Holomorphic actions on contractible domains without fixed points

Marco Abate¹ and Peter Heinzner²

¹ Dipartimento di Matematica, Seconda Università di Roma, I-00133 Roma, Italy

² Ruhr Universität Bochum, Universitätsstrasse 150, W-4630 Bochum 1,

Federal Republic of Germany

Received August 28, 1991; in final form January 8, 1992

It is known that every continuous action of \mathbb{Z}_{p^n} (with p prime), or of a compact connected abelian Lie group, on a contractible manifold has a fixed point (see for instance $[B]$). In particular, this holds for holomorphic actions on contractible complex manifolds. On the other hand, there are examples of continuous actions of \mathbb{Z}_{pa} (with p, q relatively prime), and of any compact connected non-abelian Lie group, on an euclidean space of sufficiently high dimension without fixed points (see $[CF, K, CM, HH]$).

In this paper we shall give examples of *hdomorphic* (actually, complex linear) actions of these groups on bounded contractible pseudoconvex domains without fixed points, proving

Theorem 1 Let $G = \mathbb{Z}_{pq}$, with p, q relatively prime, or a compact connected non*abelian Lie group. Then there exists a bounded pseudoconvex taut contractible domain* $D \in \mathbb{C}^n$ where G acts linearly without fixed points.

This result is relevant, for instance, in iteration theory of holomorphic maps on taut manifolds. In [A] it was conjectured that given a holomorphic self-map $f \in Hol(X, X)$ of a contractible taut manifold X, the sequence of iterates of f is not compactly divergent iff f has a fixed point in X. Theorem 1 provides a counterexample to this conjecture: the map $f \in Aut(D)$ generating the \mathbb{Z}_{pa} -action is periodic **-** and thus its sequence of iterates is not compactly divergent - and fixed point free. So the results of $[A]$, showing that the sequence of iterates is not compactly divergent iff the map has a *periodic* point, are in general the best possible.

We start the proof of Theorem 1 recalling the construction of the topological examples. Let G denote either \mathbb{Z}_{pa} with $(p, q) = 1$ or a compact connected nonabelian Lie group. The main point in the construction of the topological examples is the

Proposition 2 *There exists an orthogonal representation* ψ : $G \rightarrow SO(m + 1)$ *without fixed points in* S^m *for some m admitting a continuous equivariant map* $f: S^m \to S^m$ *of degree O.*

The complete proof of this fact is in [CF] and [HH]; here we shall sketch the proof for $G = \mathbb{Z}_{na}$.

First of all, let us introduce a topological construction. Let X and Y be two topological spaces. The *join* $X * Y$ is the topological space obtained taking the quotient of $X \times Y \times I$ (where $I = [0, 1]$) with respect to the equivalence relation \sim generated by $(x, y_1, 0) \sim (x, y_2, 0)$ and $(x_1, y, 1) \sim (x_2, y, 1)$, for all $x, x_1, x_2 \in X$ and $y_1, y_2, y \in Y$. Roughly speaking, $X * Y$ is obtained taking a copy of X, a copy of Y , and attaching strings connecting any point of X to any point of Y . For instance, $S^p * S^q = S^{p+q+1}$; and explicit homeomorphism $\Phi: S^p * S^q \to S^{p+q+1}$ is given by

$$
\Phi([x, y, t]) = \left(\left(\cos \frac{\pi}{2} t \right) x, \left(\sin \frac{\pi}{2} t \right) y \right) \in \mathbb{R}^{(p+1)+(q+1)}, \tag{1}
$$

where $[x, y, t] \in S^p * S^q$ denotes the class of $(x, y, t) \in S^p \times S^q \times I$.

If X is a G_1 -space and Y a G_2 -space, then $X * Y$ is naturally a $G_1 \times G_2$ -space:

$$
(g_1, g_2) \cdot [x, y, t] = [g_1 \cdot x, g_2 \cdot y, t].
$$

Analogously, if $G_1 = G_2 = G$, then $X * Y$ is also a G-space. In particular, if G_1 acts linearly on S^p (i.e., the action is the restriction of an orthogonal linear action on \mathbb{R}^{p+1} and G_2 linearly on S^q , then $G_1 \times G_2$ acts linearly on S^{p+q+1} .

