Math. Z. 208, 355-362 (1991)

Mathematische
Zeitschrift

© Springer-Verlag 1991

Toeplitz operators and algebras

G.J. Murphy

Department of Mathematics, University College, Cork, Ireland

Received September 4 1989; in final form January 29, 1991

Introduction

In the past two decades many papers have appeared which are concerned with
generalised Toeplitz operators defined relative to an ordered or partially ordered
group, and with the corresponding Toeplitz algebras. The most directly relevant to
this paper are [2, 3, 5, 6]. Interest has increased in recent years with the application
of K-theory, see for example [8, 9]. The key idea of the approach to Toeplitz
operators taken in these papers is to study the individual operators by means of the
C*-algebras that they generate. The aim is to try to extend the results of Coburn,
Widom et al. on Toeplitz operators with continuous symbols on the circle group
T (see [1, 4]). In this paper we also pursue this goal, and one of the main results is
an index theorem similar to the classical Krein-Widom-Devinatz Theorem (for
a statement of the latter theorem see Sect. 1).

Given an ordered group G there is associated to it a C*-algebra T(G), the
Toeplitz algebra. We consider the question of when T(G) is Type I, and show that if
G has finite rank » this is equivalent to G = Z", where Z" has the lexicographic
order. This surprising result is obtained by means of a quotient-factorisation
theorem, Theorem 2.3, which is the key result of the paper and which enables us to
prove our index theorem in Sect. 3. We begin in Sect. 1 by defining our terms and
setting the scene.

1 Toeplitz operators and Toeplitz algebras

An ordered group is a pair (G, <) where G is a discrete abelian group, < isa total
order on G, and for all x,y,zeG we have x<y=>x+2zZy+z We set
G* = {xeG|0 < x}. Obvious examples are subgroups of R with the induced order.
We call these the ordered subgroups of R. It is easy to characterise when an abelian
group G admits a total order making it an ordered group. This can happen if and
only if G is torsion-free, or equivalently its Pontryagin dual group G is connected.
We shall see more examples of ordered groups below. For the elements of the
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theory of these groups see [7], which may also be referred to for the theory of
generalised HP-spaces which we now need to briefly mention.

Helson and Lowdenslager generalised the classical theory of H?-spaces by
replacing the ordered group Z and its dual T by an arbitrary ordered group
G and its dual G. For pe[1, o] they define H?(G) to be the set of all fe LP(G)
for which f(x) = 0 (xe G, x < 0). Here, as usual, f, denotes the Fourier transform
of f.

One can now define Toeplitz operators relative to G. Let P denote the
orthogonal projection of the Hilbert space L*(G) onto the closed vector sub-
space H*(G). If @eL™(G) define the operator T,eB(H?*(G)) by setting
T,(f) = Plof)(fe H*(G)). We call T, the Toeplitz operator with symbol ¢. Many
results of the classical theory of Toeplitz operators on the circle extend to this
setting with little modification. For instance it is shown in [6] that
o(p) € o(T,) € hullo(p), where o(p) is the essential range of ¢ (its spectrum
in the algebra L®(G)), and hull o(¢) is the closed convex hull of a(p).
These inclusions are generalisations of classical results of Hartman-Wintner
and Brown-Halmos respectively (see [4]). However not everything carries over
in a straightforward way like this, as we shall see presently in relation to index
theory.

We define the Toeplitz algebra of G to be the C*-algebra T(G) generated by all
T, where @ e C(G). The properties of these algebras are analysed in [6], and we
shall need many results from that paper, among them a characterisation of 7(G) in
terms of a very useful universal property which we now discuss.

An isometric homomorphism from G* to a unital C*-algebra B is a map
W:G" - B, x> W,, for which W}W,=1and W,,, = W, W, forall x,yeG*. If
xe G define e,€C(G) by setting e.(y) = y(x). Then the map V: G* - T(G),
x+—V, = 1., 1is an isometric homomorphism, and is in fact the universal one, for if
W:G* — B is an arbitrary isometric homomorphism then there exists a unique
x-homomorphism B: T(G) — B such that B(V,) = W.(xe G*). Moreover if W, is
non-unitary for all x > 0 then f is injective.

