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1 Introduction 

Let A ~ denote the :e-dimensional Hausdorff  measure in ~N, N > 2, computed  
with respect to the Euclidean distance function. It is known that a compact  
set K c ~N such that A~(K) = 0 is polynomially convex. Indeed its projections 
rtj(K), j = 1 . . . . .  N into the coordinate complex axes are totally disconnected 
and hence P(rcj(K))= C(rcj(K)); then it follows readily that also P ( K ) =  C(K), 
which implies the polynomial  convexity of K. It is also known that a compact  
set K ~ ~'~ such that A2(K)= 0 is a Stein compactum.  Indeed its projections 
za.(K) have zero planar measure and hence, by the Har togs-Rosentha l  theorem 
(see [6]), R(~zi(K))= C(Ttj(K)); then also R ( K ) =  C(K), which implies that K 
is rationally convex and so it is a Stein compactum. 

These results extend in a straightforward manner  to the setting of a Stein 
manifold M of complex dimension n > 2, for which A" denotes the e-dimensional 
Hausdorff  measure computed  with respect to an arbitrary distance function com- 
patible with the topology of M. Namely, a compact  set K c M such that A 1 (K) = 0 
is (9(M)-convex, whereas a compact  set K c M such that A2(K) = 0 is a Stein 
compactum. This follows from the above mentioned results in ~2 N via the Remmert  
imbedding theorem of M into C zn + 

That  being stated, it seems natural  to raise the following question: What  
conclusions of a parallel kind can be drawn with regard to a compact  set K c M 
such that  A~(K) = 0 for some integer e with 1 < ~ _< 2n - 2? 

The present paper is intended to partially answer this question by proving the 
following two theorems: 

Theorem 1 A compact set K c M such that A 2n-  3(K)  = 0 has the followin9 approx- 
imation property: For every coherent analytic sheaf 5 a on M the restriction map 
H " - 2 ( M ;  J )  ~ H"-  Z(K; o~) has dense image. 

Moreover a compact set K ~ M such that Az"-2(K) = 0 has a nei,qhbourhood 
basis ql of open sets such that H " -  I(U; 5 ~) = 0 for every U ~ql and every coherent 
analytic sheaf ~ on M. 
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Theorem 2 Let q be an integer with 0 < q < n -  2 and set gl = n -  

A compact set K ~ M such that A2q+~(K) = 0 is ?l-convex in M and a compact 
set K c M such that Aze+ 2(K) = 0 has a neighbourhood basis o f  ~-complete open 
sets. 

Here "~-convex in M"  means the following property:  For  every open neigh- 
b o u r h o o d  co of K one can find a C a strongly ~-plurisubharmonic proper  function 
u: M--* IR such that K c M0lu) = { z ~ M l u ( z )  < 0} ~o9. Such terminology agrees 
with that of [8]. By the Andreott i  Grauer t  approximat ion  theorem [1, Theorem 
12], for every coherent analytic sheaf ow on M the restriction map 
H4(M; ow) ~ Hq(Mo(u); St') has dense image. Therefore an inductive limit consid- 
eration gives the following corollary of Theorem 2: 

Corollary 1 A compact set K c M such that A 2 q + 1 ( K ) = 0  has the following 
approximation property: For every coherent analytic sheaf  ~9 p on M the restriction 
map H~(M; ~ )  ~ H~(K; 5 a) has dense image (0 < q < n - 2). 

Moreover a compact set K c M such that A2~+2(K) = 0 has a neighbourhood 
basis ql o f  open sets such lhat Hi(U;  ~ ) =  0, j > c~, for  every U ~ r  and every 
coherent analytic sheaf  5 ~ on M (0 < q < n - 2). 

Some comments  are in order. 

