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1 Introduction 

In this paper  we shall s tudy the equat ions 

and 

= 0  (1.1) 

Lu(x) = 0 (1.2) 

associated to the opera tor  L = ~ i X 2 -  Xo on a compac t  manifold M with 
a positive measure/~,  where X1, X2 . . . . .  X~ are smooth  vector fields on M and 
Xo = ~_,i c~Xi. Our  main purpose is to prove (Theorem 3.1 and Theorem 3.2) 
H a r n a c k  inequalities for positive solutions of Eq. (1.1) and Eq. (1.2) and to derive 
(Theorem 4.1) an upper  est imate for the fundamental  solution of the opera to r  

g 
L - - - -  

~t'  
Since H 6 m a n d e r ' s  work [3], many  people have investigated various propert ies  

of such an opera tor  L (see, e.g., [2, 4, 11, 12]). Recently Nagel  et al. [ 10] studied the 
geometries associated to the opera to r  L. On the other hand, Jerison and Sanchez- 
Calle [5-1, K u s u o k a  and Stroock [6.] obtained upper  and lower est imates for the 

heat  kernel of L - ~t for small t ime t. Similar upper  bounds  for the heat kernel was 

also proved  by Melrose [9] using the wave equat ion  method.  More  recently 
K u s u o k a  and Stroock [7.] have also investigated the long time behavior  of the heat  

kernel of  L - - -  
0t '  
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One of the s tandard ways in studying the sum of squares of vector fields is to 
use Rothschild-Stein lifting and reduce the problem to the model  cases. In this 
paper  we shall explore a different approach,  the method of gradient estimates. The 
method of gradient estimates, originated first in Yau [13] and Cheng and Yau [1] 
and further developed in Li and Yau [8], has been used very successfully in 
studying elliptic and parabolic operators. In w we derive gradient estimates 
(Theorem 2.1 and Theorem 2.2) for positive solutions of Eq. (1.1) and Eq. (1.2) 
under  the assumption that, for 1 < i,j, k < m, [X~, [Xj, Xk]] can be expressed as 
linear combinat ions  of X1 . . . . .  Xm and their brackets [ X t , X 2 ]  . . . . .  
[X~_ 1, X,,].  It is not  surprising that our  gradient estimates are more delicate due 
to the fact that the operator  L is only weakly elliptic. Once the gradient estimates 
are derived the proof  of Harnack  inequalities and the upper estimate for the heat 
kernel follows essentially the same way as in [8]. These are given in w and w 
respectively. 

We hope that the method of gradient estimates can be applied to study other 
problems related to the sum of squares of vector fields and can be extended to any 
family of vector fields X~ . . . . .  X,, satisfying the more general condition: the 
commuta tors  of X t  . . . . .  Xm of order r can be expressed as the linear combina-  
tions of X a , . . . ,  X,, and their commuta tors  up to the order r - 1. 

2 Gradient estimates 

Let X1, X2 . . . .  , X,, be smooth  vector fields on a compact  manifold M. Let 

L = ~ Xi 2 - Xo 
i 

with 
Xo = ~ ciX~ 

i 

where ci are some smooth  functions on M. Our  goal in this section is to derive an 
estimate on the derivatives of positive solutions u(x, t) on M x [0, oo) of the 
equat ion 

L -  ~ u(x, t) = 0 .  (2.1) 

Throughou t  this section we shall assume that XI  . . . . .  X,, satisfy the following 
condition: for 1 < i,j, k < m, [Xi, [Xj,  Xk]] can be expressed as linear combina-  
tions of X1 . . . . .  X,, and their brackets IX1, X2]  . . . . .  [Xm-a ,  Xm]. i.e., we have 

t 2 b~jk Y, 12.2) IX,, [x~, x k ] ]  = 52 a,kx, + 
1 

where we have set {Y=} = {[X,,  Xj]  }, {aljk} and {b,~k: } are some functions on m.  
Let us denote by 

a = maxlaljk[ a' = maxIXhaljkl 

b = maxlbTjkl b '=  maX[Xhb~[jkl 

c = maxlc~l c' = max{lXjci l ,  I Gc,I,  IXfic, I}. (2.3) 

