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It is known that every continuous action of Z . (with p prime), or of a compact
connected abelian Lie group, on a contractible manifold has a fixed point (see for
instance [B]). In particular, this holds for holomorphic actions on contractible
complex manifolds. On the other hand, there are examples of continuous actions of
Z,, (with p, g relatively prime), and of any compact connected non-abelian Lie
group, on an euclidean space of sufficiently high dimension without fixed points
(see [CF, K, CM, HH]).

In this paper we shall give examples of holomorphic (actually, complex linear)
actions of these groups on bounded contractible pseudoconvex domains without
fixed points, proving

Theorem 1 Let G = Z,,, with p, q relatively prime, or a compact connected non-
abelian Lie group. Then there exists a bounded pseudoconvex taut contractible
domain D€ C" where G acts linearly without fixed points.

This result is relevant, for instance, in iteration theory of holomorphic maps on
taut manifolds. In [A] it was conjectured that given a holomorphic self-map
fe Hol(X, X) of a contractible taut manifold X, the sequence of iterates of fis not
compactly divergent iff f has a fixed point in X. Theorem 1 provides a counter-
example to this conjecture: the map f € Aut(D) generating the Z ,,-action is periodic
— and thus its sequence of iterates is not compactly divergent — and fixed point free.
So the results of [A], showing that the sequence of iterates is not compactly
divergent iff the map has a periodic point, are in general the best possible.

We start the proof of Theorem 1 recalling the construction of the topological
examples. Let G denote either Z,, with (p, g) = 1 or a compact connected non-
abelian Lie group. The main point in the construction of the topological examples
is the

Propesition 2 There exists an orthogonal representation y: G — SO(m + 1) without
fixed points in S™ for some m admitting a continuous equivariant map f: 8™ — S™ of
degree 0.
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The compilete proof of this fact is in [CF] and [HH]; here we shall sketch the
proof for G = Z,,,.

First of all, let us introduce a topological construction. Let X and Y be two
topological spaces. The join X Y is the topological space obtained taking the
quotient of X x Y x [ (where [ = [0,1]) with respect to the equivalence relation
~ generated by (x, y1,0) ~ (x, y5,0)and (x;, y, 1) ~ (x5, y, ), forall x, x;, x,€ X
and y;, y5, vy € Y. Roughly speaking, X * Y is obtained taking a copy of X, a copy of
Y, and attaching strings connecting any point of X to any point of Y. For instance,
§7% 8% = §7*4*1; and explicit homeomorphism ®: S7xS?—> SP*9* 1 is given by

&([x, y, t]) = <<cos gt>x, (sin g t) y) g RPHUT@+) )

where [x, y, t] € SP+ 87 denotes the class of (x, y, 1} e SPx 89 x I.
If X is a Gy-space and Y a G,-space, then X = ¥ is naturally a G, x G,-space:

(91’92)'[x3y9 t] = [gl'X’QZ'.% t:] .

Analogously, if G, = G, = G, then X » Y is also a G-space. In particular, if G, acts
linearly on S? (i.e., the action is the restriction of an orthogonal linear action on
R?*!) and G, linearly on S9, then G, x G, acts linearly on SP*4%",

Take G = Z, and G, = Z,,, with p,, p, € N relatively prime. Then G; acts on
S' = € by rotations: a generator w; of G; acts by w;(z) = ¢*™/?:z. In this way we get
a linear action of G = G, xG, =2Z, , on S'«S' = §3 < C?, generated by

T(le 22) = (eZEi/pI 21 e27rifp222) >

this action has no fixed points on §°.
Now we describe a map f: §3 — $? G-equivariant of degree 0. Let m,, m, € Z be

such that myp; + myp, = — 1. Then define f by
[z7ar*1 z,, 31] for 0<t<1/3,
f([215227t]): [21’2272_3t] f0r 1/3§[§2/3,

[zy, 2021 3t —2] for 2/3<t<1 .

fis clearly continuous and G-equivariant, and it is not difficult to check that f has
degree zero (see for instance [CF]). In particular, fis homotopic to a constant in S>.

