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It is known that every continuous action of 7Zp,, (with p prime), or of a compact 
connected abelian Lie group, on a contractible manifold has a fixed point (see for 
instance I-B]). In particular, this holds for holomorphic actions on contractible 
complex manifolds. On the other hand, there are examples of continuous actions of 
Zpq (with p, q relatively prime), and of any compact connected non-abelian Lie 
group, on an euclidean space of sufficiently high dimension without fixed points 
(see [CF, K, CM, HH]).  

In this paper we shall give examples of hdomorphic (actually, complex linear) 
actions of these groups on bounded contractible pseudoconvex domains without 
fixed points, proving 

T h e o r e m  1 Let  G = ~pq, with p, q relatively prime, or a compact connected non- 
abelian Lie group. Then there exists a bounded pseudoconvex taut contractible 
domain D ~ (12 ~ where G acts linearly without f i xed  points. 

This result is relevant, for instance, in iteration theory of holomorphic maps on 
taut manifolds. In [A] it was conjectured that given a holomorphic self-map 
f ~  Hol(X, X) of a contractible taut manifold X, the sequence of iterates of f i s  not 
compactly divergent iff f has a fixed point in X. Theorem 1 provides a counter- 
example to this conjecture: the m a p l e  Aut(D) generating the 2gpq-action is periodic 
- and thus its sequence of iterates is not compactly divergent - and fixed point free. 
So the results of l-A], showing that the sequence of iterates is not compactly 
divergent iff the map has a periodic point, are in general the best possible. 

We start the proof of Theorem 1 recalling the construction of the topological 
examples. Let G denote either 2gvq with (p, q) = 1 or a compact connected non- 
abelian Lie group. The main point in the construction of the topological examples 
is the 

P r o p o s i t i o n  2 There exists an orthogonal representation ~: G --* SO(m + 1) without 
f i xed  points in S m for  some m admitting a continuous equivariant map f :  S m ~ S m o f  
degree O. 
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The complete  proof  of this fact is in [CF]  and [ H H ] ;  here we shall sketch the 
proof  for G = Zpq. 

First of  all, let us introduce a topological  construction.  Let X and Y be two 
topological  spaces. The join X ,  Y is the topological  space obtained taking the 
quotient  of X x Yx  I (where I = [0, 1]) with respect to the equivalence relation 

generated by (x, Yl, 0) ~ (x, Y2, 0) and (xl,  y, 1) ~ (x2, y, 1), for all x, x l ,  x2 ~ X 
and Yl, Y2, Y E Y. Roughly  speaking, X �9 Yis obtained taking a copy of X, a copy of 
11, and at taching strings connecting any point  of X to any point  of Y. Fo r  instance, 
S p ,  S q =_ S p + q + 1; and explicit h o m e o m o r p h i s m  4~: S p ,  S q ~ S p + q + ~ is given by 

q ~ ( [ x , y , t ] ) =  c o s ~ t  x, s i n ~ t  y s (1) 

where [x, y, t] ~ S P ,  S q denotes the class of (x, y, t) E S o x S q x I. 
If  X is a Gl-space  and Y a Gz-space, then X ,  Y is natural ly a G~ x G:-space: 

( y l , g z ) ' [ x , y , t ] = [ y l " x ,  o z ' y , t ] .  

Analogously,  if G1 = G2 = G, then X �9 Yis also a G-space. In part icular,  if G1 acts 
linearly on S p (i.e,, the act ion is the restriction of an or thogona l  linear action on 
lR p+t) and G2 linearly on S q, then G1 x G2 acts linearly on S p+q+l. 

Take  G~ = 7/p, and G2 = ~ ,  with Pl ,  P2 ~ N relatively prime. Then Gj acts on 
S ~ ~ C by rotations: a generator  ~0 i of Gj acts by coi(z) = e2~/PJz. In this way we get 
a linear action of G = G1 x G2 = 7/p~p~ on S 1 , S  1 = S 3 c C z, generated by 

T(z l ,  zz)  = (e2~i/P'zl, eZ~'e2z2) ; 

this action has no fixed points  on S a. 
Now we describe a m a p  f :  S 3 --* S 3 G-equivariant  of degree 0. Let ml,  m2 e • be 

such tha t  mip l  + m2p2 = - 1. Then define f by 

f ( [ z l , z z ,  t]) = 
f [z~lP~+l, z2, 3t] 

[zl ,  z2, 2 - 3t] 
[z1, z~2p2+ 1, 3t - 2] 

for 0 _ < t <  1/3 ,  
for 1 / 3 _ < t _ < 2 / 3 ,  
for 2 / 3 _ < t <  1 . 

f i s  clearly cont inuous and G-equivariant,  and it is not  difficult to check t h a t f h a s  
degree zero (see for instance [CF]) .  In pa r t i cu la r , f  is homotop ic  to a constant  in S 3. 

