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1 Introduction 

This paper will be the first in a sequence of papers studying nondegenerate  affine 
hypersurfaces of IR "+1, which are (locally) homogeneous,  in the sense defined 
below. Homogeneous  affine surfaces in IR 3 were believed to be classified (see 
[ N o m ]  or  Chap. 12 of [G]).  Recently however, Nomizu  and Sasaki have 
discovered a gap in this classification, and succeeded in giving a complete clas- 
sification, see ENS-]. In  particular, locally strongly convex (locally) homogeneous  
surfaces can be classified as follows. 

Theorem A. Let M be a locally strongly convex, locally homogeneous affine surface 
in ]R 3. Then M is affine equivalent to either 

(i) a locally strongly convex quadric, or 
(ii) the affine surface given by the equation xyz = 1, or 

(iii) the affine surface given by the equation (x - �89 2 = 1. 

Notice that  the surfaces (i) and (ii), are affine spheres, while in the last case, the 
rank of the shape opera tor  is 1. Here, we investigate affine homogeneous  hyper- 
surfaces whose affine shape opera tor  has rank 1. The Main Theorem that we prove 
is the following: 

Main Theorem. Let M be a locally strongly convex, locally homogeneous affine 
hypersurface with rank S = l in IR "+ 1. Then M is affine equivalent to the convex part 
of the hypersurface with equation 

X~r+2 / ~s+2 
(*) z 

i=1 j=l  
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where r + s = n - 1 and (X1 . . . . .  Xr ,  Yl  . . . . .  Ys, Z ,  W )  are the coordinates o f  
~n+l 

The hypersurface ( , )  is not connected, we have to restrict to the "convex part"; 
this means to the points where both Z - � 89  2 > 0 and W - � 8 9  Y~ > 0. 

Finally, we remark that homogeneous affinespheres have been studied by Sasaki 
in [S], who in the locally strongly convex case obtained a complete classification of 
the hyperbolic affine spheres which are the orbit of some point under a certain 
subgroup of the special linear group. In fact, he reduces the classification of those 
hypersuffaces to the classification of homogeneous convex cones. 

2 Preliminaries 

Let M be a connected n-dimensional submanifold of the affine space IR "+~ 
equipped with its usual flat connection D and a parallel volume element co. We 
allow M to be immersed by an immersion x, but we will not denote the immersion 
if there is no confusion possible. We assume that M is nondegenerate, such that we 
can consider the affine normal vector field 3, as determined by Blaschke. We denote 
by Vthe induced affine connection, by h the affine metric and by S the affine shape 
operator (or Weingarten tensor). We recall the formulas of Gauss and Weingarten 

Dx Y = V~ Y + h(X,  Y)~ , 

Dx ~ = -- S X  . 

M is called an affine sphere ifS = 2I, proper if2 4= 0, improper otherwise. A proper 
affine sphere has as affine normal ~(p) = - 2(p - c), where c is a constant vector, 
called the center of M. If h is definite, then we can assume that it is positive definite, 
and it is known that this is equivalent to M being locally strongly convex. If M is 
a locally strongly convex affine sphere, we call M elliptic, parabolic or hyperbolic if 
2 is positive, zero or negative. 

The fundamental equations of Gauss, Codazzi and Ricci are given by 

R(X, Y)Z = 

( eh)(X, r, Z) = 

( VxS)( r) = 

h(X, SY) = 

h(Y, Z)SX - h(X, Z)SU,  

( V h ) ( Y , X , Z ) ,  

(V~S)(X) , 

h(SX, r ) .  

Moreover, h and 17h are related by the apolarity condition 

(2.1) traceh{(X, Y ) ~ ( V h ) ( Z ,  X ,  Y)} = 0 .  

Since the affine metric h is nondegenerate, h has a Levi Civita connection I~. The 
difference tensor K is a (1, 2)-tensor field defined by 

K(X,  r )  = K ~  Y = Vx r - f~x r .  

It is related to Vh in the following way. 

