Approximation and cohomology vanishing properties of low-dimensional compact sets in a Stein manifold

Guido Lupacciolu

Dipartimento di Matematica, Università degli Studi di Roma "La Sapienza", Piazzale Aldo Moro 2, I-00185 Roma, Italy

Received February 25, 1991; in final form October 15, 1991

1 Introduction

Let Λ^{α} denote the α -dimensional Hausdorff measure in \mathbb{C}^N , $N \ge 2$, computed with respect to the Euclidean distance function. It is known that a compact set $K \subset \mathbb{C}^N$ such that $\Lambda^1(K) = 0$ is polynomially convex. Indeed its projections $\pi_j(K)$, $j = 1, \ldots, N$ into the coordinate complex axes are totally disconnected and hence $P(\pi_j(K)) = C(\pi_j(K))$; then it follows readily that also P(K) = C(K), which implies the polynomial convexity of K. It is also known that a compact set $K \subset \mathbb{C}^N$ such that $\Lambda^2(K) = 0$ is a Stein compactum. Indeed its projections $\pi_j(K)$ have zero planar measure and hence, by the Hartogs-Rosenthal theorem (see [6]), $R(\pi_j(K)) = C(\pi_j(K))$; then also R(K) = C(K), which implies that K is rationally convex and so it is a Stein compactum.

These results extend in a straightforward manner to the setting of a Stein manifold M of complex dimension $n \ge 2$, for which Λ^{α} denotes the α -dimensional Hausdorff measure computed with respect to an arbitrary distance function compatible with the topology of M. Namely, a compact set $K \subset M$ such that $\Lambda^1(K) = 0$ is $\mathcal{O}(M)$ -convex, whereas a compact set $K \subset M$ such that $\Lambda^2(K) = 0$ is a Stein compactum. This follows from the above mentioned results in \mathbb{C}^N via the Remmert imbedding theorem of M into \mathbb{C}^{2n+1} .

That being stated, it seems natural to raise the following question: What conclusions of a parallel kind can be drawn with regard to a compact set $K \subset M$ such that $\Lambda^{\alpha}(K) = 0$ for some integer α with $1 \leq \alpha \leq 2n - 2$?

The present paper is intended to partially answer this question by proving the following two theorems:

Theorem 1 A compact set $K \subset M$ such that $A^{2n-3}(K) = 0$ has the following approximation property: For every coherent analytic sheaf \mathscr{S} on M the restriction map $H^{n-2}(M; \mathscr{S}) \to H^{n-2}(K; \mathscr{S})$ has dense image.

Moreover a compact set $K \subset M$ such that $A^{2n-2}(K) = 0$ has a neighbourhood basis \mathscr{U} of open sets such that $H^{n-1}(U; \mathscr{S}) = 0$ for every $U \in \mathscr{U}$ and every coherent analytic sheaf \mathscr{S} on M.

Theorem 2 Let q be an integer with $0 \le q \le n-2$ and set $\tilde{q} = n - \left[\frac{n}{q+1}\right]$. A compact set $K \subset M$ such that $\Lambda^{2q+1}(K) = 0$ is \tilde{q} -convex in M and a compact set $K \subset M$ such that $\Lambda^{2q+2}(K) = 0$ has a neighbourhood basis of \tilde{q} -complete open sets.

Here " \tilde{q} -convex in M" means the following property: For every open neighbourhood ω of K one can find a C^{∞} strongly \tilde{q} -plurisubharmonic proper function $u: M \to \mathbb{R}$ such that $K \subset M_0(u) = \{z \in M | u(z) < 0\} \in \omega$. Such terminology agrees with that of [8]. By the Andreotti-Grauert approximation theorem [1, Theorem 12], for every coherent analytic sheaf \mathscr{S} on M the restriction map $H^{\tilde{q}}(M; \mathscr{S}) \to H^{\tilde{q}}(M_0(u); \mathscr{S})$ has dense image. Therefore an inductive limit consideration gives the following corollary of Theorem 2:

Corollary 1 A compact set $K \subset M$ such that $A^{2q+1}(K) = 0$ has the following approximation property: For every coherent analytic sheaf \mathscr{S} on M the restriction map $H^{\tilde{q}}(M; \mathscr{S}) \to H^{\tilde{q}}(K; \mathscr{S})$ has dense image $(0 \leq q \leq n-2)$.

Moreover a compact set $K \subset M$ such that $\overline{\Lambda^{2q+2}(K)} = 0$ has a neighbourhood basis \mathscr{U} of open sets such that $H^j(U; \mathscr{S}) = 0$, $j > \tilde{q}$, for every $U \in \mathscr{U}$ and every coherent analytic sheaf \mathscr{S} on M ($0 \leq q \leq n-2$).

Some comments are in order.