(I.1) Fo r  n = 2 the second statement of Theorem 1 is equivalent to saying that K is 
a Stein compactum,  provided AZ(K) = 0. It follows that for n = 2 the first state- 
ment of  Theorem 1 is equivalent to saying that K is G'(M)-convex, provided 
A I ( K )  = O. 1 Hence for n = 2 Theorem 1 reduces to state the above mentioned 
known facts. The same is true of Theorem 2, since for n = 2 the only possibility is 
q = 0, hence ~ = 0 too, and it is known that convexity with respect to 0-plurisub- 
harmonic  functions is equivalent to (9(M)-convexity and 0-completeness is equiva- 
lent to being Stein. 
(I.2) As M is Stein, Hi(M;  5 ~ = 0, j > 1, for every coherent analytic sheaf5 e on M; 
hence for n > 3 the first statements of Theorem 1 and Corol lary 1 are equivalent to 
saying that the separated spaces "H"-Z(K;Se) ,~HO(K;o~)  associated with 
H"-Z(K;  5r H~(K; 5~) 2 are null provided A 2~- 3(K) = 0, q > 1 and A zq+ I(K) = O, 
respectively. 
(I.3) Theorem 2 and Corol lary  1 are meaningful only for q such that c~ < n - 2, i.e. 

F , , ~ 7  

1 f o r 0 = < q  
L - - _ I  

since every co-connected compact  subset of M is ( n -  1)-convex in M (see [8, 
Theorem 211 and every compact  subset of M has a ne ighbourhood  basis of 
(n - 1)-complete open sets. 3 Therefore for n > 3 Theorem 1 provides informations 

t We recall that a compact set K ~ M is d)(M)-convex if and only if is a Stein compactum and the 
restriction map F(M; 5~) ~ F(K; 5f) has dense image for every coherent analytic sheaf 5 ~ on M 
2 We recall that, given a topological vector space V, the separated space "V associated with V is 
the quotient of V modulo the closure of the zero-element 
3 We recall that every complex manifold of dimension n with no compact connected components 
is (n - 1)-complete (see [-7]) 
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independent of Corollary 1 with regard to any compact  set K c M with 

A2q+I(K) = 0 o r  A2q+2(K) = 0 for some integer q such that T + 1 < q 

< n - 2. We shall see (Sect. V) that such informations are in general optimal for 
q = n -  2, as far as approximat ion and cohomology  vanishing properties are 
concerned; however we do not know how to decide whether for n > 4 and 

[ ~ 1 - - < q - - <  n - 3  it is possible or not  to obtain any sharper informations. 

We wish to mention two corollaries of Theorem 1. 

Corollary 2 A compact set K c M such that A 2 " - 3 ( K ) =  0 has the following 
approximation property: Every C ~ J-closed (p, n - 2)-form defined on a neighbour- 
hood o f  K can be approximated uniformly on K together with all derivatives o f  the 
coefficients by C o~ ~-closed (p, n - 2)-forms defined on the whole M (0 < p < n). 

Moreover a compact set K c M such that AE'-Z(K) = 0 verifies I4e"-1 . .~ (K) = o 
(0 <= p <= n). 

Corollary 3 Let D ~ M be an open domain and K a proper closed subset o f  bD in such 
a way that b D \ K  is C 1-smooth. Then: 

(a) I f  A 2 " - 3 ( K ) =  0 and bD is connected, every continuous CR-function f on 
b D \ K  has a continuous extension F to D \ K  which is holomorphic on D; 

(b) I f  A z ' - z ( K )  = 0 and f is a continuous CR-function on b D \ K  that satisfies 
the moment condition 

.f~ = o ,  
bD\K 

for every C~ g-closed (n, n -  1)-form ~ defined on a neighbourhood of  D, such that 
(suppa) c~ K = ~ ,  then f has a continuous extension F to D \ K  which is holomor- 
phic on D. 

Corol lary  2 follows straightforwardly from Theorem 1 by applying the 
Dolbeaul t  isomorphisms, since it is known that these isomorphisms are not  only 
algebraic, but  topological as well. 