First we need the following 
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Lemma 2.1 Let u(x, t) be a positive solution of Eq. (2.1) and f =  logu. For any given 
constants �89 < 2 < 1 and a > 1, the fimction 

satisfies the inequality 

+ 

Proof 

+ 2)~(22 - 1)t ~ [1 + I Y J ] 2 ]  a-1 IX~ Y~fl 2 + 2t y, X , f [L ,  X , J f  
(z i 

-- fit[L, X o ] f +  2bt ~ X~f[X~, X o ] f  
i 

+ 22t ~[[1 +lY~fl2];~-lY~f[L, Y~]J" 
a~ 

+ 4).t~ [1 +lY~fl2]~'-lXifY~f[X~, Y=] f -  2 X X J X ~ F .  

Differentiating F in the direction of Xo, we have 

XoF = t { 2 ~ .  Xf f 'XoXj f+  2)~ y.= [1 +IY=flZ]x- 'Y: fXo Y=f 

- a(X~of+ Xof~)~. (2.4) 

Similarly, for i = l, 2 , . . .  , m, we have 

X i F = t ( 2 ~ X j f X i X ; f +  2,~ E [1~ + I Y j l a ] " - i Y J X i Y J  

-- b(XzXof + X~.ft)}. 

Differentiating (2.5) once more in the direction Xi and 
i =  l , . . . , m ,  weget 

X2F = t I2 ~ IX,Xjf l  2 + 2 ~ , X j f X j ( X ~ f )  + 2 ~ X ; f [ X ? ,  XjJ.f 
i t i , j  i , j  i , j  

+ 22 Y~ [1 + I Y, f l2]  ~ Ly:j .[X2, Y:] f  

+ 2), ~ [1 + I Y~,fl2] ~-' YJY~(X2f )  
i+cl 

+ 22 y, [1 + I Y~flE]~'-2(X~yj)2[1 + (22 - 1)1Y~fl 2] 

~2.5t 

summing over 



488 H.-D. Cao and S.-T. Yau 

+ 2). Z [-1 

+ 2~.Z [I 
c~ 

. 

Notice that f =  log u satisfies the equation 

On the other hand, we have 

F, = -- + t 2 X j f X j f  + 2,~ ~, [1 + I Y~fl2] ~- 1 y~ fy~ f  

- a(Xof, +f . )} .  

Combining (2.4), (2.6) and (2.7), we obtain 

L - ~ t  F = - - + t  2 2 1 X , X y f 1 2 + 2 2 X j f X j  L - ~ t  f 
t i , j  j 

+ 2 ~ X j f [ L ,  X j ] f -  6[L, Xo~f  
J 

+ 2 ~  E! +lY~f]2]a- 'Y~f[L,  Y , ] f  

+ I L f l 2 ]  x-x y~fy~ L - ~ f 

+ ILflq~-~(x~r, f)2[1 + (2~ - 1)1 r J ? ]  

Also 

(2.7) 

( 2 . 8 )  

(2.9) 

IX~Xj.fl 2 = ~ IXfffl2 + ~. r x , x j f l  2 
i , j  i ~ :t- j 

> - X~ + ~ l L f [  2 

-_- l_m . IXlfl z - x o f  - f + 2  ~ [y~f]2.  (2.10) 

Moreover, by (2.4), (2.5), (2.9) and direct computation, we get 

t 2 ~ X ~ f X j  L - - ~  f + 2 ) , ~ [ l + l Y ~ f l a ] X - l Y ~ f Y ~  L - ~ t  f 

= - 2 2  XiFX~f+ 2& 2 Xif[X~, X o ] f  
i i 

+42t  ~ [ 1  +rY,  f[2]~' - lX, fY~f[X~,Y~]f .  (2.11) 

Plugging (2.9), (2.10) and (2.11) into (2.8) we obtain Lemma 2.1. 
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For later purpose we are going to compute certain terms that appear in Lemma 
2.1. First 

and 

[Xo, Xj] f =  ~ ci[Xi, X j ] f  -- ~ (Xjci)Xif 
i i 

[L, X j ] f=  ~ [X 2, Xj3f  + [Xo, Xj] f  
i 

= Z {X, EXi, X i]f+ [Xi, Xj]Xif}  + [Xo, Xj] f  
i 

= 2 ~  Xi[Xi, X j ] f -  ~ [X,, [Xi, X~]]f+ [Xo, X j ] f .  
i i 

From (2.2) and (2.3) we have 

I[L, Xj]f l  < 2 ~ I[X~[S~,Xj]f] + (ma + c') ~ IXifl , 
i i 

+ (mb + c) YtY~f l  

and 

(2.12) 

