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1 Introduction

This paper will be the first in a sequence of papers studying nondegenerate affine
hypersurfaces of R"*!, which are (locally) homogeneous, in the sense defined
below. Homogeneous affine surfaces in R* were believed to be classified (see
[Nom] or Chap. 12 of [G]). Recently however, Nomizu and Sasaki have
discovered a gap in this classification, and succeeded in giving a complete clas-
sification, see [NS]. In particular, locally strongly convex (locally) homogeneous
surfaces can be classified as follows.

Theorem A. Let M be a locally strongly convex, locally homogeneous affine surface
in R3. Then M is affine equivalent to either

(1) a locally strongly convex quadric, or
(ii) the affine surface given by the equation xyz = 1, or
(iil) the affine surface given by the equation (x — 4z2)>y? = 1.

Notice that the surfaces (i) and (ii), are affine spheres, while in the last case, the
rank of the shape operator is 1. Here, we investigate affine homogeneous hyper-
surfaces whose affine shape operator has rank 1. The Main Theorem that we prove
is the following:

Main Theorem. Let M be a locally strongly convex, locally homogeneous affine
hypersurface withrank S = 1 in R** 1. Then M is affine equivalent to the convex part
of the hypersurface with equation

1 r+2 1 s s+2
(+) (z-i X,?) <W-§_Z Yf) =1,

j=1
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wherer +s=n—1and (X,,...,X,, Yy,..., Y, Z, W) are the coordinates of
IR"+1.

The hypersurface () is not connected, we have to restrict to the “convex part”;
this means to the points where both Z —33"7_ X? >0and W —3)°_ Y7 >0.

Finally, we remark that homogeneous affine spheres have been studied by Sasaki
in [S], who in the locally strongly convex case obtained a complete classification of
the hyperbolic affine spheres which are the orbit of some point under a certain
subgroup of the special linear group. In fact, he reduces the classification of those
hypersurfaces to the classification of homogeneous convex cones.

2 Preliminaries

Let M be a connected n-dimensional submanifold of the affine space IR**!
equipped with its usual flat connection D and a parallel volume clement w. We
allow M to be immersed by an immersion x, but we will not denote the immersion
if there is no confusion possible. We assume that M is nondegenerate, such that we
can consider the affine normal vector field &, as determined by Blaschke. We denote
by Vthe induced affine connection, by h the affine metric and by S the affine shape
operator (or Weingarten tensor). We recall the formulas of Gauss and Weingarten

DyY=WY+hX, Y),
Dxf= -‘SX.

M is called an affine sphere if § = A1, proper if 4 % 0, improper otherwise. A proper
affine sphere has as affine normal (p) = — A(p — ¢), where c is a constant vector,
called the center of M. If h is definite, then we can assume that it is positive definite,
and it is known that this is equivalent to M being locally strongly convex. If M is
a locally strongly convex affine sphere, we call M elliptic, parabolic or hyperbolic if
A is positive, zero or negative.

The fundamental equations of Gauss, Codazzi and Ricci are given by

R(X,Y)Z =h(Y,Z)SX — h(X,Z)SY,
(VEUX, Y, Z)=(Vh)(Y, X, Z),
(Vx$)(Y) = (WyS)(X),
h(X,S8Y)=h(SX,7).
Moreover, h and Vh are related by the apolarity condition
(2.1) trace, {(X, Y) —(Vh)(Z, X, Y)} =0.

Since the affine metric h is nondegenerate, h has a Levi Civita connection V. The
difference tensor K is a (1, 2)-tensor field defined by

K(X,Y)=KyY=Vy¥— VyY.

It is related to Vh in the following way.

KK(X, ¥),2) = — 3 (VH)(X, ¥, 2).
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The curvature tensors R and R of Vand V are related by

2.2) R(X,¥)Z == (h(Y, Z)SX — h(X, Z)SY

N =

+ h(SY, Z)X — h(SX,Z)Y) — [Kx, Ky1Z .

We call M locally homogeneous if for all points p and g of M, there exists
a neighbourhood U, of p in M, and an equiaffine transformation 4 of R"*, ie.
AeSt(n+ 1, R)e<R™**! such that A(p) = gand A(U,) =« M. If U, = M for all p,
then M is called homogeneous.

Remark 1 (a) Every equiaffine transformation leaving M locally invariant,
preserves the affine metric h and the induced connection V.