Corol lary 3 is in turn a consequence of Corol lary 2, but not  an immediate 
consequence: it depends on some recent work on removable singularities for the 
boundary  values of holomorphic  functions (see [9, Theorem 3 and Theorem 4]). 

Corol lary 3 improves and extends to the context of a Stein manifold the results 
of [lO]. 

II Preliminary facts 

On account  of the Remmert  imbedding theorem, there is no loss of generality in 
assuming that  M be a closed complex submanifold of dimension n of some 
Euclidean space C N (2 _< n < N). 

Moreover  we may assume that the Hausdorff  measures on M are those 
computed  with respect to the restriction to M of the Euclidean distance function 
of C N. 
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Throughou t  the paper we shall use the notat ion that, for each integer p with 
I < p < n, ~ V ( M )  means the set of  all the holomorphic  maps l = (l~ . . . . .  lp): 
M -~ C v having the following two properties: 

(i) I is the restriction to M of a surjective linear map L = (L~ . . . . .  Lp): 
~N __+ Cp; 

(ii) l is non-degenerate,  i.e. the analytic set C(1) of critical points of I has 
dimension < n - 1. 

In the first place we have: 

Lemma 1 Let K ~ M be a compact set such that AZq+ 2(K) = O. Then for every 
point z~  M k K  it is possible to choose a holomorphic map 16 ~ q + l ( M )  such that 
l ( z~162 (0 <- q <= n - 2). 

Proof  Consider the Grassmann manifold Gs, u_q_l ( z  ~ of ( N - - q -  1)-dimen- 
sional complex affine subspaces of ff~N passing through z ~ By a result of  Shiffman 
[ 11 ] almost every H ~ G v, N- q- 1 (z ~ does not  meet K. On  the other hand, it is also 
true that, for almost every H E G~v, u -  q- 1 (z ~ the intersection M c~ / / i s  transverse 
in a ne ighbourhood  of z ~ 

Therefore we can choose a Fl~Gu,u_q ~(z ~ such that K c ~ H  is empty and 
M c~/7 is transverse in a ne ighbourhod  of z ~ Let 

N 

a~k(Zk-- Z~ h =  l . . . . .  q + l 
k = l  

be independent  linear equations that represen t / / .  
Then consider the surjective linear map L '  C ~' --+ C q+ ~ given by 

N 

Lh(z )= ~ a~zk, h = l  . . . . .  q + l ,  
k = l  

for every z e C u, and set 

I =  L ] M : M - - + C  q+l 

The analytic set C(1) of critical points of l is the subset of M at which the 
holomorphic  (q + 1)-form dlt /x . . .  /x dlq+l vanishes. Since this form does not 
vanish on a ne ighbourhood  o f z  ~ in M, it follows that C(1) has dimension < n - 1, 
hence l ~ 5q q + 1 (M). 

Moreover  it is plain that l(z ~ ~ l(K), and so the proof  of the lemma is completed. 
q.e.d. 

Next we can prove: 

Lemma 2 Let  K ~ M be a compact set such that A2q+2(K)--0. Then, given 
arbitrarily an open neighbourhood tn of  K in M,  there exist f initely many q-complete 
open subsets Ua . . . . .  U~ o f  M such that K ~ U1 c~. . . c3 U ~ c o  (0 < q < n - 2). 

Proof  Choose  open ne ighbourhoods  co~ and co2 of K in M such that  cow,co, 
co 1 c (o2~M and o22 is Stein, and consider the compact  s e t  ~)2\(.Ol, By Lemma 1 we 
can, for every point  z6d~2\coa, find a holomorphic  map  l ~ q + ~ ( M )  such that  
l(z) q~ l(K). Then we can also find an open ne ighbourhood I~ of z in M and an open 
ne igbourhood  J~ of l(K) in ~q+l  so that I~c~ l-~(J~) is empty. It follows, since 
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e32\c01 is compact,  that  there exist finitely many  holomorphic  maps li e s 1 (M) 
and open neighbourhoods  J~ of l~(K) in IE q+l, i = 1 . . . . .  s - 1, so that 

IFl(J3 c~(cG\ol)= ~ .  
\ i = 1  

Each IF 1 (J~) is q-complete. Indeed it is the intersection of M and an open subset 
of (I; N which is biholomorphical ly equivalent to Ji x C N-q-  ~ and so is q-complete. 4 

Then, after setting U ~ = l T ~ ( J ~ ) , i =  1 . . . . .  s -  1 and U s = c o 2 ,  we get the 
desired conclusion. 

q.e.d. 