Now let G again be general, i.e, either Z,, with (p, g) = 1 or compact connected
non-abelian Lie. By Proposition 2, we can assume that G acts linearly on S™
without fixed points, and that there is a G-equivariant map f: $™ — S™ homotopic
to a constant in S Now, the mapping cylinder Y, of f is defined by

Yo={[x. f(x)t]|lxeS™tel}u{[xx 1]lxeS"} = S"sxS"=8§2""1,

Roughly speaking, Y, is obtained by taking two copies of §™ in S$™xS™, the
top{[x, x,0]|x € S™} and the bottom {[x, x, 1]|x € §™}, and then attaching a string
from each point in the top to its image via fin the bottom. Note that, under the
identification (1) of S™xS™ with §2m*! c R™*V*™* 1) the top is the subset
{(x,0)e §*™*1} and the bottom is {(0,x) e §?"*'}.
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Since f is G-equivariant, the mapping cylinder Y, {as well as its top and its
bottom) is invariant under the induced linear G-action on $*™*?*, Furthermore, ¥,
has two important topological properties:

(a) Y, can be retracted to its bottom: the homotopy H: Yo xI — Y, is given by

H([x, . t],s) =[x, 3, (L —t)s + ]

(b) The top can be contracted to a pointin Y,:if Hy: 8™ x I — §™ is the homotopy
from f to a constant function, the homotopy we need is H: S™ x 1 — Y, given
by

[x, f(x), 25] for 0s<1/2,

H([x, x,0],5) = {[x,Hl(x, 2s — 1),17 for 12<sZ 1.

Using this we can construct a contractible space where G acts without fixed points.
Let { ¥, },en be a sequence of disjoint copies of Y, and let ¥ be the space obtained
by identifying the bottom of Y, with the top of Y,.,, for n=0, 1,...Y has
a natural structure of G-space, where G acts without fixed points. Furthermore, Yis
contractible: let @: S* — Y be any continuous map. Then ¢(S*) is contained in (the
image of ) the union of a finite number of ¥,’s,in Yo w ... u Y, , say. Then, by (a),
®(S*) can be retracted to the bottom of Y, and thus, by (b), to a pointin ¥, +;.
From this it follows that all the homotopy groups of Y vanish, and so Y 1s
contractible (see [M, Theorem 7.5.47], for instance).

Now, the trick is that we can, more or less, equivariantly imbed Y in
R2m* 1\ (0}, First of all, let t: R2™* D 5 R2"*D = R™* 1 x R™"! be given by
(X1, X3) = (x5, x;), and let Y = 1(Y,) = S+, Clearly, the top of Yj is the
bottom of Y, and conversely; moreover, Yy is G-invariant too. Now define ¥,
Z, = R?2™* I\ {0} for ne N by

1 Yo i oni
P TS if nis even,
n+1°

Y, =

1
mYL) if nis odd;

t 1 —t
{(0,[4+ Jx) xeS"’“,teI} if nis even,
n+1 n+2

Z, = (2)

1 —t
! + x,0)|xeS" L tel; if nis odd,
n+1 n+2

and set

Y=

n

s

(Y, v Z,).

0

Since Z, connects linearly the bottom of Y, to the top of Y, .y, it is clear that Y'is
contractible, and G acts on Y without fixed points.

The main point now is that we can find an open contractible G-invariant
neighbourhood @ of Y (where G acts without fixed points) which can be (morally)
retracted onto Y. If G = Z,, there is no problem: the whole construction is
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symplicial, and so it suffices to take a regular neighbourhood of ¥ in R2™* 11\ {0},
In the general case we need a slightly more refined construction (adapted from
[CM]):

Lemma 3 Let G be as usual. Then there exists a bounded contractible domain
QeR?™* Y where G acts orthogonally without fixed points.

Proof. Define Uy, = §"xS™ by
Upg={[xv.6lx,yeS"tel, |y —fx)| <1/16} u{[x, x, ]|xeS™},

where f: §™ — 8™ is the G-equivariant map provided by Proposition 2. Clearly, U,
is a G-invariant set containing ¥,; moreover, (a) and (b) hold for U, too. In fact, for
Xo € 8™ set

Clxo) = {[x0, », ]Iy eS™ |y — flxo)| < 116,11},

L(xo) = {[x0, y, 11y € 8™ ||y — f(xo) || < 1/16} ,

Lixe) = {y e S™||ly — f(xo) | < 116},

C(xo) = {sye R"*' |y e [{xq),s€l} .

C(xo) is a convex cone with vertex at the origin homeomorphic to C(x,). A homeo-
morphism o, : C(xe) - C(x,) is given by

axo([Xm ¥: t]) = ty ’

and sends L(x,) homeomeorphically onto L(xo). . B
Since C(xo) is convex, we can define a homotopy H,: C(xq) x I = C(x,) by
setting

H.(2,8) =z + 5(/1 + <z, f(x0)>? — [ 2]|? = {2, (x0) D)/ (x0) ,

where { -+ is the standard scalar product on R™*?, ﬁxO is such that ﬁxo(z, 0)=z
for all ze C(xo), H, (y,s) =y for all ye L(x,) and se I, H, (z 1) L(x,) for all
ze C(x,) and ~1'7,60(0, 1) = f(xo). Therefore the homotopy H,: C(xo)x I — C(xg)
obtained by H,  via «,, yields a continuous deformation of C(x) onto L(xy)
Sending [x09 Xo5 0] to [Xo,f(XO), 1]

Since U, is the union of all C(x) as x, varies in ™ (and this union is disjoint
outside the bottom), we get a homotopy H: Uy x I — U, that can be used to prove
(a) and (b) exactly as we did for Y.

