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1 Introduction

Let A% denote the x-dimensional Hausdorfl measure in C¥, N = 2, computed
with respect to the Euclidean distance function. It is known that a compact
set K < €~ such that A'(K) = 0 is polynomially convex. Indeed its projections
n(K), j=1,..., N into the coordinate complex axes are totally disconnected
and hence P(n;(K)) = C(n;{(K)); then it follows readily that also P(K)= C(K),
which implies the polynomial convexity of K. It is also known that a compact
set K = €Y such that A*(K) = 0 is a Stein compactum. Indeed its projections
n;(K) have zero planar measure and hence, by the Hartogs-Rosenthal theorem
(see [6]), R(m;(K)) = C(n;(K)); then also R(K)= C(K), which implies that K
is rationally convex and so it is a Stein compactum.

These results extend in a straightforward manner to the setting of a Stein
manifold M of complex dimension n = 2, for which A* denotes the z-dimensional
Hausdorff measure computed with respect to an arbitrary distance function com-
patible with the topology of M. Namely, a compact set K = M such that A!(K) =0
is @(M)-convex, whereas a compact set K = M such that A?(K) =0 is a Stein
compactum. This follows from the above mentioned results in C¥ via the Remmert
imbedding theorem of M into €C3"*1,

That being stated, it seems natural to raise the following question: What
conclusions of a parallel kind can be drawn with regard to a compact set K ¢ M
such that A*(K) = 0 for some integer x with 1 < o < 2n —2?

The present paper is intended to partially answer this question by proving the
following two theorems:

Theorem 1 A compact set K = M such that A*"~3(K) = 0 has the following approx-
imation property. For every coherent analytic sheaf ¥ on M the restriction map
H" 3*(M; %) > H" %(K; &) has dense image.

Moreover a compact set K = M such that A*"~*(K) = 0 has a neighbourhood
basis % of open sets such that H" Y(U; &) = 0 for every U €% and every coherent
analytic sheaf & on M.
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Theorem 2 Let q be an inieger with 0 < g <n —2 and set (jzn—I: ZI:I
q

A compact set K = M such that A7 Y(K) = 0 is j-convex in M and a compact
set K = M such that A***2(K) = 0 has a neighbourhood basis of §-complete open
sets.

Here “g-convex in M” means the following property: For every open neigh-
bourhood w of K one can find a C® strongly g-plurisubharmonic proper function
u: M — R such that K = My(u) = {ze M|u(z) < 0} €w. Such terminology agrees
with that of [8]. By the Andreotti-Grauert approximation theorem [1, Theorem
12], for every coherent analytic sheaf & on M the restriction map
HY(M; &) —» HY{(My(u); &) has dense image. Therefore an inductive limit consid-
eration gives the following corollary of Theorem 2:

Corollary 1 A compact set K = M such that A**Y(K) =0 has the following
approximation property: For gvery coherent analytic sheaf & on M the restriction
map HY(M; ) — HY(K; &) has dense image (0 < g < n — 2).

Moreover a compact set K = M such that A??"2(K) = 0 has a neighbourhood
basis U of open sets such that H/(U; #)=0,j > g, for every Uec% and every
coherent analytic sheaf ¥ on M 0<g=<n-2)

Some comments are in order.

(1.1) For n = 2 the second statement of Theorem 1 is equivalent to saying that K is
a Stein compactum, provided A%(K) = 0. It follows that for n = 2 the first state-
ment of Theorem 1 is equivalent to saying that K is ¢(M)-convex, provided
AY(K) = 0.! Hence for n = 2 Theorem 1 reduces to state the above mentioned
known facts. The same is true of Theorem 2, since for n = 2 the only possibility is
g =0, hence § = 0 too, and it is known that convexity with respect to 0-plurisub-
harmonic functions is equivalent to ¢ (M)-convexity and O-completeness is equiva-
lent to being Stein.

(I.2) As M is Stein, H/(M; &) = 0, j = 1, for every coherent analytic sheaf % on M;
hence for n Z 3 the first statements of Theorem 1 and Corollary 1 are equivalent to
saying that the separated spaces “H" 2(K; ), “HUK; %) associated with
H" 2(K; #), H{(K; #)? are null provided 4%" " 3(K) = 0,q = 1 and A%* (K) = 0,
respectively.