From the above remarks it follows that there is a unique surjective =-homo-
morphism n: T(G) » C(G) such that n(V,) = e.(xe G *). In [6] it is shown that the
kernel of n is the commutator ideal KT(G) of T(G). It is also shown that T(G) acts
irreducibly on H2(G), so in particular 7(G) is primitive.

Let us remark that (as is well known) the (g, )..¢ form an orthonormal basis for
L*(G), and it is easily checked that (g,),.¢- form one for H2(G). Also Vi(xeG™)
generate 7(G).

The algebra T(G) was first studied by Douglas [3] in the special case that G is
an ordered subgroup of R. He showed that in this case KT(G) is simple. If we
combine this with Theorem 4.4 of [6] we see that if G is a non-cyclic ordered
subgroup of R then KT(G) ~ K(H?*(G)) = 0. It follows in this case that if ¢ € C(G)
never vanishes and T, is Fredholm then T, is invertible. This is surprising when we
compare it to what happens when G = Z, for if ¢ € C(T) then 7, is Fredholm if and
only if ¢ never vanishes, and in this case the Fredholm index of T, is minus the
winding number of ¢ with respect to the origin. This is the simplest of index
theorems and is due to Krein-Widom-Devinatz (for a proof see [4]). Thus we have
a classical result which does not extend in any straightforward manner. For related
index results see for example [2] and [5]. We shall return to index theory in Sect. 3,
but we shall first have to analyse further the algebra T(G), which we do in the next
section.
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2 A quotient-factorisation theorem

If Gy,...,G, are ordered groups we denote by G,x---xG, the group
G x- - - x G, (pointwise operation) endowed with the lexicographic order <. This
order is defined by specifying that (x,. .., x,) <(yy,. .., ¥, if x & y and at the
first index i for which x; % y; we have x; < y;. We call G; - - x G, the lexicographic
product of the groups Gy, . .., G,, and note that it is an ordered group.

We define the ordered group Z" to be the lexicographic product of n factors, all
of which are equal to the ordered group Z.

If G, and G, are ordered groups a positive homomorphism from G, to G, is
a group homomorphism 8:G, — G, such that 8(G{) = G5 (equivalently, @ is an
increasing map). If 6 is a bijective positive homomorphism we call it an order
isomorphism. In this case #7 ! is a positive homomorphism also.

An ordered group G is archimedean if for every pair of non-zero positive
elements x, y of G there exists ne N such that x < ny. All ordered subgroups of
R are of course archimedean, and up to order isomorphism, these are all the
archimedean ordered groups (see [7, p. 194] for details).

An ideal in an ordered group G is a subgroup I such that 0 < x £ yel ™ implies
that xe for all xe G. It is readily verified that G is achimedean if and only if its
only ideals are 0 and G itself.

If x is an element of an ordered group G we define |x|€ G * in the obvious way.
We set

F(G) = {xeG|VyeG,y > 0,ImeN, x| < ny}.

Then F(G) is an archimedean ideal in G contained in every non-zero ideal of G.
There exists non-zero ordered groups for which F(G) =0, but if G is finitely
generated and non-zero then F(G) is non-zero, and this will be important in the
sequel. For these elementary resuits, see [6].

These remarks have been leading up to the following factorisation theorem.
The result will be used below, and is also of independent interest. It may well be
known, but the author has no reference for it.

Theorem 2.1 If G is a finitely generated ordered group then there exist archimedean
ordered groups Gy, . .., G, such that G = G, %" - *G,,