I[Xo, Xj]f[ <= c ~ [ Y~fl + c' ~ IX,fl . (2.13) 
a i 

Similarly 

IEL, G ] f l  < ~X,[X~,. G ] f  + ~[Xl ,  G]X~f + I[Xo, G ] f l  

< 2a~ IX~Xjfl + 2b~ IXeYJI + c ~  I[X~, L ] f t  
i , j  i , ~  i 

+ (ma' + C4ab + c')~ IX, fl + (rob' + CsbZ)~IY~,fl. (2.14) 
i 

Also 

I[X,, Y~]fl ~ a ~ IXofl + b ~ l g~fl . (2.15) 
J 

Finally 

I[L, Xo] f l  = [X2,Xo]f  

= ~ c~[Xi 2, X j ] f+  ( X 2 c j ) X j f  

< 2 c ~  IXi[Xi, X j ] f l  + (ma + c')Y~lXift +mbY. lY=fl �9 
i , j  ~ 

Now we are ready to present our first result in this section. 

(2.16) 
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P r o p o s i t i o n  2.1 Let u(x, t) be a positive solution of Eq. (2.1) on M x [0, ~).  Then for 
1/2 < 2 < 2/3, there exists a constant C~o = ~o(s > 1 such that for any ~ > ~o and 
t > O, u(x, t) satisfies the estimate 

~ i  1 + ~  [Y~ul2 - u -6u'<=Clt-'+C2+C3ta-~lu 

(2.17) 

where C, , C2 and C3 are positive constants depending only on m, 6, 2, a, a', b, b', c, c'. 

Proof. Consider the function 

where 

f = log u . 

We claim that there exist positive constants C~, C2 and Ca such that 
2 ) , - I  

F < C1 + C2t + C3ta-1 (2.18) 

If not, then for arbi trary such C~, C2 and Ca we have 
2 2 - 1  

F > CI + C2t + C3t a 1 (2.19) 

at the maximum point (xo, to) of F on M x [0, T]  for some T > 0. Clearly, to > {3, 
since F(x, 0) = 0 by its definition. Then at (Xo, to), we have 

X i F = O ,  f o r i =  1,2 . . . . .  m 

OF 
- - > 0  
~t  = , 

and 
LF<_O. 

Applying Lemma 2.1 to F and evaluating at (Xo, to), we get 

> -- -- + IXi f l  2 - X o f - - f t  + to E I x i x j f l  2 + ] y~fj2 
to m i,j 

+ 22(22 - 1)to Y, [1 + [ y , f [ 2 j x - 1  IX, y,  fp2 + 2to Y, X~f[L,  X i ] f  
a i 

-- 6to[L, X o ] f +  25to ~, X~f[X , ,  X o ] f  
i 

+ 22to ~ [1 + I Y~flz] z -1Y~ f [L ,  Y~] f  

+ 42to ~ [1 + I Y, f ] 2 ] z - I X ~ f Y ,  T[XI,  Y~]f .  
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By the estimates (2.12) (2.16) we see that at (Xo, to), 

,o 
0 => - --to + m IX, f l  z - X o f - f ,  + to 21, j IX~Xjfla + 2- ~= I Y=fl 2 

+ 22(22 -- 1)to Y. [-1 + I L . f l 2 ]  s IX, Y~fl 2 - 4to Y, [X~fl ]Xj[Xj, X~]fl 
~x i,.j 

- 2(ma + c' + 6c')to I X J I  - 2(rob + c + 6c)to ~ IXi f l  ~1YJ'P 
i a 

- 2 c 6 2  IX~KX, ,Xa] f l  - a(mZa + m c ' ) 2 1 X ~ f l  
i , j  i 

- a(mgb + mc)Y~lYJI- 4a2to~ [1 + I Y~.fl2]~-*l Y=fl ~ IX ,X j f l  
a o~ i , j  

- 4 b 2 t o  ~ [1 + l Y = f l 2 ] X - l l Y = f l l X i Y ~ f [  
~,i , f l  

- 2(ma' + C4ab + c');.to ~ [1 + I Y~ f l z ]x - t lY~ f l~ .  [X,f t  
a i 

- 2(rob' + Csb2)2to y. [1 + I Y j 1 2 y  - 11 g~.ll ~ l Y p f l  

- 4 a 2 t o 2 [ l  + l L f l z ] a - l l Y ~ f l  . ]xefl 

- 4b2to Y, [1 + l L f l 2 l a - l l Y ~ f l ~ l x r  Yefl  . (2.20) 