(I.3) Theorem 2 and Corollary 1 are meaningful only for g such that § < n — 2,1i.e.

-2
for02gq = [12_] Indeed they do not give any informations when § =2 n — 1,

since every co-connected compact subset of M is (n — 1)-convex in M (see [8,
Theorem 2]) and every compact subset of M has a neighbourhood basis of
(n — 1)-complete open sets.® Therefore for n 2 3 Theorem 1 provides informations

! We recall that a compact set K <= M is O(M)-convex if and only if is a Stein compactum and the
restriction map I'(M; &) - I'(K; %) has dense image for every coherent analytic sheaf & on M
2 We recall that, given a topological vector space V, the separated space 7V associated with V is
the quotient of ¥ modulo the closure of the zero-element

3 We recall that every complex manifold of dimension n with no compact connected components
is (n ~ 1)-complete (see [7])
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independent of Corollary 1 with regard to any compact set K < M with

2
A2 Y K) =0 or A*9*%(K) =0 for some integer g such that [nT +1<yg

< n — 2. We shall see (Sect. V) that such informations are in general optimal for
g=n—2, as far as approximation and cohomology vanishing properties are
concerned; however we do not know how to decide whether for n >4 and

n—2 . . . . .
|: 5 ] < g < n— 3 it is possible or not to obtain any sharper informations.

We wish to mention two corollaries of Theorem 1.

Corollary 2 A compact set K = M such that A*" 3*(K) =0 has the following

A

approximation property: Every C* d-closed (p, n — 2)-form defined on a neighbour-
hood of K can be approximated uniformly on K together with all derivatives of the
coefficients by C®d-closed (p, n — 2)-forms defined on the whole M (0 < p < n).

Moreover a compact set K = M such that A*"~2(K) = 0 verifies H?" ' (K) = 0
O=p=n).

Corollary 3 Let D&M be an open domain and K a proper closed subset of bD in such
a way that bD\K is C*-smooth. Then:

(@) If A" 3(K) =0 and bD is connected, every continuous CR-function f on
bD\K has a continuous extension F to D\K which is holomorphic on D;

(b) If A"~ %(K) =0 and f is a continuous CR-function on bD\K that satisfies
the moment condition

{ fa=0,

bDAK

for every C*® é-closed (n, n — 1)-form « defined on a neighbourhood of D, such that
(suppa)n K = &, then f has a continuous extension F to D\ K which is holomor-
phic on D.

Corollary 2 follows straightforwardly from Theorem 1 by applying the
Dolbeault isomorphisms, since it is known that these isomorphisms are not only
algebraic, but topological as well.

Corollary 3 is in turn a consequence of Corollary 2, but not an immediate
consequence: it depends on some recent work on removable singularities for the
boundary values of holomorphic functions (see [9, Theorem 3 and Theorem 41}).

Corollary 3 improves and extends to the context of a Stein manifold the results
of [10].

II Preliminary facts

On account of the Remmert imbedding theorem, there is no loss of generality in
assuming that M be a closed complex submanifold of dimension n of some
Euclidean space C¥ (2 < n < N).

Moreover we may assume that the Hausdorfl measures on M are those
computed with respect to the restriction to M of the Euclidean distance function
of C¥.
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Throughout the paper we shall use the notation that, for each integer p with
1 <p<n M) means the set of all the holomorphic maps [ =(l;,...,1,)
M - C? having the following two properties:

(i) ! is the restriction to M of a surjective linear map L =(L,,...,L,):
Y - 7,

(i) ! is non-degenerate, ie. the analytic set C(I) of critical points of [ has
dimension <n - L.

In the first place we have:

Lemma 1 Let K = M be a compact set such that A****(K) = 0. Then for every
point z°e M\K it is possible to choose a holomorphic map le 1 (M) such that
1z°)¢l(K) 0=g=n-—2)

Proof. Consider the Grassmann manifold Gy y-,-,(2°) of (N — g — 1)-dimen-
sional complex affine subspaces of €V passing through z°. By a result of Shiffman
[11] almost every IT€ Gy, y-,—1(z°) does not meet K. On the other hand, it is also
true that, for almost every IT€ Gy, y-,—1(z"), the intersection M n IT is transverse
in a neighbourhood of z°.