1 
h(K(X, Y), Z) = - -~ ( Vh)(X, Y, Z) .  
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The curvature  tensers R a n d / ~  of V a n d  ~Zare related by 

1 
(2.2) R ( X ,  Y ) Z  = ~(h(Y ,  Z ) S X  - h(X,  Z ) S Y  

+ h(SY,  Z ) X  - h(SX,  Z ) Y )  - [Kx ,  K r ] Z .  

We call M locally homogeneous  if for all points p and q of M, there exists 
a ne ighbourhood  U v of p in M, and an equiaffine t ransformat ion  A of IR "§ i.e. 
A e S/ (n  + 1, IR) ~< ]R ~ + 1, such that  A (p) = q and A (Up) c M. If U v = M for all p, 
then M is called homogeneous .  

Remark 1 ( a ) E v e r y  equiaffine t ransformat ion  leaving M locally invariant,  
preserves the affine metric  h and the induced connect ion V. 
(b) If for all points p and q of M, there exist ne ighbourhoods  U v of p and Uq of q in 
M, and a d i f feomorphism f :  Up -o Uq, with f ( p )  = f ( q )  such that  f preserves both  
h and V, then M is ]ocally homogeneous .  Indeed, every such f can be extended to 
an element of Sr + 1, IR)~,< F," § 1, as follows f rom the uniqueness theorem for 
hypersurfaces,  see for instance [D] .  

N o w  let G be the pseudogroup  defined by 

G = {AESr  + 1, ~.)~"+113 u, open in M, A ( U )  ~ M } ,  

then M is locally homogeneous  if and only if G "acts" transitively on M. 

Proposition 1 I f  M is a proper affine sphere in l l  "+1, centered at the origin, then 
G c S~(n + 1, IR). 

Proof  The affine normal  ~ is given by ~(p) = - ~,p for all p ~ M .  Let A ~ G .  Since 
the affine no rma l  is an equiaffine invariant,  we obtain  ~(Ap) = A ,  ~(p) = - )~A,p. 
On the other  hand,  ~(Ap) = - )~Ap. Hence A = A , ,  showing that  A is linear. [] 

Before start ing the proof  of the Main  Theorem,  we first discuss the example 
further in detail. So let's consider the affine hypersurface ( ,) .  We can take the 
following parametr izat ion:  

x(ul  . . . . .  ur, v~ . . . . .  vs, t) 

= U 1 U r , / )  1 vs, e a " +  z U~, ea2' + z V 

i =  1 i =  

where 21,22 are non-zero  real numbers  satisfying (r + 2)21 + (s + 2)22 = 0. 
Put t ing 

. ^ I 

c = ' 

a s t ra ightforward computa t ion  shows that  the affine normal  is given by 

= C(0 . . . .  , 0, 0 . . . . .  O, e 2''t, e;~zt). 

Hence SO~, = 0, S ~  = 0 and Sd~ = - cO, where i = 1 . . . . .  r; j = 1 . . . . .  s. So 
rank S = 1. Moreove r  the hypersurface is affine homogeneous ,  since it is the orbit  
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of the point p = (0 . . . . .  0 ,0  . . . . .  0, 1, 1) under the action of the g roup  of 
equiaffine transformations whose matrices are given by 

t 

e 2 & W I r ,  r Or, s 

1 
Os, r e2a2Wls, s 

1 1 
u l e 2 2 1 w . . .  Ure2s  

/ 

, . . 0 

0 . . . 0  

�9 . , 0 

1 1 
P i e2  ~'2w , . l)s eg22w 

0 .  . 0  

\ 
0 0 u~ \ 

\ 
0 0 Ur 

0 0 v~ 

0 0 Vs 
1 r /,/2 

e &w 0 2 2 1 = 1  
0 e;~2w 1 s 2 ] 2 Z j = I  Vj 

/ 0 0 1 

where Ip, q (resp. 0p, q) denotes the identity matrix (resp. the zero matrix) of dimen- 
sions (p, q). 

