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Introduction 

In the past two decades many papers have appeared which are concerned with 
generalised Toeplitz operators defined relative to an ordered or partially ordered 
group, and with the corresponding Toeplitz algebras. The most directly relevant to 
this paper are [2, 3, 5, 6]. Interest has increased in recent years with the application 
of K-theory, see for example [8, 93. The key idea of the approach to Toeplitz 
operators taken in these papers is to study the individual operators by means of the 
C*-algebras that they generate. The aim is to try to extend the results of Coburn, 
Widom et al. on Toeplitz operators with continuous symbols on the circle group 
T (see [1, 4]). In this paper we also pursue this goal, and one of the main results is 
an index theorem similar to the classical Krein-Widom-Devinatz Theorem (for 
a statement of the latter theorem see Sect. 1). 

Given an ordered group G there is associated to it a C*-algebra T(G), the 
Toeplitz algebra. We consider the question of when T(G) is Type I, and show that if 
G has finite rank n this is equivalent to G = Z ", where Z ~ has the lexicographic 
order. This surprising result is obtained by means of a quotient-factorisation 
theorem, Theorem 2.3, which is the key result of the paper and which enables us to 
prove our index theorem in Sect. 3. We begin in Sect. 1 by defining our terms and 
setting the scene. 

1 Toeplitz operators and Toeplitz algebras 

An ordered group is a pair (G, < ) where G is a discrete abelian group, < is a total 
order on G, and for all x,y,z~G we have x < y : * x + z < y + z .  We set 
G + = {x E GI0 < x}. Obvious examples are subgroups of R with the induced order. 
We call these the ordered subgroups of R. It is easy to characterise when an abelian 
group G admits a total order making it an ordered group. This canhappen  if and 
only if G is torsion-free, or equivalently its Pontryagin dual group G is connected. 
We shall see more examples of ordered groups below. For the elements of the 
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theory of these groups see [7], which may also be referred to for the theory of 
generalised HV-spaces which we now need to briefly mention. 

Helson and Lowdenslager generalised the classical theory of HP-spaces by 
replacing the ordered group Z and its dual T by an arbitrary ordered group 
G and its dual G. For  p~ [1, oo] they define HP~,G) to be the set of all . feLt(G) 
for which f (x )  = 0 (x e G, x < 0). Here, as usual, f, denotes the Fourier transform 
of f 

One can now define Toeplitz operators relative to G. Let P denote the 
orthogonal projection of the Hilbert space L2(d) onto the closed vector sub- 
space H2(G). If q~eL~~ define the operator To~B(H2(G)) by setting 
T~(f) = P(~pf)(f~ H 2(G)). We call T o the Toeplitz operator with symbol qg. Many 
results of the classical theory of Toeplitz operators on the circle extend to this 
setting with little modification. For instance it is shown in [6] that 
a((p)_ ~r(To)_~ hullo'O), where o-(O ) is the essential range of ~0 (its spectrum 
in the algebra L~~ and hull a(~0) is the closed convex hull of a(cp). 
These inclusions are generalisations of classical results of Hartman-Wintner  
and Brown-Halmos respectively (see [4]). However not everything carries over 
in a straightforward way like this, as we shall see presently in relation to index 
theory. 

We define theToeplitz algebra of G to be the C*-algebra T(G) generated by all 
T o where cp E C(G). The properties of these algebras are analysed in [6], and we 
shall need many results from that paper, among them a characterisation of T(G) in 
terms of a very useful universal property which we now discuss. 

An isometric homomorphism from G + to a unital C*-algebra B is a map 
W : G + --* B, x ~,  Wx,. for which W * Wx = 1 and W x  + y = W~ Wy for all x, y e G +. If 
x e G  define exeC(G) by setting z~(7)=7(x). Then the map V: G+--* T(G), 
x ~ Vx = T~x, is an isometric homomorphism,  and is in fact the universal one, for if 
W: G + ---, B is an arbitrary isometric homomorphism then there exists a unique 
*-homomorphism fl" T ( G ) ~  B such that 13(V~) = W:~(x ~ G + ). Moreover if W~ is 
non-unitary for all x > 0 then/~ is injective. 

From the above remarks it follows that there is a unique surjective *-homo- 
morphism ~ : T(G) ~ C(G) such that ~(Vx) = e~(x ~ G + ). In [6] it is shown that the 
kernel of ~ is the commutator  ideal KT(G) of T(G). It is also shown that T(G) acts 
irreducibly on H2(G), so in particular T(G) is primitive. 