Therefore we can choose a ITe€ Gy y—,—(z°) such that KnII is empty and
M n 1T is transverse in a neighbourhod of z°. Let

N
Zahk(zk—zok)zo, h=1,,q+]
k=1
be independent linear equations that represent II.
Then consider the surjective linear map L:CY — C¢*' given by

N
Lh(Z)ZZQhkzk, hzl,,q+1,

k=1
for every ze €, and set
= Lly:M— Tt

The analytic set C(I) of critical points of / is the subset of M at which the
holomorphic (g + 1)-form di; A -+ A dl,+; vanishes. Since this form does not
vanish on a neighbourhood of z° in M, it follows that C(/) has dimension <n — 1,
hence e #11{(M).

Moreover it is plain that {(z°) ¢ I(K), and so the proof of the lemma is completed.

q.ed.

Next we can prove:

Lemma 2 Let K < M be a compact set such that A***2(K) = 0. Then, given
arbitrarily an open neighbourhood @ of K in M, there exist finitely many g-complete
open subsets Uy, ..., Usof M suchthat KcU;n.. . nU;ew(0Lg=<n-—-2)

Proof. Choose open neighbourhoods w; and w, of K in M such that v, €w,
w; < wy€M and w, is Stein, and consider the compact set 0, \@;. By Lemma 1 we
can, for every point ze @,\w;, find a holomorphic map le #7*!(M) such that
l(z)¢ I(K). Then we can also find an open neighbourhood I, of zin M and an open
neigbourhood J, of I(K) in €41 so that I, n17(J,) is empty. It follows, since
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@,\w; is compact, that there exist finitely many holomorphic maps ;e 1% (M)
and open neighbourhoods J; of [;(K) in €**!, i=1,...,s — 1, so that

s—1
< ﬂ li*l(']i))m(a_)l\\wl)z g .
i=1

Each 7 *(J;)is g-complete. Indeed it is the intersection of M and an open subset
of C¥ which is biholomorphically equivalent to J, x C¥ 97! and so is g-complete.*

Then, after setting U; = ;7 1(J;),i=1,...,s— 1 and U, = w,, we get the
desired conclusion.

g.e.d.

Lemma 3 Let K = M be a compact set such that A% 1(K) = 0. Let F M be an
¢ (M)-compact set and I: M — C?** a holomorphic map in %1 (M), and consider
the compact set

E=FnI YIK)).
Then E is g-convexin M (0L qg<n—2)

Proof. Let w be an arbitrary open neighbourhood of E. Then it suffices to prove
that there existsa C* strongly g-plurisubharmonic proper function u: M — IR such
that E < Mo(u) = {ze M |u(z) < 0} €w.

We can find a C*® strongly plurisubharmonic proper function ¢: M — R and
an open neighbourhood J of I(K) in €1*! in such a way that

F e Mylp), Molg)nl '(J)ew,

where My(p) = {zeM|¢(z) <0}. Moreover, by the assumption that
AYMTYK) =0, we also have 4217 (I(K)) =0, so that CT*"\[(K) is connected;
hence, according to [8, Theorem 2], I(K) is g-convex in €1* 1, which implies that we
can find a C* strongly g-plurisubharmonic proper function ¢ : €4** — R such that

(K) = {we@* ! |y(w) <0}eJ .

Consider the functions exp(¢p), exp(ol): M - R; then exp(p) <1 on F,
exp(p) =1 on M\My(p) and exp(fol)<1 on I7*(I(K)), exp(fol)>1 on
M\I~Y(J). Therefore we can choose a positive integer m large enough so
that exp(me) + expmycl)<1 on E and exp(me)+expmpel)>1 on
M\(Mo(@)n 1~ (J)). Then set

u =exp(mo) + expmgol)— 1M ->R.

It is plain that E = My(u)€w. Moreover it is easily seen that u is strongly
g-plurisubharmonic and proper, and so the proof is completed.
q.e.d.