Take $G_1 = \mathbb{Z}_{p_1}$ and $G_2 = \mathbb{Z}_{p_2}$, with $p_1, p_2 \in \mathbb{N}$ relatively prime. Then G_i acts on $S^1 \subset \mathbb{C}$ by rotations: a generator ω_i of G_i acts by $\omega_i(z) = e^{i \pi i / P_i z}$. In this way we get a linear action of $G = G_1 \times G_2 = \mathbb{Z}_{p_1, p_2}$ on $S^1 * S^1 = S^3 \subset \mathbb{C}^2$, generated by

$$
T(z_1, z_2) = (e^{2\pi i/p_1}z_1, e^{2\pi i/p_2}z_2);
$$

this action has no fixed points on $S³$.

Now we describe a map $f: S^3 \to S^3$ G-equivariant of degree 0. Let $m_1, m_2 \in \mathbb{Z}$ be such that $m_1p_1 + m_2p_2 = -1$. Then define f by

$$
f([z_1, z_2, t]) = \begin{cases} [z_1^{m_1 p_1 + 1}, z_2, 3t] & \text{for } 0 \le t \le 1/3, \\ [z_1, z_2, 2 - 3t] & \text{for } 1/3 \le t \le 2/3, \\ [z_1, z_2^{m_2 p_2 + 1}, 3t - 2] & \text{for } 2/3 \le t \le 1. \end{cases}
$$

f is clearly continuous and G-equivariant, and it is not difficult to check that f has degree zero (see for instance [CF]). In particular, f is homotopic to a constant in S^3 .

Now let G again be general, i.e., either \mathbb{Z}_{pq} with $(p, q) = 1$ or compact connected non-abelian Lie. By Proposition 2, we can assume that G acts linearly on S^m without fixed points, and that there is a G-equivariant map $f: S^m \to S^m$ homotopic to a constant in S^m . Now, the *mapping cylinder* Y_0 of f is defined by

$$
Y_0 = \{ [x, f(x), t] | x \in S^m, t \in I \} \cup \{ [x, x, 1] | x \in S^m \} \subset S^m * S^m = S^{2m+1}
$$

Roughly speaking, Y_0 is obtained by taking two copies of S^m in $S^m * S^m$, the $top{\{x, x, 0\}}|x \in \overline{S}^m\}$ and the *bottom* ${\{x, x, 1\}}|x \in S^m\}$, and then attaching a string from each point in the top to its image via f in the bottom. Note that, under the identification (1) of $S^m * S^m$ with $S^{2m+1} \subset \mathbb{R}^{(m+1)+m+1}$, the top is the subset $\{(x, 0) \in S^{2m+1}\}\$ and the bottom is $\{(0, x) \in S^{2m+1}\}\$.

Holomorphic actions without fixed points 549

Since f is G-equivariant, the mapping cylinder Y_0 (as well as its top and its bottom) is invariant under the induced linear G-action on S^{2m+1} . Furthermore, Y_0 has two important topological properties:

(a) Y_0 can be retracted to its bottom: the homotopy $H: Y_0 \times I \to Y_0$ is given by

$$
H([x, y, t], s) = [x, y, (1 - t)s + t].
$$

(b) The top can be contracted to a point in Y_0 : if $H_1: S^m \times I \to S^m$ is the homotopy from f to a constant function, the homotopy we need is $\tilde{H}: S^m \times I \to Y_0$ given by

$$
\tilde{H}([x, x, 0], s) = \begin{cases} [x, f(x), 2s] & \text{for } 0 \le s \le 1/2, \\ [x, H_1(x, 2s - 1), 1] & \text{for } 1/2 \le s \le 1. \end{cases}
$$

Using this we can construct a contractible space where G acts without fixed points. Let ${Y_n}_{n \in \mathbb{N}}$ be a sequence of disjoint copies of Y_0 , and let Y be the space obtained by identifying the bottom of Y_n with the top of Y_{n+1} , for $n = 0, 1, \ldots Y$ has a natural structure of G-space, where G acts without fixed points. Furthermore, Y is contractible: let $\varphi: S^k \to Y$ be any continuous map. Then $\varphi(S^k)$ is contained in (the image of) the union of a finite number of Y_n 's, in $Y_0 \cup \ldots \cup Y_{n_0}$, say. Then, by (a), $\varphi(S^k)$ can be retracted to the bottom of Y_{n_0} and thus, by (b), to a point in Y_{n_0+1} . From this it follows that all the homotopy groups of Y vanish, and so Y is contractible (see [M, Theorem 7.5.4], for instance).