N o w  let G again be general, i.e., either 7/pq with (p, q) = 1 or compac t  connected 
non-abel ian Lie. By Propos i t ion  2, we can assume that  G acts linearly on S '~ 
without fixed points, and that  there is a G-equivariant  m a p  f :  S ~' --, S"  homotop ic  
to a constant  in S". Now,  the mapping cylinder Yo of f is defined by 

1Io = { [ x , f ( x ) , t ] l x  e S " , t  e I }  w { [ x , x ,  1 ] l x e S  m} ~ S m , S  " = S  2"+1 

Roughly speaking, Y0 is obta ined by taking two copies of S m in Sin* S", the 
t op{ Ix ,  x, 0]]x e S m } and the bottom {[x, x, 1]Ix E S'~}, and then at taching a string 
f rom each point  in the top to its image via f i n  the bot tom.  Note  that, under  the 
identification (1) of S m , S  m with S z"+l  c IR ~m+1~+~+1), the top is the subset 
((x, 0) E S 2"+1 } and the bo t tom is {(0, x) e S 2"+ t}. 
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Since f is G-equivariant,  the mapping  cylinder Yo {as well as its top and its 
bo t tom)  is invariant  under the induced linear G-action on S 2m+ 1. Fur thermore ,  Yo 
has two impor tan t  topological  properties: 

(a) 11o can be retracted to its bot tom:  the h o m o t o p y  H:  Yo x I - - ,  Yo is given by 

H([x,  y, t], s) = [x, y, (l -- t)s + t]. 

(b) The top can be contracted to a point  in Y0: if H i :  S ~ x I ---, S m is the h o m o t o p y  
from f to a constant  function, the h o m o t o p y  we need i s /4 :  S"  x I ~ Yo given 
by 

~[x , f (x ) ,  2s] for 0 _< s _< 1/2,  g([x, X, 0],  S) N 

( [x ,  Hl (x ,  2 s -  1),1] for 1/2 <_s<<_ 1. 

Using this we can construct  a contractible space where G acts without fixed points. 
Let { Y,,},~ be a sequence of disjoint copies of  Yo, and let Ybe  the space obtained 
by identifying the bo t tom of Yn with the top of Y,+I ,  for n = 0, 1 . . . .  g has 
a na tura l  structure of G-space, where G acts wi thout  fixed points. Fur thermore ,  Y is 
contractible: let ~o: S k --, Y be any cont inuous map.  Then q~(S k) is contained in (the 
image of) the union of a finite number  of Y~'s, in go t~ . . .  • 11,o, say. Then, by (a), 
cp(S k) can be retracted to the bo t t om of I1,o and thus, by (b), to a point  in Y,o+I. 
F r o m  this it follows that  all the h o m o t o p y  groups of Y vanish, and so Y is 
contractible (see [M, Theorem 7.5.4], for instance). 

Now,  the trick is that  we can, more  or less, equivariant ly imbed Y in 
IR2(m+ l) \  {0}. First of all, let ~: ~2(m+11--+ ]e2(m+l) = IN m+l xlR m+t be given by 
r ( x l , x 2 )  = (x2, xl),  and let Y; = r ( Y o ) c  S 2~+I. Clearly, the top of Y; is the 
bo t tom of Yo, and conversely; moreover ,  Y; is G-invariant  too. Now define Y,, 
Z ,  ~ IR2(~+1)\{0} for n e N by 

1 r"={ 275r~ 

and set 

if n is even ,  

if n is odd ; 

Z n --~ 

if n is even ,  

if n is o d d ,  

(2) 

Y =  ~) ( Y n t ~ Z , ) .  
n=0 

Since Z ,  connects linearly the bo t t om of Y. to the top of Y, + 1, it is clear that  Y is 
contractible,  and G acts on Y without  fixed points. 

