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1 Introduction

In this paper we shall study the equations

0
(L~&> u(x, t) = 0 (1.1)

and
Lu(x)=0 (1.2)

associated to the operator L =Y,X? — X, on a compact manifold M with
a positive measure y, where X, X,, ..., X, are smooth vector fields on M and
X, =Y, X;. Our main purpose is to prove (Theorem 3.1 and Theorem 3.2)
Harnack inequalities for positive solutions of Eq. (1.1) and Eq. (1.2) and to derive
{Theorem 4.1) an upper estimate for the fundamental solution of the operator
¢
at
Since Homander’s work [3], many people have investigated various properties
of such an operator L (see, e.g., [2, 4, 11, 12]). Recently Nagel et al. [ 10] studied the
geometries associated to the operator L. On the other hand, Jerison and Sanchez-
Calle [5], Kusuoka and Stroock [6] obtained upper and lower estimates for the

é . o
heat kernel of L — % for small time ¢. Similar upper bounds for the heat kernel was

also proved by Melrose [9] using the wave equation method. More recently
Kusuoka and Stroock [7] have also investigated the long time behavior of the heat

kernel of L — i
ot
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One of the standard ways in studying the sum of squares of vector fields is to
use Rothschild-Stein lifting and reduce the problem to the model cases. In this
paper we shall explore a different approach, the method of gradient estimates. The
method of gradient estimates, originated first in Yau [13] and Cheng and Yau [1]
and further developed in Li and Yau [8], has been used very successfully in
studying elliptic and parabolic operators. In §2 we derive gradient estimates
(Theorem 2.1 and Theorem 2.2) for positive solutions of Eq. (1.1) and Eq. (1.2)
under the assumption that, for 1 < i.j, k < m, [X;, [X;, X ]] can be expressed as
linear combinations of X,,..., X, and their brackets [X,,X,], ..,
[Xnm-1, X1 It is not surprising that our gradient estimates are more delicate due
to the fact that the operator L is only weakly elliptic. Once the gradient estimates
are derived the proof of Harnack inequalities and the upper estimate for the heat
kernel follows essentially the same way as in [8]. These are given in §3 and §4
respectively.

We hope that the method of gradient estimates can be applied to study other
problems related to the sum of squares of vector fields and can be extended to any
family of vector fields X, ..., X, satisfying the more general condition: the
commutators of X, ..., X, of order r can be expressed as the linear combina-
tions of X4, ..., X,, and their commutators up to the order r — 1.

2 Gradient estimates

Let X, X,,..., X, be smooth vector fields on a compact manifold M. Let
L= Z X2 -X,
with
XO = Z CiXi

where c; are some smooth functions on M. Our goal in this section is to derive an
estimate on the derivatives of positive solutions u(x, t) on M x [0, oc) of the
equation

5
(L - a> u(x,t)y=0. 2.1

Throughout this section we shail assume that X, ..., X,, satisfy the following
condition: for 1 £i,j, k < m, [X;,[ X, Xi]] can be expressed as linear combina-
tions of Xy, ..., X,, and their brackets [ X, X, ], ..., [Xm-1, Xm]. 1€, we have

(X, [X;, X1 =2 alp X, + Z bin Y, (22)
1 a

where we have set {¥,} = {[X,, X;]}, {al;} and {b%;} are some functions on M.
Let us denote by

a = max|al| a' = max|X,ai;l
b:maxlb?jkl b/=maX|th?jk|
¢ = max|c| ¢ =max{|X;cl | Yol I XFel} . (2.3)

First we need the following
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Lemma 2.1 Let u(x, t) be a positive solution of Eq. (2.1) and f = log u. For any given
constants < A < 1 and & > 1, the function

F=1 {Zinflz + Y [+ |Y, [P — 5(Xof+f;)}
satisfies the inequality
L—ﬁ Fz _f+i YIXif12—Xof—fi 2+zZ[X.X.f|2+£Z1th2
ot)" Tt m\¢ " 0 ! = J 24°°
+ 2224 — DY [T+ YL/ PP X YL f1P + 2IZXif[L’ X:1f
—ot[L, Xo]f+ 25[ZXif[Xi, Xolf
+ 22y [+ | YL PP YL SIL Y 1S
+ 4 Y [+ | YL f PV X Y X, Y1 — 2ZXiinF .
Proof. Differentiating F in the direction of X, we have