R e m a r k  2 The affine metric of M is given by 

r + 2  1 
h(0,,, ~.j) - e - < t f l j ,  

r + s + 4 c  

s + 2  1 
h(O~,, O~j) - e-X='6ij ,  

r + s + 4 c  

1 
h(O,, ~?t) = - - 2122 , 

C 

and all other components  are zero�9 This means that intrinsically, the Riemannian 
1 

manifold (M, h) is a warped product  IR x ol IRr x o2 IRS, where p l ( t )  = e - ~ 1 '  and 1 
p2(t) = e -~ '2 ' ,  and IR, IR r and ~ s  are equipped with the appropriate  Euclidean 
metrics. 

In general, warped products  are defined as follows, see [NS].  Let Mo . . . . .  Mk 
be Riemannian manifolds with metrics ( . , . ) o  . . . . .  ( . , .  >k, and let M be their 
p roduc t  M0 x . . .  x Mk.  Let v = (v0 . . . . .  Vk) be the canonical  decomposi t ion of 
tangent  vectors to M and let Pt . . . . .  Pk: M o  ~ IR+ be positive functions. Then 

k 

(V, W> ----- <VO, Wo>o -4- ~ p~(Po)<Vi, Wi>i 
i=1 

for v, w e  TpM, p = (Po . . . . .  Pk), defines a Riemannian metric on M. We call 
(M, ( . , .  }) the warped product  Mo x ol M I x  �9 �9 �9 x okMk of M o  . . . . .  Mk ,  and 
Pl . . . .  , Pk the warping functions. 

R e m a r k  3 If we put s = 0 in ( .) ,  then we get an affine hypersurface given by 

( . I ) . + 1 1  ~, 
,.., X 2 W 2 = l  (**) Z - ~ , = l  �9 

Both this example and the example ( , )  can be considered as members  of  a larger 
class of  homogeneous  hypersurfaces. We will discuss this in a separate paper [DV] .  
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3 Proof  of  the Main Theorem 

Throughou t  this section, we shall assume that M is a locally strongly convex, 
locally homogeneous  affine hypersurface in IR "+1 with r a n k S  = 1 and we will 
assume that n > 3. 

The eigenspaces of S are G-invariant. Since S is symmetric, it can be diagonal- 
ized, so it has two or thogonal  eigenspaces, a one-dimensional corresponding to the 
only nonzero eigenvalue, and an (n - 1)-dimensional, corresponding to 0. So if E1 
is a unit eigenvector (this is always with respect to the affine metric) of S with 
nonzero eigenvalue #, then p is constant and E1 is G-invariant. Also the distribution 
W =  kerS  is G-invariant. We can always take a local or thonormal  frame 
(Et ,  U1 . . . . .  U , _ , }  such that U, . . . . .  U,_~ span W. So SEt = tzE1 and SUi = O. 

L e m m a  1 Let {El ,  U1 . . . . .  U , -a  }, be a local frame as above, then 

(i) W is involutive and Vel W c W. So we can introduce functions alj such that 

(ii) Vu~E1 = b,E~ where b~ = - �89 E l ,  E:), 
n - 1  (iii) Vu, Uj = (a,j + aj,)Ea + Zk=~ dkjuk for some functions d~kj, 

2/X~,-1 b~Ui), where c is a constant, (iv) V~IE1 = cE1 + ,z.,i=l 
(v) + d!k = + d k. 

Proof. The Codazzi  equation for S immediately implies that W is involutive, and 
that 

O = ( V~IS) t;, - ( Vv S)E~ 

= - S ( V ~  c ~ ) -  ( ~ -  S)(Vu, E~) ,  

such that V~I U~ is or thogonal  to E1 and Vv,E~ is propor t ional  to E~. This proves 
(i) and (ii). The Codazzi equat ion for h then gives us 

h( Vv, C i, E~ ) = - ( Vh)( U,, U j, E 1 ) - -  h( ~7ui El ,  U j )  

= - ( Vh)(E1, U~, Uj) = aij + aji,  

which proves (iii). Similarly, we can obtain (iv) and (v) f rom the Codazzi  equat ion 
for h, not ing that  the invariance of E~ implies that c = h(V~,E1, E~) is con- 
stant. [] 

L e m m a 2  b i = 0 ,  i =  1 . . . . .  n - 1 .  

