ~ and denote by 
5~ the set of all IR-linear maps  q~: r ~ IE" such that  

(101) ~o(~bh, k) + co(h, ~bk) = 0 

jo~b + qbjo = 0 .  

Then ~ o  is a vectorsubspace of 2 ' e ( I r" )  and for q~e~o the map  

(102) J = Jo exp ( - j0qS)  
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belongs to d ~ In fact for everyj  close to jo  we have the representation (102) for some 
q5 close to zero. 

N o w  let J 6 j  be given. Then J(t, u) is smoothly depending on (t, u) and 
J(t, u) = i for lul large. Assume X: S 1 x r is a smooth  map with compact  
support  such that IX(t, u)t is small and 

~ ( X  (t, u)h, k) + ~(h, X (t, u)k) = 0 

J(t, u)X(t, u) + X(t ,  u)J(t, u) = 0 . 

Then J(t, u) = J(t, u) exp( - J(t, u)X(t, u)) will be a new structure in J .  Again we 
choose a quickly decreasing sequence e = (ek) of positive numbers and define for 
given R > 0 the Banach space ,~[(R) , consisting of all smooth  X as above with 
X(t,  u) = 0 for all t~S 1 and lu] => R with 

IlXll,:'= ~ ~:kllXJlc~ < + ~ �9 
k 0 

We denote by U~(R) for 5̀ > 0 sufficiently small the set of all J defined by 

J(t, u) = J(t, u) exp( - J ( t ,  u)X(t, u)) , 

where I[XI]~ < ,5 and X(t,  u) = 0 for [u] > R.  Ug is an open subset of a Banach 
manifold. It has been proved in [23] 

Theorem 20 Let H f f ~ r e g  and J ~ .  Let R > 0 such that 

ix(t)] _-< R - 1  for all t~S 1 

Jbr every xa~ t t .  For 6 > 0 sufficiently small put U : =  UJa(R) as defined above. 
Then there exists a residual set F ~ U such that for every J ~ F  the operator 
~n.J: ~ l 'P(x  , x +) --+LP(Z, C") for p > 2 has zero as a regular value jbr every choice 
X - ,  X + f f~H.  

For  the next result let J e J  and H 6 ~ e g .  For  x ~ u  we consider 

gr(x) = {(t, x(t))] t 6S  1} . 

For  z > 0 let U~(x) be the r -ne ighbourhood of gr(x) in S 1 • C". For  z > 0 suffi- 
ciently small we have U~(x)~ t?~(g)= q5 for x 4= y, x, y a ~ n .  Let U~(H)= 

Consider the Banach space 

CF(U~(H), IR) = { A e C F ( S  1 x ~", IR) IAI U~(H) - O, 

supp(A) c S I x B2"(R)} . 

Let R > 0 be chosen in such a way that x e , ~ n  satisfies the apriori estimate 
tx(t)] < R - 1 .  We find a 5̀ > 0 such that IlA]i~ < 5̀ and AaCy(U~(H),  IR) implies 
that ~ n  + ~ = g~R. 

Denote  by V6 the open 6-neighbourhood in CF(U~(H), R) of zero. We have 

Theorem 21 Let J ~ J ,  Hffo~Ct~reg , R > 0, and ~l/~ be as described above. Then there 
exists a residual subset F c ~i/'e such that for every A a F  the pair (H + A, J )  is 
regular, i.e. belongs to ,#',~g. 

Theorem 21 is proved with the help of 3.1 in [23] in [40] for a related case. 
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Summing up there is a plentiful supply of data  in Jffreg for which we have the 

the set 

following theorem. 

Theorem 22 Given any regular pair (H,J)~JVreg and x - , x + ~ H  
.At'(x-, x +, H, J) defined by 

J . t ( x - , x+ ,H,J )={u:Z- -* f fY Iu ( s ,* ) - - - , x  +- as s---*_+ oc 

in C~ 1, C") and us - J(t, u)ut - (VH) ( t ,  u) = 0} 

carries in a natural way the structure of a finite dimensional manifold induced from 
~ l ' v (x - ,  x+), p > 2. This structure does not depend on the choice of p by elliptic 
regularity theory. Moreover 

dim ~ ' ( x - ,  x+; H, J) = Ind(x - ,  H) - Ind(x +, H) . 

3.3 Monotone homotopies 

Let (H, J)  and (K, J)  be elements of ~eg.  We define a partial ordering by 

(103) ( H , J ) < ( K , J ) :  <=>H(t,x)<K(t,x) fo ra l l  ( t , x ) ~ S l x C  ". 

Given two pairs satisfying (103) we call a pair (L, J )  a monotone  homotopy  
between (H, J) and (U, J )  provided L: R x S 1 x C"--*IR is a smooth map satisfying 
for suitable So > 0 

(104) L(s, t, u) = H(t, u) for s < - S o  

L(s , t ,u)= K(t,u) f o r s > s o  

~s (S, t, u) >_ (s, t, u). 0 for all 

Moreover  there exists a smooth map A: IR--*s176 ") associating to a number  
s a positive definite (for (*, * ) )  matrix satisfying 

(105) If - i 2  = A(g)x and x(0) = x(1) for some non zero x and 

~EIR then ~s A(s) s=~ is positive definite. 
1 

Further  the data A and L satisfies 

(106) IL'(s, t ,u) -A(s)ul  [ul-1---*0uniformly as lul ~ + oc 

~s d A(s)u O L'(s, t, u) - d s  [uI-1---~0uniformly as [u[ -* + oe 

-~ L'(s, t, u) < c(1 + ]ul) 

[L"(s, t, u)h[ < clhl 

for all (s, t, u) and h. Moreover  the map (s, t, u ) ~  J(s, t, u) associating to (s, t, u) 
ER x S 1 x tI~" a co-calibrated structure is smooth and satisfies 

(107) J(s, t, u) = i for luJ large 

J(s , t , u )=J( t ,u )  fors=< -So  

J(s, t, u) = a~(t, u) for s > So. 
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In view of Sect. 2 the solutions of the partial  differential equat ion associated to 
(L, J) ,  see the introduction,  satisfies a uniform C~ 

Similarly to Theorem 20 we have the following transversali ty theorem which is 
in fact somewhat  easier. 

Theorem 23 Given a monotone homotopy (L, J) there exist constants R > 0, So > 0, 
and a sequence (J,) with 

(lO8) 

with 

Jk(S, t, U) = i for lu[ __> R 

Jk(S , t ,u )= J(t ,u)  for s<= --So 

Jk(S, t, u) = J(t, u) for s > So 

Jk---* J in C ~ 

and (L, Jk) is regular Jbr every k e N .  
Regular of course means that the first order elliptic operator 3(u,L) has zero as 

a regular value for every choice of asymptotic boundary conditions x e ~ n ,  ye~K.  We 
denote by JV'reg(H, J; K, J) (for (H, J), (K, J) eJVr~g and (H, J) < (K, J )  ) the set of 
regular monotone homotopies between the two pairs. 

We note  that  we could also formulate  a s tronger  version of Theorem 23 similar to 
24. Namely  there exists a ne ighbourhood  U(J) containing a residual set F such 
that  (L, J )  eJVr~g(H, J; J )  for LeF.  