Now, the trick is that we can, more or less, equivariantly imbed Y in $\mathbb{R}^{2(m+1)}\setminus\{0\}$. First of all, let $\tau: \mathbb{R}^{2(m+1)}\to\mathbb{R}^{2(m+1)} = \mathbb{R}^{m+1}\times\mathbb{R}^{m+1}$ be given by $\tau(x_1, x_2) = (x_2, x_1)$, and let $Y'_0 = \tau(Y_0) \subset S^{2m+1}$. Clearly, the top of Y'_0 is the bottom of Y_0 , and conversely; moreover, Y_0 is G-invariant too. Now define Y_n , $Z_n \subset \mathbb{R}^{2(m+1)} \setminus \{0\}$ for $n \in \mathbb{N}$ by

$$
Y_n = \begin{cases} \frac{1}{n+1} Y_0 & \text{if } n \text{ is even },\\ \frac{1}{n+1} Y'_0 & \text{if } n \text{ is odd }; \end{cases}
$$

$$
Z_n = \begin{cases} \left\{ \left(0, \left[\frac{t}{n+1} + \frac{1-t}{n+2} \right] x \right) \middle| x \in S^{m+1}, t \in I \right\} & \text{if } n \text{ is even },\\ \left\{ \left(\left[\frac{t}{n+1} + \frac{1-t}{n+2} \right] x, 0 \right) \middle| x \in S^{m+1}, t \in I \right\} & \text{if } n \text{ is odd }, \end{cases}
$$
(2)

and set

$$
Y=\bigcup_{n=0}^{\infty} (Y_n\cup Z_n).
$$

Since Z_n connects linearly the bottom of Y_n to the top of Y_{n+1} , it is clear that Y is contractible, and G acts on Y without fixed points.

The main point now is that we can find an open contractible G-invariant neighbourhood Ω of Y (where G acts without fixed points) which can be (morally) retracted onto Y. If $G = \mathbb{Z}_{pq}$ there is no problem: the whole construction is symplicial, and so it suffices to take a regular neighbourhood of Y in $\mathbb{R}^{2(m+1)} \setminus \{0\}$. In the general case we need a slightly more refined construction (adapted from $[CM]$:

Lemma 3 *Let G be as usual. Then there exists a bounded contractible domain* $\Omega \in \mathbb{R}^{2(m+1)}$ where G acts orthogonally without fixed points.

Proof. Define $U_0 \subset S^m * S^m$ by

$$
U_0 = \{ [x, y, t] | x, y \in S^m, t \in I, ||y - f(x)|| < 1/16 \} \cup \{ [x, x, 1] | x \in S^m \},
$$

where $f: S^m \to S^m$ is the G-equivariant map provided by Proposition 2. Clearly, U_0 is a G-invariant set containing Y_0 ; moreover, (a) and (b) hold for U_0 too. In fact, for $x_0 \in S^m$ set

$$
C(x_0) = \{ [x_0, y, t] | y \in S^m, \| y - f(x_0) \| < 1/16, t \in I \},
$$
\n
$$
L(x_0) = \{ [x_0, y, 1] | y \in S^m, \| y - f(x_0) \| < 1/16 \},
$$
\n
$$
\tilde{L}(x_0) = \{ y \in S^m | \| y - f(x_0) \| < 1/16 \},
$$
\n
$$
\tilde{C}(x_0) = \{ sy \in \mathbb{R}^{m+1} | y \in \tilde{L}(x_0), s \in I \}.
$$

 $\tilde{C}(x_0)$ is a convex cone with vertex at the origin homeomorphic to $C(x_0)$. A homeomorphism $\alpha_{x_0}: C(x_0) \to \tilde{C}(x_0)$ is given by

$$
a_{x_0}([x_0, y, t]) = ty
$$
,

and sends $L(x_0)$ homeomorphically onto $\tilde{L}(x_0)$.