XoF =1t {2 XXX f+ 24 [L+ 1YL PV Y X Yo f

- 3(X2f+ Xof,)} . (2.4)
Similarly, for i = 1,2, ..., m, we have

X,F=t {22 XXX, £+ 22N [+ | Y, f P17 Y, fX. Y, f

—3(X; Xo f+ Xift)} . (2.5)

Differentiating (2.5) once more in the direction X; and summing over
i=1,...,m, we get

L XPF = t{zz XX 12+ 2 X fXXE ) + ZZXjf[XiZ, X;1f
+ 20T [+ |V fPY YL IX2 Y1 S

+ 22 [T+ |V f PP YL YL(XE )

+ 200 [+ Y f PP G YL P [ + Q24— DY)

iy (Z X2Xof+Y X,»Zf,>} . (2.6)
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On the other hand, we have

Fi=t+ f{z Y XX+ AL L+ LS PT Y,

—0(Xo f: +frr)} . 2.7)
Combining (2.4), (2.6) and (2.7), we obtain
0 F é
(Lw5>F =——+ z{zgxixjﬂ + Z;XijJ-(L —5>f
+ 2% X, fIL X1~ 0[L, Xo1f
J
+ 2. L+ Y [PV Y SIL V1S

+ 243 [1 +|Yaf2]’“1YafYa<L—§t>f

+ 223 L+ PP G [+ 24~ DIY, 2]

8
-ano(e=g) (=) -

Notice that f = logu satisfies the equation

<L—-)f-wz X/ (29)
Also

YIXXfIP= 2|X2f|2+ > IXiXf 1P

iJ i*)
z;(zix,?f) +5§1Y,ﬂ2
- (S IXP =X —h) +IT L 210
Moreover, by (2.4), (2.5), (2.9) and ldirect computation, we geta
t{zngij <L —%).H 2;,2 [1+ Y, fI2V 1Y, fY, <L — %)f
-k g)rog ()
= —2ZXFXf+ ZétZXf[X,,XO]f
+4,1t2[1+[Yf! VPIX Y. [X, Yol f (2.11)

Plugging (2.9), (2.10) and (2.11) into (2.8) we obtain Lemma 2.1.
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For later purpose we are going to compute certain terms that appear in Lemma
2.1. First

[ X, Xj]f: Z c[ X, Xj]f_ Z (chi)Xif
and

(L, X;]f= Z[Xizan]f+ [(Xo, X;1f
= Z{Xi[Xi,Xj]f+ [Xi X;1X:f} + [Xo, X511
:2ZXiEXi,Xj]f_Z[Xi’[Xian]].f+ [Xo, X;11.

From (2.2) and (2.3) we have
0L, X111 <2 T IDX[X 0 X011 + (ma + ) T XS |1

+(mb+ )Y | Y, f] (2.12)

and

\[Xo,Xj]flécszl+C’ZIX.-f|- (2.13)
Similarly

Z[Xi: Y 1X.f| +1[Xo, Y.l

<2a) |XX;f| +2b2 [X; Y f] +CZ‘[XE, Y. 1/!
ij i.p i
+ (ma’ + Cqab + c)z X fl+ (mb + Csh?)Y | Y, fl. (2.14)

Also
IIX:, Y 1f 1 Say |X;f1+bY | Ysf]. (2.15)
j B

Finally

I[L, X0l /1=

Z [XiZsXO]f‘

Y e[ X2 X+ (XPc)X,f

i

S 201X [X0 XIS+ (ma + D YN Xf | +mb 3| YafI . (216)

Now we are ready to present our first result in this section.
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Proposition 2.1 Let u(x, t) be a positive solution of Eq. (2.1) on M x [0, o0). Then for
1/2 < 4 < 2/3, there exists a constant 5y = do(4) > 1 such that for any § > 6, and
t >0, u(x, t) satisfies the estimate

1 1 A X A
lexiulwz(l +F|Yau|2> R Ee et BN P RN Nz

(2.17)
where C,, C, and C5 are positive constants depending only onm, d, A, a,a',b, b, c, .