Lemma 3 Let  K c M be a compact set such that A2q+ ~(K) = O. Let  F c M be an 
C(M)-compact set and l: M ~ G q§ 1 a holomorphic map in ~q+l(M), and consider 
the compact set 

E = Fc~ [ - l ( l ( g ) ) .  

Then E is q-convex in M (0 <= q <= n - 2). 

Proof  Let o be an arbitrary open ne ighbourhood of E. Then it suffices to prove 
that there exists a C ~ strongly q-plurisubharmonic proper function u : M --* lit such 
that E c Mo(u) = { z E M l u ( z )  < 0} ~o .  

We can find a C ~ strongly plurisubharmonic proper  function ~0 : M --* IR and 
an open ne ighbourhood J of l(K) in C q+l in such a way that 

F c Mo(cp), M o ( 9 ) n l - l ( J ) ~ a ~  , 

where Mo(cp) = { z e M I o ( z )  < 0}. Moreover ,  by the assumption that  
A2q+~(K) = 0, we also have A2q+~(I (K))= 0, so that  c q + l k l ( K )  is connected; 
hence, according to [-8, Theorem 2], l(K) is q-convex in ~q+ ~, which implies that we 
can find a C ~ strongly q-plurisubharmonic proper  function ~ : ~q+ ~ --* IR such that 

I(K) = {w~C~+~lO(w) < O}~J. 

Consider the functions exp(q~), e x p ( ~ o l ) : M  ~ I R ;  then e x p ( o ) <  1 on F, 
exp(qO _>- 1 on M\Mo(~O) and exp( t~o l )<  1 on 1-1(l(K)), e x p ( ~ o l ) >  1 on 
M \ l - l ( J ) .  Therefore we can choose a positive integer m large enough so 
that e x p ( m q ~ ) + e x p ( m ~ o l ) <  1 on E and exp(mq~)+exp(m~Ool)> 1 on 
M\(Mo(qO c~ l -  ~( J)). Then set 

u = exp(mcp) + exp(m~ o l) - 1 : M  -~ IR. 

It is plain that E c Mo(u)~co. Moreover  it is easily seen that u is strongly 
q-plurisubharmonic and proper, and so the proof  is completed. 

q.e.d. 

Lemma 4 Let  K c M be a compact set such that A 2 q + I ( K ) =  0. Then, given 
arbitrarily an open ndghbourhood co o f  K in M,  it is possible to find f ini tely  many 
C ~ strongly q-plurisubharmonic proper functions ul . . . . .  ut: M ~ IR such that 
K c M o ( u l ) n . . . c ~ M o ( u t ) { e )  (0 < q < n - 2). 

* Indeed Ji is q-complete (see footnote 3) 
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P r o o f  Choose an open ne ighbourhood (D 1 of K in M with 6o1~)  and a C ~ 
strongly O-plurisubharmonic proper  function p : M - - *  IR with c51 c Mo(p),  and 

consider the compact  set M o ( p ) \ c o l .  By Lemma 1 we can, for every point 

z ~ Mo(p)\O)l, find a holomorphic  map  I f s +I(M) such that z r l - t ( l (K) ) .  Then 
we can also find an open ne ighbourhood lz o f z  in M such Iz ~ l - l ( [ ( K ) )  is empty. 