Since $\tilde{C}(x_0)$ is convex, we can define a homotopy \tilde{H}_{x_0} : $\tilde{C}(x_0) \times I \to \tilde{C}(x_0)$ by setting

$$
\widetilde{H}_{x_0}(z,s) = z + s(\sqrt{1 + \langle z, f(x_0) \rangle^2 - ||z||^2} - \langle z, f(x_0) \rangle) f(x_0),
$$

where $\langle \cdot, \cdot \rangle$ is the standard scalar product on \mathbb{R}^{m+1} . \tilde{H}_{x_0} is such that $\tilde{H}_{x_0}(z, 0) = z$ for all $z \in \tilde{C}(x_0)$, $\tilde{H}_{x_0}(y, s) = y$ for all $y \in \tilde{L}(x_0)$ and $s \in I$, $\tilde{H}_{x_0}(z, 1) \in \tilde{L}(x_0)$ for all $z \in C(x_0)$ and $H_{x_0}(0, 1) = f(x_0)$. Therefore the homotopy H_{x_0} : $C(x_0) \times I \to C(x_0)$ obtained by H_{x_0} via α_{x_0} yields a continuous deformation of $C(x_0)$ onto $L(x_0)$ sending $[x_0, x_0, 0]$ to $[x_0, f(x_0), 1]$.

Since U_0 is the union of all $C(x_0)$ as x_0 varies in S^m (and this union is disjoint outside the bottom), we get a homotopy $H: U_0 \times I \to U_0$ that can be used to prove (a) and (b) exactly as we did for Y_0 .

Now let $U'_0 = \tau(U_0)$, and define $U_n \subset \mathbb{R}^{2(m+1)} \setminus \{0\}$ for $n \in \mathbb{N}$ by

$$
U_n = \begin{cases} \frac{1}{n+1} U_0 & \text{if } n \text{ is even,} \\ \frac{1}{n+1} U_0' & \text{if } n \text{ is odd;} \end{cases}
$$

Then $K = \bigcup_n (U_n \cup Z_n)$ – where Z_n in defined as in (2) – is still a contractible subset of $\mathbb{R}^{2(m+1)}\backslash\{0\}$ where G acts without fixed points.

Our goal is to build a G-invariant neighbourhood Ω of K in $\mathbb{R}^{2(m+1)} \setminus \{0\}$ that can be continuously deformed onto K. Set

$$
W_0^{-1} = \left\{ (x, y) \in \mathbb{R}^{2(m+1)} \setminus \{ (0, 0) \} \middle| \frac{7}{8} < ||x|| < \frac{9}{8}, ||y|| < 1/16 \right\},\
$$

$$
W_0^1 = \left\{ \left(x \cos\left(\frac{\pi}{2}t\right), y \sin\left(\frac{\pi}{2}t\right) \right) \middle| \frac{7}{8} < ||x|| < \frac{9}{8}, ||\frac{y}{||y||} - f\left(\frac{x}{||x||}\right) \middle| < 1/16 \right\},\
$$

$$
W_0^2 = \left\{ (x, y) \in \mathbb{R}^{2(m+1)} \setminus \{ (0, 0) \} ||x|| < 1/16, \frac{7}{8} < ||y|| < \frac{9}{8} \right\},\
$$

and for all $n \in \mathbb{N}$

$$
W_n^1 = \begin{cases} \frac{1}{n+1} W_0^1 & \text{if } n \text{ is even,} \\ \frac{1}{n+1} \tau(W_0^1) & \text{if } n \text{ is odd;} \\ W_n^2 & \text{if } n \text{ is even,} \end{cases}
$$

$$
W_n^2 = \begin{cases} \frac{1}{n+1} W_0^2 & \text{if } n \text{ is even,} \\ \frac{1}{n+1} \tau(W_0^2) & \text{if } n \text{ is odd;} \end{cases}
$$

Finally, set

$$
\Omega = W_0^{-1} \cup \bigcup_{n=0}^{\infty} (W_n^1 \cup W_n^2).
$$

Clearly, Ω contains K and it is G-invariant; we must show that it is open and that it can be continuously deformed onto K .

To prove that Ω is open, it suffices to show that W_0^1 contains an open neighbourhood of each of its points with $t \neq 0$, 1. Take $z_0 = \left[x_0 \cos \left(\frac{1}{2} t_0\right)\right]$, $y_0 \sin \left(\frac{1}{2} t_0 \right)$ = W₀ with $t_0 \neq 0, 1$ (x₀, y₀ and t_0 are not uniquely determined, but any choice will do). Then there is $\varepsilon_0 > 0$ such that

$$
\left\| \frac{y_0}{\|y_0\|} - f\left(\frac{x_0}{\|x_0\|}\right) \right\| < \varepsilon_0 < 1/16 ;
$$

choose $\delta_0 > 0$ so that $\varepsilon_0 + 2\delta_0 < 1/16$. Now, there is $\delta_1 > 0$ such that