Lemma 4 Let K« M be a compact set such that A***(K)= 0. Then, given
arbitrarily an open neighbourhood w of K in M, it is possible to find finitely many
C* strongly q-plurisubharmonic proper functions uy,...,u: M - R such that
KeMyu)n... nMiw)eow 0<g=sn—2)

* Indeed J, is g-complete (see footnote 3)
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Proof. Choose an open neighbourhood w; of K in M with w;€w and a C*
strongly O-plurisubharmonic proper function p: M — R with @; < My(p), and

consider the compact set My(p)\w;. By Lemma 1 we can, for every point

z€ Mo(p)\w,, find a holomorphic map e %77 1(M) such that z¢ ! *({(K)). Then
we can also find an open neighbourhood I, of z in M such I, n I~ (I(K))is empty.

It follows, since Mo(p)\w, is compact, that there exist finitely many holomorphic
mapsle,%"’“( ,i=1,...,t—1so that

((} li_l(li(K))>ﬁ(Mo(P)\w1) = .

Then, if F <« M is any O(M)-convex compact set with K < F, and we set
E,=Fnl7'(I(K)),i=1,...,t — 1, we also have

Kcth E;, <ﬂE> (Mo P)\wl)_

i=1

Now, in view of Lemma 3, we can find C® strongly g-plurisubharmonic proper
functions uy, ..., 4, : M > IR such that E; = My(;) and

<ﬂM0 ) A(Mo(p)\wy) = & .

Hence, setting u, = p, we get the desired conclusion.
ged.

For the proof of Theorem 1 we also need the following result:

Lemma 5 Ler K <« M be a compact set such that A?"~3(K) = 0. Then for every
holomorphic map le "~ 1 (M) one has A?"~1(I" 1(I(K)) = 0.

Proof. Since [ is non-degenerate, the set C(I) of critical points of [ verifies
A?~1(C()) = 0; hence it suffices to show that A2*~(I" (I(KY\C(D) =0

Let ze(I™*({(K))\C(])); then the differentials d!,,. . .,dl, ; are linearly inde-
pendent at z, and so there exist an open neighbourhood U of z in M and
a holomorphic function /: U — C in such a way that [,,...,[,_,,! are complex
local coordinates of M valid on U. Let J be an open neighbourhood of I(z) in C* !
and J’ an open neighbourhood of /'(z) in @€ such that J x J' is contained in (I, I') (U),
and consider the open neighbourhood U’ = (I, ') *(J x J’) of z in M. Then

Y EKNAU = (L) "N ((UE)NT)x T).

Now, since A?" 3(K)=0, one also has A2" 3(/(K)) =0, and hence
AP "HUKINT)xJ)=0. It follows, as (I, I') is a diffecomorphism, that
A" YT HI(K))n U’) = 0. This shows that the (2n — 1)-dimensional Hausdorfl
measure of [~ 1({(K))\C(l) vanishes locally, from which the conclusion follows at
once.

g.e.d.

IITI Proof of Theorem 1

As we have pointed out in (I.1), Theorem 1 is already known to be valid for n = 2.
Therefore we shall consider the case n = 3. We recall (1.2) that the first statement of
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the theorem is then equivalent to having
(ITL.1) H" %(K; #)=0,

for every coherent analytic sheaf & on M.

We first prove the second statement of the theorem. Thus suppose that K « M
is a compact set such that 42""2(K) = 0. By Lemma 2, K has a neighbourhood
basis % of open sets which are intersections of finitely many (n — 2)-complete open
sets. Therefore it suffices to show that, if U = U; n. . . U,, with each U being an
(n — 2)-complete open subset of M, then

(I11.2) HYU; #)=0,

for every coherent analytic sheaf & on M.

We can proceed by induction on the number of the U;s, granted that, by the
(n — 2)-completeness of each U;, (IIL.2) is true for s = 1. Thus let s = 2, and assume
inductively that (IIL2) is true for U' = U, ... U, ie. H Y(U’; &) = 0. Since
H"(U, v U’ ; &) =0 (see footnote 3), the Mayer—Vietoris sequence

s HTW UGS HT U S) > HY (U, ) > H' (U wU P>

implies immediately that (111.2) is valid.

Next we take up the proof of the first statement of Theorem 1, which requires
more effort. Thus suppose that K = M is a compact set such that A*"~3(K) = 0.