Proof. Let p e M. Let us suppose that not  all the b~, i = 1 . . . .  , n - 1 vanish at the 
point p. By changing the o r thonormal  basis { U~ . . . .  , U,_  ~ } of W, it follows from 
Lemma 1 that we m a y  assume that b~ = b # 0 on a connected ne ighbourhood U of 
p and b2 = " ' "  = b,_~ = 0. Then the vector field U1 is uniquely determined. 
Hence b = h(Vv, E1, E l )  and a l l =  h(V~, U1, Ux) are constant.  Using that b and 
c are constants it first follows from the Gauss equation that 

0 = R(E1,  Uj )E  1 = VE~ VvjE1 - VcjVE~E1 - ~r , ,uj]E1 

= Ve,(gjlbE~) - Vv~(cE~ + 2bU~) + 6jabVe~E1 - ajlbE1 

= fijxb(cE1 + 2bU1) - ct~jlbE1 - 2bVvjU~ + 3]ab(cE~ + 2bU~) - aj~bEz 

= - 2bVv~Ul + (6j~bc - ajlb)Ea + 4b23j~ U~. 
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Hence, since b 4: 0, 
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VujUl = 6j1~ -- 2 / I"-'1 + 266jl Ul " 

In particular this implies that d~l = d l l  = 0 fo r j  > 2. Lemma 1 (v) then shows that  
d~j = 0 for j > 2. By a local o r thonormal  change of {U2 . . . . .  U , -1} ,  we may 
assume that 

V~;jUI =O, j > 2 .  

For  the functions % this means that 

C = 5 a  11 , 

3 
a 1 2  ~ - -  ~ a 2 1  , 

ajl = a~j = 0, j > 2 .  

Remark  that if a12 4 : 0  at some point  q e U, then the vector field Uz is uniquely 
determined (and hence G-invariant) on a ne ighbourhood  of  q. The fact that  M is 
locally homogeneous  then implies that  a12 is constant  on that neighbourhood.  
Therefore a~2 is constant  on U. F rom the Gauss  equation, we then obtain 

- -  # E  1 = R ( U 1 ,  E 1 ) U  1 -~. ~Tu1 ~7E1U 1 - -  ~TE, Vu t  U 1 - -  ~ U t , E t ] U 1  

= Vv~(altUx + a~2U2)-  VE~(2a~E~ + 2bU~) 

- -  ~TbEl_alIUI_aI2u2 U 1 

= all(2aalE1 + 2bU1) + a12 VvlU2 - 2all(5aalE1 + 2bU1) 

- 2b(all Ut + a 1 2 U 2 ) -  b(all U1 + aa2U2) 

+ a l l ( 2 a l l E l + 2 b U l ) + a 1 2  - ~ a 2 1  El. 

Since d12 = 0, we find that 0 = - 3ba11, so that  al~ = c = 0. Moreover,  we obtain 
that 

1 3 
O ,  # = - a12(a12 + a21) + ~alza21 = - ~(a21) 2 , 

1 
17v~U2 = -~a21E1  + 3bU2 . 

The desired contradict ion then follows from 

0 =  R(U1, U2)U1 = Vv~ V v ~ U l -  Vv~gv, U, - ~v~,v~jU1 

l b a z l E 1 -  2b(  1 ) - 2 - ~ a z l E 1  -- V3bv:Ut 

3 ) E l  [] =(~ba21  +-~ba21 �9 
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In particular,  L e m m a  2 and L e m m a  l(ii) imply that  

1 
h(KE1 U,, E , )  = - ~ ( Vh)(E1, El ,  U,) = O, 

so Ke~ W c  W. Since K ~  is symmetr ic  and G-invariant,  its eigenspaces are G- 
invariant  and  its eigenvalues are constant.  Hence we can choose U1 . . . .  , U,_ 1 as 
eigenvectors of Ke, .  So with this choice we have 

1 
(3.1) K E ,  U i  = ~ # i  U i  , 

where gi is a constant  real number,  i = 1 . . . .  , n - 1. In other words, 

(3.2) aij + aj~ = - (Vh)(E~, Ui, Uj) = #~6~j . 