It follows, since Mo(p)\~Ol is compact,  that  there exist finitely many  holomorphic  
maps ~ S e q + l ( M ) , i  = 1 . . . . .  t -  1 so that 

I[-l(li(K)) ~ ( m o ( p ) \ o g l ) =  ~ . 
\ i = 1  

Then, if F c M is any (9(M)-convex compact  set with K c F, and we set 
Ei = F ~ li- 1 (li(K)), i = 1 . . . . .  t - 1, we also have 

K =  N El, Ei c~(Mo(p)\cOx)= ~ .  
i = 1  i = 1  

Now, in view of Lemma 3, we can find C ~ strongly q-plurisubharmonic proper 
functions ul . . . . .  u~_ 1 : M ~ IR such that Ei ~ Mo(ul)  and 

Mo(u~ c ~ ( M o ( p ) \ m t )  = ~ .  
\ i = l  

Hence, setting ut = p, we get the desired conclusion. 
q.e.d. 

For  the proof  of Theorem 1 we also need the following result: 

Lemma 5 Le~ K ~ M be a compact set such that A2"-3(K) = 0. Then for  every 
hoIomorphic map l e 2 f ' " - l ( M )  one has A2"-1(/  l ( l (K))  = O. 

Proo f  Since l is non-degenerate,  the set C(l) of critical points of I verifies 
A 2"- 1(C(t)) = 0; hence it suffices to show that A z"-  1 (1 - l ( l (K) ) \C( I ) )  = O. 

Let z e ( l - ~ ( l ( K ) ) \ C ( l ) ) ;  then the differentials dl~ . . . . .  dl~_ ~ are linearly inde- 
pendent  at z, and so there exist an open ne ighbourhood U of z in M and 
a holomorphic  function l': U ~ C in such a way that l~ . . . .  , l,_ ~, l' are complex 
local coordinates  of M valid on U. Let J be an open ne ighbourhood  of l(z) in C" - 
and J '  an open ne ighbourhood  of l'(z) in 112 such that  J x J'  is contained in (1, f')(U), 
and consider the open ne ighbourhood  U' = (l, l ' ) -  ~ (J  x J ')  of z in M. Then 

l ( l -  l (K) ) c3 U' c (l, l ' ) -  a ( (l(K) c~ J ) x J ')  . 

Now, since A 2 " - 3 ( K ) = 0 ,  one also has A 2 " - 3 ( I ( K ) ) = O ,  and hence 
A 2 " - l ( ( l ( K ) c ~ J ) x J ' ) = O .  It follows, as (l,l ')  is a diffeomorphism, that 
A 2 " - I ( I - I ( t ( K ) ) c ~  U ' ) =  0. This shows that the ( 2 n -  l)-dimensional Hausdorff  
measure of l - l ( l ( K ) ) \ C ( l )  vanishes locally, from which the conclusion follows at 
once. 

q.e.d. 

III Proof of Theorem 1 

As we have pointed out  in (I.1), Theorem l is already known  to be valid for n = 2. 
Therefore we shall consider the case n ~ 3. We recall (I.2) that  the first statement of  
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the theorem is then equivalent to having 

(IlI.1) ~H"- 2(K; 50) = O, 

for every coherent  analytic sheaf 5:  on M. 
We first prove the second s ta tement  of the theorem. Thus suppose that  K c M 

is a compac t  set such that  Aen-2(K)  = 0. By L e m m a  2, K has a ne ighbourhood  
basis ~ / o f  open sets which are intersections of finitely many  (n - 2)-complete open 
sets. Therefore it suffices to show that, if U = U1 c ~ . . .  c~ Us, with each Uj being an 
(n - 2)-complete open subset of M, then 

(IIl.2) H " -  I (U; 5 ~ = O, 

for every coherent  analytic sheaf 5: on M. 
We can proceed by induction on the number  of the Uj's, granted that, by the 

(n - 2)-completeness of each U j, (III.2) is true for s = 1. Thus let s > 2, and assume 
inductively that  (III.2) is true for U' = Uz ~ . .  �9 c~ Us, i.e. H " - I ( U ' ;  50) = 0. Since 
H"(UI u U'; 50) = 0 (see footnote  3), the Mayer -Vie tor i s  sequence 