The main point  now is that  we can find an open contractible G-invariant  
ne ighbourhood  ~ of Y (where G acts without  fixed points) which can be (morally) 
retracted onto Y. If G = 2g;q there is no problem: the whole construct ion is 
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symplicial, and so it suffices to take a regular ne ighbourhood of Y in 11t 2 (~ +~t\ {0}. 
In the general case we need a slightly more refined construct ion (adapted from 
[CM]) :  

Lemma 3 Let  G be as usual. Then there exists a bounded contractible domain 
~,'~ I~2(m+ 1) where G acts orthogonally without f ixed  points. 

Proof. Define Uo c Sin* S" by 

No -~ {Ix,  y, t]lx, y E S '~, t e I, I l y - f ( x l l l  < 1/16} w {Ix, x, 1]Ix u s  ~} , 

where f :  S"  ~ S ~' is the G-equivariant map  provided by Proposi t ion 2. Clearly, Uo 
is a G-invariant set containing Y0; moreover,  (a) and (b) hold for Uo too. In fact, for 
Xo ~ S m set 

C(xo) = { [x0 ,y ,  t ] p y ~ S " ,  IlY - f ( x o ) H  < 1/16, t e I } ,  

L(xo)  = {[xo ,  y, 1 ] l y e  S '~, I IY- f (xo) l l  < 1/16} , 

/2(xo) = {y ~Smllly - f ( x o ) t [  < 1/16} , 

C(xo) = {sy s N~+ ~r y e L(xo), s e I}  . 

C(xo) is a convex cone with vertex at the origin homeomorphic  to C(xo). A homeo- 
morphism ~o:  C(xo) --* C(xo) is given by 

a~o([x o, y, t])  = ty , 

and sends L(xo) homeomerphica l ly  onto /~(Xo). 
Since C(xo) is convex, we can define a homotopy  /~o:  C(xo) x I --, C(x0) by 

setting 

t~xo(Z, s) = z + s(.v/1 + ( z , f ( x o )  ) 2 - [[z][ 2 - ( z , f ( x o )  ) ) f (xo)  , 

where ( "," ) is the s tandard scalar product  on IR m+ 1. tq~o is such that H~o(z, 0) = z 

for all z ~ C(xo), /q~o(y, s) = y for all y E/2(x0) and s ~ 1,/4~o(Z, 1) e/2(xo) for all 
z ~ C(xo) and ffxo(0, 1) = f (xo ) .  Therefore the homotopy  Hxo: C(xo) x I ~ C(xo) 
obtained by H~o via :~xo yields a cont inuous deformation of C(xo) onto L(xo)  
sending [Xo, Xo, 0] to [xo , f (xo) ,  l].  

Since Uo is the union of all C(xo) as Xo varies in S m (and this union is disjoint 
outside the bottom), we get a homotopy  H : Uo x I ~ Uo that can be used to prove 
(a) and (b) exactly as we did for Yo. 

Now let U~ = ~(Uo), and define U. = 1R2("+1/\{0} for n ~ N  by 

I n ' U ~  if n is even ,  

U, 

t k n ~ l  Ub if n is o d d ;  

Then K = U , (U ,  ~ Z, )  - where Z ,  in defined as in (2) - is still a contractible 
subset of IRz("+I)\{0} where G acts without fixed points. 
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Our goal is to build a G-invariant neighbourhood Q of K in IR 2(m+ 1)\ {0} that 
can be continuously deformed onto K. Set 

W o  1 =  (x, y) ~ lR2"+l) \{(0 ,  0)} w  , 

W0 ~ { (x  cos ( 2  t) ,  y sin ( 2 ) )  7 9 y - f ( [ ~ x - - )  } -- t g < l l x l l < ~ ,  [ ~  < 1 / 1 6  , 

W 2= (x,y) elR2("+a)\{(O,O)}lllxll<l/16,~< y L l < g  , 

and for all n e N 

1 W 1 if n is even 
n + l  

W.~= 
1 

n ~ Z ( W  1) if n is odd ;  

Finally, set 

1 
W, z = I n ~  W2 if n is even, 

1 
n + ~ z ( W ~  2) if n is odd ;  

n=0 

Clearly, O contains K and it is G-invariant; we must show that it is open and that it 
can be continuously deformed onto K. 