Proof. Consider the function

F= t{Z X2+ Y [N+ Y 17T~ 5(Xof+fz)}, t20

where
f=logu.
We claim that there exist positive constants C,, C, and C; such that
2i-1
F§61+C2[+C3[1‘1 . (218)
If not, then for arbitrary such C,, C, and C; we have
2i—-1
F>C1+C2t+C3t”ﬁ“71 (219)

at the maximum point (xg, to) of F on M x [0, T for some T > 0. Clearly, t, > Q,
since F(x, 0) = 0 by its definition. Then at (x,, fy), we have

X, F=0, fori=12,...,m

aF

— 20

ot = 77
and

LFZ£0.

Applying Lemma 2.1 to F and evaluating at (x,, to), we get

<L - g) F(xo, o)
ot

2
F tO(Z|ler2—Xof—ft> +[OZ|Xinf|2+%)21Yaflz

___+__
to m

+ 2024 = Dto L [T+ [V fPYTHX Y 1P + 2t ), Xof [L, X1 f

4

0

v

— ot [L, Xo]f+ 25toZXif[Xi7Xo]f

+ 240 3 [+ YL f PV YL SLL Ya1S

o

+ 4, Z L+ Y fPT X f Y. f[X:, YIS
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By the estimates (2.12)—(2.16) we see that at (x,, to),

F t 2 t
0= *I—+i<ZIXif|2”Xof_ft> +tOZ‘Xinf|2+§Z|Y1.fl2
0 3

i iJj

+ 240022 = Dt 3 [ + 1Yo f P HX Y f1? — 4o Y IXf11XG0X 5, X f]

3 i

2
—2ma+c + 5c’)to<z Xi‘ﬂ) —2(mb + ¢ + 5c)tOZ|X,»f\ Y 1Y f

— 25 Y | X,[X.. X;1f| ~ b(m*a + m) Y, | X, f|

i,j i

= 0(m*b + mo) Y | Yo f | — dakto 3 [1 + Yo [PT Y SI L1 XX

—4blto 3, [1+ Y fIP 1YL X Y, f
o, i, f

—2(ma’ + Caab + cNato 3 1+ | Yo f P H YRS 1X oS

4

—2(mb’ + Csb?)to Y [1+ | Yo fIPY MY fI Y 1Y, f]
P f

2
—dakty Y [1+ | Y. fIP 1 MY, S (Z\Xff>

x

—4blto Y [T+ 1YL PV Y I IXf 121 Y S (2.20)
i g

We need to estimate the right hand side of (2.20). In the following, inequalities
of the type

1
xygaxz—%ayz (a>0)

will be used repeatedly. First
YAXSUXGIX, XIS 31X f 11X Yo f |
i, i,j,a
i

. Z(zxiﬂ)[l FINSPT Y

A—1

X1+ 1Y [T 71X Y. f]

< @}_«T)@w.-ﬂ) <z[1 - mm%)

A

DS f xR @2n
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Hence

2 1-\4
YIX XX, XS = 8(2 IX,-fl2> +m?e (24— 172 (Z [t + lYaf|2]2>
i,j i

L (u

Z[H-lYfl PUX YL fP (2.22)
where ¢ > 0 is some constant to be determined.
Similarly
2meé 1-2\2
200 Y IXIX o XS] % 557 <Z [L+17./17]7 )
24 —
Dy n P K @23)

a, i

2(mb+c+5c)ZlXif]Z|Y,,f|§ 16(mb+c-+~éc)2<Z|X,-f|>2

1 2
+E<§IY‘J|> (2.24)
and

4a ) [1+ |V f P17 Yo I 21X X, 1)
s 7,11‘2“2 | X: X, f1? + da’m? (Z [1+ 1Y P17 Yafl>

éz XX1f|2+4a2m2(Z[1+|Yf| 1*" 1IYf|>2 (2.25)