(b) If for all points p and g of M, there exist neighbourhoods U, of p and U, of g in
M, and a diffeomorphism f: U, - U,, with f(p) = f(g) such that f preserves both
h and V, then M is locally homogeneous. Indeed, every such f can be extended to
an element of SZ(n + 1, R)><IR"*!, as follows from the uniqueness theorem for
hypersurfaces, see for instance [D].

Now let G be the pseudogroup defined by

G={AeS/(n+ 1,R)e<R"" |3V, 0pen in M, A(U)= M},
then M is locally homogeneous if and only if G “acts” transitively on M.

Proposition 1 If M is a proper affine sphere in R**1, centered at the origin, then
GcS/(n+ 1,R).

Proof. The affine normal & is given by &(p) = — Ap for all pe M. Let A€ G. Since
the affine normal is an equiaffine invariant, we obtain ¢(Ap) = A, &(p) = — A4,p.
On the other hand, £(Ap) = — Adp. Hence A = A,,, showing that 4 is linear. 0O

Before starting the proof of the Main Theorem, we first discuss the example
further in detail. So let’s consider the affine hypersurface (x). We can take the
following parametrization:

x(ula" o U Uy o5 U t)

] r 1 N
— Ayt 2 LAzt 2
_<u1,--‘yursvla-'-9vssel+§Zui)ez+zzvi >

i=1 i=1

where A,,4, are non-zero real numbers satisfying (r + 2)4; + (s + 2)4, =0.

Putting
AN
( — Ayha >n+2
C=\ 7" >
(A2 — 41)
a straightforward computation shows that the affine normal is given by

E=1¢(0,...,0,0,...,0,e*", &%)

Hence S0,, =0, S6,, =0 and 86, = —cd,, where i=1,...,rj=1,...,s So
rank S = 1. Moreover the hypersurface is affine homogeneous, since it is the orbit
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of the point p=(0,...,0,0,...,0,1,1) under the action of the group of
equiaffine transformations whose matrices are given by

) 0 0 Uy
~i w . . »
e2” Ir,r Or,s .
0 u,
0 vy
11 w
L .
Os,r e? Is,s . . .
) . 0 0 Vg
5 =)
uy ezt yeztt” 0...0 e 0 33T u?
1 1
FA2w 5 Aaw Azw 1\ s 2
0...0 027" | uge? 0 e 13-, 0
0...0 0...0 0 0 1

where I, , (resp. 0, ,) denotes the identity matrix (resp. the zero matrix) of dimen-
sions (p, q).

Remark 2 The affine metric of M is given by

r+2 1 _.
Wi, .0, )= — " gty
(0ur 8 = - ey,
s+2 1 _,
h(d,, 0,,) = —————e **'§;;,
(9,5 &) r+s+4ce %

t,
h(at’ 6:) = - E/H )vz ’

and all other components are zero. This means that intrinsically, the Riemannian
1
manifold (M, h) is a warped product R x ,, R" x ,, R®, where p;(t) = ¢~ 2*’ and
1

p2(t) = e"7%", and R, R" and R*® are equipped with the appropriate Euclidean
metrics.

In general, warped products are defined as follows, see [NO]. Let My, ..., M,
be Riemannian manifolds with metrics <.,.>q,...,<.,. ), and let M be their
product My x ... x M. Let v = (v, . . ., 1) be the canonical decomposition of
tangent vectors to M and let pq, .. ., p: Mg — R, be positive functions, Then

k
o, w) = (vg, Wg)o + Z pi(po) (v, wi s
. i=1

for o, weT,M, p = (po, ..., ps), defines a Riemannian metric on M. We call
(M, {.,.>) the warped product Mo x, M;x - x, M, of My, ..., M,, and
P1s - - - » pi the warping functions.

Remark 3 If we put s = 0 in (*), then we get an affine hypersurface given by
1 n—1 n+1
(xx) (Z_EZX"2> wi=1.
i=1

Both this example and the example (*) can be considered as members of a larger
class of homogeneous hypersurfaces. We will discuss this in a separate paper [DV].
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3 Proof of the Main Theorem

Throughout this section, we shall assume that M is a locally strongly convex,
locally homogeneous affine hypersurface in R"**! with rank S = 1 and we will
assume that n = 3.