(I.1) For n = 2 the second statement of Theorem 1 is equivalent to saying that K is a Stein compactum, provided $\Lambda^2(K) = 0$. It follows that for n = 2 the first statement of Theorem 1 is equivalent to saying that K is $\mathcal{O}(M)$ -convex, provided $\Lambda^1(K) = 0.^1$ Hence for n = 2 Theorem 1 reduces to state the above mentioned known facts. The same is true of Theorem 2, since for n = 2 the only possibility is q = 0, hence $\tilde{q} = 0$ too, and it is known that convexity with respect to 0-plurisubharmonic functions is equivalent to $\mathcal{O}(M)$ -convexity and 0-completeness is equivalent to being Stein.

(I.2) As *M* is Stein, $H^{j}(M; \mathscr{S}) = 0$, $j \ge 1$, for every coherent analytic sheaf \mathscr{S} on *M*; hence for $n \ge 3$ the first statements of Theorem 1 and Corollary 1 are equivalent to saying that the separated spaces ${}^{\sigma}H^{n-2}(K; \mathscr{S}), {}^{\sigma}H^{\tilde{q}}(K; \mathscr{S})$ associated with $H^{n-2}(K; \mathscr{S}), H^{\tilde{q}}(K; \mathscr{S})^{2}$ are null provided $\Lambda^{2n-3}(K) = 0, q \ge 1$ and $\Lambda^{2q+1}(K) = 0$, respectively.

(1.3) Theorem 2 and Corollary 1 are meaningful only for q such that $\tilde{q} \leq n-2$, i.e. for $0 \leq q \leq \left\lfloor \frac{n-2}{2} \right\rfloor$. Indeed they do not give any informations when $\tilde{q} \geq n-1$, since every co-connected compact subset of M is (n-1)-convex in M (see [8, Theorem 2]) and every compact subset of M has a neighbourhood basis of (n-1)-complete open sets.³ Therefore for $n \geq 3$ Theorem 1 provides informations

¹ We recall that a compact set $K \subset M$ is $\mathcal{O}(M)$ -convex if and only if is a Stein compactum and the restriction map $\Gamma(M; \mathscr{S}) \to \Gamma(K; \mathscr{S})$ has dense image for every coherent analytic sheaf \mathscr{S} on M² We recall that, given a topological vector space V, the separated space ${}^{\sigma}V$ associated with V is the quotient of V modulo the closure of the zero-element

³ We recall that every complex manifold of dimension *n* with no compact connected components is (n - 1)-complete (see [7])

independent of Corollary 1 with regard to any compact set $K \subset M$ with $\Lambda^{2q+1}(K) = 0$ or $\Lambda^{2q+2}(K) = 0$ for some integer q such that $\left[\frac{n-2}{2}\right] + 1 \leq q$ $\leq n-2$. We shall see (Sect. V) that such informations are in general optimal for q = n-2, as far as approximation and cohomology vanishing properties are concerned; however we do not know how to decide whether for $n \geq 4$ and $\left[\frac{n-2}{2}\right] \leq q \leq n-3$ it is possible or not to obtain any sharper informations.

We wish to mention two corollaries of Theorem 1.

Corollary 2 A compact set $K \subset M$ such that $\Lambda^{2n-3}(K) = 0$ has the following approximation property: Every $C^{\infty} \overline{\partial}$ -closed (p, n-2)-form defined on a neighbourhood of K can be approximated uniformly on K together with all derivatives of the coefficients by $C^{\infty} \overline{\partial}$ -closed (p, n-2)-forms defined on the whole M $(0 \leq p \leq n)$.

coefficients by $C^{\infty}\overline{\partial}$ -closed (p, n-2)-forms defined on the whole M $(0 \leq p \leq n)$. Moreover a compact set $K \subset M$ such that $\Lambda^{2n-2}(K) = 0$ verifies $H^{p,n-1}_{\overline{\partial}}(K) = 0$ $(0 \leq p \leq n)$.

Corollary 3 Let $D \in M$ be an open domain and K a proper closed subset of bD in such a way that $bD \setminus K$ is C^1 -smooth. Then:

(a) If $\Lambda^{2n-3}(K) = 0$ and bD is connected, every continuous CR-function f on $bD\setminus K$ has a continuous extension F to $\overline{D}\setminus K$ which is holomorphic on D; (b) If $\Lambda^{2n-2}(K) = 0$ and f is a continuous CR-function on $bD\setminus K$ that satisfies

(b) If $\Lambda^{2n-2}(K) = 0$ and f is a continuous CR-function on $bD\setminus K$ that satisfies the moment condition

$$\int_{bD\setminus K} f\alpha = 0 ,$$

for every $C^{\infty}\overline{\partial}$ -closed (n, n-1)-form α defined on a neighbourhood of \overline{D} , such that $(\operatorname{supp}\alpha) \cap K = \emptyset$, then f has a continuous extension F to $\overline{D} \setminus K$ which is holomorphic on D.

Corollary 2 follows straightforwardly from Theorem 1 by applying the Dolbeault isomorphisms, since it is known that these isomorphisms are not only algebraic, but topological as well.

Corollary 3 is in turn a consequence of Corollary 2, but not an immediate consequence: it depends on some recent work on removable singularities for the boundary values of holomorphic functions (see [9, Theorem 3 and Theorem 4]).