Then the apolar i ty  condit ion implies that  

r/--1 

(3.3) ~ all + c = O . 
k = l  

N o w  (3.1) and  L e m m a  l(i) imply that  Vrl W = Vrl W - Kr~ W c W. 

L e m m a  3 fil(~ij = C# j (~ i j  - -  a j i l l  i - -  c l l j t t  5 , 

Proof  F r o m  the Gauss  equation,  we have 

Jij# = h(R(E1,  Ui)Uj,  E t ) =  h(Vz~ Vv., U j -  Vv~ Vzt Uj - VEE~.vdU j, E t )  

n--1  n--1 

= E ~ ( ~ # j ) +  6 ~ j ~ i c -  ~ ai~#~6~k- ~ a ~ j # j  
k = l  k = l  

= C#j (~ i j  - -  a j i f l i  - -  a l j # j  . [ ]  

Putt ing i = j in L e m m a  3, we obtain  that  

(3.4) g = c # i -  #~ .  

Therefore, at  most  2 of the #~ are different. F r o m  now on we have to consider two 
different cases. 

Case 1 ~i = 2 for all i 

Then from (3.3) and (3.4) we get 

1 1 
c =  - ~ ( n - 1 ) 2  and /~=  - ~ ( n +  1)2 2 # 0 .  

Since in this case KE~ = �89 there is no restriction on the choice of  the U~. We first 
make  a suitable choice of frame. 

Let 's  fix a poin t /5  for the remainder  of the p roof  in this case. We have two 
distr ibutions Wo = span E~ and W, as defined before. Since W is involutive, it 
can be integrated, so there is an integral manifold through each point. Let M be 
an integral manifold  through /i. Let 7: ] - e , e [ ~  M be the integral curve of 
Et  through /~=y(0) .  We also know from (3.1) and  L e m m a  l(i) that  
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1:77E, W =  ~1 W -  KE, W c  W. Hence we can find a frame {El, U~ . . . . .  U ,_ I}  

such that Ve, Ui = 0 with arbitrary initial conditions on M. For this frame we have 
rE, Ui = �89 From now on we always assume that this choice is made. 

Lemma 4 For all local sections X, Y and Z of W we have that ( Vh )( X, Y, Z)  = 0 and 
(Vh) (El, X, Y) = - ).h(X, Y). 

Proof. The second assertion follows immediately from (3.1). It order to prove the 
first on, we start by 

E 1 h( Vu, Uj, Uk) = ( lTh)(Ea, V~r, U j, Uk) + h( VE~ Vu, U j, Uk) 4- h( Vv, Uj, VEt Uk) 

= h( Vv, Uj, U~)(Vh)(EI, Uk, Uk) + h(R(EI, Uz)Uj, Uk) 

1 
+ h( Vv, V~, Uj, Uk) + h( VEEI, V,~ Cj, U~) + ~ ;~h(V~ Uj, Uk) 

1 
= ~ ,~h( V~, Uj, u~), 

hence 

1 
(3.5) E x ( Vh)( U,, U j, Uk) =- 5 ;'( Vh)(U~, m j, Uk) . 

Now let T~ be the covariant tensor field on W �9 W �9 I/V defined as the restriction 
of Vh to W(~ W G W. The G-invariance of W and Vh implies that the length 
h(T~, T,) of TI is constant. But by (3.5) we have 

0 -= E~(h(TI, T,)) = 2h(T~, T~). 