�9 �9 " ~ H " - I ( U z ;  50) 0 H n - I ( u ' ;  50)  ~ H n - l ( U ;  50)  --4 H n ( U I  ~J U ' ;  50)  ---*" " �9 

implies immediately  that  (III.2) is valid. 
Next  we take up the p roof  of the first s ta tement  of  Theorem 1, which requires 

more  effort. Thus suppose that  K c M is a compac t  set such that  Az" -a (K)  = O. 
In the first place we deal with the case that  50 = W is a locally free analytic 

sheaf on M. Since M is Stein and 0~- is locally free, it is known that  the cohomology  
spaces with compac t  supports  H~(M; ~ )  = 0 for q :t = n (see [2]). In particular,  as 
n > 3, H'~-Z(M; W )  and H ~ - I ( M ;  W) are null; hence the cobounda ry  h o m o m o r -  
phism 

6 : H " -  2(K; W )  --+ H'~- ~ (M\K;  W )  

is an algebraic isomorphism.  On the other  hand it is known that  6 is a cont inuous 
map  (see [3] ); therefore the thesis will follow if we prove that  "H"_c - 1 ( M \ K ;  W )  = O. 
This in turn is equivalent to proving that  ~ H I ( M \ K ; W |  where 
W = H o m e ( W ;  (9) is the dual of W and ~" is the sheaf of germs of ho lomorphic  
n-forms on M. As a mat ter  of fact, by the refined version [2, VII.4.2] of the Serre 
duality theorem, there is a topological  duality between " H ' I - I ( M \ K ; W )  and 
~Ext~(M~,K; W, f2"), and since W is assumed to be locally free, one has 
E x t * ( M \ K ;  W, fP)  ~- H * ( M \ K ;  ,~  | ~2"). Indeed we shall prove that  

(III.3) H ~ ( M \ K ;  ~ | ~2") = O . 

By L e m m a  1 we have K = ~]l l -  1 (l(K)), where 1 ranges through ~ " -  t (M), and 
since M has a countable  topology,  we can find a sequence {/~}~%~ of maps  
I , ~ " - l ( M )  such that  K = (~/~= ~ li-l(li(K)). 

Let moreover  F c M be an (9(M)-convex compac t  set with K c F and set, for 
every positive integer i, 

E~ = FnI :~( l r  U~ = M \ E r  

Then ~//= {U~}i%a is an open covering of M \ K .  Consider  the nerve N(ql) of this 
covering and the (~ech cohomology  space H t (N(r ~,~ @ ~n). We claim that  

(III.4) H t  (N(0g); r | ~") = 0 .  
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As a matter  of fact, let f be a 1-cocycle of N(~#) with coefficients in ~ | f2", that 
is a function which associates to each ordered pair i, j of positive integers a section 
f~j ~ F(U~ c~ U j; ~ | f2"), in such a way that f~j + fig = fig on U~ n Uj ~ Uk, for all 
positive integers i, j, k. We have Ui c~ U~ = M \ ( E i  w Ej) and, in view of Lemma 5, 

A z , - I ( E i •  E i) = 0 ; 

hence E~ u Ej is a co-connected compact  subset of M. Then, since # | Q" is locally 
free, so that HI(M;  ~ | Q") = 0, the Hartogs theorem implies that f j  extends to 
a section f j  ~ F(M; ~,~ | s It follows that f is a coboundary, i.e. for each positive 
integer i there is a section f ~ F ( U i ;  ~ | f2") in such a way that f ~ - f j  =f~j on 
U~ c~ Uj for all positive integers i, j. Indeed it suffices to take f~ = ~1 lye. Therefore 
(III.4) is valid�9 

Next we claim that 

(III.5) For  every positive integer i, HI(U~; ~" | ~") = 0 .  