Corollary 3 improves and extends to the context of a Stein manifold the results of [10].

II Preliminary facts

On account of the Remmert imbedding theorem, there is no loss of generality in assuming that M be a closed complex submanifold of dimension n of some Euclidean space \mathbb{C}^N ($2 \leq n \leq N$).

Moreover we may assume that the Hausdorff measures on M are those computed with respect to the restriction to M of the Euclidean distance function of \mathbb{C}^N .

Throughout the paper we shall use the notation that, for each integer p with $1 \leq p \leq n$, $\mathcal{L}^p(M)$ means the set of all the holomorphic maps $l = (l_1, \ldots, l_p)$: $M \to \mathbb{C}^p$ having the following two properties:

(i) *l* is the restriction to *M* of a surjective linear map $L = (L_1, \ldots, L_p)$: $\mathbb{C}^N \to \mathbb{C}^p$;

(ii) *l* is non-degenerate, i.e. the analytic set C(l) of critical points of *l* has dimension $\leq n-1$.

In the first place we have:

Lemma 1 Let $K \subset M$ be a compact set such that $\Lambda^{2q+2}(K) = 0$. Then for every point $z^{\circ} \in M \setminus K$ it is possible to choose a holomorphic map $l \in \mathcal{L}^{q+1}(M)$ such that $l(z^{\circ}) \notin l(K)$ $(0 \leq q \leq n-2)$.

Proof. Consider the Grassmann manifold $G_{N,N-q-1}(z^{\circ})$ of (N-q-1)-dimensional complex affine subspaces of \mathbb{C}^N passing through z° . By a result of Shiffman [11] almost every $\Pi \in G_{N,N-q-1}(z^{\circ})$ does not meet K. On the other hand, it is also true that, for almost every $\Pi \in G_{N,N-q-1}(z^{\circ})$, the intersection $M \cap \Pi$ is transverse in a neighbourhood of z° .

Therefore we can choose a $\Pi \in G_{N,N-q-1}(z^{\circ})$ such that $K \cap \Pi$ is empty and $M \cap \Pi$ is transverse in a neighbourhod of z° . Let

$$\sum_{k=1}^{N} a_{hk}(z_k - z_k^{\circ}) = 0, \quad h = 1, \ldots, q+1$$

be independent linear equations that represent Π .

Then consider the surjective linear map $L: \mathbb{C}^N \to \mathbb{C}^{q+1}$ given by

$$L_h(z) = \sum_{k=1}^N a_{hk} z_k, \quad h = 1, \ldots, q+1,$$

for every $z \in \mathbb{C}^N$, and set

$$l = L|_M : M \to \mathbb{C}^{q+1}$$

The analytic set C(l) of critical points of l is the subset of M at which the holomorphic (q + 1)-form $dl_1 \wedge \cdots \wedge dl_{q+1}$ vanishes. Since this form does not vanish on a neighbourhood of z° in M, it follows that C(l) has dimension $\leq n - 1$, hence $l \in \mathcal{L}^{q+1}(M)$.

Moreover it is plain that $l(z^{\circ}) \notin l(K)$, and so the proof of the lemma is completed. q.e.d.

Next we can prove:

Lemma 2 Let $K \subset M$ be a compact set such that $\Lambda^{2q+2}(K) = 0$. Then, given arbitrarily an open neighbourhood ω of K in M, there exist finitely many q-complete open subsets U_1, \ldots, U_s of M such that $K \subset U_1 \cap \ldots \cap U_s \subset \omega$ $(0 \leq q \leq n-2)$.

Proof. Choose open neighbourhoods ω_1 and ω_2 of K in M such that $\omega_1 \in \omega$, $\omega_1 \subset \omega_2 \in M$ and ω_2 is Stein, and consider the compact set $\overline{\omega}_2 \setminus \omega_1$. By Lemma 1 we can, for every point $z \in \overline{\omega}_2 \setminus \omega_1$, find a holomorphic map $l \in \mathcal{L}^{q+1}(M)$ such that $l(z) \notin l(K)$. Then we can also find an open neighbourhood I_z of z in M and an open neighbourhood J_z of l(K) in \mathbb{C}^{q+1} so that $I_z \cap l^{-1}(J_z)$ is empty. It follows, since

 $\overline{\omega}_2 \setminus \omega_1$ is compact, that there exist finitely many holomorphic maps $l_i \in \mathscr{L}^{q+1}(M)$ and open neighbourhoods J_i of $l_i(K)$ in \mathbb{C}^{q+1} , $i = 1, \ldots, s-1$, so that

$$\left(\bigcap_{i=1}^{s-1} l_i^{-1}(J_i)\right) \cap (\bar{\omega}_2 \setminus \omega_1) = \emptyset .$$

Each $l_i^{-1}(J_i)$ is q-complete. Indeed it is the intersection of M and an open subset of \mathbb{C}^N which is biholomorphically equivalent to $J_i \times \mathbb{C}^{N-q-1}$ and so is q-complete.⁴

Then, after setting $U_i = l_i^{-1}(J_i)$, i = 1, ..., s - 1 and $U_s = \omega_2$, we get the desired conclusion.

q.e.d.