We also have

4b Y [+ Y P Y f1IX: Y S
a,i, fi

< 8mb2(24 — 1)~ <Z 1+ Yamemfl)z ( Srt+ YWJ%)Z
B

(21

Z[1+fo!2]* XY, f (2.26)
and

402[1 +HIY PP YL S <Z lef|>

H/\

2
i2<ZIX fI) +d4m’a’e™! (Z[l + IYaflz]l_llYaﬂ)

2
§8<Z|Xff12> + 4m’a? ”(Z[l +IY:f!2]l_liYafl> - (227)
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Finally
Y 1+ IV PV LAY XS f
] i B

2 2
§64m2b2<Z!XifI> (Z[lJvYafIz]A‘lYafl) 6 Z(Z!Y;sﬂ)
£ <Z|X.fl> +C6b48‘1<2[1+lYaf2]"liYaf|> +EZ|Y/zf|2

% A

4
. 1
Se (Z IXifIZ> + Ceb*s™! (Z [1+] Yafi"‘]"_llYaﬂ) + EZ | Y fI?.
i a 14
(2.28)
We have to divide our discussion into two cases.

Case 1
ZIXf!2—~( of +£)>0 (2.29)

where d, > 1 is some fixed constant to be chosen and ¢ > §,.
In this case we observe that

2 50 6 (4 z
SIX A1 = Xof— ) =12 (S1x,012 = 2 Xor+ ) )+ (1 =2V T 1x, 0
7 o\ do 0/

1 i 2 5_.5 2 2
= 53 <502Xjf]2—5(X0f+ft)> +(0-—20)<Z |Xjf‘2> .
(2.30)
Plug (2.22)-(2.28) and (2.30) into (2.20) and compute. We obtain, at (xg, to),

2 (8~ 80) 2
oz~£+ §z<oZ_Xif12—6(Xof+fz)> +(,,,T)t°<z_‘xff'z>

3t0

ZIYfI"‘ 66[0<Z|Xif'2>

—dmPe” 124 — 1) %t (Z [t-+ |Y,f12]1;)'>4

2med

—Cm<Zwﬂ> —Efﬂ<zU+me‘v

— d(mPa +mc )ty Y | X f| — 8(m?*b + mc)iy Y. | Y, fl

2 -2\ 2
— 8mb*(24 — 1)7'to <Z [1+1Y 1P YJI) (Z [T+ Iyﬂf|2]}-2—i>
2 s
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—2(mb’ + Csb? + mbe)to ), [1+ | Y. P11 YL f11Y, f]
a,f

— Ceb*e™! (Z {1+ )Yaflz]""‘YafO
2
— Gotp <2 1+ Yafizlj"llYaﬂ) : (2.31)

Let us denote

X =00 2| XifI? = (X0 f+ 1)

and
y=max|Y,f]|.

Without loss of generality we may assume that y > 1. Then (2.31) becomes

F o , o , (5_50)2 2 z 2 2
- —_— — - . — ,
0= t0+m52x +4y +to{ s Ej [ X;f] 6¢ J> I X;f]

— 8m*a + mc) Y1 Xif | = Co Y, |Xff|2}

1 _ . - -
+ 1o {_ P2 = Coy*imi) g2 =3 g y22im ) ) 42a- 1)

8
- C11yu - C12.V} s (2.32)
where C;,i=6,7, ..., 12 are positive constants depending on m, a, d’, b, b, ¢, ¢,

4, A.

From the fact that z* grows faster than z° for 0 < a < 2 and the assumption
that 1/2 < 4 < 2/3, we see that there exists a constant C,5 such that the last two
terms in (2.32) are bounded from below by —C,3fy provided we choose
& < {8 — 8)%/12mé2.

Therefore we obtain the following inequality:

t
0;T+Wx2+z°yz~cl3zo. (2.33)
0

At (xq, tg), we have either

x =00 ) | Xif P = d(Xof+ )2 LI+ YV, /P

or

SO+ Y f PPz x.