Now let Uy = t(Uy), and define U, = R*™* 1\ {0} for neN by

! Uy, ifni n
1l n is even ,
U, = .
———n+1U{, if nis odd;

Then K = U,,(U,, wZ,) — where Z, in defined as in (2) — is still a contractible
subset of R2™* D\ {0} where G acts without fixed points.
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Our goal is to build a G-invariant neighbourhood @ of K in R?™* N\ {0} that
can be continuously deformed onto K. Set

7 9
Wol= {(x, y e R2 0\ (0, 0)}1§< IxI <. lvl < 1/16},

=i <3 o)

7 9
w3 ={( ye IRZ"””’\{OO}IHXH<1’16A <yl <3 }

and for all ne N

Wi if nis even,

n+1
wlk=
1
n+1r(W3)) if nis odd;
1 , .
Ws if nis even,
n+ 1
Wk =

n+1r(W(2,) if nis odd;

Finally, set
Q=Wo'u ) Wiuw?),
n=0

Clearly, @2 contains K and it is G-invariant; we must show that it is open and that it
can be continuously deformed onto K.
To prove that Q is open, it suffices to show that W} contains an open

neighbourhood of each of its points with ¢ &+ 0, 1. Take z4 = (xo cos (g t0>,

Vosin gto e W§ with ty + 0, 1 (xo, yo and t, are not uniquely determined, but

any choice will do). Then there is ¢; > 0 such that

H < >“ < gy < 1/16;
Iyoll ~ \lxol

choose §, > 0 so that ¢ + 29, < 1/16. Now, there is d, > 0 such that

0>

t ¥ Yo
1y el

r_ = x - al
HX X0||<51 Hf<”x/“> f<IXQ1>

1y = yoll <é,=

7
< dy and §< x| <§;
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. . (n 4 L
let 6 = min<{d,sin Eto , 01COS Eto . Then it is easy to check that

{ze R*™*Dy|z — z, |, < &} is contained in W§, where || - ||  is the sup norm of
R™1xR™*! as claimed.

Finally, we have to deform Q onto K. First of all, we can continuously deform
WstoUaWiinto |, (W, U Z,) with maps of the kind ((x, y), s) — (x, sy) (actual-
ly, the set we get in this way is slightly larger than { (W, u Z,), but it can
immediately be continuously deformed into the latter). Now, these maps send each
Wi~ W2 into itself: therefore we can patch them together so to get a continuous
deformation of Q into [ J,(W, U Z,) which is the identity near points of W, with
1/3 =t <2/3.

By definition, it is clear that we can radially retract each W} onto its U,. This
yields the required continuous deformation of | J,(W, U Z,) onto K, which is the
identity near the center of each Z,,.

Summing up, we have shown how to continuously deform Q2 onto K; since K is
contractible, Q is too. O

Note that, for G = Z,, we have obtained a domain in IR®.

There is a theorem (see [MZ] and [S]) saying that Q2 x IR is homeomorphic to
IR?™*3 and so one gets a topological action (trivial on the second factor) of G on an
euclidean space without fixed points. But we are interested in holomorphic actions,
and so we proceed in another way.

We consider R” (where from now on # = 2(m + 1)) imbedded in €" as usual,
andlet X = Q@ + iR" « C" be the tube over Q. If we extend the action of G to C" by
complex linearity, X is G-invariant, G has no fixed points in X and Q is a G-
invariant totally real submanifold of X. Adapting an argument of [HW], we can
find a G-invariant Stein neighbourhood X, = X of Q:

Lemma 4 Let X be a complex manifold and G a compact (not necessarily connected)
Lie group acting holomorphically on X. Let ¢y: X — [0, + o0} be a strictly plurisub-
harmonic G-invariant smooth function. Then Q = ¢ '(0) admits a fundamental
system of G-invariant Stein neighbourhoods in X.

Proof. Let {C,} be a covering of X by G-invariant open sets with C,€C,+,. Set
Uy = Cz and

Uy=Cy42\Cayy foruz=t.