Let us remark that (as is well known) the ( e ~ ) ~  form an orthonormal  basis for 
LZ(G), and it is easily checked that (~)~o+ form one for Ha(G). Also Px(X ~ G +) 
generate T(G). 

The algebra T(G) was first studied by Douglas [3] in the special case that G is 
an ordered subgroup of R He showed that in this case KT(G) is simple. If we 
combine this with Theorem 4.4 of [6] we see that if G is a non-cyclic ordered 
subgroup of R then KT(G) ~ K(H2(G)) = 0. It follows in this case that if ~o ~ C(G) 
never vanishes and T o is Fredholm then T o is invertible. This is surprising when we 
compare it to what happens when G = Z, for if ~o E C(T)  then T o is Fredholm if and 
only if q~ never vanishes, and in this case the Fredholm index of T~ is minus the 
winding number of (p with respect to the origin. This is the simplest of index 
theorems and is due to Krein-Widom-Devinatz (for a proof see [4]). Thus we have 
a classical result which does not extend in any straightforward manner. For related 
index results see for example [2] and [5]. We shall return to index theory in Sect. 3, 
but we shall first have to analyse further the algebra T(G), which we do in the next 
section. 
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2 A quotient-factorisation theorem 

If G1 . . . . .  G, are ordered groups we denote by G ~ * ' . . * G ,  the group 
Gt x .  �9 - x G, (pointwise operation) endowed with the lexicographic order < .  This 
order is defined by specifying that (xl . . . . .  x,) < (yl . . . . .  y,) if x :t: y and at the 
first index i for which xi 4: y~ we have xl < 3'i. We call G~ . .  �9 . �9 G, the Iexicographic 
product of the groups G ~ , . . . ,  G,, and note that  it is an ordered group. 

We define the ordered group Z" to be the lexicographic product  of n factors, all 
of which are equal to the ordered group Z. 

If G1 and G2 are ordered groups a positive homomorphism from G1 to G2 is 
a group homomorph i sm 0" G~ ~ G 2 such that O(G~) c_ G~ (equivalently, 0 is an 
increasing map). If 0 is a bijective positive homomorph i sm we call it an order 
isomorphism. In this case 0-1 is a positive homomorph i sm  also. 

An ordered group G is archimedean if for every pair of non-zero positive 
elements x, y of G there exists n e N such that  x <= ny. All ordered subgroups of 
R are of course archimedean, and up to order isomorphism, these are all the 
archimedean ordered groups (see [7, p. 194] for details). 

An ideal in an ordered group G is a subgroup I such that 0 _< x _< y e I + implies 
that x e I for all x s G. It is readily verified that G is achimedean if and only if its 
only ideals are 0 and G itself. 

If x is an element of an ordered group G we define I xl E G + in the obvious way. 
We set 

F(G) = ( x ~ G I V y ~ G ,  y > 0, 3hEN,  Ixl < ny} . 

Then F(G) is an archimedean ideal in G contained in every non-zero ideal of G. 
There exists non-zero ordered groups for which F ( G ) =  0, but if G is finitely 
generated and non-zero then F(G) is non-zero, and this will be impor tant  in the 
sequel. For  these elementary results, see [6]. 

These remarks have been leading up to the following factorisation theorem. 
The result will be used below, and is also of independent interest. It may  well be 
known, but the author  has no reference for it. 

Theorem 2.1 I f  G is a f ini tely  generated ordered group then there exist  archimedean 
ordered groups G1, . �9 . , G, such that G = G~ * " " '* G,. 

Proof  We prove the result by induction on the rank m = rank(G) of G. Obviously 
a finitely generated ordered group is a finite-rank free abelian group. Thus if m = 0 
then G = 0, so the result holds trivially. Suppose now that m > 0 and that the result 
holds for all ordered groups of rank less than m. Since G is non-zero, F(G) is 
a non-zero ideal of G. Now G/F(G) is an ordered group when endowed with 
the obvious quotient order, and is finitely generated as G is. Hence G/F(G) is a 
finite-rank free abelian group. It follows that there exists a subgroup I of G such 
that  G = I •F(G).  In fact we have G = I ,  F(G), using the fact that  F(G) is an 
ideal in G. The order on I is of course the one induced from G. Now 
rank(G) = r ank( l )  + rank(F(G)) > rank(/ ) ,  as F(G) + O, so by the inductive 
hypothesis there exist archimedean ordered groups G 1 , . . .  , G , - 1 ,  such that 
I = G . . , - . G , _ l .  I f w e n o w s e t  G , = F ( G )  then we have G --- Gl *" " * G,, and 
the induct ion is completed. []  
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If G is an ordered group we define FT(G) to be the closed ideal of T(G) 
generated by the projections 1 - V~ V*(x ~ F(G) + ). It was shown in [6] that FT(G) 
is simple, and therefore it is contained in every non-zero closed ideal of T(G) 
because T(G) is primitive. Since Vx is non-unitary for x > 0 it follows that FT(G) is 
non-zero if and only if F(G) is non-zero. 