Lemma 3 Let $K \subset M$ be a compact set such that $\Lambda^{2q+1}(K) = 0$. Let $F \subset M$ be an $\mathcal{O}(M)$ -compact set and $l: M \to \mathbb{C}^{q+1}$ a holomorphic map in $\mathscr{L}^{q+1}(M)$, and consider the compact set

$$E = F \cap l^{-1}(l(K)) \; .$$

Then E is q-convex in M ($0 \leq q \leq n-2$).

Proof. Let ω be an arbitrary open neighbourhood of E. Then it suffices to prove that there exists a C^{∞} strongly q-plurisubharmonic proper function $u: M \to \mathbb{R}$ such that $E \subset M_0(u) = \{z \in M \mid u(z) < 0\} \in \omega$.

We can find a C^{∞} strongly plurisubharmonic proper function $\varphi: M \to \mathbb{R}$ and an open neighbourhood J of l(K) in \mathbb{C}^{q+1} in such a way that

$$F \subset M_0(\varphi), \quad M_0(\varphi) \cap l^{-1}(J) \in \omega$$

where $M_0(\varphi) = \{z \in M \mid \varphi(z) < 0\}$. Moreover, by the assumption that $A^{2q+1}(K) = 0$, we also have $A^{2q+1}(l(K)) = 0$, so that $\mathbb{C}^{q+1} \setminus l(K)$ is connected; hence, according to [8, Theorem 2], l(K) is q-convex in \mathbb{C}^{q+1} , which implies that we can find a C^{∞} strongly q-plurisubharmonic proper function $\psi : \mathbb{C}^{q+1} \to \mathbb{R}$ such that

$$l(K) \subset \{ w \in \mathbb{C}^{q+1} | \psi(w) < 0 \} \in J$$

Consider the functions $\exp(\varphi)$, $\exp(\psi \circ l): M \to \mathbb{R}$; then $\exp(\varphi) < 1$ on F, $\exp(\varphi) \ge 1$ on $M \setminus M_0(\varphi)$ and $\exp(\psi \circ l) < 1$ on $l^{-1}(l(K))$, $\exp(\psi \circ l) > 1$ on $M \setminus l^{-1}(J)$. Therefore we can choose a positive integer m large enough so that $\exp(m\varphi) + \exp(m\psi \circ l) < 1$ on E and $\exp(m\varphi) + \exp(m\psi \circ l) > 1$ on $M \setminus (M_0(\varphi) \cap l^{-1}(J))$. Then set

$$u = \exp(m\varphi) + \exp(m\psi \circ l) - 1: M \to \mathbb{R}$$

It is plain that $E \subset M_0(u) \in \omega$. Moreover it is easily seen that u is strongly q-plurisubharmonic and proper, and so the proof is completed.

q.e.d.

Lemma 4 Let $K \subset M$ be a compact set such that $\Lambda^{2q+1}(K) = 0$. Then, given arbitrarily an open neighbourhood ω of K in M, it is possible to find finitely many C^{∞} strongly q-plurisubharmonic proper functions $u_1, \ldots, u_t: M \to \mathbb{R}$ such that $K \subset M_0(u_1) \cap \ldots \cap M_0(u_t) \in \omega$ $(0 \le q \le n-2)$.

⁴ Indeed J_i is *q*-complete (see footnote 3)

Proof. Choose an open neighbourhood ω_1 of K in M with $\omega_1 \in \omega$ and a C^{∞} strongly 0-plurisubharmonic proper function $\rho: M \to \mathbb{R}$ with $\overline{\omega}_1 \subset M_0(\rho)$, and consider the compact set $\overline{M_0(\rho)} \setminus \omega_1$. By Lemma 1 we can, for every point $z \in \overline{M_0(\rho)} \setminus \omega_1$, find a holomorphic map $l \in \mathcal{L}^{q+1}(M)$ such that $z \notin l^{-1}(l(K))$. Then we can also find an open neighbourhood I_z of z in M such $I_z \cap l^{-1}(l(K))$ is empty. It follows, since $\overline{M_0(\rho)} \setminus \omega_1$ is compact, that there exist finitely many holomorphic maps $l_i \in \mathcal{L}^{q+1}(M)$, $i = 1, \ldots, t-1$ so that

$$\left(\bigcap_{i=1}^{t-1} l_i^{-1}(l_i(K))\right) \cap (\overline{M_0(\rho)} \setminus \omega_1) = \emptyset$$

Then, if $F \subset M$ is any $\mathcal{O}(M)$ -convex compact set with $K \subset F$, and we set $E_i = F \cap l_i^{-1}(l_i(K)), i = 1, \ldots, t-1$, we also have

$$K \subset \bigcap_{i=1}^{t-1} E_i, \quad \left(\bigcap_{i=1}^{t-1} E_i\right) \cap (\overline{M_0(\rho)} \setminus \omega_1) = \emptyset \; \; .$$

Now, in view of Lemma 3, we can find C^{∞} strongly q-plurisubharmonic proper functions $u_1, \ldots, u_{t-1}: M \to \mathbb{R}$ such that $E_i \subset M_0(u_i)$ and

$$\left(\bigcap_{i=1}^{t-1} M_0(u_i)\right) \cap (\overline{M_0(\rho)} \setminus \omega_1) = \emptyset .$$

Hence, setting $u_t = \rho$, we get the desired conclusion.

q.e.d.