{U,} is a locally finite covering of X by G-invariant open sets. Let {p,} be
a G-invariant partition of unity subordinate to this covering. Then it is easy to find
a sequence {r,} = R™ of positive real numbers such that the function &: X - R

given by
g(z) = Z rupu(z)
“
vanishes at infinity and so that ¢, — ¢ is still strictly plurisubharmonic.

Let U be a given neighbourhood of 2 in X. Then we can choose the sequence
{r.} so small that o > & on X\ U, so that

Q. = {ze X]go(z) < 6(2)}
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is contained in U. Since €, is a G-invariant neighbourhood of ©, it suffices to show
that ©, is Stein.
Let y: Q, > R be given by

1
8”‘/’0'

An easy computation shows that s is strictly plurisubharmonic on ,. For r > 0,
the set

Y=

D.={zeQ,|¥(z)<r}

is contained in {z € X|¢(z) > r~ '}, which is relatively compact in X. Hence D,€£2,,
i 1s a strictly plurisubharmonic (G-invariant) exhaustion of . and, by the solution
of Levi’s problem, Q, is Stein. OJ

Let z; = x; 4 iy; be the coordinates in C", and define @o: X - R™ by
Pol@) = 2 ¥7 -
i=1

Then Q = ¢, '(0), and ¢, is a G-invariant (G acts orthogonally!) strictly plurisub-
harmonic function. So Lemma 4 yields a G-invariant Stein neighbourhood Xy < X
of Q.

Since X, is a neighbourhood of Q, we can find a G-invariant continuous
function h: 2 — R ™ such that

xy={z=x+iye Xigolz) < h(x)} = X, .
Now we want a G-invariant smooth function hy: 2 - R ™ such that:

@) ho < h;

(b) hg(x) > 0 as x goes to the boundary of Q;

(€) p = @q — hgem is strictly plurisubharmonic, where n: X — Q is the projection
(x + iy) = x.

Then
D={zeX|p(z) <0} = X,

will be a G-invariant contractible (r is a retraction of deformation of D onto Q)
pseudoconvex bounded domain in €*, where G acts without fixed points. Further-
more, by the maximum principle D will also be taut, and so it will be the domain
whose existence is stated in Theorem 1.

Since Q is finite dimensional and paracompact, we can find a locally finite open
covering % = {U,},c4 of Q such that U,€Q for all « € A, and there is N > 0 such
that any point of Q is contained in the closure of at most N elements of #; N is
something like 2n + 1. Now for every a € A choose ¥, € C*(Q) such that

(i) supp(y.) < U;
(i) 0 = ¢, < ¢y, Where

1
Cy= — min{ min A(x), min d(x, 8!2)} ;
N xel,  xeT,
here d(x, 0Q) is the euclidean distance, and thus it is G-invariant;
(i) || Hess(¥,) Il < 1/N for all x € Q.
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Furthermore we can clearly assume

Vx eQ Y Ya(x) >0

acd
Then set

hox)= [ Y ¥.lg-x)dulg),

G acd

where u is the Haar measure of G. It is clear that h is well-defined, and thus
G-invariant and smooth, because % is locally finite. Now take x€ 2, and forge G
let r(x,g) be the number of closure of elements of # containing g-x; clearly,
r{x,g) = N. Then

=[ ¥ Y.lg-x)dulg) éf r(g, x)h(g - x)du(g)
G acd G

< [ h(x)du(g) = h(x)
G

and (a) is proved (we have used the G-invariance of &). Analogously one proves
ho(x) < d(x, 0Q2)

and so (b) follows.
We are left to show (c). It is easy to check that

1
Levi(go)(v) =3 el?,
and that
Levi(hgom).(v) = ~<HCSS(ho) —I Y, {Hess(y,°g),(v), v>du(g)

G ac A
where ¢, > is the standard hermitian product on C*, and the real matrix Hess(hg ),
acts on C" by complex linearity.
Then for all v e €C* with |Jv] = 1 we have

1 1
Levi(¢pg — hoom),(v) = 5 Z‘[ Z {Hess(y, © g):(v), v> du(g)
G acA
1 1
5 ZJ‘ Z <g HCSS !//azgxg(v U>d,u( )
G 2€A4
1 1
=3 = 3l T (Hess(6)y-<00). 6(0)> dulg)
G 0€A
11
;E ZJ‘ Z ‘|Hess(¢1)g x“ ”g(v)nzdﬂ( )
G aeA
11 .r(gx)
2 > —Z£ du(g)
1 1 1
373727 %

where we have used the fact that the action of G is orthogonal, and we are done.
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