Theorem 2.2 If  G is an ordered group then FT(G) is Type I if and only if F(G) is 
cyclic. 

Proof If F(G) = 0 then FT(G) = 0, and therefore FT(G) is trivially Type I. If F(G) 
is non-zero cyclic then F(G) = Zx for a least positive element x of F(G). It follows 
that x is in fact the least positive element of G, and from this one easily checks that 
the projection 1 - V~ V* has range C~ o. Thus 1 - Vx V* is a non-zero element of 
FT(G) n K(HZ(G)). This implies that T(G) contains K(HE(G)), since T(G) acts 
irreducibily on H2(G). Hence FT(G) = K(HZ(G)), and therefore FT(G) is Type I. 

Now suppose conversely that G is a non-zero ordered group for which FT(G) is 
Type I. Since FT(G) acts irreducibily on HZ(G) it must contain K(H2(G)), by the 
Type I condition. Hence FT(G) = K(HZ(G)), by simplicity of FT(G). It follows that 
there exists a positive element x of F(G) such that 1 - VxV*~ has least rank. 
Consequently x is the least positive element of F(G), and therefore by the ar- 
chimedean property of F(G) we must have F(G)= Zx. This proves the 
theorem. 

I f / i s  an ideal in an ordered group G we define T(G, I) to be the closed ideal in 
T(G) generated by all 1 - V~ V*(x~I  +). (Thus T(G, F(G)) = FT(G).) 

If G is a lexicographic product of two ordered groups GI and G2, G ~- Ga * Gz, 
there does not appear to be any 'factorisation' of T(G) into algebras related to 
G~ and G2. However the next result does give a factorisation of the quotient 
algebra T(G)/T(G, G2) (it is readily verified that G2 is an ideal in G). This result is 
very important  for the sequel. We shall use the symbol | to denote the (spatial) 
C*-tensor product. 

Theorem 2.3 Let G1 and G 2 be ordered groups and let G = G1 * G2. Then there is 
a unique *-isomorphism /3:T(G)/T(G, G2)~T(G1)|  such that for all 
(x, y)eG + we have 

/3( Vo,.r ) + T(G, Gz)) = Vx | or. 

Proof. Put I = T(G, G2) and Z = T(G1)| 
The map 

G+ ~ Z ,  (x,y)~-~Vx| 

is an isometric homomorphism,  and therefore induces a , -homomorph i sm 
~:T(G)--,Z such that ~(V~x,y)) = Vx|  for all(x,y)~G +. Since the Vx(x~G~) 
generate T(GI) and the ey(yeG~) generate C(G2), it follows that the elements 
Vx | er((x, y)~G +) generate Z, and therefore ~ is surjective. 

If y ~ G f  then sr - V~o,y)V~,y))= 1 - ( 1  | g y ) ( l |  ~3y)* = 1 - - 1  | = 0. 
Hence ~(I) = 0, and so ~ induces a surjective , -homomorphism /3: T(G)/I ~ Z 
given by fl(b + I) = ~(b). 
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The map 

U: G f  -o T(G)/I, yF-o V~o., ) + I ,  

is obviously an isometric homomorphism,  but since each Ur is actually unitary (by 
the definition of I = T(G, G2)) it follows that U extends to a unitary representation 
U: G2--+ T(G)/I. Since C(G2) is the group C*-algebra of G2 there is therefore 
a unique , - h o m o m o r p h i s m  62: C(G2)--~ T(G)/I such that 62(er) = Ur(y E G2). 

The map 

G + --+ T(G)/I, x~-~ V~,o ) + I ,  

is an isometric homomorphism,  so there exists a unique , - h o m o m o r p h i s m  61: 
T(G1)~  T(G)/I such that 31(Vx) = V~x.o)+ I ( x e G ] ) .  If x e G ~  and y~G~ then 
6~(Vx) and 62(ey) obviously commute,  and since 62(ey) is unitary it follows that 
6 ~ (V~) and 62 (ey)* also commute.  Hence every element of 6 ~ (T(G ~ )) commutes  with 
every element of ~2(C(6~2)), and therefore there exists a unique , - h o m o m o r p h i s m  
6: Z ~ T ( G ) / I  such that 3(a l |  for all al~T(G1) and 
a2 ~ C(Gz). 