In the first place we deal with the case that ¥ = & is a locally free analytic
sheaf on M. Since M is Stein and # is locally free, it is known that the cohomology
spaces with compact supports H¥(M; #} = 0 for q % n (see [2]). In particular, as
nz3, H"3(M; #) and H*"'(M; #) are null; hence the coboundary homomor-
phism

§:H 2(K; F) > H'"\(M\K; %)

is an algebraic isomorphism. On the other hand it is known that § is a continuous
map (see [3]); therefore the thesis will follow if we prove that “H; ~'(M\K; #) = 0.
This in turn is equivalent to proving that “H'(M\K;# ® Q") =0, where
F = Homg(F ; 0) is the dual of # and Q" is the sheaf of germs of holomorphic
n-forms on M. As a matter of fact, by the refined version [2, VII.4.2] of the Serre
duality theorem, there is a topological duality between °H7™'(M\K; %) and
“Ext!(M\K; #,Q"), and since # is assumed to be locally free, one has
Ext*(M\K; #, Q") = H*(M\K; # ® @"). Indeed we shall prove that

(I11.3) H MK, FQQ)=0.

By Lemma 1 we have K = [),/”*(I(K)), where [ ranges through %"~ !(M), and
since M has a countable topology, we can find a sequence {I;}2; of maps
l,e £"1(M) such that K = ()2, 7 ' (1i(K)).

Let moreover F < M be an O(M)-convex compact set with K < F and set, for
every positive integer i,

E;=Fnl7'(l(K)), U;=M\E;.

Then % = {U,}{Z, is an open covering of M\K. Consider the nerve N(%) of this
covering and the Cech cohomology space H' (N (#); # ® 2"). We claim that

(I11.4) HN@); F®2")=0.
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As a matter of fact, let f be a 1-cocycle of N(%) with coefficients in % ® @, that
is a function which associates to each ordered pair i, j of positive integers a section
Suel(UinU; F @ Q") in such a way that f;; + f = fu on U;n U; 0 Uy, for all
positive integers i, j, k. We have U; n U; = M\(E; U E;) and, in view of Lemma 35,

Aln"l(Equj) =0

hence E; U E; is a co-connected compact subset of M. Then, since F ® Q" is locally
free, so that H LM, J' ® Q") = 0, the Hartogs theorem implies that f;; extends to
a section erF(M F® ). It follows that f is a coboundary, i.e. for each positive
integer i there is a section fie I'(U;; F® Q") in such a way that _f; — f; = f;; on
U;n U, for all positive integers i, j. Indeed it suffices to take f; = f;; [v;. Therefore
(IT1.4) is valid.

Next we claim that

(ITL5) For every positive integer i, H'(U;; F® y=0

As a matter of fact we have U,= M\E;, and since, by Lemma 3,
0=°H""*(E; #)= H" '(E; #), the cohomology sequence with compact sup-
ports

S HTAM F) =0 H'HES F) o HET WU F) > HUT UM 7)) =
=0->H"NE; F)=0->H(Uy; F) > H(M; #) >0

implies that *H?"*(U;; #) = 0 and that H*(U,; #) is separated. It follows, on
account of [2, VII.4.2], that (II1.5) holds.

Now the desired conclusion that (IIL.3) is valid is a straightforward consequence
of a special case of the Leray theorem applied to the open covering # of M\K (see
(5, 12.8]).

Thus the proof of the first statement of Theorem 1 is completed for the case that
& = % is locally free.

Finally, assume that % is an arbitrary coherent analytic sheaf on M. Since M is
Stein and K is compact, we can find a Stein open neighbourhood M’ of K in M and

a positive integer p such that an exact sequence of sheaves 07 5 & — 0 is valid on
M'. Let £ be the kernel of y; then £ is a coherent analytic sheaf on M’ and there is
an exact cohomology sequence

o B K 07— HY (K3 ) B (K ) = -

and since, by the above, H" '(K; #) = 0 and (II1.1) is true for the sheaf ¢, and
since u, is a continuous map, it follows that (II1.1) is true for the sheaf & as well.
Now the proof of Theorem 1 is completed.