Hence h(T1, T,) = 0. Since h is definite, this implies the lemma. [] 

Lemma 5 In the neighbourhood of ~, the Riemannian manifold (M, h) is isometric to 
1 

the warped product ] - ~, ~[ x p(.~I, h), where p(t) = e - ~ .  

Proof. We check Hiepko's condition [HI,  using the formalism of IN6, Sect. 3]. In 
particular we have to check that Wo is auto-parallel with respect to 17, and that 
W is spherical. The first assertion is proved by 

1 
h((TE~E~, U,) = h ( -  KE, E~, U,)= ~(Vh)(E,, El, Uz) = O . 

For the second assertion we first have that 

h(~Tv, Uj, Et) = h(Vv Uj, E,) - h(Kc, Uj, Ea) 

1 
= )~6ij + ~ ( Vh)(E1, Ui, U j) 

= ~.6~j - ~ )~ = ~ . ~ j .  

This means that Wis totally umbilical in M with mean curvature normal t / =  �89 
Since h(Vv, E~ ,E~)= 0, the mean curvature normal is parallel in the normal 
bundle, so we get that W is spherical. 
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Hence (M, h) is isometric to the warped product  ] - e, e[  • p(34, h), at least in 
a ne ighbourhood  of/5. The warping function p is determined by 

tl = - El( lnp)E1 

with the initial condition p(0) = 1. [] 

So if we know ( ~ ,  h), we know the intrinsic geometry of  (M, h). 

Lemma 6 (ffl, h) is flat. 

Proof. Let v and w be or thogonal  unit vectors tangent to M. Then the sectional 
curvature ~(~, w) can be derived from the Gauss equat ion for the isometric 
immersion (M, h) --* (M, h): 

1 2 2  . ~(v, w) =/q(v ,  w, w, v) + 

N o w  from Lemma 4 we know that K~v = K , w  = �89 and that K~w = K~v = O, 
so by (2.2) we have 

1 1 )2 
l ~ ( v , w , w , v ) =  - h ( [ K ~ , K w ] w , v ) =  - ~ 2 h ( K ~ E l ,  v ) =  - ~  . 

This proves the lemma. [] 

Choosing Cartesian coordinates (ul, �9 �9 �9 , u,_ 1) on A4 (such that/5 has coordin- 
ates (0 . . . .  ,0)) we also have coordinates (ul . . . . .  u,_ 1, t) on M, such that  E1 = 8, 
and 8 . . . . . . .  ~,. , span W. Then Vow,8, = 0 and h(c~ui, ~?t) = 0. So the formula of 
Gauss implies that  M is parametrized by 

x(ul . . . .  , u . -1 ,  t) =/5 + x~(ul . . . . .  u . - l )  + x2( t ) ,  

where xl(0) = xz(O) = 0. Note  that A~r is given by/~ + xl and 7 is given by/5 + x2. 
First we determine the curve 7. It can be checked immediately that the vector 

1 
fields e-Xt(2E1 + 4) and e~(,+l)zt( _ �89 + 1)2E 1 + ~) are constant  vectors, say cl 
and c2, along M. Then it can be seen easily that there is a constant  vector c3 such 
that 

) 7(t)  = c3 + ~ e~'c~ + (n + 1)~ e-~(~+1~'c2  " 

We can take the natural  basis {e~ . . . .  , dn+ 1 ~ of 11~ n+ 1 such that e~ -- ~,(/5) for 
i = 1 . . . .  , n - 1; e~ --- c~ and e,+ 1 = c2. 

Since Vh, restricted to W, is identically zero, it follows that the Levi-Civi ta  
connect ion P of  (M, h) is the W-component  of V. So (M, ~ ~ IR "+ ~ is an affine 
immersion in the sense of [ N P  l ] ,w i t h  attine normal  space span { El ,  ~ }. The affine 
second fundamental  form e of (M, V) is given by 

~ ( x ,  r )  = h(X,  Y)(;.E~ + ~) . 