Proof. We prove the result by induction on the rank m = rank(G) of G. Obviously
a finitely generated ordered group is a finite-rank free abelian group. Thusif m =0
then G = 0, so the result holds trivially. Suppose now that m > 0 and that the result
holds for all ordered groups of rank less than m. Since G is non-zero, F(G) is
a non-zero ideal of G. Now G/F(G) is an ordered group when endowed with
the obvious quotient order, and is finitely generated as G is. Hence G/F(G) is a
finite-rank free abelian group. It follows that there exists a subgroup I of G such
that G = I @ F(G). In fact we have G = [ *x F(G), using the fact that F(G) is an
ideal in G. The order on I is of course the one induced from G. Now
rank(G) = rank(J) + rank(F(G)) > rank(I), as F(G) # 0, so by the inductive
hypothesis there exist archimedean ordered groups Gy,..., G,—;, such that
I'=Gx - -xG,_. If we now set G, = F(G) then we have G = G, - - %G, and
the induction is completed. (i
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If G is an ordered group we define FT(G) to be the closed ideal of T(G)
generated by the projections 1 — V. V¥(xe F(G)™*). It was shown in [6] that FT(G)
is simple, and therefore it is contained in every non-zero closed ideal of T(G)
because T(G) is primitive. Since V, is non-unitary for x > 0 it follows that FT(G) is
non-zero if and only if F(G) is non-zero.

Theorem 2.2 If G is an ordered group then FT(G) is Type 1 if and only if F(G) is
cyclic.

Proof. If F(G) = 0 then FT(G) = 0, and therefore FT(G) is trivially Type L. If F(G)
is non-zero cyclic then F(G) = Zx for a least positive element x of F(G). It follows
that x is in fact the least positive element of G, and from this one easily checks that
the projection 1 — V, V¥ has range C,,. Thus 1 — V, V¥ is a non-zero element of
FT(G)n K(H*(G)). This implies that 7(G) contains K(H?(G)), since T(G) acts
irreducibily on H?(G). Hence FT(G) = K(H?*(G)), and therefore FT(G) is Type L

Now suppose conversely that G is a non-zero ordered group for which FT(G) is
Type L. Since FT(G) acts irreducibily on H?(G) it must contain K (H?(G)), by the
Type I condition. Hence FT(G) = K(H?(G)), by simplicity of FT(G). It follows that
there exists a positive element x of F(G) such that 1 — V. V¥ has least rank.
Consequently x is the least positive element of F(G), and therefore by the ar-
chimedean property of F(G) we must have F(G)= Zx. This proves the
theorem. O

If I is an ideal in an ordered group G we define T(G, I) to be the closed ideal in
T(G) generated by all 1 — V, V¥(xel ™). (Thus T(G, F(G)) = FT(G).)

If G is a lexicographic product of two ordered groups G; and G,, G = G, * G,,
there does not appear to be any ‘factorisation’ of T(G) into algebras related to
G, and G,. However the next result does give a factorisation of the quotient
algebra T(G)/T(G, G,) (it is readily verified that G, is an ideal in G). This result is
very important for the sequel. We shall use the symbol ® to denote the (spatial)
C*-tensor product.

Theorem 2.3 Let G, and G, be ordered groups and let G = G, » G,. Then there is
a unique *-isomorphism B:T(G)/T(G, G,)— T(G,)® C(G,) such that for all
(x, )€ G* we have

ﬁ( I/ix,y) + T(G’ GZ)) = Vx®6y .

Proof. Put I = T(G, G,) and Z = T(G,) RC(G,).
The map

G*"=Z, (y—V:®s,

is an isometric homomorphism, and therefore induces a *-homomorphism
o:T(G) — Z such that a(V,,) = V., ®¢, for all (x,y)e G *. Since the Vi(xeG{)
generate T(G,) and the g,(yeG,) generate C(G,), it follows that the elements
Ve ®g,((x, y)e G ") generate Z, and therefore o is surjective.

If yeG5 then a(l — Vo yVE ) =1-(1®@¢)(I®e)*=1—-1Q¢ef =0.
Hence a(/) =0, and so « induces a surjective *-homomorphism B: T(G)/I - Z
given by B(b + I) = a(b).
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The map
U: G5 - T(G)/I, y—=> Vo +1,

is obviously an isometric homomorphism, but since each U, is actually unitary (by
the definition of I = T(G, G,)) it follows that U extends to a unitary representation
U:G, — T(G)/1. Since C(G,) is the group C*-algebra of G, there is therefore
a unique *-homomorphism 6,: C(G,) — T(G)/I such that 3,(¢,) = U,(yeG;).
The map
G - T(G)I, x> Ve +1,