Similar as in Subsect. 3.2 we arrive at 

Theorem 24 Given ( L, a~)eJV'reg(H, J; K, J) there exists for given x e ~ n  and y e a r  
a natural finite dimensional manifold 

Jg(x, y; L , J )  = {u: Z-~  ~" [ u is smooth u(s, * ) ~  x as s --* - 

u(s, *)--* y as s ~ + ov in C~(S  1, 112") 

and u, - J(s, t, u)ut - (VjL)  (s, t, u) = 0} 

Moreover 
dim . .g(x,  y; L, J )  = Ind(x,  H)  - Ind(y ,  K)  

and necessarily/f  J r ( x ,  y, L, J) 4:42 the inequalities 

Ind(x,  H)  > Ind(y ,  K) ,  @n(x) > @r(Y) 

hold. 

3.4 Compactness 

Let (H, J)eJVreg and consider J t ' ( x - ,  x § ; H, J )  for a choice of x - ,  x § e~H.  We 
assume that  

(109) 0 < I n d ( x - ,  H)  - Ind(x  § , H)  < 2 .  

Hence ~ :=  ~ ' ( x - ,  x § ;H ,  J )  (assuming ~t' 4: 42) is a manifold of dimension 0, 1 
or 2. We have a natural  IR-action on ~r defined by 

(110) (p*u)(s ,  t) = u(s + p, t) 
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for selR and ue~,g. If x = x + the space dg consists precisely of the point 
[(s, t ) - -+x- ( t )  ] and IR acts trivially. If x -  ~= x + then the IN-action is free and the 
quotient  space ~r = ,g / iN has dimension one less than ,/g: 

(111) dim(Jr ' )  = d i m ( J [ )  + 1 if d im(~ / )  => 1.  

Having the C~~ from Sect. 2 the analysis in [16, 17, 19], see also [34, 38], 
leads to the following conclusion. 

Theorem 25 Let (H, J)e~A/reg. If dim Jg  = 1 then Jl~ is a compact manifold, i.e. 
consists of  finitely many points. 

Next consider the case dim Jr'  = 2. Then ~ i s  1-dimensional and decomposes into 
components  either diffeomorphic to S 1 or (0, 1). The crucial point is to understand 
the meaning of its ends in geometrical terms. This has been analysed in [16, 17, 19]. 
We follow the description in [34]. (We oppress the data (H, J)eJVreg in the 
notation.)  

Theorem 26 Let x, y, z e ~ n  with Ind(x, H) = Ind(y, H) + 1 = Ind(z, H) + 2. Then 
there exists a local diffeomorphism # from an open subset (_9 oJ" 
~ ( x ,  y) x J/.{(y, z) x lR into Jg (x, z) such that 

i) Given a compact subset K of  J.[ ( x, y) x J/-[(y, z) there exists a number a( K ) such 
that K x [a(K) ,  oo ) c (9 

ii) There are lifts 

#1,  #2: (9 - - ,~ l ( x , z )  

such that for every pair ( u , , u 2 ) e J g ( x , y ) x J g ( y , z )  with q~u(ut (0) )=  
�89 (cl)u(x) + 4)n(y)) and q~u(u2(0)) = 1 (cbu(y) + 4~H(z)) the maps #i ( f i , ,  fiz, P) 
converge in Cl~c to ui as p--* + co. (Here fi is the element in Jg  corresponding to 
u in J/g). 

iii) Let Jg = UJff (x, y), where the union is taken over all pairs (x, y ) e ~ H  x ~ n  
satisfying Ind(x, H)  - Ind(y, H)  = 2. Let (D c JC[ be the image of  all maps # as 
constructed above. Then J//l \ ~ is compact. 

Geometrical ly Theorem 26 identifies the ends of the components  in M-t~(x, z) 
diffeomorphic to (0, 1 ) with broken trajectories from x t o z  "factorizing" over  y. We 
have the following figure explaining this. 

z 

r 
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The maps # are not natural, however given orientations of ~ ( x ,  y ) ,  Jr (y ,  z) 
they induce a natural orientation of ,g(x,  z) which is not depending on the choice 
of # as long as # is obtained from the glueing procedure as explained in [17, 19]. 

In order to obtain symplectic homology with arbitrary coefficients we have to 
orient the Jt'(x, y)'s so that the orientations are preserved and compatible with the 
glueing procedure. This is done in the next section. 

4 Symplectic homology 

4.1 Coherent orientations 

Let (L , J )EXreg( (H,J ) ; (K , .T ) ) .  Note that this includes the special case 
(H, J)evffreg. For x e ~ n  and y e a r  and p > 2 we consider the previously intro- 
duced Fredholm map 

0L, j : .~l,p (X, y)--* LP(Z, 112 n) , 

where the space ~ l ,p  has been previously constructed. If u~..,g(x, y; L, J)  denote 
by 

0~,j(u): Hx'p(z ,  ffJn)---~ LP(Z, (U n) 

the linearization at u. Since ~(L, Y)~/V, eg the linearization is a surjection and the 
tangent space of .~/(x, y; L, J)  at u is precisely the kernel of 0).,j(u), i.e. 

T, .At(x ,  y; L, J)  = {u} x kern(0~,~(u)) . 

For a finite dimensional IR-vectorspace E let ^ m"XE := E /x . . .  r, E (dimE- 
times) with the convention ^ re"x{0} = IR. With the definition of the determinant 
of a Fredholm map, see [22], we have 

Det (0).,.~(u)) 

:= ( A m a x  kern(O~,j(u))) | (/x m"Xcokern(0~,y(u)))* 

= ( ^ max kern (0) j (u) )  | IR* 

= (  A max(T~.~(x ,y;  L,J ) ) ) |  

~_ ^ m a x T .  J t ( x , y ; L , j ) ) .  

Letting u vary over J r (x ,  y; L, J)  we obtain the determinant bundle of the family of 
linear Fredholm operators u ~ O).,:(u), which is isomorphic to the maximal wedge 
of the tangent bundle T .g  (x, y; L, J). Hence an orientation of 

Det(0k.j(*))--*Jt ' (x,  y; L, Y) 

is equivalent to an orientation of .At (x, y; L, J). 
To recall the results in [21] (we note that we studied in [21] cLoperators and 

here 0-operators, which of course does not make any difference) let us define the 
asymptotic operators of O'L,)(u). In order to simplify notation we put T := 0~.,j(u). 
Then the asymptotic operators T • are defined by 

T+:  HI,2(S 1, ~I~n)_.__.L2(S 1, ~n) 

( T  •  = - J( +_ oo, t) h,(t) - (DAY( +_ oo, t, x • (t)) h(t))  x, • (t) 

- D 3 ( V y L ) (  ___ o o , t , x •  
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where x -  = x and x + = y. The operators T • are selfadjoint unbounded oper- 
ators in L2(S 1, {E") for suitable L2-inner products. Namely 

1 

(h, k) • = ~ g]( ++_ oo , t, x • ( t ) )(h(t) ,  k ( t ) )d t  . 
0 

The operators of "type" T belong to the class Z introduced in [21]. To make this 
precise consider the two point compactification IR = { -  oo } w IR w { +  vo } 
equipped with the unique differentiable structure turning the homeomorphism 

h: IR---, [ - 1,1] 

defined by 

h ( s ) = l s ~ l  1 1 f o r s =  + o o  
+ s2)-~ for s~lR 

into a diffeomorphism. Let us put Z = IR x S 1. For J(z )  being an oJ-calibrated 
complex structure depending smoothly on z e Z  we have asymptotic structures 
(J( _ oo, *)) depending on t e s t  Associated to J there is an inner product (*, *)j 
on L2(Z, I~ n) given by 

(112) (h, k)j = ~ coo(h(s, t), J(s, t) k(s, t))dsdt . 
z 

Moreover we have asymptotic inner products given by 

(113) (h, k ) f  = ~o)(h(t), J( + so, t) k ( t ) )d t .  
$1 

Z consists now of all first order partial differential operators defined by 

(114) ( Tu)(s, t) = us(s, t) - J(s, t) u,(s, t) - A(s, t)u(s, t) , 

where ( s , t ) e Z .  Here J is as described above and the map Z ~ ( s , t ) - - }  
A(s, t ) e ~ a ( ~ " )  is smooth such that the asymptotic operators defined by 

( T •  - J( + ~ , t ) h , ( t ) -  A( + oo , t )h ( t )  (115) 

satisfy 

(116) kern(T • = {0} 

( T •  k ) f  = (h, T •  

and are selfadjoint operators in L2(Z,  C") with domain HI'2(Z,  ([~n) (for the 
particular inner products). Here one should note that the operators 8'L,j(u) intro- 
duced previously induce operators in L2(Z,  C"). 