We need to estimate the right hand side of (2.20). In the following, inequalities 
of the type 

1 y2 (a > 0) 
x y  <= a x  2 + 4 a  

will be used repeatedly. First 

~', IXi f l  IXj[Xj,  X , ] f l  < ~ I x j I  tXjY=fl  
i,j i,j,o~ 

__< 

Y. IXi f l  [ l + l g ~ f l  e] 2 

)~-1 
• [1 + I Y=f l2]~- lX jY=f[  

m ( ~ / ) 2 ( ~  21-s 
2 ( 2 i - -  1) IX, fr I-1 + t Yo, f[ ] ~ - )  

)4(2) 4 -  1) + -- ~ [ 1  + lY=f l2]X- l lX ,  Y=f[ 2 (2.21) 
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Hence 

'-7 2lX~fllXjEXj, X~]fl <a IX~ft -I- mee-~(22 - 1) .2 [-1 + I Y~f l=]~ 
, , j  

2 ( 2 2 -  l) 12]a_ 1 
+ -- ~ [-1 + I Y : f  IX, Y~fl 2 

where e > 0 is some constant to be determined. 
Similarly 

2cfi ~ IX, EX~, Xj] f l  < 2mc6 ( 2 1-2"~2 
, ,s :x(~--I) ~[1+ILfl 3 ~ - )  

2(22 - 
+ -2- 1 )~[ l+lY~f l2]a- ' lX~Y ' f l2  

2(rnb+c+ac)~lX,fly~ Y, fl<16(mb+c+6c) 2 IXJI 

+ 1 I y,  f l )  2 

and 

4a ~ [I + I Y=f123~-llLfl ~ IX~Xjfl 
~t i , j  

i )2 
<-~[X~X~flg+4a 2rn2 [1 + IGf123 x-1 Gfl 

t ,J  

<~lX~Xj f lZ  +4a2rn z [1 +lY=fl2];-l lY~fl  . 
i , j  

We also have 

and 

(2.22) 

(2.23) 

(2.24) 

(2.25) 

4b E1 + I L f l 2 ] ~ - l l G f l l X ,  Y~fl 
.~,i,fl  

< 8mb2(22 - 1) - t  [1 + I Y~f l2]a- l [Y~f[  [1 + ] Y ~ f I z ] T  

(22 - 1) 11 + ~ ~ [1 + r G f t 2 ]  x- X~ Y~fl (2.26) 

4 a ~ { 1  + IY~f]2]x-xlY=f t IX~fl 

< m~ IX~fl -4- 4 m 2 a Z e  - 1  [-1 + IGfl2]a-llGfl 

< e IXefl +4m2a2e -1 [1 + IY, f t 2 ] z - i I  Y~f[ (2.27) 
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Finally 

4b ~ [1 + i Y~<fi2]a-~iY~<fl ~ [ x J [  ~lY~f l  
a i 17 

< 64m2b 2 IX, fl  [1 + I Yj la]Z- ' lY=fl  + ~ y, lYaf I 

<m ~ IXlfl +C6b% -1 [ l + l L f l 2 ]  ~ l l L f l  +16 IYafl2 

( ~  2)2 ( ~  )4 1 
<e IXifl -]-C6b4e -1 [l + l L f i z ] ; ' - t i Y ~ f ]  + ~ l Y a J ' l  2 . 

(2.28) 

We have to divide our discussion into two cases. 