For the proof of Theorem 1 we also need the following result:

Lemma 5 Let $K \subset M$ be a compact set such that $\Lambda^{2n-3}(K) = 0$. Then for every holomorphic map $l \in \mathcal{L}^{n-1}(M)$ one has $\Lambda^{2n-1}(l^{-1}(l(K))) = 0$.

Proof. Since l is non-degenerate, the set C(l) of critical points of l verifies $\Lambda^{2n-1}(C(l)) = 0$; hence it suffices to show that $\Lambda^{2n-1}(l^{-1}(l(K)) \setminus C(l)) = 0$.

Let $z \in (l^{-1}(l(K)) \setminus C(l))$; then the differentials dl_1, \ldots, dl_{n-1} are linearly independent at z, and so there exist an open neighbourhood U of z in M and a holomorphic function $l': U \to \mathbb{C}$ in such a way that l_1, \ldots, l_{n-1}, l' are complex local coordinates of M valid on U. Let J be an open neighbourhood of l(z) in \mathbb{C}^{n-1} and J' an open neighbourhood of l'(z) in \mathbb{C} such that $J \times J'$ is contained in (l, l')(U), and consider the open neighbourhood $U' = (l, l')^{-1} (J \times J')$ of z in M. Then

$$l(l^{-1}(K)) \cap U' \subset (l, l')^{-1}((l(K) \cap J) \times J')$$

Now, since $\Lambda^{2n-3}(K) = 0$, one also has $\Lambda^{2n-3}(l(K)) = 0$, and hence $\Lambda^{2n-1}((l(K) \cap J) \times J') = 0$. It follows, as (l, l') is a diffeomorphism, that $\Lambda^{2n-1}(l^{-1}(l(K)) \cap U') = 0$. This shows that the (2n-1)-dimensional Hausdorff measure of $l^{-1}(l(K)) \setminus C(l)$ vanishes locally, from which the conclusion follows at once.

q.e.d.

III Proof of Theorem 1

As we have pointed out in (I.1), Theorem 1 is already known to be valid for n = 2. Therefore we shall consider the case $n \ge 3$. We recall (I.2) that the first statement of Low-dimensional compact sets in a Stein manifold

the theorem is then equivalent to having

(III.1)
$${}^{\sigma}H^{n-2}(K;\mathscr{S}) = 0,$$

for every coherent analytic sheaf \mathcal{S} on M.

We first prove the second statement of the theorem. Thus suppose that $K \subset M$ is a compact set such that $A^{2n-2}(K) = 0$. By Lemma 2, K has a neighbourhood basis \mathscr{U} of open sets which are intersections of finitely many (n-2)-complete open sets. Therefore it suffices to show that, if $U = U_1 \cap \ldots \cap U_s$, with each U_j being an (n-2)-complete open subset of M, then

(III.2)
$$H^{n-1}(U; \mathscr{S}) = 0,$$

for every coherent analytic sheaf \mathcal{S} on M.

We can proceed by induction on the number of the U_j 's, granted that, by the (n-2)-completeness of each U_j , (III.2) is true for s = 1. Thus let $s \ge 2$, and assume inductively that (III.2) is true for $U' = U_2 \cap \ldots \cap U_s$, i.e. $H^{n-1}(U'; \mathscr{S}) = 0$. Since $H^n(U_1 \cup U'; \mathscr{S}) = 0$ (see footnote 3), the Mayer-Vietoris sequence

$$\cdots \to H^{n-1}(U_1;\mathscr{S}) \oplus H^{n-1}(U';\mathscr{S}) \to H^{n-1}(U;\mathscr{S}) \to H^n(U_1 \cup U';\mathscr{S}) \to \cdots$$

implies immediately that (III.2) is valid.

Next we take up the proof of the first statement of Theorem 1, which requires more effort. Thus suppose that $K \subset M$ is a compact set such that $\Lambda^{2n-3}(K) = 0$.

In the first place we deal with the case that $\mathscr{S} = \mathscr{F}$ is a locally free analytic sheaf on M. Since M is Stein and \mathscr{F} is locally free, it is known that the cohomology spaces with compact supports $H^q_c(M; \mathscr{F}) = 0$ for $q \neq n$ (see [2]). In particular, as $n \geq 3$, $H^{n-2}_c(M; \mathscr{F})$ and $H^{n-1}_c(M; \mathscr{F})$ are null; hence the coboundary homomorphism