The eigenspaces of § are G-invariant. Since § is symmetric, it can be diagonal-
ized, so it has two orthogonal eigenspaces, a one-dimensional corresponding to the
only nonzero eigenvalue, and an (n — 1)-dimensional, corresponding to 0. So if E,
is a unit e¢igenvector (this is always with respect to the affine metric) of S with
nonzero eigenvalue y, then u is constant and E; is G-invariant. Also the distribution
W =kerS is G-invariant. We can always take a local orthonormal frame
{E{,Uy,...,U,-y}suchthat U,, ..., U, span W.So SE; = pE; and SU; = 0.

Lemma 1 Let {E,,Uy,...,U,-1}, be alocal frame as above, then

(i) W is involutive and Vg, W < W. So we can introduce functions a;; such that
VE1 U= Z;;ll aijUja
(11) VUiEl = biEl where bi = %( Vh)(Uls Ela El)v
(i) Vy,U;=(ay+ ap)E; + Y 12} d;Uy for some functions d¥;,
(iv) Vg, E1 =cE; + 2(2;‘;11 b;U;), where ¢ is a constant,
Proof. The Codazzi equation for S immediately implies that W is involutive, and
that

0= (VEIS)Ui - (VU.S)EI
= — S(Ve, U)) — (g — S)(Vy,Ev) ,

such that Vi, U, is orthogonal to E, and V,E, is proportional to E,. This proves
(i) and (ii). The Codazzi equation for h then gives us

h(VU,- UjaEl) = - (Vh)(Ui’ Uj7E1) - h(VUl-El’ Uj)
= —(VE{E, U, Uj}) = a;; + a;,

which proves (iii). Similarly, we can obtain (iv) and (v) from the Codazzi equation
for h, noting that the invariance of E; implies that ¢ = h(Vg E,, E,) is con-
stant. [}

Lemma 2 b;=0,i=1,...,n— 1.

Proof. Let pe M. Let us suppose that not all the b;, i = 1, . . ., n — 1 vanish at the
point p. By changing the orthonormal basis {U, . .., U,-} of W, it follows from
Lemma 1 that we may assume that b; = b =+ 0 on a connected neighbourhood U of
pand b, = - =b,_; =0. Then the vector field U; is uniquely determined.
Hence b = h(Vy,E;, E;) and a;; = h(Vy, Uy, U,) are constant. Using that b and
¢ are constants it first follows from the Gauss equation that

0= R(E;, U)E; = Vg, Vy,E; — Vi, Ve, Ex — Vi, o Es
= Vg, (8,,bE,) — Viy,(¢cEy + 2bU,) + 6;1b Vi, E; — a;y bE,
= 8,1 b(cE, + 2bU,) — c8;,bE, — 2bV,y U, + 8;,b(cE, + 2bU;) — a;, bE;
= —2bVy,U, + (8;bc — aj b)E, + 4673, U,
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Hence, since b + 0,
c

VUle = (6115 '—%1>E1 + 2b511 Ul .

In particular this implies that d% = d{, = 0for j > 2. Lemma 1(v) then shows that
di; =0 for j > 2. By a local orthonormal change of {U,,...,U,-;}, we may
assume that

VUJU1=07 ]>2

For the functions a;; this means that

¢=15a;,
3
Az = —54121,

aj1=a1j—"=0, _]>2

Remark that if a;, + 0 at some point g€ U, then the vector field U, is uniquely
determined (and hence G-invariant) on a neighbourhood of ¢. The fact that M is
locally homogeneous then implies that ay, is constant on that neighbourhood.
Therefore aq, is constant on U. From the Gauss equation, we then obtain

- AuEl = R(Uh El)Ul = VU1 VE1U1 - VE1 VU|U1 — V[Ux,E1]U1
= Wy (a1 Uy +a12U3y) — Vg, (2a1, E; + 2bUY)

- VbEl—a11U1—a1zU2U1
= a11(2a11E1 + 2bU1) + a;; VU1U2 — 2a11(5a11E1 + 2bU1)
—2b(a; Uy + a12Us) — b(ay Uy + 412 U)

1

Since d}, = 0, we find that 0 = — 3ba, , so that a;; = ¢ = 0. Moreover, we obtain
that

1
O%p= —apn(a;,+ay)+ 5012021 = —(a;,)*,

1
VU1U2 = '——2‘6121E1 + 3bU2 .

The desired contradiction then follows from

0= R(Ul, Uz)U1 = Vul VU2U1 - VU: VulUl - V[Ul,Uz]UI

1 1
= —EbaZIEl _‘2b<—§a21E1)— V3bU1U1

1 3
=(§ba21 +§b021>E1 . D
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In particular, Lemma 2 and Lemma 1(ii) imply that
1
h(KE1 Ul'a El) = - E(Vh)(Els Els Ul) = 0 3

s0 Kz, W W. Since Kg, is symmetric and G-invariant, its eigenspaces are G-

invariant and its eigenvalues are constant. Hence we can choose Uy, ..., U, as
eigenvectors of Kg,. So with this choice we have
1