$$
\|y' - y_0\| < \delta_1 \Rightarrow \left\| \frac{y'}{\|y'\|} - \frac{y_0}{\|y_0\|} \right\| < \delta_0,
$$
\n
$$
\|x' - x_0\| < \delta_1 \Rightarrow \left\| f\left(\frac{x'}{\|x'\|}\right) - f\left(\frac{x_0}{\|x_0\|}\right) \right\| < \delta_0 \quad \text{and} \quad \frac{7}{8} < \|x'\| < \frac{9}{8};
$$

let $\delta = \min \{\delta_1 \sin \left(\frac{\pi}{2} t_0 \right), \delta_1 \cos \left(\frac{\pi}{2} t_0 \right) \}$. Then it is easy to check that ${z \in \mathbb{R}^{2(m+1)} \mid \|z - z_0\|_{\infty} < \delta}$ is contained in W_0^1 , where $\|\cdot\|_{\infty}$ is the sup norm of $\mathbb{R}^{m+1} \times \mathbb{R}^{m+1}$, as claimed.

Finally, we have to deform Ω onto K. First of all, we can continuously deform $W_0^{-1} \cup \bigcup_n W_n^2$ into $\bigcup_n (W_n^1 \cup Z_n)$ with maps of the kind $((x, y), s) \mapsto (x, sy)$ (actually, the set we get in this way is slightly larger than $\bigcup_n(W_n^1 \cup Z_n)$, but it can immediately be continuously deformed into the latter). Now, these maps send each $W_n^1 \cap W_n^2$ into itself: therefore we can patch them together so to get a continuous deformation of Ω into $\bigcup_n (W_n^1 \cup Z_n)$ which is the identity near points of W_n^1 with $1/3 \le t \le 2/3$.

By definition, it is clear that we can radially retract each W_n^1 onto its U_n . This yields the required continuous deformation of $\bigcup_n (W_n^1 \cup Z_n)$ onto K, which is the identity near the center of each Z_n .

Summing up, we have shown how to continuously deform Ω onto K; since K is contractible, Ω is too.

Note that, for $G = \mathbb{Z}_{pq}$ we have obtained a domain in \mathbb{R}^8 .

There is a theorem (see [MZ] and [S]) saying that $\Omega \times \mathbb{R}$ is homeomorphic to \mathbb{R}^{2m+3} , and so one gets a topological action (trivial on the second factor) of G on an euclidean space without fixed points. But we are interested in holemorphic actions, and so we proceed in another way.

We consider \mathbb{R}^n (where from now on $n = 2(m + 1)$) imbedded in \mathbb{C}^n as usual, and let $X = \Omega + i\mathbb{R}^n \subset \mathbb{C}^n$ be the tube over Ω . If we extend the action of G to \mathbb{C}^n by complex linearity, X is G-invariant, G has no fixed points in X and Ω is a Ginvariant totally real submanifold of X . Adapting an argument of [HW], we can find a G-invariant Stein neighbourhood $X_0 \subset X$ of Ω :

Lemma 4 *Let X be a complex manifold and G a compact (not necessarily connected) Lie group acting holomorphically on X. Let* φ_0 : $X \to [0, +\infty)$ *be a strictly plurisubharmonic G-invariant smooth function. Then* $\Omega = \varphi_0^{-1}(0)$ *admits a fundamental system of G-invariant Stein neighbourhoods in X.*

Proof. Let $\{C_{\mu}\}\$ be a covering of X by G-invariant open sets with $C_{\mu} \in C_{\mu+1}$. Set $U_0 = C_2$ and

$$
U_{\mu} = C_{2\mu+2} \sqrt{C_{2\mu-1}} \quad \text{for } \mu \geq 1.
$$

 ${U_u}$ is a locally finite covering of X by G-invariant open sets. Let ${\rho_u}$ be a G-invariant partition of unity subordinate to this covering, Then it is easy to find a sequence $\{r_{\mu}\}\subset \mathbb{R}^+$ of positive real numbers such that the function $\varepsilon: X\to \mathbb{R}$ given by

$$
\varepsilon(z) = \sum_{\mu} r_{\mu} \rho_{\mu}(z)
$$

vanishes at infinity and so that $\varphi_0 - \varepsilon$ is still strictly plurisubharmonic.