$$\delta: H^{n-2}(K; \mathscr{F}) \to H^{n-1}_c(M \setminus K; \mathscr{F})$$

is an algebraic isomorphism. On the other hand it is known that δ is a continuous map (see [3]); therefore the thesis will follow if we prove that ${}^{\sigma}H_{c}^{n-1}(M\setminus K; \mathscr{F}) = 0$. This in turn is equivalent to proving that ${}^{\sigma}H^{1}(M\setminus K; \mathscr{F} \otimes \Omega^{n}) = 0$, where $\mathscr{F} = \operatorname{Hom}_{\mathcal{C}}(\mathscr{F}; \mathcal{O})$ is the dual of \mathscr{F} and Ω^{n} is the sheaf of germs of holomorphic *n*-forms on *M*. As a matter of fact, by the refined version [2, VII.4.2] of the Serre duality theorem, there is a topological duality between ${}^{\sigma}H_{c}^{n-1}(M\setminus K; \mathscr{F})$ and ${}^{\sigma}\operatorname{Ext}^{1}(M\setminus K; \mathscr{F}, \Omega^{n})$, and since \mathscr{F} is assumed to be locally free, one has $\operatorname{Ext}^{*}(M\setminus K; \mathscr{F}, \Omega^{n}) \cong H^{*}(M\setminus K; \mathscr{F} \otimes \Omega^{n})$. Indeed we shall prove that

(III.3)
$$H^1(M \setminus K; \tilde{\mathscr{F}} \otimes \Omega^n) = 0.$$

By Lemma 1 we have $K = \bigcap_{l} l^{-1}(l(K))$, where *l* ranges through $\mathscr{L}^{n-1}(M)$, and since *M* has a countable topology, we can find a sequence $\{l_i\}_{i=1}^{\infty}$ of maps $l_i \in \mathscr{L}^{n-1}(M)$ such that $K = \bigcap_{i=1}^{\infty} l_i^{-1}(l_i(K))$.

Let moreover $F \subset M$ be an $\mathcal{O}(M)$ -convex compact set with $K \subset F$ and set, for every positive integer *i*,

$$E_i = F \cap l_i^{-1}(l_i(K)), \quad U_i = M \setminus E_i.$$

Then $\mathscr{U} = \{U_i\}_{i=1}^{\infty}$ is an open covering of $M \setminus K$. Consider the nerve $N(\mathscr{U})$ of this covering and the Čech cohomology space $H^1(N(\mathscr{U}); \check{\mathscr{F}} \otimes \Omega^n)$. We claim that

(III.4)
$$H^1(N(\mathcal{U}); \tilde{\mathscr{F}} \otimes \Omega^n) = 0$$

As a matter of fact, let f be a 1-cocycle of $N(\mathcal{U})$ with coefficients in $\check{\mathscr{F}} \otimes \Omega^n$, that is a function which associates to each ordered pair i, j of positive integers a section $f_{ij} \in \Gamma(U_i \cap U_j; \check{\mathscr{F}} \otimes \Omega^n)$, in such a way that $f_{ij} + f_{jk} = f_{ik}$ on $U_i \cap U_j \cap U_k$, for all positive integers i, j, k. We have $U_i \cap U_j = M \setminus (E_i \cup E_j)$ and, in view of Lemma 5,

$$\Lambda^{2n-1}(E_i \cup E_i) = 0;$$

hence $E_i \cup E_j$ is a co-connected compact subset of M. Then, since $\check{\mathscr{F}} \otimes \Omega^n$ is locally free, so that $H^1_c(M; \check{\mathscr{F}} \otimes \Omega^n) = 0$, the Hartogs theorem implies that f_{ij} extends to a section $\tilde{f}_{ij} \in \Gamma(M; \check{\mathscr{F}} \otimes \Omega^n)$. It follows that f is a coboundary, i.e. for each positive integer i there is a section $f_i \in \Gamma(U_i; \check{\mathscr{F}} \otimes \Omega^n)$ in such a way that $f_i - f_j = f_{ij}$ on $U_i \cap U_j$ for all positive integers i, j. Indeed it suffices to take $f_i = \tilde{f}_{i1} | v_i$. Therefore (III.4) is valid.

Next we claim that

(III.5) For every positive integer $i, H^1(U_i; \check{\mathscr{F}} \otimes \Omega^n) = 0$.

As a matter of fact we have $U_i = M \setminus E_i$, and since, by Lemma 3, $0 = {}^{\sigma}H^{n-2}(E_i; \mathscr{F}) = H^{n-1}(E_i; \mathscr{F})$, the cohomology sequence with compact supports

$$\cdots \to H_c^{n-2}(M;\mathscr{F}) = 0 \to H^{n-2}(E_i;\mathscr{F}) \to H_c^{n-1}(U_i;\mathscr{F}) \to H_c^{n-1}(M;\mathscr{F}) =$$
$$= 0 \to H^{n-1}(E_i;\mathscr{F}) = 0 \to H_c^n(U_i;\mathscr{F}) \to H_c^n(M;\mathscr{F}) \to 0$$

implies that ${}^{\sigma}H_{c}^{n-1}(U_{i};\mathscr{F}) = 0$ and that $H_{c}^{n}(U_{i};\mathscr{F})$ is separated. It follows, on account of [2, VII.4.2], that (III.5) holds.