(31) KE1 Ui = 5,“’1 Ui 3
where u; is a constant real number, i = 1, ..., n — 1. In other words,
(3.2) a; + aj = — (VR)(E;, U, U;) = ;6 -
Then the apolarity condition implies that

n—1
(3.3) Y ag+c=0.

k=1

Now (3.1) and Lemma 1(i) imply that 6'51 W=V, W—Kg Wec W
Lemma 3 [léij = C,Lljéij — Qi — Ayl .
Proof. From the Gauss equation, we have
Ot = h(R(E(, U)Uj, Ey) = h(Vg, Vy Uj~ Vy, Vg, U; — Vg, vqUj, Ey)
n—1 n—1
= E1(di;u;) + dyjuc — Z Ayt Oyp, — Z Ay O 1
k=1 k=1
= cp;0i; — aup; — apy . O

Putting i = j in Lemma 3, we obtain that

(3.4) w=cp — ut .

Therefore, at most 2 of the y; are different. From now on we have to consider two
different cases.

Case 1 y; = A for all i
Then from (3.3) and (3.4) we get

1 1
¢= —z(n—1Ni and p= —5(n+ DA +0.

Since in this case Kz, = 4, there is no restriction on the choice of the U;. We first
make a suitable choice of frame.

Let’s fix a point p for the remainder of the proof in this case. We have two
distributions W, = span E; and W, as defined before. Since W is involutive, it
can be integrated, so there is an integral manifold through each point. Let M be
an integral manifold through p. Let y: ]J— ¢ e[ » M be the integral curve of
E; through p=17y(0). We also know from (3.I) and Lemma 1(i) that
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Ve, W= Vg, W~ Kg, W< W. Hence we can find a frame {E,, Uy, ..., U,_1}
such that V, U, = 0 with arbitrary initial conditions on M. For this frame we have
Vi, U; = 4U;. From now on we always assume that this choice is made.

Lemma 4 For all local sections X, Y and Z of W we have that (Vh)(X, Y, Z) = 0 and
(Vh) (E1, X, Y) = — ih(X, Y).

Proof. The second assertion follows immediately from (3.1). It order to prove the
first on, we start by

E\h(Vy, Uy, Up) = (VR)Ey, Vi, Uy, Uy + WV, Vy, Uj, Up) + h(Vy, U, Vi, Uy)
= h(V, U, UNVh)(E., Uy, Uy) + W(R(E,, U)U;, Uy)

1
+ h(Vy, Ve, U, U + l(Vig, vgU; Us) + 3 AR(Vy, U, Uy)

1
=3 Hh(Vo,Uy Uy)
hence
1
(3:5) E(Vh)(U,;, U;, Uy) =5?~(Vh)(Ui, U;, Uy .

Now let T, be the covariant tensor field on W@ W @ W defined as the restriction
of Vh to W@ Wd W. The G-invariance of W and Vh implies that the length
h(Ty, Ty) of Ty is constant. But by (3.5) we have

0=E (hTy, Ty)) = AT, T) .
Hence h(Ty, Ty) = 0. Since h is definite, this implies the lemma. [
Lemma 5 In the neighbourhood of p, the Riemannian malnifold (M, h) is isometric to
the warped product ] — e, e[ x ,(M, h), where p(t) = e 2*.

Proof. We check Hiepko’s condition [H], using the formalism of [Ng, Sect. 3]. In
particular we have to check that W, is auto-parallel with respect to V, and that
W is spherical. The first assertion is proved by

~ 1
h(VE1E1, Ui) = h( - KElEu Ui) = E(Vh)(ElsEu U)=0.
For the second assertion we first have that

h(&Uina E1) = h( VUlUj’El) - h(KU‘- Uj’ E1)
1
= A.éij '+' E(Vh)(El, Ui’ UJ)

1 1
= /{.5{]- - 525,-] == 5 iéij .
This means that W is totally umbilical in M with mean curvature normaln = 41E,.
Since h(Vy,E,, E;) =0, the mean curvature normal is parallel in the normal
bundle, so we get that W is spherical.
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Hence (M, h) is isometric to the warped product ] —¢, e[ x ,,(1\71, h), at least in
a neighbourhood of p. The warping function p is determined by

n= —E/(Inp)k,
with the initial condition p(0) = 1. [
So if we know (M, h), we know the intrinsic geometry of (M, h).
Lemma 6 (M, h) is flat.