In the first case we get, from (2.33),

[2
0 z *2t0x + szz - C13t§ .
mo
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This implies that
tox £ 2mé* 4 Ciatp .
Since 6, > 1, we have
F<tox—+1toy [1+ Y, /1?1 £ 2tox < 4md* + Ctg (2.34)

for some constant C depending onm, 4, 3,4, d’, b, b, ¢, ¢'. This is a contradiction to
(2.19).
In the second case we have

. t
0= —2Csy* + Z(’yz — Cysto - (2.35)

(1) If to < 1 then we must have
1

y S gt

Hence
2i-1
. =
1oy** < Caty T

(i) 1f £o = 1 then
!
02 —2Cstoy** + ZO}’z — Cysty .

Therefore

. y2
0 é ‘2C15_)/'2/L +_4‘ e C13 .

This implies that
¥ < Cs
and
toy** = Ciqto
for some constant C,;-. So we conclude that, for ¢ty > 0,
24A—1

Io 2 [1+|Y, /1" £ Cigtoy** £ Cioto + Caotd !

It follows that

2/-1

F<2t S [+ Y, fP)* £ Catg + Catg

for some positive constants C, and C, depending onm, 4, 8, 4, a', b, b, c, ¢, again
contradicting (2.19). Together with (2.34) this shows that (2.18) holds under the
assumption (2.29).

Case 2

5
Z‘Xjflz_%(xof-f—f,)éo.
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In this case we may assume that

(50_1)Z|Xif|2§2[1+|Yafl2}i~ (2.36)
Otherwise (2.18) follows trivially, since

F=to {Z IXof 12+ 20+ Y f12] 5(X0f+ft)}

i

<o {50 Y IXef 1 - 6(Xof+ﬁ)}

é
= dolo {ZIX,-J’IZ ~ (Xof+ft)} 0.

Plugging (2.2), (2.23)-(2.26) into (2.20) and using (2.36) we obtain, at (xo, fo),
F 3t0 4m 2 1_:& 2
0= ——+— D X ) R
=7, Ty e z(z;,»n(’(?' zf1> (Z[ FIY 1] )
2mcd A

2 1- 2
— Cely (Z|X1f|> _ml()(z,[l + }Yaf|2]2>

—d(m?a+mc)te Y | X f|
2
— 8(m*b + mc)toz 1Y fl— Cﬂo(Z [T+ Y, /PP Yaf’)

2 1-a\2
— 8mb* (22 ~ 1)“%(2 [+ Y/ 1?1 YJI) (Z [1+] Y/u”]T)
o B

—2(mb' + Csb? + mbo)ty Y, [1 + | Y f P17 1Y fII Yy f
« f

2
—dato ). [1 + IYafIZ:I‘_lIYafI<Z|Xif|)
—abto Y [L+ | LS PP Y SI X XS 1Y S
a i B

F t 1 c . -
> ——+ 2+t {g ¥ — G = 5 p2 = Cpp*t — 8Co; y? 0 7P — 5C, 00
0

— 3Cy5y — Cpey? 7D — Cyqy** 71 — Czsy“} (2.37)

where C,, is a positive constant depending only on 4 and m.

Choose J, so that 8o = 16C,; + 1 then for 1/2 < 1 < 2/3 there exists some
constant C,o such that the last term in (2.37) is bounded by —C;q4t,. Therefore, at
(xo0» to)s

o ,

F t
0= ——+ -3y = Chotg 2 —Cy5y* +=2y? = Caglp .
t, 4 4
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Then the same argument as in treating (2.35) implies (2.18). Thus the proof of
Proposition 2.1 is completed.
For small ¢ we have a slightly different estimate

Proposition 2.2 For 0 <t £ 1 and 1/2 < A < 2/3, there exists a constant C such that

1 1 e Xou u
SV IXuP + Y1+ S Yur) -02%" —sZ<ort.
2L Xl Z( + 5 au|> o<

Proof. The arguement is essentially the same as in the proof of Proposition 2.1. In
this case we consider instead the function

F=F +F,=t {Z | X 12— 5(Xof+fz)} + Y [+ YL 1)

with 1/2 < 4 < 2/3.
At the maximum point (x4, ty) for F on M x [0, 1] we have the following

inequality
0
<L — 5;) F(Xo, to)