Fixing asymptotic operators a, fl we consider the set 0,,~ consisting of all 
operators Tin  Zwith T -  = ~, T + = fl, equipped with the topology induced from 
d ~ ( H ~ ' 2 ( Z ,  ~"), L g ( z ,  ~"). The natural determinant bundle over 0~,~ (all T in 
0,,p are Fredholm operators) is trivial and hence orientable, see [21] for more 
details. 
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Given asymptotic operators ~,/3, 7 and having orientation for Det(0~,p) and 
Det(0~, ~) there is a naturally induced orientat ion for Det(0~,,~) obtained by glueing, 
see [21]. Formal ly  

(117) o~,B #ot~,~, = o,,~. 

A coherent orientat ion is a choice of orientat ion for every 0~.~ such that the formula 
(117) holds for every triplet of asymptotic operators.  Consider the group F consist- 
ing of all maps f associating to a pair (~, fl) of asymptotic operators  a number  
f ( ~ , f l ) e { -  1, 1} such that 

(I 18) f (~ ,  fl)f(/3, 7) = f(c~, y) 

holds for all triplets (~, fl, 7) �9 It has been shown that the group F acts freely and 
transitively on the set of coherent  orientations by 

(J~) (~,/3) = f(~,/3) ~(~,/3), 

where a(c~, fl) is the (coherent)  orientat ion for 0~,~. 
Having fixed a coherent  orientat ion a and taking a pair (L, J ) e ~ g ( H ,  J; K J)  

the manifold Jtl(x, y; L, J) for x e ~ n ,  y e ~  carries an orientation in view of the 
previous discussion. 

First assume (H, J)eJV'~eg is given and a coherent  orientat ion a. Let x + e ~ n  
with Ind(x  -, H)  - Ind(x + , It) = 1. Then 

dim J /L(x- ,  x + ; H, J)  = 0 

#dff(x  ,x  + , H , J ) <  oQ . 

For every f icJf f (x- ,  x+; H, J)  the corresponding component  of 
o///{(x ,x+;H,J)  is given by {p*ulpe lR}  and carries the orientat ion 

?1 a(u) = a ( x - ,  x+; H, J)  and a natural  orientat ion given by ~ss " We define a num- 

ber z~(u)e7l by 

(119) z~(u) [ u J  = o-(u) . 

If we take the coherent  orientations f~  with JeF we have 

Hence 

(120) 

Moreover  

r ~ ( u )  [u~] = fu(x- ,  x+; H, J)~(u)[u~] . 

r I,(u ) = f , ( x  , x+; H, J)%(u) . 

given (L, J )eJf reg(H,  J; K, J )  and x e ~ u ,  Ye~k with Ind(x,  H) - 
Ind(y, K) = 0 the set of connecting trajectories is a compact  0-dimensional mani- 
fold, see [17, 19], and every wed/l(x, y; L, J) carries an orientat ion 1 |  where 
l*(1) = 1. We define a number  ~(w)e{ - 1, 1} by 

(121) ~(w) = ~.(w)[1 | 1"] .  

4.2 Construction of chain complexes 

Let us assume f i e ~ ( x ,  y; H, J)  and ~eJ/g(y, z; H, 
Ind(y, H) + 1 = Ind(z, H) + 2, where (H, J)EJfreg. 

J)  such that Ind(x ,  H ) =  
We have the associated 
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figure: 
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X 

Z 

The glueing construction [17, 19,], precisely explained in [34, 38], shows that the 
ends of ~r z) correspond bijectively to broken trajectories. This gives the 
following picture 

X 

g 

yl 

The glueing construction shows immediately that the glued orientation for 
u, v, u', v' must be related as follows 

( 1 2 2 )  [us] # [vs] = - [u's,] # Iv',]. 

For any coherent orientation a we have 

a(u) #~r(v)= ~r(u')#cr(v'). 

Hence using the definition of r ,  we obtain the formula 

(123) r , ( u ) t , , ( v )  + t , , (u ')  r , ( v ' )  = O . 

Next assume (L, J)~ JV'r,g(H, J; K, a r) is given. Then let x l ,  x z ~ n ,  Yl ,  y z E ~ K  with 

(124) Ind(xi, H) = Ind(yi, K) for i = 1, 2 

Ind(xl, H) - Ind(x2, H) = 1 

Ind(yl, K) - Ind(y2, K) = 1. 

Again the ends of ~r162 Y2; L, J) correspond to broken trajectories. See the picture 
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X2 

tO1 

ll)2 

Yx 

U t 

Y2 

Glueing gives 
~ r ( w l ) # o ( u ' )  = ~ r ( u ) # ~ r ( w 2 )  

and 
[1 | 1"] # [u',] = [us] # [1 | 1"] .  

Hence using the definition of r~ we obtain the formula 

(125) ~(wl )  z~(u') [1 | 1"] #[u',] = a(wl)#a(u') 

= a ( u ) # o ( w ~ )  

= ~.(u)~o(w2) [us] # [1 | 1"] 

= z,(u)?,(w2) [1 | 1"] # [u's] �9 
Hence 

(126) f , ( w l ) z o ( u ' )  - ~ , ( u )  f , ( w 2 )  = O . 

Now let ae( - oo, + Go ]. We define for (H, J)e~4rr~g and keZ the free Abelian 
group Cp,(H, J) by 

(127) Cp,(H, J) = @ { Z x  I xe~n,cI)u(x) < a, Ind(x, H) = k} 

and the graded Abelian group C",(H, J) by 

(128) C~,(H, J) = @ C~(H, J) . 
k e Z  

For a fixed coherent orientation a we define a boundary operator 0 ~ by 

(129) 8~ C~(H, J ) ~  C~(H, J) 

where 

(130) 

We observe that 

(131) 

a~x = L re(x, y ) y ,  
I n d ( y , H ) = I n d ( x , H ) -  I 

~=(x, y):= Y~ ~(u)eZ.  
0 ~ .,~( x,y: H, J) 

~s.(x, y) = f ( x ,  y; u ,  J) zo(x, y) , 
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wheref(x ,  y)~{ - 1, 1} and f (x ,  y ) f ( y ,  z) = f ( x ,  z). (In fact f~F,  the precise nota- 
tion should bef(cr where ~ is the asymptotic operator at x, etc.) Given different 
orientations we may apriori obtain different theories. To study this question let 
a' =)ca. We write f in the form 

(132) f(c~,/3) = p(~) p(f l) ,  

where p is a function associating to an asymptotic operator a number in { - l ,  1 }. 
Given H6J~reg and J e j  we denote by c~(x, H, J)  the asymptotic operator deter- 
mined by (H, J) over the periodic solution x e ~ t v  Having (H, J)cJV'~g fixed we 
shall often write c~(x) instead of 7(x, H, J). We observe that in (132) p is determined 
uniquely up to sign. Given a p as in (132) we define a map 

,~o: (c.(hr, j), a~)--. (c~(t/, J), g~) 

by 

(133) x--,  p(cc(x))x 

for x e ~ n .  We compute using (131) and the fact f ( x ,  y; H, J) = p(cc(x)) p(c~(y)) 
with p(x)  := p(cc(x)) 

(134) 
~?~'2o(x ) = ~ %,(x, y) p ( x ) y  

Y 

= ~ P(x)2p(y)r , (  x, Y)Y 
Y 

= Y p ( y ) ~ (x , y ) y  
Y 

= 2oa'(x ) . 