As a matter of fact we have U~= M \ E i ,  and since, by Lemma 3, 
0 = ~H"-2(E~; g ) =  H"-~(E~; o-~), the cohomology sequence with compact sup- 
ports 

. . . _ , H , ~ - Z ( M ; ~ )  0 __+ H.-E(E,;  ~ )  , -1  . , -  = ~ H r  ( U ~ , ~ ) - o H ~  X(M;~- )=  

= 0 ~ H"-*(E~; ~-)  = 0 -o H'~(U~; ~ )  ~ H'~(M; ~-) --+ 0 

implies that " H ~ - ~ ( U ~ ; ~ ) =  0 and that H'/(U~; ~ )  is separated. It  follows, on 
account of [2, VII.4.2], that (III.5) holds. 

Now the desired conclusion that (III.3) is valid is a straightforward consequence 
of a special case of the Leray theorem applied to the open covering q / o f  M \ K  (see 
[5, 12.8]). 

Thus the proof  of the first statement of Theorem 1 is completed for the case that 
5e = ~- is locally free. 

Finally, assume that 5 v is an arbitrary coherent analytic sheaf on M. Since M is 
Stein and K is compact, we can find a Stein open neighbourhood M'  of K in M and 

a positive integer p such that an exact sequence of sheaves (gv ~ 5g - ,  0 is valid on 

M'. Let ~ be the kernel of #; then ~ is a coherent analytic sheaf on M'  and there is 
an exact cohomology sequence 

�9 �9 ---, H"-2(K;  (9*') u , ,  H,_Z(K; 5v) ~ Hn_I(K; ,~) --+.. , 

and since, by the above, H " - I ( K ;  ~ )  = 0 and (III.l) is true for the sheaf C p, and 
since # ,  is a continuous map, it follows that (III.1) is true for the sheaf 5~ as well. 

Now the proof  of Theorem 1 is completed. 

IV Proof  of  Theorem 2 

After having established Lemma 2 and Lemma 4 in Sect. II, Theorem 2 turns out to 
be a corollary of the following result of Diederich and Fornaess [4] on smoothing 
continuous q-plurisubharmonic functions: Let Q be an n-dimensional complex 
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manifold and p '  f2 ~ Ill a function that is locally the supremum of finitely many C ~ 
strongly q-plurisubharmonic functions. Then, given arbitrarily a cont inuous posit- 
ive function t t :Q ~ IR, there exists a C ~ strongly ~-plurisubharmonic function 

a : ( 2 - - * l R , ~ = n -  , s u c h t h a t l p - a ] < r / o n ~ ( 0 _ _ < q = < n -  1). 

It should be observed that  here we adopt  the convent ion that  "q-plurisubhar- 
monic" means that the number  of  non-negative eigenvalues of the Levi form is 
> n - q, whereas in [4] it means that this number  is > n - q + 1 (likewise as in 

v- -I 
[ '1]), F o r  th is  r e a s o n  in  [41 o n e  f i nds  1 =__~ q ~ n a n d  1~ = n - / ~ / - [ - 1 .  

k_-l~ 
That  being stated, we take up the proof  of Theorem 2. 
We first prove the second statement of the theorem. Thus assume that K c M is 

a compact  set such that A2q+a(K) = 0. By Lemma 2, K has a ne ighbourhood basis 
of open sets each of which is the intersection of finitely many q-complete open sets 
U ~ , . . . ,  U~. Hence it suffices to show that f2 = U~ c ~ . . .  c~ U~ is c~-complete. As 
a matter of fact, let p~: U~ ~ IR be a C ~ strongly q-plurisubharmonic proper  
function exhibiting the q-completeness of Ui, i = 1 . . . . .  s, and consider on f2 the 
function p = sup{p~ . . . . .  O~}, which is a cont inuous proper  function. Then there 
is a C ~ strongly ~-plurisubharmonic function a : Q ~ IR with o- > O - 1. Hence a is 
proper, which entails the ~-completeness of f2. 