F1 2/LF2+%)<ZIXIf|2_XOf__ﬁ>

i

to to

0

v

o T IXX ST+ 3 TNV

+ 2).(’211 — DY [+ YL P X YL 1R+ 2tOZX,-f[L, X1f
N S A TR AT, |

T T T XY DX VS

For case 1, all we need to modify are the estimates (2.22) and (2.23). We have
instead

TIX X0, XS T XS Y|
1—-4

s P(Z |Xif|2>2 +m?eT (24— 1) Mg (Z 1+ IYaflz]Az_>4

A4 — 1)

+ 4 tg}‘_l Z [1 + |Yzzf!2:]lﬁ1IXi YafiZ 3
and
2mcd 1-4\2
. . . < _TUTTT 4124 2 7
A(RA—1
e )

T L U+ PP XS
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Corresponding to (2.33), we have

Fo 2F;
R — Cso t3 4 A4
to to mo? * 4 J 30 Y

— C3 15724y 7 — Caaty (2.38)

because to £ 1.
Multiplying ¢, to (2.38), we get

té 5
02 —tox — Cas(toy)** + —02X2 + 20y — Caoltgy)* ~*
mo 4
— Ci(toy)* %" — C3a15 .
Since 1,2 < A < 2/3, there exists a positive constant C, such that

[ . _ Y
4(_)}2 — Ca3(toy)** — Caoltoy)* ™** — Ca(toy)* ™" £ —Cis .

Hence

2

t
0; —t0x+“9“z‘x

2
— Ci5.
mo 33

It follows that F < C’ for some positive constant C’,

For case 2 the modification is similar and we again have F < C’. This finishes
the proof of Proposition 2.2.

Combining Proposition 2.1 with Proposition 2.2, we obtain the following main
result of this section.

Theorem 2.1 Let X, X,, ..., X, be smooth vector fields on a compact manifold
M satisfying the condition (2.2). Then there exists a constant dy > 1 such that for any
positive solution u(x, t) of Eq. (1.1) on M x [0, c0), any & > dq and t > 0, we have the
estimate

2Z|Xu|2w5 —<S~<Ct‘+c2

where C1 and C) are positive constants depending on m, 84, 6, a, d’, b, b, ¢, c.
For positive solutions of Eq. (1.2) we have
Theorem 2.2 Let u(x, t) be a positive solution of the equation
Lu(x)=0

on M. Then for 0 < A < 2/3, there exists a constant dy = dy(A) such that for any
& > &g, u(x) satisfies the estimate

1 A
;5;|Xiu{2+§[ +~21Yu|2J —

where C3 is a positive constant depending on m, A, 6, a, a’, b, b', c, .

Xu
<y
u

The proof of Theorem 2.2 follows from Proposition 2.1.
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3 Harnack inequalities

In this section we shall derive Harnack inequalities for positive solutions of Eq.
(1.1)and Eq.(1.2). Let Xy, . . ., X,, be smooth vector fields on a compact manifold
M with a positive measure u. We assume that X, . .., X,, satisfy Hérmander’s
condition: the vector fields X4, . .., X,, together with their commutators up to
certain finite order r span the tangent space at every point of M.

In this case there is a natural distance d(x, y) on M associated to the operator L:

d(x,y) = inf{h|3 an admissible curve y: [0, b] —» M with
7(0) = x, 7(b) = y} (3.1)

where an admissible curve 7 is a Lipschitz curve such that

7(s) = ), ails) Xi(7(s))

for some functions a;(s) satisfying Y ; a;(s)*> < 1. Balls for the metric d are denoted by
B.(r)={yeM|d(x,y) <r}. (3.2)

Theorem 3.1 Let X, X,, ..., X,, be smooth vector fields on a compact manifold
M satisfying the condition (2.2) and Hormander's condition. Then there exists
a constant 8o > 1 such that for any positive solution u(x, ty of Eq. (1.1) on M x [0, o)
and any 6 > 8y, 0 <t < 1, and x, ye M, we have

C;‘ 5
u(x9 tl) é u(y! tZ) (%) exXp (m dl(x’ y) + Cé(t2 - tl)) >

where C} and C§ are positive constants depending on m, 8y, 8, a, a', b, b, ¢, .