Hence 2 o defines a chain isomorphism. Due to the ambiguity of the choice of the 
signs we have the situation 

(135) (C ; (H,  J), 0 ~) ~ (Ci,(/4, J), a ~') 

saying that between two objects there are precisely two isomorphisms. The "double 
arrow" is natural. Of course what we would like to have is precisely one arrow 
between two different objects. In order to do so we have to construct in some sense 
a "double covering" of the category with different lifts for the two arrows. 

In order to follow the above scheme we introduce the capped half cylinder 
Z c : = D u  ([0, + oo)xS1) ,  where ~D'~S 1 is identified with $1~{0} x S  1. We 
equip Zc with a complex structure denoted by i which on [0, + oo ) x S I is precisely 

the one induced from Z, i.e. c3s---' ~?t' (?t--* ~ ,  where (s, t) are the coordinates on 

[0, + o o ) x S  1. We assume Zc to be a C~-manifold. We write Z~ for 
Z~w ({ + oo}xS1).  For a co-calibrated almost complex structure J for 
,Z~ xr we define a vectorbundle Xj-- ,Z~ as follows. The fibre over zeZc 
consists of all real linear maps ~b: TzZ~----, I~" such that 

(136) J(z)4) - 4)i = O . 

Hence Xs.z c ~ ( T z Z ~ , ~ " ) .  So we may assume Xs is a subbundle of 
s162 Z~ x C"). Xs  splits ~qo, where the splitting is smoothly depending on 
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Xj (it is the canonical splitting into complex linear and complex antilinear maps.) 
We introduce the Hilbert spaces HI'2(Zc x ~") and LZ(xj) of sections in the 
obvious way. Observe that L2(Xj)  is a subspace of L2(de(TZc,  Zc x 112")). We 
introduce a class Xc of linear operators L as follows. LESfl(HI'Z(Zcx~n), 
L2(Sfla(TZ, Zc x ~"))) is said to belong to X~ if there exists a J as above and 
a smooth section A: Z~---~&aa(~ ", X j) such that 

(Lu)(z) = Tu(z) -- J(z) Tu(z)i + A(z)u(z) 

for zeZ,,. Moreover over Z+ = [0, + ~ ) x S 1 we have that 

(Lu)(z) = ~s (s, t) - J (s ,  t) ~ t  (s, t) - (A( s ,  t )u(s ,  t)) 

au (s, t) - J (s ,  t) ~u = : ~  ~ i  (s, t) - ~ ( s ,  t) u(s, t) 

is the restriction of an opera tor /~  of class 2 to Z + .  We have following [19] 

Theorem 27 Every L6Xc is Fredholm. L has the asymptotic operator 

h ~ - J(  + ~ ,  t) h( t )  - ~ (  + ~ ,  t) h ( t ) .  

Having a fixed asymptotic operator ct we denote by 0~ the collection of all those 
L and put on them the topology induced from 5~(H l '2(Z~x~U'),  
L2(Sy~(TZc, Z~ x ~"))) .  As in [21], one shows that 0~ is a contractable space. We 
denote by o(~) an orientation of the canonical determinant bundle over 0~, see 
[21]. Using the glueing construction for linear operators as explained in [21], we 
have an almost natural procedure to glue an operator L ~  with an operator 
TeO~,,~ to obtain some operator L #  TeO~. Although the glueing is not naturally 
the orientation o(fl) induced from an orientation o(~) of 0~ and o(~, fl) of 0,,~ by 
the glueing construction does not depend on the glueing parameters. 

Consider now pairs (a, 0~o) consisting of a coherent orientation a and an 
oriented class of operators 0~o with orientation o(C~o). Assume (a', 0~. o) is a second 
such pair. cr and O(~o) determine via glueing an orientation a(C~o)# a(C~o, c~) of 0 ~'o" 
We have fa = a'  and choose a potential p for f according to the following 
requirements 

o(~ ) )  = p ( ~ ) O ( ~ o ) # ~ ( ~ o ,  ~ )  

f (~ , / ~ )  = ~(~) ~(/~) �9 

We observe that p is uniquely determined by these requirements. Let us denote this 
p by P(,',, 'o . . . . .  ). Assume a third pair is given, say (a", ag).  We have 

o(~; )  = ~ , (~ ; )O(~o)#  a(~o,  ~;) 

(gf)(a, fl) = ~9(a) ~(fl) 

with a" = ga', a' = fa. Then 

o(~ ; )  = ~ ( ~ ) o ( ~ 0 )  # ~r(~0, ~ , )  # a(~,, ~ )  

= ~,(~;)  p ( ~ ) o ( ~ ) # ~ r ( ~ ,  ~ ) .  



72 

If r = p(~,,,,~;; -'=,a)), P = P(,',,b; -.,o) we deduce 

A. Floer, H. Hofer 

= O(o~G) p(ot'o)O(O~'o)# (f(ot'o, ct'~) a'(ot'o, ct'~)). 

where 

q'(~,j~(x) = y, ~(x, y), 
y e a r  

I n d ( y ,  K) = In d  (x ,  H)  = k 

~(x, y) := ~,(x, y) = Y ~,(w) 

with ?o defined in (121) and the sum being taken over all we,At(x, y; L, J). In view 
of (126) T(L,J) defines a chain homomorphism. 

A crucial point we have to discuss is the following. Given another regular 
monotone homotopy the induced map is naturally chain homotopic. This will 
allow ourselves to regard C~, as a covariant functor associating to (H, J) evg~g 
a graded Abelian group and to an "inequality sign" a chain homotopy class of 
maps. So let (Lo, Jo) and (LI, f~) be elements of X~g(H, J; K, ] ) .  Arguing as in 
Sect. 3 we can construct a regular homotopy of monotone homotopies 

via the formula 

Hence 
~(~G) = O(c~) p(~G) p(~b) p(~G) 

which is equivalent to 
O(~G) = ~(~G) p(o~;). 

This implies immediately that 

or in other words 

P(o",~; ,~,~o) = P(,T",~; ~',~6) P(a',~6; o,~o) �9 

Now we define for a pair (a, ~o) the chain complex 

C.(H, J; (a, % ) ) : =  (C.(H, J), ~') 

and between two different chain complexes a chain isomorphism 
2(o,,.a; o,~o) := 2pro, .~,; o,~o) via the formula (133). Then 

kt~,,~a; . . . .  ): C,( H, J; a, Oto)---* C~.( H, J, a', C(o) 

defines a connected simple system. 

4.3 Monotonicity homotopies 

In view of the naturality of the construction of the chain complexes in respect to the 
chosen data (a, ~o) we may assume for the following that (a, C~o) is fixed. 