Case 1 

6 
IXift 2 - ~ (Xof +.s > 0 (2.29) 

i 

where 60 > 1 is some fixed constant to be chosen and 6 > C~o. 
In this case we observe that 

' s i s  

\ 2  i"C~__6 ,2 XjFI2")2. 
/ 

(2.3o) 

Plug (2.22)--(2.28) and (2.30) into (2.20) and compute. We obtain, at (Xo, to), 

- - - - t o  + ~  ao Ixz/I 2 - 6 ( x o f + f )  + - - m 6 2  to . IXsfl 

+ y 2 1 L f l  2 - 6~to Ix~sI 

~ ~-~-'k ~- 
-- 4mZe,-z(2~. - l)-2to ~ [ 1  + IY~fl ] T )  

2mc6 [1 + EY~ft ] ~ )  
- -  C6to iX,fl - , 4 ( 2 , ~  - l )  t~ 

- 6(m2a + mc')to ~ [X~fl - 6(m2b + mC)to ~, [Y~f[ 

-8mbZ(22-1)- t to  ~ [ l  +lY~.fl2]~-'tY~.fl [l +lY~fl2] ~ - )  
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- 2(rob' + Csb 2 + mbc)to ~. [1 + I G f l 2 ]  a ' 1 G f l l  Ylsfl 
ct, fl 

- -  C 6 b 4 g  - I  [1  + [Y~fl2]; '-I ] Y~f I 

and 

-cgto(~[1 
Let us denote 

2 

+ I G f l 2 ]  ~ '-11Gfl  �9 

x = 6o Z I X j I  ~ - 6(Xof+f)  
i 

(2.31) 

y = max l G f l  . 

Without  loss of generality we may  assume that y > 1. Then (2.31) becomes 

0 > - -  - -  -~- X 2 l0 .2 
= to m~2 + ~ y  + t o  m6 2-- . I X f f l  - 6 a . Z j  I X j f ]  

- 6 , ra2a  + mc') ~ l X i f I  - C6 ~i ,X , f t2  

+ t o { ~ y 2 - C v y 4 " - ~ ) - C 8 y 2 " - a ) - C 9 y 2 ' 2 ; ' - t ) - C , o y  "`2a-'3 

- -  C l l Y  22 - -  C 1 2 Y }  , (2.32) 

where Ci, i = 6, 7 . . . . .  12 are positive constants depending on m, a, a', b, b', c, c', 
6 ,2.  

F rom the fact that z 2 grows faster than z" for 0 < a < 2 and the assumption 
that  1/2 < 2 < 2/3, we see that there exists a constant  C13 such that the last two 
terms in (2.32) are bounded from below by - C 1 3 t o  provided we choose 
a < (6 - 6o)2/12m62. 

Therefore we obtain the following inequality: 

- F  to to 
0 > -I t- X 2 y2  

= tO ~ -}- ~-  - -  C 1 3 t o  . ( 2 .33 )  

At (Xo, to), we have either 

x = ~o ~ Ix~ft 2 -  3(Xof+f , )  >= ~. [1 + I G f l 2 ]  * 

~, [1 + I G f l 2 ]  * => x .  

In the first case we get, from (2.33), 

o r  

0 > - 2 t o X  + rn6~X ..... . 
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This implies that  

t o X <  2m62 + C14to . 

495 

Therefore 

This implies that 

Y ~ C16 
and 

toy 2~ <= C17t0 

for some constant  Clv.  So we conclude that, for to > 0, 
22 l 

t o n i 1  + I Y ~ f l 2 ]  x < c18toy  22 < c19t0  + c 2 0 t ~  1 
c~ 

It follows that  
2 ) . - 1  

F < 2to ~ [1 + I Y~fl2] 2 < C2to + C3td "-1 

for some positive constants  C2 and C3 depending on m, ),  8, a, a', b, b', c, c', again 
contradict ing (2.19). Together  with (2.34) this shows that  (2.18) holds under  the 
assumpt ion  (2.29). 

Case 2 

IXj f [  2 -- ~ ( X o f + f )  <= O. 
i uO 

(ii) If to > 1 then 

2 2 - 1  

toy 22 < C2to ~-~ ," 

to  . ,2 C 1 3 / 0  O > - 2 C l s t o y 2 2  + ~ ~ - 

y 2  

0 => - 2 C l s y  22 + ~ - -  C 1 3  , 

Hence 

Since 60 > 1, we have 

F < toX + to Y. [1 + lYe . f ie]  x < 2toX <= 4m82 + Cto (2.34) 

for some constant  C depending on m, 2, 8, a, a', b, b', c, c'. This is a contradict ion to 
(2.19). 