Proof. Let 7 be an admissible curve given by y: [0, b] » M, with 3(0) = y and
y(b) = x. We define #: [0, b] - M x [, t,] by
(b —s)t, + st
n(s) = (w (0 =22

Clearly 5(0) = (y, t,) and 5(b) = (x, t,). Integrating (d/ds)(logu) along y, we

have
d
—1
<ds ogu> ds

{Z a; X logu — (tz—gzg(logu),} ds .

logu(x, tl) - IOgu (y5 [2) =

Ot O

Applying Theorem 2.1, we get

,t b t _t l ~ ,
log(%>§g {Z\ai|lX,-10gu|+(2b5 1)(C1t 14 Cy)

L

— gi—?(é‘l Y X logul* — Xologu>}ds
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= } {Z(laiHXi]OgW _a ) 1 X; logu|2>
o (3 2bd

3

(ta —11)
bo

(tZ tl) 1 2
X. X,
+ xS Ei ¢ol X;log uj 2|X,logu| ds

(Cit™! + Ch)

b ob
= g {5(—&—— > lail?

—11)9

(tZ_tl) =1 , m6252
+ (e G+ T s (3.3)

Since t = (b — s)t, /b + sty /b, and 7 is admissible, (3.3) gives
u(x, tl) 5b2 — t2 _ mc25
< Ci571 = Cod™ b ——— |tz — 1) .
8 (u(y,t2)>~2(rz—z1>+ 10 og | JH{ GO A T (e )
Because y is an arbitrary admissible curve between x and y we therefore obtain
u(x, t1)> dd(x, y)? - <t2) < _ mc25>
lo < +C 6 Hog = )+ [ Cod™  +—)(t2— ;).
g(“(y,tz) T2t —ty) ' & 5! 2 2 (t2 Y

The theorem follows by taking exponentials of the above inequality.
If we apply Theorem 2.2 instead, the same method yields

Theorem 3.2 Let u(x) be a positive solution of the equation
Lu(x)=0

on M. Then there exists a constant 8y > 1 such that for any 6 > d, and x, ye M, we
have

u(x) < exp(Cd(x, y))u(y)
for some positive constant C.

Various mean value type inequalities can be obtained from Theorem 3.1 and
Theorem 3.2. For example, we have

1/2 ts [0 5,.2
u(x, n)é( | uz(y,tz)dy> (F) exp(—z(t—t—JrC’s(tz—tl)). (3.4)

Bxdr) 1 2 1)

4 An upper estimate for the heat kernel

Let M be a compact manifold with a positive measure u. Let X, X,, ..., X, be
smooth vector fields on M satisfying Hérmander’s condition and condition (2.2).
We assume that the operator L = Zi X2 — X, is self-adjoint with respect to the
measure u. Our goal in this section is to derive an upper estimate for the funda-
mental solution H(x, y, t) of Eq. (1.1) on M x M x (0, c0).
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Let d(x, y) be the distance function on M as defined in (3.1) and

1
p(x, y, t) = Z dz(x’ y)’ (t > 0) .

For d(x, y) we have
YIXidPx ) =1

in the weak sense on M. Therefore p(x, y, t) satisfies
1 2
EZ_IX,-pI +p,=0.

Define
g(x’ Vs t) = —p(x’ y’(l + 2a)T” t) '

Then we also have
1
EZIXI-QI2 +7.20.