Suppose now (H,J) < (K,J) are both belonging to -Creg and 
(L, ] ) e ~ e g ( H ,  J; K, ]). For ae( - oo, oe ] and dropping (a, co) in our notation 
we obtain an induced chain map 

~(L,i~: Cg(H, J)-+ C~(K, J) 
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2---* (L~, fa), 2elR such that 

(L~, f~) = (Lo, Jo) for s < 0 

(L,, f~) = (L~, fx) for s > 1,  

so that the operator (for p > 2) 

g$: IR • g$1,V(x ' y)__. Lp(Z, {E,): (2, u)---* r 

has zero as a regular value. We are mainly interested in the cases 

Ind(x, H) - I n d ( y ,  g ) e {  - 1, 0} . 

Then Ind(T)e  {0, 1 } in view of the additional 2-parameter and our index formula. 
Our aim is to prove the formula 

(137) t t t ( L ~ , J a )  - -  T (Lo.Jo) = OA -- Aa 

for a suitable homotopy operator A. Clearly (137) implies the desired conclusion. 
We shall proceed as follows. Firstly we give an explicit definition for A and then 
secondly we derive the equality (137). In order to proceed it is useful to define 
a coherent orientation for a somewhat larger class of operators. Consider operators 

T: IR • HI '2(Z,  C")--o L2(Z, C") 

7"(2, H) = Th + 2a ,  

where T is of class 2: as introduced in Subsect. 4.1 and a e L Z ( Z ,  C"). We have an 
exact sequence 

a~ , kern(T) a~ a~ a, , IR , cokern(T) , cokern(7 ~) ~ 0 ,  (138) 0---, kern(T) 

where 
da(h) = (o, h) 

d2(2 , h) -- 2 

d 3 ( 2  ) =-- 2a + R ( T )  

d4(h + R ( T ) )  = h + R ( ~  . 

A simple algebraic lemma, see [21], shows that (138) induces a natural isomor- 
phism 

A max kern(T) | IR | A max cokern( T)-~A ma" kern( ~ | A max cokern( T) .  

Multiplying by (Am~Xcokern(7"))*| and using the natural 
isomorphisms E | F =  F | E,  E | E * - I R ,  E | IR--~E we obtain a natural 
homomorphism 

(139) De t (T) -~  De t (T ) .  

Independent of the choice of a e L  2 an operator ~r a has an asymptotics given of 
course by the asymptotics of T. For given asymptotic operators ~, fl we denote by 
0,.a the set consisting of all Ta, with TeO,,a, a e L  2. We have a glueing procedure, see 
[21], which allows to construct for an orientation 6,.a of 0,,a and an orientation 
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6p.~ of0r 7 an orientation o=,e#6a, 7 of 0,,~ and similarly for 6&,a of 0=,a and oe.~ of 
Ot~,~ a 6~,~#o~ of 0=r. The isomorphism in (139) produces from an o=a a 6,e. The 
following formulae are easily established given a coherent orientation a 

(~(~,/~) # ~(/~, ~))^ = ~(~,/~)^ #~(/~, ~) 

= ~(~,/~) #~(/~, o/)^ . 

Here a(c~, fl) stands for the orientation of the determinant bundle over 0,a etc. 
Now let x e ~ n  and Ye~K with I n d ( x , H ) - I n d ( y , K ) = - 1 .  Then the 

Fredholm index of the nonlinear operator 

B:IR • ~ 'P (x ,  y)---~ LP(2, r 

B(2, u) = ~m,L)(u)  

is zero. In our generic case the linearization B'(2, w): IR • HI'P(Z, C")---+LP(Z, fig") 
is an isomorphism at every zero (2, w) of B. We note that B'(2, w) also induces an 
isomorphism IR x HI ' z ( z ,  fign)-+La(Z, fign). For simplifying notation we denote 
the regular homotopy 2--+ (L~, J~) by 2--+ M(2). For x and y as above we define 

J / (x ,  y; m(*)) = {(2, w)l w:Z---~fig" smooth, 2~IR 

B(2, w) = 0, w(s, .)--+x as 

s---, - o o ,  w(s, *)--+y, as s---, + ~} . 

Under the previous index assumption the manifold ~ ' (x ,y ;  M(*)) consists of 
finitely many points ~, say (2~, wa)j = ~ ..... ~ at which B'(2i, w j) is an isomorphism. We 
take as orientation of Det(B'(2~, w~)) the orientation [1 | 1"]. The coherent 
orientation a gives an orientation a(B'(2j, w~)). We define a number 
~(2j, wj)~{ - l, 1} by 

(140) 8"(B'(2~, w~)) = "~(2~, wj) [1 | 1"3 . 

Finally we define "~(x, y)e2g by 
l 

(141) "~(x, y ) : =  Y', {(2j, w~). 
j=l 

Then we put 

(142) A(x) = ~, "~(x, y)y 

A: C~,(H, J) --+ C~,+ 1 (K, ,~), 

where the sum is taken over all Ye~K with Ind(x, H ) - I n d ( y ,  K ) =  -1 .  Our 
aim is to verify the formula (137). The proof of (137) is based on a study of 
Jt'(x, z; M(*)) for x e N n ,  Y e a r  with Ind(x, H) = Ind(y, K). Since the data is 
assumed to be generic a compactness argument(in the spirit of those previously 
used) shows that Jt'(x, z; M(.  )) decomposes into finitely many components, which 
are(taking orientation preserving maps) diffeomorphic to [0, 1], (0, 1], [0, 1), 
(0, 1) or S 1, if we consider only the parts of the components in [0, 1] x ~l'P(x, z). 
This is illustrated by Fig. 1. 

1 By a compactness argument and regularity 
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~ = 0  ~ = 1  

Fig. 1. 

Let us write 7~i = ~(L,.L) for i = 0, 1. By construct ion 

(~1 - ~eo)(x) = y~(-7:,(x, z) -'~o(X, z ) ) z ,  

where ?i(x, z) = Y',?i(w) with ~i(w) defined in(121) for i = 0, 1. 
Th rough  every (0, w) or (1, w) where w is as above there goes exactly one 

componen t  as depicted in Fig. 1. Let us show that  in the formula  for ~1 - 7% only 
those w count  for which (0, w) or (1, w) is contained in a componen t  of  type [0, 1) 
or (0, 1]. So let us assume for example  (0, w) lies on a componen t  of type [0, 1]. By 
definition 

~(w) = ~o(W) [(1 | l* )w] .  

The other  end of the componen t  corresponds  to a (e,w')  for ee{0, 1}. 
Let T: [0, 1] x ~ l ' P ( x ,  z)---,L p with p > 2 be the obvious maps.  Using elliptic 
regularity theory we always consider the l inearization of T as an opera to r  in 
a L2-set up. The first case is e = 0 We know that  6(DT(O, w)) and &(DT(O, w')) are 
related by cont inuat ion and also ([1 | 1"] at (0, w)) and ([  - 1 | 1"] at (0, w')). 
Hence 

~o(W) = -~o(W' ) .  

If e = 1 we infer similarly 

~o(W) = ~ ( w ' ) .  

Let F~(z) = {(e, w) [ There exists a componen t  of type [0, 1) or (0, 1) through 
(~, w)}. 

We have shown 
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(0, w) 

(0,w') 

&=O A = I  

Fig. 2. 

Next let (0, w)~Fo. The component through (0, w) has a non compact end which 
corresponds via glueing and the usual compactness analysis to a broken trajectory 

x 

(0, ~) u 

z 

There are two cases to be considered. The broken trajcctory has the form (2', w') 
followed by some u'~....l~(y,z,K,.~) or ue.gf(x,y,H,J) followed by some 
(2', w')e..14(y, z, M(.)).  Consider the first case. 