IV Proof of Theorem 2
After having established Lemma 2 and Lemma 4 in Sect. II, Theorem 2 turns out to

be a corollary of the following result of Diederich and Fornaess [4] on smoothing
continuous g-plurisubharmonic functions: Let Q be an n-dimensional complex
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manifold and p: Q2 — R a function that is locally the supremum of finitely many C*®
strongly g-plurisubharmonic functions. Then, given arbitrarily a continuous posit-
ive function #:Q — R, there exists a C* strongly g-plurisubharmonic function

+1
It should be observed that here we adopt the convention that “g-plurisubhar-
monic” means that the number of non-negative eigenvalues of the Levi form is
= n — ¢, whereas in [4] it means that this number is = n — g + 1 (likewise as in

[1]). For this reason in [4] one finds 1 £g<nand §=n— |:E:| + 1.
q

6:Q—-R,G=n— qL:I,suchthatlp~a|<nonQ(O§q§n—1).

That being stated, we take up the proof of Theorem 2.

We first prove the second statement of the theorem. Thus assume that K = M is
a compact set such that 42¢*2(K) = 0. By Lemma 2, K has a neighbourhood basis
of open sets each of which is the intersection of finitely many g-complete open sets
Uy,..., U, Hence it suffices to show that @ = Uy n...n U, is g-complete. As
a matter of fact, let p;:U; >R be a C® strongly g-plurisubharmonic proper
function exhibiting the g-completeness of U;,i = 1,. ... s, and consider on £ the
function p = sup{pi,. .., ps}, which is a continuous proper function. Then there
is a C* strongly g-plurisubharmonic function 6: 2 - R with ¢ > p — 1. Hence g is
proper, which entails the g-completeness of €.

Next we prove the first statement of Theorem 2. Thus assume that K « M is
a compact set such that A297'(K) = 0. By Lemma 4, given arbitrarily an open
neighborhood w of K, there is a continuous proper function p: M — R that is
globally the supremum of finitely many C* strongly g-plurisubharmonic functions
on M, such that K = {ze M|p(z) < 0} €w. Then if we take a small ¢ > 0, we still
have {zeM|p(z)<e}€w and K < {zeM|p(z) < —¢}. Let M >R be a C*
strongly §-plurisubharmonic function such that |p — ¢| < ¢ on M. Then o is proper
and K < My(o)€w. 1t follows that K is g-convex in M.

The proof of Theorem 2 is then completed.

V Concluding remarks

We claimed in (1.3) that Theorem 1 provides the best possible result on approxima-
tion and cohomology vanishing properties of an arbitrary compact set K < M
such that 42" 3(K) = 0 or A*""%(K) = 0.

To prove this claim we consider the following two compact subsets of C", n = 3:

K, = {ZE(E"||Z1|2 oz, =z = 1,z, =0},
Ky={zeClz;P 4+ + |z, 21> + |2s-1* = 1,2, = 0} .

Then A**"3(K;)=0 and A?""%(K,) =0, so that the two statements of
Theorem 1 apply to K; and K, respectively, hence for every coherent analytic
sheaf & on C" the restriction map H* ™ 3(C"; ¥) - H" *(K,; &) has dense image
and there is a neighbourhood basis % of K, of open sets such that H*~}(U; &) =0
for every Ue%, whence H* *(K,; %) = 0.

However it is not true that the restriction map H* 3(C", %) - H" 3(K,; &)
have dense image, and that H" *(K,; %)= 0. In fact, if the restriction map
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H* 3(C";, &) - H* }(K; &) had dense image, the same would be true of the
restriction map H* 3(€C" !, #) - H" " 3(K,; &), since K; = €" ! (the latter being
imbedded in C" as the hyperplane z, = 0); and since K, has a neighbourhood basis
of (n — 3)-complete open sets, this would imply that H2"~*4(K,; €) = 0, whereas
H?" %(K,; C)  C. Similarly, if we had H""%(K,; &) = 0, then, since K, = C* ¢,
it would follow that H?" 3(K,; €) = 0, whereas H*""3(K,; C) = C.

Thus we have seen that there are topological obstructions to improving
Theorem 1 with regard to an arbitrary K such that A2* " *(K) = 0 or A%* " 2(K) = 0.

On the other hand, if we consider, for n = 4, a compact set K = M such that

AP+ YK) = 0, or AXM*2(K) =0, for some g with "—5— <q<n-3, such

topological obstructions do not occur anymore, since H/(K; €C) = Ofor j = 2q + 1,
or j = 2q + 2, respectively. For this reason it seems rather difficult to exhibit any
counterexamples to sharpening Theorem 1 for ¢ in that range.
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