To prove that f~ is open, it suffices to show that W~ contains an open 

neighbourhood of each of its points with t + 0, 1. Take Zo = xocos ~ to , 

yosln ~ to e Wo ~ with to + 0, 1 (Xo, Yo and to are not uniquely determined, but 

any choice will do). Then there is % > 0 such that 

- < eo  < 1 / 1 6  ; 

choose go > 0 so that eo + 26o < 1/16. Now, there is gl > 0 such that 

II y' yo < go, II y' - yo II < gl =~ y' II [I yo II 

I I x ' - x o l l < g l  f - f  <go  and g < l l x ' l l <  8, 
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let 6 m i n { 6 1 s i n ( 2  ) ( 2 ) }  = to ,61cos  to . Then it is easy to check that  

{Z ~ IRa(re+a) I flz - Zo II ~ < 6} is contained in W01, where I']1 ~ is the sup norm of 
IR m+l x IR re+l, as claimed. 

Finally, we have to deform O onto K. First of all, we can cont inuously deform 
W o  1 w ~ ,  W 2 into ~ , ( W ,  ~ w Z, )  with maps  of the kind fix, y), sl ~-+ (x, sy) (actual- 
ly, the set we get in this way is slightly larger than U,(W,* w Z,),  but it can 
immediately  be cont inuously deformed into the latter). Now,  these maps  send each 
W, ~ c~ W, 2 into itself: therefore we can patch them together  so to get a cont inuous 
deformat ion  of f2 into ~ , ( W ,  ~ ~o Z , )  which is the identity near  points of W~ with 
1/3 < t _< 2/3. 

By definition, it is clear that  we can radially retract  each W, ~ onto its U,. This 
yields the required cont inuous deformat ion  of ~J.(W2 w Z , )  onto K, which is the 
identity near  the center of each Z, .  

Summing up, we have shown how to cont inuously  deform f2 onto  K; since K is 
contractible,  f2 is too. [] 

Note  that,  for G = 7/pq we have obtained a domain  in IR 8. 
There is a theorem (see I-MZ] and [S]) saying that  f2 x F, is homeomorph ic  to 

N2~+ 3, and so one gets a topological  action (trivial on the second factor) of G on an 
euclidean space without  fixed points. But we are interested in ho lemorph ic  actions, 
and so we proceed in another  way. 

We consider IR" (where f rom now on n = 2(m + 1)) imbedded in ~"  as usual, 
and let X = f2 + ilR" c C" be the tube over  f2. If  we extend the action of G to ~"  by 
complex linearity, X is G-invariant,  G has no fixed points in X and /2 is a G- 
invariant  totally real submanifold  of X. Adapt ing an argument  of [ H W ] ,  we can 
find a G-invariant  Stein ne ighbourhood  X0 c X of O: 

L e m m a  4 Let X be a complex manifold and G a compact (no~ necessarily connected) 
Lie group acting holomorphically on X. Let ~P0: X -* [0, + ~o ) be a strictly plurisub- 
harmonic G-invariant smooth function. Then f2= 0o1(0) admits a J~mdamental 
system of G-invariant Stein neighbourhoods in X. 

Proof Let {C u } be a covering of X by G-invariant  open sets with C,  ~ C,  + 1. Set 
U0 = C2 and 

U u=C2.+2\C2. -1  f o r # > l .  

{U,} is a locally finite covering of X by G-invariant  open sets. Let {p,} be 
a G-invariant  part i t ion of unity subordina te  to this covering, Then it is easy to find 
a sequence {r,} ~ IR + of positive real numbers  such that the function e: X--+ IR 
given by 

~(z) = Z r.o.(z) 
,u 

vanishes at infinity and so that  00 - e is still strictly plur isubharmonic .  
Let U be a given ne ighbourhood  of O in X. Then we can choose the sequence 

{r, } so small that  0o > e on X \ U, so that  

~ = {z ~ Xroo(z)  < 8(z)} 
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is contained in U. Since D~ is a G-invariant  ne ighbourhood  of D, it suffices to show 
that  D, is Stein. 

Let 0:  g2~ -+ IR be given by 

1 
0 -  

a- (Po 

An easy computa t ion  shows that  ~ is strictly p lur isubharmonic  on O~. For  r > 0, 
the set 

Dr = {z e o+lO(z) < r} 

is contained in {z e X le(z) > r -  ~ }, which is relatively compac t  in X. Hence Dr~ O~, 
q* is a strictly p lur isubharmonic  (G-invariant) exhaust ion of D~ and, by the solution 
of Levi's problem, O~ is Stein. 