Proof. Let v and w be orthogonal unit vectors tangent to M. Then the sectional
curvature K(v,w) can be derived from the Gauss equation for the isometric
immersion (M, h) — (M, h):

1
R(v, w) = (z;,wwv)+4)2

Now from Lemma 4 we know that K,v = K, w = $AE, and that K,w = K,,v = 0,
so by (2.2) we have

. 1 1
R(v,w,w,v) = — h([K,, K,,Jw, v) = —Eih(KuEl, v) = —Zﬂ,z .

This proves the lemma. [

Choosing Cartesian coordinates (u;, . . . , u,- ) on M (such that p has coordin-
ates (0, . . ., 0)) we also have coordinates (uy, . .., u,_1,t)on M, such that E; = ¢,
and é,,...,¢,, ,span W. Then V,,.0, =0 and h(4,,, ¢;) = 0. So the formula of

Gauss implies that M is parametrized by
x(ula ce s Up—1, [) = ﬁ + xl(ula ] un—l) + xZ(t) ’
where x; (0) = x,(0) = 0. Note that M is given by p + x, and 7 is given by j + x,.
First we determine the curve 7. It can be checked immediately that the vector

1
fields e (AE; + ¢) and €2 V¥( — 4(n + 1)AE, + &) are constant vectors, say ¢,
and c,, along M. Then it can be seen easily that there is a constant vector ¢, such
that

P(t)=c3+—— 2_(! e’“c + 2 LA
*Tht3 P+ DA 2

We can take the natural basis {e;, . .., e,+} of R"*! such that e; = ¢,,(p) for
i=1,. —Le,=ciand e,y =,

Slnce Vh restrlcted to W, is identically zero, it follows that the Levi-Civita
connection ¥ of (M, h) is the W-component of V. So (M, V) > R**! is an affine
immersion in the sense of [NP1], with affine normal space span{E, ¢}. The affine
second fundamental form « of (M, V) is given by

a(X, Y)=hX, Y)AE, + §).

From [NP2, Proposition 4] we obtain that M is contained in the n-dimensional
linear subspace IR” of R"*! through p in the direction of W(p) and AE; + ¢ = c;.
Therefore (M, V) is a hypersurface of R” with affine normal vector field &=¢,and
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affine second fundamental form h. Since g is parallel and Vi =0, we obtain
that M is a paraboloid, and with the choice of coordinates, we get that M is
given by

ln—l
p_+<ul5' s Up-15 3 Z ui250>=
2i=l
such that M is given by

c3+lu u lnf u?+i1e“;e_%(n“w
3 Lo - n'~152i=l i n+34 ’(n+1)("+3)’{ .

So after rescaling the last coordinate and translating c¢; to 0, M is of the form (#x).
This finishes the proof of the first case. The second case is similar, so that a lot of
details will be omitted.

Case 2 yy=Afori=1,...,rand y,= A forp=r+1,...,n—1

Let s = n —r — 1 be the multiplicity of 1,. Then from (3.3) and (3.4) we get that
c=A + Ay, r + 2} + (s + 2)A, =0 and u = 4,4, £ 0. From now on we take
indices i,j,k <rand p,q,x > r.

Lemma 7
(i) aip = api = 0>
(i) d¥; = di,q = (,

Proof. The first assertion follows from Lemma 3 and (3.2). In order to prove the
second one, consider

(3.6) 0=h(R(U,, U)U,, Ey) = dbi, — dbjhy — (dd; — dip) )y .

From Lemma 1(v) we can obtain that dJ; + di; = di, + d?;, so (3.6) reduces to
0 =dl(4, — 4;). The second equality of (ii) is similar. [J

Let’s fix a point p for the remainder of the proof in this case. We now have three
orthogonal  distributions W, = spanE,, W, =span{U,,...,U,} and
W, =span{U,;y,...,U,_1}.

From Lemma 7(ii) we find that both W, and W, are involutive. Let M, and M,
be the integral manifolds through p and let y: ] — ¢, e[ — M be the integral curve of
E, through p = y(0).

From Lemma 7(i) we obtain as in Case 1 that VE1 W, < W, and VE, W, c W,.