Let U be a given neighbourhood of Ω in X. Then we can choose the sequence ${r_u}$ so small that $\varphi_0 > \varepsilon$ on $X \setminus U$, so that

$$
\Omega_{\varepsilon} = \{ z \in X \, | \, \varphi_{0}(z) < \varepsilon(z) \}
$$

Holomorphic actions without fixed points 553

is contained in U. Since Ω_r is a G-invariant neighbourhood of Ω , it suffices to show that Ω_{ϵ} is Stein.

Let $\psi: \Omega_{\epsilon} \to \mathbb{R}$ be given by

$$
\psi=\frac{1}{\varepsilon-\varphi_0}.
$$

An easy computation shows that ψ is strictly plurisubharmonic on Ω_{ϵ} . For $r > 0$, the set

$$
D_r = \{ z \in \Omega_\varepsilon | \psi(z) < r \}
$$

is contained in $\{z \in X | \varepsilon(z) > r^{-1}\}$, which is relatively compact in X. Hence $D_r \in \Omega_r$, ψ is a strictly plurisubharmonic (G-invariant) exhaustion of Ω_{ϵ} and, by the solution of Levi's problem, Ω_{ϵ} is Stein. □

Let $z_i = x_i + iy_j$ be the coordinates in \mathbb{C}^n , and define $\varphi_0: X \to \mathbb{R}^+$ by

$$
\varphi_0(z) = \sum_{j=1}^n y_j^2 \; .
$$

Then $\Omega = \varphi_0^{-1}(0)$, and φ_0 is a G-invariant (G acts orthogonally!) strictly plurisubharmonic function. So Lemma 4 yields a G-invariant Stein neighbourhood $X_0 \subset X$ of Ω .

Since X_0 is a neighbourhood of Ω , we can find a G-invariant continuous function $h: \Omega \to \mathbb{R}^+$ such that

$$
x_1 = \{ z = x + iy \in X | \varphi_0(z) < h(x) \} \subset X_0 \; .
$$

Now we want a G-invariant smooth function $h_0: \Omega \to \mathbb{R}^+$ such that:

- (a) $h_0 \leq h$;
- (b) $h_0(x) \rightarrow 0$ as x goes to the boundary of Ω ;
- (c) $\rho = \varphi_0 h_0 \circ \pi$ is strictly plurisubharmonic, where $\pi: X \to \Omega$ is the projection $\pi(x + iy) = x.$

Then

$$
D = \{ z \in X | \rho(z) < 0 \} \subset X_1
$$

will be a G-invariant contractible (π is a retraction of deformation of D onto Ω) pseudoconvex bounded domain in \mathbb{C}^n , where G acts without fixed points. Furthermore, by the maximum principle D will also be taut, and so it will be the domain whose existence is stated in Theorem 1.

Since Ω is finite dimensional and paracompact, we can find a locally finite open covering $\mathcal{U} = \{U_{\alpha}\}_{{\alpha} \in A}$ of Ω such that $U_{\alpha} \in \Omega$ for all $\alpha \in A$, and there is $N > 0$ such that any point of Ω is contained in the closure of at most N elements of \mathcal{U} ; N is something like $2n + 1$. Now for every $\alpha \in A$ choose $\psi_{\alpha} \in C^{\infty}(\Omega)$ such that

(i)
$$
\text{supp}(\psi_{\alpha}) \subset \overline{U_{\alpha}};
$$

\n(ii) $0 \le \psi_{\alpha} \le c_{\alpha}$, where
\n
$$
c_{\alpha} = \frac{1}{N} \min \left\{ \min_{x \in \overline{U_{\alpha}}} h(x), \min_{x \in \overline{U_{\alpha}}} d(x, \partial \Omega) \right\};
$$

here $d(x, \partial\Omega)$ is the euclidean distance, and thus it is G-invariant; (iii) $\|\text{Hess}(\psi_{\alpha})_x\| < 1/N$ for all $x \in \Omega$.