The orientation b(nT(0, w)) and the glued orientation 

~-(n T(2', w')) # a(0k,y(u')) 

on a connecting orbit(near the broken one) are related by continuation. Also the 
orientation given by ( - 1 | 1")~ kern (DT(O, w)) | IR* and the orientation ob- 
tained by glueing 1 | 1" above (2', w') and u's above u' correspond. Hence 

- [ ( 1  | l*)co,w)] - [(1 | l*)(a,,w,)] # [u's] 

= t(2', w')•(OT(2', w'))#z(u')a(u') 

= § w')r(u')#(OT(O, w)) 

= ~(;~', w')~(u')'~o(w)[(1 | l*)~o,w~] �9 
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Therefore we obtain the formula 

(143) fo(W) = -~(2 ' ,w ' )z (u ' )  for 

Similarly 

(144) ~o(W) = z(u)r for 

Further 

~l(w')  = "2(2, w)'c(u') for 

(145) and 

J, (,~', w') 
(0, w)~,  �9 

u' 

S u  
(0, w) ~ ,  �9 

$ (,V, w') 

~, (L w) 
(O,w') ~ ,  �9 

,Lu' 
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~ u  
~x(w ' )= -z (u ) ' ~ (2 ,  w) for ( t ,w')  ~ � 9  

(,~, w) 

Hence we may write 7Jl(x) - ~o(X) as follows: 

Here in the first sum over all z with Ind(z, K) = Ind(x, H) the pairs (u, (2, w)) vary 
over all broken trajectories of the type 

x � 9  
+ u  

y e  
J, (,l, w) 

z � 9  
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with Ind(y,  H)  = Ind(x,  H)  - 1, Ind(z,  K)  - Ind(y,  H)  = - 1, corresponding to an 
end of a componen t  of type [0, 1) or (0, 1]. In the second sum over  z the 
z-coefficient is obta ined by taking the sum over  all broken trajectories of the type 

x �9 

+ (,~, w) 
y'  �9 

+ u  
z �9 

with y 'E~K, beeing the "end" of a componen t  of type [0, l) or (0, 1]. Consider  
finally componen t s  of the form (0, 1). We have to consider the following cases in 
identifying their ends with broken  trajectories 

a) b) c) 

Z Z Z 

We obtain the following formulae 

a) T(u)'~(2, w) = - ~(u')'~(2', w') 

y, y ' e ~ n  

b) z(u)~()t, w) = ?(2', w')z(u') 

c) ~(2, w ) ~ ( u )  = - ~(2 ' ,  w ' ) z ( u ' )  

y, y' E~K . 

Using the above  discussion we may  write 

: - Z " , ( x ,  z)z + Z " 0 ( x , z )  �9 
z z 

Here  n~(x, z) is obta ined by taking the sum over all b roken  trajectories of the type 
(u, (2, w)) and no(x, z) by taking all b roken  trajectories between x and z of type 
((2, w), u). 
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Consider the expression ?,A(x) - A~(x). We have 

(u,(~.,w)) 

where the second ~ in each row is taken over the indicated set of broken 
trajectories from x to z. Hence 

A(?(x) - ~A(x)  = ~ n,(x ,  z)z - ~ no(x, z)z . 
z z 

This proves 
T 1 -  T o = ( ? A - A c ~ .  

Implying that T1 and To induce the same map in homology. 

4.4 A general construction 

In the previous sections we have constructed a covariant functor on (JV'reg, < )  
associating to a pair (H, J)  and a number aE( - oe, + oo] a chain complex 
(Ca(H, J), 0).  We drop the dependence on the choice of a pair (or, s0) in view of our 
previous discussion. Moreover to an inequality (H, J)  < (K, J)  we have a natural 
chain homotopy class denoted by 

(146) C, (H ,  ~ ~ , J ) - - * C , ( K , J )  

which is compatible with the natural inclusion 

(147) C , ( H ,  d)--~ Cb,(H, J)  

for a < b. For an open bounded U ~ IE" we denote by Yreg(U) the subset of 
Y~eg consisting of all (H, J)  such that H I(S 1 x U) < 0. For cr = (H, J)  e.4rreg(U) 
and - o c  < a _ < b _ <  + o o  we define 

cE,~ :=  ( c~,(~)/c.(~), o). 

In view of our transversality results we have 

Proposition 28 (df~eg(U), __< ) is a directed set, i.e. given ~, ]~E./V'reg(U ) there exists 
7~JVr~g(U) such that 

~<7,  ~<~'. 

Define S~'b)(Cr = H,(CE,a,b)(e)). Then 

is a directed system of Abelian groups. We note here that we could tensor C~'b)(C~) 
with any Abelian group G before taking homology. In that case we write 

S[,"'a)(c~; G)"= H ,  ( Ct~'b)(e) | G) . 
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Hence we have 

Theorem 29 

(S[~lta'b)(~; a))~ E,./~rr ( U ) 

is a directed system of  graded Abelian groups. 

N o w  we are able to define the symplectic homology  of U as a subset of C". 

Definition 30 Let - oo < a < b < + oo and U be an open bounded  set and G be 
an Abelian group. The [a, b)-symplectic homology  group of the set U in dimension 
k with coefficients in G is the Abelian group 

s~~ G)= lim ((st~~ G)),~x,o,~,, _~)). 

Consider  intervals [a, b) with - ~ < a -< b _< + oo and write 

[ a , b ) < [ a ' , b ' )  if a < a ' , b < b ' .  

For  [a, b) < [a', b') we have a natural  chain m a p  

(148) C~'b'(a; G)--~Ct,  a"v)(a; G ) .  

This natural  m a p  gives rise to an exact sequence if a triplet of numbers  
- oo < a < b <_ c <_ + 0 o  is given 

(149) 0--~ Ct,a' b)(~; G)---*C,t~'c)(a," G)---~ C~'C)(~; G ) - ~  0 .  

Passing to homology  we have an exact homology  triangle A,,b.r G) 

st,~ G) , S~,C~(~; G) 

(150) 0 ~  / 

S~'C)(a; G) 

with d,  being of degree - 1 .  We sum up this result by 

Theorem 31 Given an open bounded set U ~ 1172 and a triplet o f  numbers 
- oo < a < b < c <  + oo we obtain an exact  triangleA~,b,~(U; G). 

Proof. Observe  that  lira preserves exactness. 

Corollary 32 Given triplets - o o  < a < b < c < + oo and + oo < a' < b' <<_ c' 
<= + ~ with [a, b) < [a' ,  b') and [b, c) < [b', c') we have a natural map between 

exact  triangles 

(151) Aa,b,c(U; G)"-*Aa',b',c'(U; G ) ,  

Next  assume U and V are bounded  open subsets of 112" and U c V. Then we have 
a natural  inclusion 

~ r e g ( V )  ~ Wr�9 ( U )  
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and an induced natural map 

(152) SE."'b)(v; G) ,,,1 St.,,b)(U; G) ,  

where "ram" stands for monotonicity map. This gives also 

(153) Ao,b,~(V; G) "", A,,,,b,,~,(U, G). 

The maps "--r in (151) and . . . .  ; '  commute. Next let us denote by ~ the group of 
compactly supported symplectic diffeomorphism in C". Given ct = (H, J )~r reg  
and 7 , ~  we define ~,~./V~eg by 

(154) H~,(t, u)= H(t, 7,-1(u)) 

J~,(t, u) = rT,(7,-l(u))d(t,  7,-'(u)) TT,-l(u) . 