Let zj = x~ + iyj be the coordinates  in C", and define ~0o: X --+ IR + by 

+po(Z) = Z y+ . /  ' 

j = l  

Then D = ~0o 1(0), and ~0o is a G-invariant  (G acts or thogonal ly!)  strictly plurisub- 
harmonic  function. So L e m m a  4 yields a G-invariant  Stein ne ighbourhood  Xo c X 
of D. 

Since Xo is a ne ighbourhood  of D, we can find a G-invariant  cont inuous 
function h: 12--) IR + such that  

xl  = {z = x + i y e  Xlqoo(Z) < h(x)} c Xo �9 

N o w  we want  a G-invariant  smooth  function ho: fl -+ IR + such that: 

(a) ho < h; 
(b) ho(x) --) 0 as x goes to the boundary  of D; 
(c) p = cp0 - ho o ~ is strictly p lur isubharmonic ,  where rr: X --* Q is the projection 

rc(x + iy) = x. 

Then 
D = {ze  Xkp(z) < 0} ~ x~ 

will be a G-invariant  contractible (~ is a retraction of deformat ion  of D onto f2) 
pseudoconvex bounded  domain  in ~;", where G acts without  fixed points. Further-  
more,  by the m a x i m u m  principle D will also be taut, and so it will be the domain  
whose existence is stated in Theorem 1. 

Since g2 is finite dimensional  and paracompact ,  we can find a locally finite open 
covering q / =  {U~}~A of D such that  U~D for all :~ e A, and there is N > 0 such 
that  any point  of ~2 is contained in the closure of at most  N elements of og; N is 
something  like 2n + 1. N o w  for every c~ e A choose ~ e C~(D)  such that  

(i) supp(0~) c U,; 
(ii) 0 __< ~ < G, where 

- --1 min { min h(x), min d(x, (~Q)} ", 
c~ N xec, o xec,, 

here d(x, ~?D) is the euclidean distance, and thus it is G-invariant;  
(iii) I/ Hess (O,), lt < I / N  for all x e D .  
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Fur thermore  we can clearly assume 

Vx e 0 ~ (J=(x) > 0. 
ct~A 

T h e n  set 

ho(x} = ~ ~ (G(g'?c)dv(g), 
G a ~ A  

where # is the Haa r  measure of G. It is clear that  h0 is well-defined, and thus 
G-invariant and smooth,  because ~' is locally finite. Now take x E f2, and for g E G 
let r(x, g) be the number  of closure of elements of ~# containing g'x; clearly, 
r(x, g) < N. Then 

1 
ho(x) = ~ ~ O~(g'x)dl~(g) <= f ~r(g,x)h(g'x)d#(g) 

G a E A  

__< f h (x) d#(g) = h(x) ,  
G 

and (a) is proved (we have used the G-invariance of h). Analogously  one proves 

ho(x) < d(x, ~0) , 

and so (b) follows. 
We are left to show (c). It Js easy to check that  

1 
Levi(cpo)(V) = ~ II~' PI 2 , 

and that 

Levi(ho o 7c)~(v) = ~ (Hess(ho)~(v), v) = 4G ~A ~ (Hess(0~ ~ g)~(v), v)d#(g) , 

where ( , )  is the s tandard hermitian product  on flY, and the real matrix Hess(ho)x 
acts on C" by complex linearity. 

Then for all v e ~" with JJ v [1 = 1 we have 

Levi(cpo - ho o n)=(v) . . . .  

where we have used the fact 

1 1 
J" Z (Hess(C,~og)x(~), ~>d~(g) 

2 4 G ~ E A  

1 ! 
- ~ 4S ~, (tg'Hess(~k,)g.~g(v), v)d#(g) 

~EA 

- 2  4~ ~AZ (Hess(O~)~.xg(v),g(v))d#(g) 

1 1 
=> -2 - -4 ! ~a z JI Hess(~,~)g.x II IF g(v)[[ 2 d/ t (g )  

1 1 ~ r ( g , x ) ,  ~ , 

- 2  >- - - -  4 - j ~ al2(g) 

1 1 1 
> . . . . .  > 0 ,  
= 2  4 4 

that the act ion of G is orthogonal ,  and we are done. 
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