From [NP2,  Proposi t ion 4] we obtain that ]t4 is contained in the n-dimensional 
linear subspacelR" of  ~ " +  ~ through/5 in the direction of  W(/5) and , t E ~ +  ~ = cl. 
Therefore (M, V) is a hypersurface of ~," with affine normal  vector field ~ = Cl and 
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affine second fundamenta l  form h. Since ~ is parallel and V/7 = 0, we obta in  
that  /Q is a paraboloid ,  and with the choice of coordinates,  we get that  M is 
given by 

( . . . . .  Z , 
i = 1  

such that  M is given by 

c 3 +  u l , . . . , u , - 1 , ~ i  = u 2 + ~  ( n + l ) ( n + 3 ) ; t e  -~("+l)at �9 

So after rescaling the last coordinate  and translat ing c3 to 0, M is of the form (**). 
This finishes the p roof  of the first case. The second case is similar, so that  a lot of 

details will be omitted. 

Case 2 #i = 21for  i = 1 , . . . ,  r and pp = 22for  p = r + 1 . . . . .  n - 1 

Let s = n - r - 1 be the multiplicity of  22. Then  f rom (3.3) and  (3.4) we get that  
c = 21 + 22, (r + 2)).1 + (s + 2)3~2 = 0 and p = )~1).2 4 = 0. F rom now on we take 
indices i, j, k < r and p, q, x > r. 

L e m m a  7 

(i) a~p = api = 0, 

(ii) d~j = d~q = 0. 

Proof  The first assertion follows f rom L e m m a  3 and (3.2). In order  to prove  the 
second one, consider 

(3.6) = = - dpj21 0 h (R (U , ,  U,) U j, E l )  d~z2 i - (d~, - dlp)2~ . 

F r o m  L e m m a  l(v) we can obtain  that  d~, + d~j = dip + d~, so (3.6) reduces to 
0 = d~(22 - 21). The  second equali ty of (ii) is similar. [] 

Let 's fix a point/5 for the remainder  of the p roof  in this case. We now have three 
or thogona l  distr ibutions Wo = s p a n E t ,  W1 = span{ U1 . . . . .  Ur} and 
W2 = span{U,+1  . . . . .  U , -1} .  

F r o m  L e m m a  7(ii) we find that  both  W1 and W2 are involutive. Let ]t41 and M2 
be the integral manifolds through/5 and let 7: ] - e, e[  ~ M be the integral curve of 
Ex through/5  = 7(0). 

F r o m  L e m m a  7(i) we obtain  as in Case 1 that  I~'E1 W1 ~ W1 and 17e, W2 c W2. 
Hence we can find a f rame (E l ,  UI . . . . .  U , - 1 }  such that  U1 . . . . .  U, span 
W1 and U,+~ . . . .  , U , _ I  span W2, and such that  VE1Ui= VEIUp=O with 
arbi t rary  initial condit ions on M1 and a42. Fo r  this frame we have V~ Ui = �89 U~ 
and VE, Up = �89 Up. F r o m  now on we always assume that  this choice is made.  

L e m m a  8 For all local sections X,  Y and Z of  W =  WI @ WE we have that 
( Vh)(X,  Y, Z )  = O. For all local sections X1 and Y1 of  WI  and X2 and Y2 of  W2 we 
have (Vh) (El ,  Xm, Y,) = -- 2,,h(X~,, Y,), where m, n = 1, 2. 
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Proof The second assertion is clear. Like in Lemma 4, we have 