Next we prove the first statement of Theorem 2. Thus assume that K c M is 
a compact  set such that A2q+I(K)= 0. By Lemma 4, given arbitrarily an open 
ne ighborhood co of K, there is a continuous proper  function p : M ~ IR that is 
globally the supremum of finitely many  C ~~ strongly q-plurisubharmonic functions 
on M, such that K ~ { z e M l p ( z )  < 0}~m. Then if we take a small e > 0, we still 
have { z e M l p ( z ) < ~ } ~ c o  and K ~ { z e M l p ( z ) <  - e } .  Let a : M - - , I R  be a C ~ 
strongly ~-plurisubharmonic function such that  [p - am < e on M. Then ~ is proper  
and K c Mo(o-)~co. It  follows that  K is ~-convex in M. 

The proof  of Theorem 2 is then completed. 

V Concluding remarks 

We claimed in (I.3) that  Theorem 1 provides the best possible result on approxima-  
tion and cohomology  vanishing properties of an arbitrary compact  set K c M 
such that  A2"-3(K) = 0 or A z " - 2 ( K )  = O. 

To prove this claim we consider the following two compact  subsets of ~;", n > 3: 

K t  = {zEIE"[ Iz l l  2 - 4 - " ' +  Iz~-2 l  2 = I z . - a l  = 1, z .  = 0} , 

K 2  = { z e C " l l z z l  2 + " ' +  Iz , -2L 2 + I z . - l l  2 = 1, z .  = 0} . 

Then A 2 " - 3 ( K 1 ) = 0  and A2n-2(K2)= 0, SO that the two statements of 
Theorem 1 apply to K1 and K2, respectively, hence for every coherent  analytic 
sheaf ~ on C" the restriction map H " -  2 (C"; Y~) ~ H" - 2 (K 1; Af) has dense image 
and there is a ne ighbourhood  basis ~ / o f  K2 of open sets such that H " -  I(U; Y') = 0 
for every U e ~//, whence H " - I ( K 2 ;  ~ )  = 0. 

However  it is not  true that the restriction map Hn-3(Cn; ~f)~ Hn-a(K1;  ~ )  
have dense image, and that  H"-2 (K2;  ~ ) =  0. In fact, if the restriction map 
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Hn-3(Cn;  ocF)--* H " - 3 ( K 1 ;  5 a) had  dense image, the same would  be true of the 
res t r ic t ion map  H" - 3 ( ~ ,  - 1; 5e ) ~ H" - 3 (K 1 ; 6e), since K 1 c C" - 1 (the la t ter  being 
imbedded  in 112" as the hyperp lane  zn = 0); and  since K1 has a n e i g h b o u r h o o d  basis 
of (n - 3)-complete open sets, this would  imply that  H2" -4 (K1;  C) = 0, whereas 
H2"-4(K1;  C) ~ II;. Similarly,  if we had  H " - 2 ( K 2 ;  ~9 ~ = 0, then, since K2 c I1~ "-1,  
it would  follow that  H2~-3(K2;  ~)  = 0, whereas H2n-3(K2; ~7,) ~ I~,. 

Thus  we have seen that  there are  topologica l  obs t ruc t ions  to improv ing  
Theorem 1 with regard  to an a rb i t r a ry  K such that  A2n-3(K) = 0 or  A2n-2(K) = O. 

O n  the o ther  hand,  if we consider,  for n > 4, a compac t  set K c M such that  

A 2 q + I ( K ) - - 0 ,  or  A2q+2(K)=0, for some q with - ~ -  =< q__< n - 3 ,  such 

topolog ica l  obs t ruc t ions  do no t  occur  anymore ,  since Hi(K; I1;) = 0 for j > 2q + 1, 
or j > 2q + 2, respectively. F o r  this reason it seems ra ther  difficult to exhibi t  any 
counte rexamples  to sharpen ing  Theorem 1 for q in tha t  range. 
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