Furthermore we can clearly assume

$$
\forall x \in \Omega \qquad \sum_{\alpha \in A} \psi_{\alpha}(x) > 0 \; .
$$

Then set

$$
h_0(x) = \int\limits_G \sum_{\alpha \in A} \psi_\alpha(g \cdot x) d\mu(g) ,
$$

where μ is the Haar measure of G. It is clear that h_0 is well-defined, and thus G-invariant and smooth, because $\mathscr U$ is locally finite. Now take $x \in \Omega$, and for $g \in G$ let $r(x, g)$ be the number of closure of elements of $\mathcal U$ containing $g \cdot x$; clearly, $r(x, g) \leq N$. Then

$$
h_0(x) = \int_{G} \sum_{\alpha \in A} \psi_{\alpha}(g \cdot x) d\mu(g) \leq \int_{G} \frac{1}{N} r(g, x) h(g \cdot x) d\mu(g)
$$

$$
\leq \int_{G} h(x) d\mu(g) = h(x),
$$

and (a) is proved (we have used the G-invariance of h). Analogously one proves

$$
h_0(x) \leq d(x, \partial \Omega) ,
$$

and so (b) follows.

We are left to show (c). It is easy to check that

Levi(
$$
\varphi_0
$$
)(v) = $\frac{1}{2} ||v||^2$,

and that

$$
\text{Levi}(h_0 \circ \pi)_z(v) = \frac{1}{4} \langle \text{Hess}(h_0)_x(v), v \rangle = \frac{1}{4} \int_{G} \sum_{\alpha \in A} \langle \text{Hess}(\psi_\alpha \circ g)_x(v), v \rangle d\mu(g) ,
$$

where \langle , \rangle is the standard hermitian product on \mathbb{C}^n , and the real matrix Hess(h_0)_x acts on \mathbb{C}^n by complex linearity.

Then for all $v \in \mathbb{C}^n$ with $||v|| = 1$ we have

$$
\begin{split} \text{Levi}(\varphi_{0} - h_{0} \circ \pi)_{z}(v) &= \frac{1}{2} - \frac{1}{4} \int_{G} \sum_{\alpha \in A} \left\langle \text{Hess}(\psi_{\alpha} \circ g)_{x}(v), v \right\rangle d\mu(g) \\ &= \frac{1}{2} - \frac{1}{4} \int_{G} \sum_{\alpha \in A} \left\langle \left\langle g \cdot \text{Hess}(\psi_{\alpha} \right\rangle_{g \cdot x} g(v), v \right\rangle d\mu(g) \\ &= \frac{1}{2} - \frac{1}{4} \int_{G} \sum_{\alpha \in A} \left\langle \text{Hess}(\psi_{\alpha} \right\rangle_{g \cdot x} g(v), g(v) \right\rangle d\mu(g) \\ &\geq \frac{1}{2} - \frac{1}{4} \int_{G} \sum_{\alpha \in A} \|\text{Hess}(\psi_{\alpha} \right)_{g \cdot x} \|\ \|g(v)\|^2 d\mu(g) \\ &\geq \frac{1}{2} - \frac{1}{4} \int_{G} \frac{r(g, x)}{N} d\mu(g) \\ &\geq \frac{1}{2} - \frac{1}{4} = \frac{1}{4} > 0 \;, \end{split}
$$

where we have used the fact that the action of G is orthogonal, and we are done.

Holomorphic actions without fixed points 555

References

- [A] Abate, M.: Iteration theory, compactly divergent sequences and commuting holomorphic maps. Ann. Sc. Norm. Super., Pisa, 18, 167-191 (1991)
- [B] Bredon, G.E.: Introduction to compact transformation groups. New York: Academic Press 1972
- [CF] Conner, P.E., Floyd, E.E.: On the construction of periodic maps without fixed points. Proc. Am. Math. Soc. 10, 354--360 (1959)
- [CM] Conner, P.E., Montgomery, D.: An example for SO(3). Proc. Natl. Acad. Sci. USA 48, 1918 1922 (1962)
- [HH] Hsiang, W.-C., Hsiang, W.-Y.: Differentiable actions of compact connected classical groups, I. Am. J. Math. 89, 705-786 (1967)
- [HW] Harvey, F.R., Wells, R.O.: Holomorphic approximation and hyperfunction theory on a $C¹$ totally real submanifold of a complex manifold. Math. Ann. 197, 287-318 (1972)
- [K] Kister, J.M.: Examples of periodic maps on euclidean spaces without fixed points. Bull. Am. Math. Soc. 67, 316-319 (1961)
- [M] Maunder, C.R.F.: Algebraic topology. New York: Van Nostrand 1970
- [MZ] McMillan, D.R., Zeeman, E.C.: On contractible open manifolds. Proc. Camb. Philos. Soc. 58, 221-224 (1962)
	- [S] Stallings, J.: The piecewise-linear structure of euclidean space. Proc. Camb. Philos. Soc. **58,** 481-488 (1962)