Ifu is a solution of the PDE associated to a then ~U(u) solves the PDE associated to 
a~,. If ~JV',~g(U) then ~,~JV~r 7, induces therefore an isomorphism, 
denoted by 7, ,  

055) 7,**. s~,~(u; G)=, St,~ G). 
7,** is obtained in the direct limit by the maps 7,**(x) = 7,(X),Xe~H, 
a = (H, J). We observe that T o ,  can be considered as isomorphism between exact 
triangles A~,b.~(U; G) and Aa,~,~(T(U);G). Using the monotonicity maps 
we define for 7 , e ~  with 7,(U) ~ V the induced morphism 7,*: 
sta'b)( V; G)--* St~'b)( U; G) by the factorization 

St"'b)(V; G) ~'* , Sta'b)(U; G) 

(156) m m ~  / ~ e ; ' ,  

St"'b)(7,(U); G) 

This gives also a morphism ~* between exact triangles 

(157) Aa, b,c(V; G) ~'*' Aa, b,c(U; G). 

From the construction it follows immediately that 7,* commutes with maps of 
type (151). 

Theorem 33 Let U, V, W be bounded open subsets of C" and 4, 7 , ~  such that 

4 (U)~  V, 7"(V) c W. 

Then we have the commutative diagram 

(158) 

A..~,c(V) 
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Proof Let us denote by mvv: Sro'b)(v)---~SEa'b)(U) the monotonicity map for 
U c V. We have to show 

( ~P o eb ) )  1 m~,~e(u) ' = cl) ~ ~ m,(u) ,v  (P~ ~ m~,(v),w W 
We have m~,~.)tv),w = m~,o~(v).~,(v)m~,(v),w. Hence it suffices to show that 

T~ l#m~ q,(u),~(v) = ma,(v).vtP~ 1 , 

using that (7~o q))~l# = q ) ~  7J~1#. Given ~ = ( H , J )  ~dV~g( T( V)) we have for 
fl > c~, , the commutative diagram 

(159) $ $ 
s~,b>(/~,) ~",~>_ s~2'~)(/~) 

For this observe that we just apply to the first vertical ~he map ~ - 1  also 
transforming the complex giving the monotonicity morphism to obtain a mono- 
tonicity morphism depicted by the second vertical arrow (recall that the choice of 
monotone homotopy does not matter). Passing to the limit in (159) gives 

s~,o,b)(~(v)) ~ ;  st, a'b)(v) 

(160) S~'b)( 7~~ (~5(U) ~ )s[a'b>((~)(C)) 

(We dropped the G-dependence in our notation). The above diagram in (160) 
implies the desired conclusion. 

4.5 Isotopy invariance 

We start with some notation. Let 
for suitable constants c and R > 0 

(161) tL'(s, t, u)[ < c(1 + lu[) 

L: IR x S '  x C'---, IR be a smooth map satisfying 

for all (s, t ,u) 

[L"(s, t, u)hl <= c[hl for all (s, t, u), hOlY 

L ( s , t , u ) = L ( o , t , u )  for all ( s , t ,u)  w i t h l u l > R  

L(s, t, u)=: H(t ,  u) for s < s0 

L ( s , t , u ) = : K ( t , u )  for s > s 0 ,  

where H, Ke~reg.  By our assumption necessarily H - K has compact support. We 
call L a homotopy  between H and K. We define a number d(L)e[0 ,  + oe ) by 

(162) d(L)  = max (~, t, u) dt d~ 
- ~ \ x ~ C  ~ I ~ 

Moreover we put for H, K~gff with H - K compactly supported 

(163) d(H,  K)  = i n f { d ( L ) [ L  is a homotopy between H and K} . 

Next let H~reg and a t ( -  oo, + oe]. We define ~ n ( a )  by 

~ n ( a )  = { x s ~ n  I q~u(x) < a} . 
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For - o c  < a < b _ <  + ~  we put 

:~n([a, b)) = ~ H ( b ) \ ~ n ( a ) .  

Given HeWre, and a, b as above we define the "gap" g(H,  [a, b)) by 

g(H, [a, b))= inf{14~n(x)- 4'n(y)l IxeNn([a, b)), 

yr . \ ( ~ ( [ a ,  b))}. 
We have 

Lemma 34 Let H@o~t~ and - oo < a < b < + oo, then 

g(H, [a, b))e(0, + ~ ] . 

Define for H, Ke~reg 

g(H, K, [a, b)) = inf{g(H, [a, b)), g(K, [a, b))}. 

A crucial result is the following proposition 

Proposition 35 Given ( H, J), ( K, J)eM/'reg with H - K compactly supported and 

d(H, K)  < g(U, K; [a, b)) 

there exists a natural map 

~b(~:.H): S["'h)( H, J)--~ sEa,b)(K, J)  

given by the meanwhile usual construction by any homotopy L between H and 
K satisfying 

d(L)  < g(H, K, [a, b)) 

and an associated regular almost complex structure having a ( s, t )-dependence in the 
usual way. Moreover !f H1, H2, H3 are given with 

1 
d(Hi, Hi+l) < ~g(Hi ,  H , + , , [ a , b ) )  f o r i =  1,2 

then 

~9(H~,It2)~)(f12,Ifl) = ~ ( H 3 , H I )  �9 

Moreover 
q~(H, H) = Id .  

Proc~ Let u be a solution of 

(164) u~ - J(s, t, u)u, - (V~L)(s, t, u) = 0 

u ( s , * ) - * x  as s---* - 

u(s, *)---~y as s---, + oc , 

where x e ~ , t ( c )  for either c = a  or c = b ,  respectively. Assume d(L)< 
g(H,  K, [a, b)) and (L , ) )  is a regular pair (with the obvious meaning). Then 

d cb~(~)(u(s)) i,~(~) i 0 L  ds q~L(~)(U(S)) = -- -- 0 ~S (S, t, U(S, t))dt 

< sup (s, t, d t .  
0 x ~ r  ~ 
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Hence 

tPK(y) - -  ~H(X) ~ d (L)  < g(H, K; [a, b)) .  

Therefore 
~ K ( y ) s (  -- O0,C + d(L)]  , 

which implies by the definition of the gap and our  hypotheses 

�9 K(y ) s (  - oo, c) 

i.e. ys~ ' r (c ) .  Hence we may use the combinatorics of the solutions of (164) to define 
a chain map 

C[,a,b)( H, J)----~ C~,".b)( K, J )  . 

If  we take another  h o m o t o p y  with the same properties we deduce that the induced 
map  is chain homotopic.  For  this the same argument  works as in the section 
concerning mono tone  homotopies.  (In fact we construct  a h o m o t o p y  between the 
homotopies  satisfying for ever~ parameter  ~s[0 ,  1] the inequality between d and g. 
Then we choose a generic J making the pair a regular h o m o t o p y  between 
homotopies).  

Next let L 1 be a h o m o t o p y  between H 1 and H 2 and L 2 between H 2 and H 3. 
Using L 1 and L 2 we can construct  a h o m o t o p y  between H 1 and H 3 denoted by 
L 1 # L 2 satisfying 

d(L  ~ # L 2) < g ( H  1, H 3, [a, b)) 

so that via a glueing argument  

see [38] for a discussion of formulae of the above type, or [19]. Obviously 

~)(H,H) = Id . [] 

We shall refer to Proposi t ion 35 as the Stability theorem. It is a crucial ingredient of 
the proof  of 

Theorem 36 Let  (Ts)s~[o, ll ~ ~ be a smooth arc and U, V c C ~ bounded open 
subsets such that Ts (U)  ~ V for all ss [0 ,  1]. For given numbers 
- ~ < a <- b <_ + ~ we have that the induced morphism 

(qq)*: St~ V ) ~  S~'b)(U) 

is independent o f  se[O, 1). 