is an isometric homomorphism, so there exists a unique *-homomorphism 4, :
T(G,) — T(G)/I such that §;(V;) = Vix.0) + [(xeG{). If xe G{ and yeG; then
8,(V;) and &;,(e,) obviously commute, and since d,(g,) is unitary it follows that
d1(V;) and d,(s,)* also commute. Hence every element of 6, (7(G, )) commutes with
every element of §,(C(G,)), and therefore there exists a unique *-homomorphism
d: Z-T(G)/1 such that d(a; ® a,) = 6,(a;)d,(a,) for all a;eT(G,) and
a,e C(Gz)
Let (x, y)e G* and write y = y, — y, where y;, y,€G; . Then

OB(Vix,yy + 1) = 02( Vs, )

=0(V. ®¢)
01(V2)0,(¢,)
=V, oVos) Vo +1

= I/(x,y)+1-

Hence 6§ = id, so f§ is injective, and therefore a *-isomorphism.
Uniqueness of f follows from the fact that the elements V, ,, + I, where
(x,y)eG*, generate T(G)/1. O

For the next result we define Z° = 0.

Theorem 2.4 Let G be an ordered group of finite rank n. Then T(G) is Type 1 if and
only if G is order isomorphic to Z".

Proof. Suppose firstly that T(G) is Type I. We shall prove G = Z" by induction on
the rank n of G. If n = 0 then G = 0, and so the result trivially holds. Suppose then
n > 0, and the result holds for all ordered groups of rank less than n. By Theorem
2.1 G = Gy *- - =G, for some archimedean ordered groups G4,...,G,, and it is
readily verified that G, is necessarily F(G). if we let I = G,;*---*G,_, then
G = I % F(G). Since T(G) is assumed to be Type I it follows that FT(G) is Type I,
and so by Theorem 2.2 we have F(G) = Zy for some positive element y of G.
The map

I">T(G), x—Vio,

is an isometric homomorphism with ¥, ) non-unitary for x > 0, so there exists an
isometric *-homomorphism f: T(I) — T(G) such that B(V,) = ¥V, o, for all xeI ™.
As B(T(I)) is a C*-subalgebra of T(G) it is also Type I, and since it is *-isomorphic
to T(I), so T(I)is Type L. But rank (I) = rank(G) — rank(F(G)) = n — 1, so by the
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inductive hypothesis I is order isomorphic to Z"~'. Hence G = I+(Zy) is order
isomorphic to Z". This completes the induction.

Now suppose conversely that G is order isomorphic to Z" and we shall show
that 7(G) is Type 1. Since T(G) is *-isomorphic to T(Z") we may suppose that
G = Z". We again prove the result by induction on n, and note that it is trivially
true when n = 0 or 1. Suppose then n > ! and that T(Z™) is Type I for all m < n.

Let x be the clement of Z" which has all of its entries 0 except for the last one,
which we assume to be 1. Then F(G) = Zx, and it follows, as in the proof of
Theorem 2.2, that FT(G) = K(H?*(G)). Since G = (Z" )% Z it is a consequence of
Theorem 2.3, that T(G)/FT(G) is *-isomorphic to T(Z" ') ® C(T). By the induc-
tive hypothesis T(Z"~*) is Type 1, and therefore T(Z" ') ® C(T) is Type 1. Thus
FT(G) and the quotient T(G)/FT(G) are Type 1, and therefore so is 7(G). This
completes the induction and the proof. |

Since the ‘best-behaved’ C*-algebras are the Type 1 C*-algebras, it seems
plausible that this case is a good starting point for the study of the index theory of
Toeplitz operators, and this is what we examine in the next section.

3 An index theorem

Fornzlset7T,=T(Z"), F,=FI(Z")and C, = C(Z”) = C(T"). From Sect. 2 we
know that F, = K(H?(Z")). If x denotes the element of Z" with all entries zero
except the last, which is 1, then F(Z") = Zx, and we have Z" = (2"~ 1) x F(Z").
It follows from Theorem 2.3 that there is a unique =-isomorphism f:
T./F,—» T,-; ® Cy such that

(*) BVim + F) = Vi®2n, (x,me(Z")".