Now the desired conclusion that (III.3) is valid is a straightforward consequence of a special case of the Leray theorem applied to the open covering \mathcal{U} of $M \setminus K$ (see [5, 12.8]).

Thus the proof of the first statement of Theorem 1 is completed for the case that $\mathscr{S} = \mathscr{F}$ is locally free.

Finally, assume that \mathcal{S} is an arbitrary coherent analytic sheaf on M. Since M is Stein and K is compact, we can find a Stein open neighbourhood M' of K in M and

a positive integer p such that an exact sequence of sheaves $\mathcal{O}^p \xrightarrow{\mu} \mathscr{S} \to 0$ is valid on

M'. Let \mathscr{R} be the kernel of μ ; then \mathscr{R} is a coherent analytic sheaf on M' and there is an exact cohomology sequence

$$\cdots \to H^{n-2}(K; \mathcal{O}^p) \xrightarrow{\mu_*} H^{n-2}(K; \mathscr{S}) \to H^{n-1}(K; \mathscr{R}) \to \cdots$$

and since, by the above, $H^{n-1}(K; \mathcal{R}) = 0$ and (III.1) is true for the sheaf \mathcal{O}^p , and since μ_* is a continuous map, it follows that (III.1) is true for the sheaf \mathcal{S} as well.

Now the proof of Theorem 1 is completed.

IV Proof of Theorem 2

After having established Lemma 2 and Lemma 4 in Sect. II, Theorem 2 turns out to be a corollary of the following result of Diederich and Fornaess [4] on smoothing continuous q-plurisubharmonic functions: Let Ω be an n-dimensional complex

manifold and $\rho: \Omega \to \mathbb{R}$ a function that is locally the supremum of finitely many C^{∞} strongly *q*-plurisubharmonic functions. Then, given arbitrarily a continuous positive function $\eta: \Omega \to \mathbb{R}$, there exists a C^{∞} strongly \tilde{q} -plurisubharmonic function $\sigma: \Omega \to \mathbb{R}, \ \tilde{q} = n - \left[\frac{n}{q+1}\right]$, such that $|\rho - \sigma| < \eta$ on $\Omega \ (0 \le q \le n-1)$.

It should be observed that here we adopt the convention that "q-plurisubharmonic" means that the number of non-negative eigenvalues of the Levi form is $\geq n - q$, whereas in [4] it means that this number is $\geq n - q + 1$ (likewise as in [1]). For this reason in [4] one finds $1 \leq q \leq n$ and $\tilde{q} = n - \left\lfloor \frac{n}{q} \right\rfloor + 1$.

That being stated, we take up the proof of Theorem 2.

We first prove the second statement of the theorem. Thus assume that $K \subset M$ is a compact set such that $\Lambda^{2q+2}(K) = 0$. By Lemma 2, K has a neighbourhood basis of open sets each of which is the intersection of finitely many q-complete open sets U_1, \ldots, U_s . Hence it suffices to show that $\Omega = U_1 \cap \ldots \cap U_s$ is \tilde{q} -complete. As a matter of fact, let $\rho_i: U_i \to \mathbb{R}$ be a C^{∞} strongly q-plurisubharmonic proper function exhibiting the q-completeness of $U_i, i = 1, \ldots, s$, and consider on Ω the function $\rho = \sup\{\rho_1, \ldots, \rho_s\}$, which is a continuous proper function. Then there is a C^{∞} strongly \tilde{q} -plurisubharmonic function $\sigma: \Omega \to \mathbb{R}$ with $\sigma > \rho - 1$. Hence σ is proper, which entails the \tilde{q} -completeness of Ω .

Next we prove the first statement of Theorem 2. Thus assume that $K \subset M$ is a compact set such that $\Lambda^{2q+1}(K) = 0$. By Lemma 4, given arbitrarily an open neighborhood ω of K, there is a continuous proper function $\rho: M \to \mathbb{R}$ that is globally the supremum of finitely many C^{∞} strongly q-plurisubharmonic functions on M, such that $K \subset \{z \in M | \rho(z) < 0\} \in \omega$. Then if we take a small $\varepsilon > 0$, we still have $\{z \in M | \rho(z) < \varepsilon\} \in \omega$ and $K \subset \{z \in M | \rho(z) < -\varepsilon\}$. Let $\sigma: M \to \mathbb{R}$ be a C^{∞} strongly \tilde{q} -plurisubharmonic function such that $|\rho - \sigma| < \varepsilon$ on M. Then σ is proper and $K \subset M_0(\sigma) \in \omega$. It follows that K is \tilde{q} -convex in M.

The proof of Theorem 2 is then completed.

V Concluding remarks

We claimed in (I.3) that Theorem 1 provides the best possible result on approximation and cohomology vanishing properties of an arbitrary compact set $K \subset M$ such that $\Lambda^{2n-3}(K) = 0$ or $\Lambda^{2n-2}(K) = 0$.