Following [8] we set
F(y,t)= | H(y,z t)H(x, z, T)dz
S
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4.1)

4.3)

(4.4)

for xeM, 05t <1< (1427, and S; = M. Then for any subset S, € M, we

have
Lemma 4.1

[ F(z,1)dz < | H?(x, z, T)dz supexp(—p(x, z, (1 + 20)T))

S2 Si ze8Sy

x sup exp(p(x, z, (1 + 20)T — 1)) .

ze83

Proof. As a function of y, F(y, t) satisfies Eq. (1.1), therefore

‘ d
0=2[ | e™=»IF(y,1) (Ly - ﬁ> F(y,1).
o i ot

Integrating the right hand side of (4.5) by parts and using (4.4) we get

T T

O = - 2 j I egi)(517|2 - 2 I 891722 )(ily)(ig
oM 0 i

1
+ [ [ F%g — [ &F i + [ &F |0
oM M M

IIA

- I englt—"—t + § egF2‘1=0
M M

T 1 2
=2 e”Z(XiF+—FX,-g> .
oM 2

i

(4.5)
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Hence
f SEIIF2(y 1) < f =0 E2(y 0y,
M M
But
F(y,0)= {g(x, w1 :tti}ei\i;s; .
Thus

[ e#>»OF2(y,0) < supexp(—p(x, z, (1 + 20)T) [ H*(x, z, T)dz .

M zeSy S

On the other hand

J‘ eg(x,y,r)FZ(y’ ‘L‘) g f eg(x,y,r)Fz(y, 1.)

M S2
> inf exp(—p(x, z, (1 + 20)T — 7)) | F(z, 1)dz .
zeS2 Sz

This proves Lemma 4.1.

Theorem 4.1 Let X, X,, ..., X,, be smooth vector fields on a compact manifold
M satisfying Hdrmander’s condition and the condition (2.2). Let L be self-adjoint with
respect to the measure y on M. Then for some 6 > 1 and 0 < ¢ < 1, the fundamental
solution H(x, y, t) of Eq. (1.1) satisfies the estimate

H(x, y,1) < CEPV ™ 2(Bu/0)V ™ 2(B,(/1)exp (C'S“ - (i(fe@

where C(c) depends on ¢ with C(g) —» co as ¢ —> 0.

Proof. Applying Theorem 3.1 to the function F(y,t) in Lemma 4.1 and take
S1 = By(\/1), S2 = Bo(s/1) with t = (1 + )T, we have

( | H?(x,z, T)dz)2 =F%x, T)

By(vD)

IIA

VB | Fa(l +0)T)dz

Bxdy1)

, ot
x (1 4+ a)®Ciexp (H‘ + 2C§ocT>

A

VB [ HA(x,z T)dz(1 + 0)*%
By(v1)
t

ot
X exp <ﬁ+ 2C52T + T

— inf p(x,z (1 + 2a)T)>.

ze By(V/1)
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So we obtain

: 26 + 1)t
§ ) H?(x,z, T)dz < V*I(Bx(\/;))(l + a)?Ceexp ((——ZZ—T)— + ZC’SxT)
ByvD

X eXp <— inf  p(x, z, (1 + 2%) T)> .

ze By(v1)

Applying Theorem 3.1 once more to H(x, z, t) and settfng T = (1 + o)t, this yields

H(x, y,1) £ V™1 (B,(J/1)) ij@Tmu+w%mG+wa

By(vD)

) ) - 45 + 20+ 1)
< 1 /e 1 4C, (
SVTHBLO)V THB O + )*Crexp (sz(l T )
+ 2C5a(2 + 1)t>
xexp<~ inf p{x,z, (1 +2)(1 + 2oc)t)> . (4.6)
zeBy(V?)
If xe B,(\/t), then
d? 1
inf plr,z(1+ @)1+ 200 =0z ey 1 4.7)
ze By (1) 2t 2
Otherwise, d(x, y) > /7 and we have
4 d(x,y) — /1)
inf p(x,z( + (1 +20)t) = inf 2 o [@xy) =)

2eBy(Y) renywn 200+ o(1 + 200t = 2(1 + )(1 + 22)t
Applying the inequality
d(x,p) ¢

(e y) =P 2 70—

to the above and setting 2(1 + «)*(1 + 22) = 2 + ¢/2 we obtain
, 2% (x, ) 2(1 + )
b 1 1+ 2a)t) =2 — .
zegryl(fmp(x,z,( + )1 + 20t) 2 @+or  ad+o)
This together with (4.6) and (4.7) proves Theorem 4.1.
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