We canonically identify C,., ® C; with C, by means of the unique
x-isomorphism which maps ¢, ® &, 10 ¢, ,, for all (x, m)e Z".

Theorem 3.1 Let oeC,_, and ye Cy. Then T, g, is Fredholm if and only if T, is
invertible and i never vanishes on T. In this case the Fredholm index of T, & 4 is equal
to minus the winding number of ¥ about the origin.

Proof. 1t follows from equation () that

BT, +F)=T,_ Q¢ (x,meZ".

Etx.m)

An elementary computation shows that if ¢ and y are trigonometric polynomials
in C,..; and C; respectively then

(*x) BIl,ey+F)=T,y .

(A trigonometric polynomial is a linear combination of the es). By density of the
trigonometric polynomials in C,-; and C; we deduce that equation (*=) holds for
arbitrary peC,-, and Y eC;.

It was shown in [6] that for any ordered group G the map

C(G) - T(GYKT(G), ¢—T,+KT(G),
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is a *-isomorphism. Using this, and the fact that KT(Z") contains F, = K(H?2(Z")),
and using equation (xx), we conclude that for ¢ €C,_, and ¥ € Cy, the Toeplitz
operator T, 4 is Fredholm if and only if T, is invertible in T, _, and ¥ is invertible
in Cy. (If T,, 5, + KT(Z") is invertible, then ¢ and { are invertible, and if also
T, ® is invertible, then T, is invertible.)

The isometric homomorphism

(Zn71)+~'>]1na xHVv(x,())f

induces a unique *-homomorphism a:7,_; — T, such that a(V,) = V|, o for all
xe(Z" Y)*. Consequently o(7,,) =T,  (xeZ" '), and therefore since the ele-
ments ¢, have closed linear span C,_,, we get a(7,) =T, for all peC,_,.
Hence if T, is invertible, so is T, o ;.

Now let meZ™ and set S =T g ,,,. As S is an isometry ker(S) = 0. From the

equation
Ey-m (6, y—m) =0
S* - = .y .
(6x, ) {0 ifx=0and y <m

we have ker(S*) = Cep,0)® Ceo,1,® - * ® Ceo,m-1y- Thus § is Fredholm of
index — m. It is immediate from this that

indCX(T, ®£m)) = — M

for all meZ.

Recall that if m is the winding number of a non-vanishing ¥ € C, then ¢, has
a logarithm in C,, so ¢ = ¢,,e” for some y'e C,. Suppose that p e C,_; and that
7, is invertible. Then the function

[0,1] = Z, t—index(T i, g cre ) >
is continuous and therefore its range is a singleton set. Thus
index(7, & ) = index(7, g ..,.) -

However if me Z™ then g, € H*(Z"), and so by Proposition 3.3 of [6] we have
Logem=Too 0o =Toa1 T e, Thus

index(7T, g ., ) = index(7T, 5 1) + index(T} g ,,) = —m,
as T, & 1 is invertible. We thus have
index(T, g..) = —m

if meZ™, and it is immediate that this formula extends to all meZ. Hence
index(T, ;) is equal to — m, i.e. to minus the winding number of ¥ about the
origin. O

It follows from Theorem 3.1 thatif e C,,_; and y € C, and O belongs neither to
the range of Y nor to the closed convex hull of the range of ¢ then T, g, is
Fredholm (use the fact that ¢(7},) < hullo(g)).

For the case n = 2 wc can sharpen our result. Recall that if o e C, then T, is
invertible if and only if 7, is Fredholm of index zero (see [4] for example). If we use
this and the Krein-Widom-Devinatz Theorem, we can reformulate Theorem 3.1 as:
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Theorem 3.2 If ¢,y € C(T) then T, g , is Fredholm if and only if @, ¥ never vanish on
T and ¢ has winding number zero about the origin. In this case the Fredholm index of
T, o ¢ is equal to minus the winding number of y about the origin.
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