1 .  
EIh(Vu, Uj, Uk) = -~.~Ih(Vv, U], Uk) , 

1 
e~h(Vo V~, Cx) = 5~:h(V~, U,, U~t,  

1 
E~h(Vv U,, Uq)= ~2,h(V~ U,, Uq). 

1 
Eth(Vv Up, Uj)= ~ 22h(Vu, Up, Uj) . 

In combination with Lemma 7, this implies 

1 
E,(Vh)(U,, Uj, Uk)= ~ 2~(Vh)(U,, Vj, Vk). 

1 
E~(Vh)(Up, U.. U~) = -2 &(Vh)(U~. Uq. U~), 

1 
El( Vh)(Up, U~, Uq) = ~ )~1 ( Vh)(Up, U,, Uq) , 

1 
EI(Vh)(U,, Up, U i ) = ~ ).2(Vh)(U,, Up, U] )  . 

Now let T1 be the covariant tensor field on W~ 0)W1 q)W1 defined as the 
restriction of Vh to W1 q) W~ O) W~. The G-invariance of Wt and Vh imply that 
the length h(Tt, Tt) is constant. Like in Lemma 4, h(T~, T~) = 0. Restricting Vh 
respectively to W1 �9 W1 @ WE, W1 | W2 �9 IV2 and W2 | W2 �9 W2 proves the 
lemma. [] 

Lemma 9 In the neighbourhood of p, the Riemannian manifold (M, h) is isometric to 
1 

the warped product ] - e , e [ x p , ( ) ~ l ,  h) xp2(M 2, h), where pl(t) = e - ~ ' '  and 
1 

pz(t) = e -~z2~. 

Proof Following N61ker IN6, Sect. 3], we have to check that W0 • W1 and 
Wo @ W2 are auto-parallel with respect to V, and that W~ and WE are spherical. 
This is done as in Case 1. One obtains that Wz and Wz are spherical M with mean 
curvature normals r h = �89 and /'/2---~ �89 The warping functions can be 
determined as in Case 1. [] 

The following lemma can be proved similarly as Lemma 6, so we omit the 
proof. 

L e m m a  10 (J~7ll, h) and (/~2, h) are flat. 

Now we shall finish the proof in the second case. Choosing Cartesian coordin- 
ates (u~ . . . . .  u,) on . ~  and (v~ . . . . .  v~) on M2, we again have coordinates 
(u~ . . . . .  u,, v~ . . . . .  v~, t) on M, such that E1 = 0,, 0 . . . . . . .  ~.~ span W~ and 

. . . . . . .  0 , ,  span WE. Clearly Vo.~, = V%~t = 0; from [N6, Lemma 2], or simply 
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f rom the p r o o f  of L e m m a  9, we get t h a t  170 c~j = 17~, c3,j = 0. So the f o r m u l a  of  
ui  i 

G a u s s  impl ies  tha t  

x ( u l  . . . . .  u,, vl . . . . .  vs, t)  = # + x t ( u l  . . . . .  ur) + x z ( v l  . . . . .  vs) + x3(t), 

where  x l (0) = x2 (0) = x3(0) = 0. 
F i r s t  we d e t e r m i n e  the  curve  7. I t  c a n  be checked  i m m e d i a t e l y  t ha t  the  vec to r  

fields e - a l ' ( A 1 E 1  + ~) a n d  e-Z: t (22E1 + ~) are  c o n s t a n t  vectors ,  say  cl  a n d  c2, 
a long  M.  So there  is a c o n s t a n t  vec to r  c3 such t ha t  

1 ( 1 ~ ,  1 e,~2tc2) 

where  d = 21 - 22. W e  t ake  the  n a t u r a l  bas is  {ex . . . . .  en+ 1} of  IR n+l such t ha t  
ei = c3,,(p) for i = 1 . . . . .  r, e,+ i = ~j( i~)  f o r j  = 1 . . . .  , sLe,  = cl a n d  e , + l  = c2. 

The  same  a r g u m e n t s  as in C a s e  1 s h o w  tha t  M 1 is a p a r a b o l o i d  in 
span  {el  . . . . .  e,,  e ,  }, t h a t  M2 is a p a r a b o l o i d  in s p a n  { e~+ 1 . . . . .  e ,_  1, e,  + 1} a n d  
tha t  M is g iven  by  

x ( u ~ , . . . , u ~ , v l  . . . . .  v ~ , t ) = c 3 +  u~ . . . . .  u , , v l  . . . . .  v~, 

) 
So af ter  resca l ing  and  t r a n s l a t i n g  c3 to  O, M is of  the  fo rm (*). 
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