It  suffices to show that for every SoS[0, 1] there exists an open ne ighbourhood 
U(so) in [0, 1] such that  for s e U(so )  we have (T~)* = (7~o)*. By definition we 
have 

SEa.b)(V) (~'~)* , SE~ 

St., b) (7's(U))  
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Let (H,  J ) e . # ' ~ g ( U ~  and consider (H~,, Je , )eW~g (q~(U))JV'~g(V). We observe 
that given any (K, J)eWr~, (V) we can always find (H, J)~WrCg (U) such that 

(He., Je . )  > (K, J )  for all se[0, 1] . 

Hence we have the monotonicity maps from 

St~'b)( K,  J )  mm'st~'b)(He., Je . )  �9 

We observe that for s 2 -  sl---~0 we have d(He.~,He. , )--~O. Hence for I s 2 -  Sll 
small we have the commutative diagram 

St~'b)(K; J)  mm , St"'b)(He.~, J e ~ )  

St~'b)(He~,, J ~ , )  

If we can show that 

(165) r He, , )  = (T~o  T/~ x)# ,  

the proof of the theorem is complete in view of the definition of 4*. Hence it 
remains to prove (135). For doing so we may assume z---~T, is a smooth arc in 

with To = Id. Let (H, J)EWr~, and -- oo < a -< b <- + ~ .  We have to show 
that ( T , ) # ,  = r for z close to zero, where q~ is the "small distance isomorphism". 
Consider the partial differential equation 

(166) v~ -- J( t ,  v)vt - (VjH)(t,  v) = 0 

with asymptotic boundary conditions. We are interested in solutions which con- 
nect data with the same index. Since the data is generic we have necessarily 

v(s, t) = x( t ) ,  x E ~ n  �9 

Next let fl: IR--*[0, 1] be a smooth map such that fl(s) = 0 for s < 0 and fl(s) = 1 
for s > 1, fl '(s) > 0 for s t (0 ,  1). For e > 0 smooth, define 

(167) H~(s, t, u) = H( t ,  T ~ ) ( u ) )  

J~(s, t, u) ---- DT, t~(s ) (T~s) (U))  J(t ,  -1 -1  T~p(,)( u) ) Dq%(~)( u) . 

Then (H ~, Y) can be considered as a homotopy between (H, J)  and (H~,, Je,). We 
shall see shortly that (H ~, J*)~A/'r~g(H , J; H~, d~,) for e > 0 small. We solve 

(168) 0 = w~ -- J~(s, t, w)wt - (Vs,U~)(s, t, w) , 

connecting two critical points of the same Morse index. We define 

w(s, t) = T~(~)(u(s, t)) =: O(s, U(S, t ) ) .  
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Then 

(169) 
00 

0 = ~-(s ,  u) + D20(s, u)us -- J'(s, t, O(s, u)) DzO(s, u)ut 
6~S 

- (Vj.H~)(s, t, O(s, u)) 

= D20(s, u) (us - J(t ,  u)u, - (VsH)(t,  u)) + D20(s, u)-- 1 ~s (s, u) 

=: DzO(s, u) [(us - J(t,  u)ut - (VjH)(t, u)) + C~(s, u)] . 

We observe that F,(s, u) = 0 for Isl > 1 and F~(s, u)--~O as e--,0. F,: is a compact 
perturbation. If e, ~ 0 it follows quite easily that the solutions u of (169) converge (if 
the Morse index difference is zero) to v, v(s, t) = x(t), for a suitable xeg~11, where 
the convergence is in N'I'p(x, x). If we assume (H, J)eWreg it follows from the 
implicit function theorem that given any xeg~ u and putting x~ = tP~,(x) there exists 
a unique solution w~ of (168) connecting x with x~ such that the associated u~ given 
by (169) is close to v. And in view of the compactness these are all solutions. Hence 
(H ~, J~) is regular for e > 0 small and the chain map given by 

C"( H, J)---* C"( H~, , d~, ) 

by the map x--+gJ~(x), x e N u  coincides with the "small distance isomorphism" 
chain map. Hence 

( 7 ~ ) ~  = ~b for ]~l small .  [] 
4.6 Some remarks 

Products. Let U c ~ l ,  V = C"  be open and put n = 1 + m. Let (H, i)~JV~g(U) 
and (K, i ) ~ e g ( V ) .  In view of our discussion in previous chapters we know that 
pairs of the above type are cofinal so that S~'b)(U) or SE"'b)(V) could be defined by 
taking only limits over these classes of pairs. We define H | K: C"--~IR in the 
obvious way and obtain (H | K, i )~JV~dU x V). Strictly speaking H �9 K does 
not belong to the admissible class of Hamiltonians. However, the analysis works as 
well here. Obviously 

C , ( H x K ,  i ) =  U ( C~ ~ (H , i ) |  

C ~ ( H , i )  | C~(K,  i ) .  

This formula can be used to study the symplectic homology of a product if the 
chain complexes for the factors are known. This will be used in [24], in computing 
the symplectic homology of polydisks. 

Closed characteristics. If U is a bounded open set with smooth boundary one can 
start with a Hamiltonian H: C"--*IR which satisfies H I L7 < 0 and having 8U as 
a regular level surface. The neighbourhood of (~U will be foliated by other level 
sufaces of H. If H grows fast enough outside of L7 it will follow that the 1-periodic 
solutions of ~ = X M x )  will be close to OU. Taking now a small t-dependent 
perturbation in a suitable way a nondegenerate 1-periodic solution of the auto- 
nomous system will split into 2 nondegenerate 1-periodic solutions of the pertur- 
bed system with Conley-Zehnder index differing by 1. 

In some sense our limiting process of SE"'b)(H, J) with (H, J)~JV~og(U) can be 
understood as an approximation of the group "S["'b)(Hv) '' with H v ( x ) =  0 for 
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xe l2  H ( x )  = + oo , x(~ 12. In this way one can under s t and  SEa'h~(U) for nice 
U in the following way. F o r  every closed character is t ic  P (perhaps  an i tera ted one) 
consider symbols  P - ,  P+ with numerical  values A ( P ) : =  Ik~21PI, d2 = o), i.e. the 
action (mult ipl ic i ty  is k) and a Conley-Zehnder  index /~ (P - ) ,  /~(P+) with 
/ ~ ( P + ) - f t ( P  ) =  1. F o r a e ( - ~ ,  + oo]  we define 

with B e { P  +, P I P} and A(B)  < a#(B)  = k. The l imit ing process defines then 
a bounda ry  ope ra to r  on C a. This kind of app rox ima t ion  has been const ructed in 
[10] in o rder  to define symplect ic  capacities.  So the symplect ic  h o m o l o g y  is in some 
sense par t ia l ly  genera ted  by closed characterist ics,  where each closed character is t ic  
gives a con t r ibu t ion  in two consecutive dimensions.  This will be made  more  precise 
in [241. 

Outlook. The cons t ruc t ion  we used here takes advan tage  of some of the special 
features of ~". Replacing (12" by some symplect ic  manifo ld  with some assumpt ions  
on co and cl one can modify the cons t ruc t ion  in several ways leading to different, 
however closely related theories. The techniques are comparab le  to those which 
occurred here. In [22] we will present  some of the possible  construct ions.  They will 
be i l lustrated in [25]. 
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