Hence we can find a frame {E;, U, ..., U,-} such that Ul, ..., U, span
W, and U,;y,...,U,—; span W,, and such that VE1 U, = VEl = 0 with
arbitrary initial conditions on M, and M,. For this frame we have Ve, Ui =34, U;

and Vi, U, =12,U,. From now on we always assume that this choice is made.

Lemma 8 For all local sections X, Y and Z of W= W, @® W, we have that
(Vh)(X, Y,Z) = 0. For all local sections X, and Y, of W, and X, and Y, of W, we
have (Vh) (E{, X, Y,) = — Anh(X,,, Y,), where m,n =1, 2.
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Proof. The second assertion is clear. Like in Lemma 4, we have

L,

E h(Vy,U;, Uy) = '2"Alh(VU,-Uj: Uy,
1

El h( VUP Uq, Ux) = ill{zh(VUp Uq! Ux) Py
1

E, h(VU,, Ui, Uq) = 5 'llh(VUp OFN Uq) »

1
Elh( VU; Up, U]) = E /lzh(VU.' UP’ UJ) .
In combination with Lemma 7, this implies

1
El(Vh)(Uis Uj’ Uk) = EAL(Vh)(Uh ij Uk) 5

1

El(vh)(Up’ Uq, Ux) = iil(Vh)(Urps Uq: Ux) 5
1.

El(Vh)(Up’ Ui: Uq) = 5 Al(Vh)(Ups Ui9 Uq) 5

1
E(Vh)(U, U, U;) = Eﬂ,z(Vh)(Ui, U, U;.

Now let T, be the covariant tensor field on W, @ W, @ W, defined as the
restriction of Vh to W, @ W, @ W,. The G-invariance of W, and Vh imply that
the length h(T, T;) is constant. Like in Lemma 4, h(T,, T,) = 0. Restricting Vh
respectivelyto W, @ W, @ W,, W, @ W, @ W, and W, @ W, @ W, proves the
lemma. [

Lemma 9 In the neighbourhood of p, the Riemannian manifold (M, h) is isometric to
~ ~ 1

the warpecli product 1—e¢, e[ X ,,(My, h)x ,,(M,, h), where p,(t)=e 2*" and

pa(t) = 72",

Proof. Following Nolker [N, Sect. 3], we have to check that W, @ W, and
Wo @ W, are auto-parallel with respect to V, and that W, and W, are spherical.
This is done as in Case 1. One obtains that W, and W, are spherical M with mean
curvature normals n, = 44, E; and 7, = 31, E,. The warping functions can be
determined as in Case 1. [J

The following lemma can be proved similarly as Lemma 6, so we omit the
proof.

Lemma 10 (M, h) and (M, h) are flat.

Now we shall finish the proof in the second case. Choosing Cartesian coordin-
ates (uy,...,u,) on M, and (v, ... ,Ug) on M,, we again have coordinates
Uy, ... Uy, 01, ...,05t) on M, such that £, =9,, d,,,...,8, span W, and
0 , 0y, span W,. Clearly V;, 6, = V,,uja, = 0; from [N, Lemma 2], or simply

vy v e e
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from the proof of Lemma 9, we get that V,, d,, = 7

5, Ov; = 0. So the formula of
Gauss implies that

x(ul,...,u,,vl,...,vs,t)zﬁ-l—xl(ul,...,u,)+x2(v1,...,vs)+x3(t),

where x(0) = x,(0) = x3(0) = 0.

First we determine the curve v. It can be checked immediately that the vector
fields e ***(A, E; + £) and e~ **'(A,E, + &) are constant vectors, say ¢; and c¢,,
along M. So there is a constant vector ¢z such that

/1 1
t)=c3 + | —e*c; — —e*c, |,
(1) 3 d(ll 1 R 2

where d = 1, — 1,. We take the natural basis {ey, ..., e, } of R"*! such that
ei=0,(p)fori=1,...,re.;=0,(p)forj=1,...,s;e,=cyand e,y = ¢,.

The same arguments as in Case 1 show that M, is a paraboloid in
span{e;, . . .,e, e,}, that M, is a paraboloid in span{e,.,, ..., e,-1,€,+1} and
that M is given by

1
x(ula- s Ug, Uy e e :Us’t)=63+<u19' s U, U1y ’Ds’vT—'eMt
diq

r

1 2 1 Aot 1 > 2
e +2§1L">'

=1

So after rescaling and translating c; to 0, M is of the form ().
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