Let (x , y )~G + and write y = y~ - Y2 where y~, y2~G~.  Then 

= ,~( V~ | ~) 

= ,h(V~) 62(~) 

= V(x, O) * V~o,y~) Vto,y~) + I 

= V~ ,y~  + I . 

Hence 613 = id, so fl is injective, and therefore a , - isomorphism. 
Uniqueness of fl follows from the fact that the elements V~.y)+ I, where 

(x, y) ~ G +, generate T(G)/I. [] 

For  the next result we define Z ~ = 0. 

Theorem 2.4 Let G be an ordered group of finite rank n. Then T(G) is Type I if and 
only if G is order isomorphic to Z". 

Proof Suppose firstly that T(G) is Type I. We shall prove G = Z" by induction on 
the rank n of G. If n = 0 then G = 0, and so the result trivially holds. Suppose then 
n > 0, and the result holds for all ordered groups of rank less than n. By Theorem 
2.1 G = G1 *" �9 �9 * Gr for some archimedean ordered groups G1 . . . . .  Gr, and it is 
readily verified that  Gr is necessarily F(G). If we let I = G1 * "  "* Gr-1,  then 
G = I* F(G). Since T(G) is assumed to be Type I it follows that FT(G) is Type I, 
and so by Theorem 2.2 we have F(G) = Zy for some positive element y of G. 

The map 

I + ~ T(G), x ~ Vo, ' o) , 

is an isometric homomorph i sm with V~, o) non-uni tary  for x > 0, so there exists an 
isometric , - h o m o m o r p h i s m  fl: T(I) ~ T(G) such that/~(V~) = V~.o ) for all xE1 +. 
As fl(T(1)) is a C*-subalgebra of T(G) it is also Type I, and since it is , - i somorphic  
to T(I), so T(1) is Type I. But r a n k ( / )  = rank(G) - rank(F(G))  = n - 1, so by the 
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inductive hypothesis I is order isomorphic to Z n-1. Hence G = I*(Zy)  is order 
isomorphic to Z' .  This completes the induction. 

Now suppose conversely that G is order isomorphic to Z" and we shall show 
that T(G) is Type I. Since T(G) is *-isomorphic to T(zn) we may suppose that 
G = Z". We again prove the resu]t by induction on n, and note that it is trivially 
true when n = 0 or 1. Suppose then n > 1 and that T(Z m) is Type I for all m < n. 

Let x be the element of Z" which has all of its entries 0 except for the last one, 
which we assume to be 1. Then F(G) = Zx, and it follows, as in the proof of 
Theorem 2.2, that F T(G) = K (H 2 (G)). Since G = (Z "-1) �9 Z it is a consequence of 
Theorem 2.3, that T(G)/FT(G) is , - isomorphic to T(Z "-1) | C(T). By the induc- 
tive hypothesis T(Z "-~) is Type I, and therefore T ( Z " - t ) |  C(T) is Type I. Thus 
FT(G) and the quotient T(G)/FT(G) are Type I, and therefore so is T(G). This 
completes the induction and the proof. 

Since the 'best-behaved' C*-algebras are the Type I C*-algebras, it seems 
plausible that this case is a good starting point for the study of the index theory of 
Toeplitz operators, and this is what we examine in the next section. 

3 An index theorem 

For n _> 1 set T, = T(Z"), F, = FT(Z ~) and C, = C(Z ") = C(T"). From Sect. 2 we 
know that F, = K(H2(Z')) .  If x denotes the element of Z" with all entries zero 
except the last, which is 1, then F(Z") = Zx, and we have Z ~ = ( Z " - I ) * F ( Z ' ) .  
It follows from Theorem 2.3 that there is a unique , - isomorphism ~: 
T,/F, ---) T,_ 1 ~D C1 such that 

(*) fl(v(~,m) + V.) = V~| ( x , m ) e ( Z ' )  + 

We canonically identify C,_~ |  1 with C, by means of the unique 
,- isomorphism which maps ex | e,, to e(~,,,) for all (x, m) e Z ". 

Theorem 3.1 Let qo e C,_ 1 and ~ e C1. Then T~, | ~ is Fredholm if and only if Tr is 
invertible and ~ never vanishes on T. In this case the Fredholm index of T~ | ~ is equal 
to minus the winding number of ~h about the origin. 