To prove this claim we consider the following two compact subsets of \mathbb{C}^n , $n \ge 3$:

$$K_1 = \{ z \in \mathbb{C}^n | |z_1|^2 + \dots + |z_{n-2}|^2 = |z_{n-1}| = 1, z_n = 0 \} ,$$

$$K_2 = \{ z \in \mathbb{C}^n | |z_1|^2 + \dots + |z_{n-2}|^2 + |z_{n-1}|^2 = 1, z_n = 0 \} .$$

Then $\Lambda^{2n-3}(K_1) = 0$ and $\Lambda^{2n-2}(K_2) = 0$, so that the two statements of Theorem 1 apply to K_1 and K_2 , respectively, hence for every coherent analytic sheaf \mathscr{S} on \mathbb{C}^n the restriction map $H^{n-2}(\mathbb{C}^n; \mathscr{S}) \to H^{n-2}(K_1; \mathscr{S})$ has dense image and there is a neighbourhood basis \mathscr{U} of K_2 of open sets such that $H^{n-1}(U; \mathscr{S}) = 0$ for every $U \in \mathscr{U}$, whence $H^{n-1}(K_2; \mathscr{S}) = 0$.

However it is not true that the restriction map $H^{n-3}(\mathbb{C}^n; \mathscr{S}) \to H^{n-3}(K_1; \mathscr{S})$ have dense image, and that $H^{n-2}(K_2; \mathscr{S}) = 0$. In fact, if the restriction map $H^{n-3}(\mathbb{C}^n;\mathscr{G}) \to H^{n-3}(K_1;\mathscr{G})$ had dense image, the same would be true of the restriction map $H^{n-3}(\mathbb{C}^{n-1};\mathscr{G}) \to H^{n-3}(K_1;\mathscr{G})$, since $K_1 \subset \mathbb{C}^{n-1}$ (the latter being imbedded in \mathbb{C}^n as the hyperplane $z_n = 0$); and since K_1 has a neighbourhood basis of (n-3)-complete open sets, this would imply that $H^{2n-4}(K_1;\mathbb{C}) = 0$, whereas $H^{2n-4}(K_1;\mathbb{C}) \cong \mathbb{C}$. Similarly, if we had $H^{n-2}(K_2;\mathscr{G}) = 0$, then, since $K_2 \subset \mathbb{C}^{n-1}$, it would follow that $H^{2n-3}(K_2;\mathbb{C}) = 0$, whereas $H^{2n-3}(K_2;\mathbb{C}) \cong \mathbb{C}$.

Thus we have seen that there are topological obstructions to improving Theorem 1 with regard to an arbitrary K such that $\Lambda^{2n-3}(K) = 0$ or $\Lambda^{2n-2}(K) = 0$.

On the other hand, if we consider, for $n \ge 4$, a compact set $K \subset M$ such that $\Lambda^{2q+1}(K) = 0$, or $\Lambda^{2q+2}(K) = 0$, for some q with $\left\lceil \frac{n-2}{2} \right\rceil \le q \le n-3$, such

topological obstructions do not occur anymore, since $\overset{\smile}{H}^{j}(\tilde{K}; \mathbb{C}) = 0$ for $j \ge 2q + 1$, or $j \ge 2q + 2$, respectively. For this reason it seems rather difficult to exhibit any counterexamples to sharpening Theorem 1 for q in that range.

References

- Andreotti, A., Grauert H.: Théorèmes de finitude pour la cohomologie des espaces complexes. Bull. Soc. Math. Fr. 90, 193-259 (1962)
- 2. Bănică, C., Stănășilă O.: Algebraic Methods in the Global Theory of Complex Spaces. London New York: Wiley 1976
- 3. Cassa, A.: Coomologia separata sulle varietà analitiche complesse. Ann. Sc. Norm. Super. Pisa, III. Ser. 25, 291-323 (1971)
- Diederich, K., Fornaess, J.E.: Smoothing q-convex functions and vanishing theorems. Invent. Math. 82, 291-305 (1985)
- 5. Forster, O.: Lectures on Riemann Surfaces. New York Heidelberg Berlin: Springer 1981
- 6. Gamelin, T.W.: Uniform Algebras, second ed. New York: Chelsea 1984
- Greene, R.E., Wu, H.: Whitney's imbedding theorem by solutions of elliptic equations and geometric consequences. In: Chern, S.S., Osserman, R. (eds.) Differential Geometry. (Proc. Symp. Pure Math., vol. 27, Part 2, pp. 287–296) Providence, RI: Am. Math. Soc. 1975
- 8. Lupacciolu, G.: Topological properties of q-convex sets. Trans. Am. Math. Soc. (to appear) 9. Lupacciolu, G.: Characterization of removable sets in strongly pseudoconvex boundaries (to
- appear) 10. Lupacciolu, G., Stout, E.L.: Removable singularities for \overline{o}_b . In: Proceedings of the
- Lupaccioni, G., Stout, E.L., Removable singularities for 0_b. In: Proceedings of the Mittag-Leffler special year in several complex variables during the year 1987/88 (to appear)
 Shiffman, B.: On the removal of singularities of analytic functions. Mich. Math. J. 15, 111–120
- (1968)