Proof. It follows from equation (*i that 

f l ( r  . . . .  +F.)-- ~| (x,m)~Z". 

An elementary computation shows that if ~0 and ~ are trigonometric polynomials 
in C,_ 1 and C1 respectively then 

(**) fl(T~ | ~ + V.) = T~ | r  

(A trigonometric polynomial is a linear combination of the ~s). By density of the 
trigonometric polynomials in C,_ 1 and C1 we deduce that equation (**) holds for 
arbitrary cp e Cn- ~ and ~h e C1. 

It was shown in [6] that for any ordered group G the map 

C(G) -~ T(G)/KT(G), (p ~ T, + KT(G) ,  
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is a . - i somorph i sm.  Using  this, and the fact that  KT(Z")  conta ins  F,  = K(H2(K")) ,  
and using equa t ion  (**), we conclude that  for q~ e C,_ ~ and q, e Ca, the Toepl i tz  
ope ra to r  T~ | ~ is F r e d h o l m  if and only if T o is invert ible in T,_ a and  ~ is invert ible 
in Ca. (If  To| ~ + KT(Z")  is invertible,  then ~o and ~ are invertible,  and  if also 
T o |  is invertible,  then T o is invertible.) 

The  isometr ic  h o m o m o r p h i s m  

( Z " - b  + - .  T., x ~  Kx, o) , 

induces a unique . - h o m o m o r p h i s m  ~: T , -a  --, T, such that  ~(V~) = V~,o~ for all 
x e ( Z " - a )  +. Consequen t ly  c~(Tj  = T~,~o,(XeZ"-'), and  therefore since the ele- 
ments  e~ have closed l inear  span C,_~,  we get ~ ( T e ) =  T~| for all (peC, ,_ , .  
Hence if T~ is invertible,  so is Te | 1. 

N o w  let m e Z  + and set S = /'1 |  As S is an i sometry  ker(S) = 0. F r o m  the 
equa t ion  

{ e,(~,y_m i f ( x , y - m ) > 0  

S*(e (~ ,~ )=  0 i f x = O a n d y < m  

we have ker (S*)  = C~(o, o3 @3 Ce(o, 1) |  �9 ' | Ce(o,~_ 1~. Thus S is F r e d h o l m  of 
index - m. It is immedia te  from this that  

index(T,  Q ~,,,I) = - m 

for all m E Z. 
Recall  that  if m is the winding number  of a non-vanish ing  ~ e C,  then qJgm has 

a logar i thm in Ca, so O = ~m e~ for some ~9' e C1. Suppose  that  q~ e C,_  1 and that  
T, is invertible,  Then the function 

[0, 1] ~ Z, t ~--*index(T(o ~ ~,,e,~')) , 

is cont inuous  and therefore its range is a s ingleton set. Thus 

index(T  o | q,) = index(Tr | ~,,) . 

However  if m e Z  + then 8(O,m) eH~ and so by P ropos i t i on  3.3 of [6] we have 
T , , , ~  = T(o |  l ) ( l  |  ~ = T o |  a Ta | . Thus 

index(T~ | ~ ) = i ndex (T  o | i ) + index(T1 | ~ )  = - m , 

as T~ |  is invertible. We  thus have 

index (T o | r ) = - m 

if m e Z  +, and  it is immedia te  tha t  this formula  extends to all m e Z .  Hence 
index(To | 0) is equal  to - m, i.e. to minus the winding number  of 0 a b o u t  the 
origin. [] 

I t  follows f rom Theorem 3.1 that  if cp e C,_ a and qJ e C1 and 0 belongs nei ther  to 
the range of r nor  to the closed convex hull  of the range of cp then T o| 0 is 
F r e d h o l m  (use the fact that  a(To) ~_ hu l l a@)) .  

F o r  the case n = 2 we can sharpen our  result. Recall  that  if opeC,  then T o is 
invert ible  if and  only if T~ is F r e d h o l m  of index zero (see I-4] for example).  If  we use 
this and  the K r e i n - W i d o m - D e v i n a t z  Theorem,  we can reformula te  Theorem 3.1 as: 
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Theorem 3.2 I f  q~, ~k ~ C(T) then T~ | ~, is Fredholm if and only if qo, ~ never vanish on 
T and q) has winding number zero about the origin. In this case the Fredholm index of 
T~ | ~ is equal to minus the winding number of ~ about the origin. 
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