In the second case we have 

to 
0 >= - 2 C l s y  2a + ~ ) ,2 - C13to . (2.35) 

(i) If to < 1 then we must  have 
1 

y < C2 tg ~a- ~t . 
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In this case we may assume that 

(ao - 1 ) ~ l X , f [  2 <= ~,[1 + I Y=f[2] ~ . (2.36) 
i 

Otherwise (2.18) follows trivially, since 

= aoto IXJfl2 - 6o ( X o f + f )  < 0.  

Plugging (2.2), (2.23) (2.26) into (2.20) and using (2.36) we obtain, at (Xo, to), 

> _ _  

> - -  _ 

F 3to 4m 
+ Z / r o f l  2, 

to 8 -  , 2 ( 2 ) . -  1) 

- C6to  I X , f l  2(2,;~ - 1) 

-- 6(m2a + mc')to ~ ]Xifl 
i 

2 

2 1 - - 2 ~  2 

- - ~ ( m 2 b + m c ) t o ~ I Y ~ f ] - C g t o  [l +]Y~fJ2];~-~lY~fl 
~t 

-8mb2(2) . -1 ) -Xto  [1 + ]Y=f ]2 ]  a ~lY=fl ~,[1 + l Y a f l 2 ]  T )  

- 2(rob' + C5b 2 + mbc)to ~, [1 + I Y=fl:]~-~lY~fllrafl  

- 4 a t o ~ [ l  + IY~f lz]a-alY~f l  IX~fl 
ot 

- 4 b t o ~ [ 1  + I Y=f lZ]Z-XlY~f l~  JX~fl ~ l Y p f l  
ct i # 

F t o y 2  ~ l y  2 C21 y 2 _  _ 
%- --[- t o C22Y 22 g C z 3 y  2(1-a3 -- (5C24Y -a. 

to 4- e~ ( 6 o -  1) 

- 6C2 sY - C 2 6 Y  2(2'~" - 1) _ C27  y4~, - t _ 6 2 8  y3a t (2.37) 

where C21 is a positive constant  depending only on 2 and m. 
Choose c~o so that 6o > 16C21 + 1 then for 1/2 < 2 < 2/3 there exists some 

constant  C29 such that  the last term in (2.37) is bounded  by - C 2 9  to. Therefore, at 
(Xo, to), 

F t o .  2 t o .  2 
0 => ----to + ~ y  -- C29t0 = > - C I s y  2~" + - ~ y  - C 2 9 t 0  . 
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Then the same argument as in treating (2.35) implies (2.18). Thus the proof  of 
Proposi t ion 2.1 is completed, 

For  small t we have a slightly different estimate 

Proposition 2.2 For 0 < t <= 1 and 1/2 < 2 < 2/3, there exists a constant C such that 

1 X. iX,ul 2 + t 2 ~ _ , ~  1 + ~ l Y = u l  2 - b X ~  <<_Ct -~ 
1A 2 �9 U U - -  

Proof. The arguement  is essentially the same as in the proof  of Proposi t ion 2,1. In 
this case we consider instead the function 

with 1/2 < 2 < 2/3. 
At the maximum point (xo, to) for F on M x [0, 1] we have the following 

inequality 

O> L - ~  F(xo, to) 

+ -- IXi f l  e - X o f - f ,  
- -  t o t o m . 

to 
+ to• IX~Xjfl  a + - ~ 2  1 L f l  e 

i , j  a 

+ 2;.(22 - 1)tg~y~ E1 + lY~ f I2q~- lLx ,Y~ f l  2 + 2 t o Y X , f [ L ,  X i ] f  
a i 

+ 2;oto 2z ~ [1 + I y J I 2 ]  ~ - '  Y j [ L ,  Y~3 f 

+ 4,~et ga ~ [1 + I Y~.fT2] ~ ~x, f Y j K X ,  L ] f .  
r 

For  case 1, all we need to modify are the estimates (2.22) and (2.23). We have 
instead 

IXgfl IXj[Xj ,  X , ] f l  < ~ IX, f l  IXj Y~f[ 
i , j  i , j , r  

< e. IX~fl + m2~-~(22 - t ) - h g  -4~ [1 + I Y~f[2] ~ -  

,~(2). - 1) tg ~- + a y,  [1 + I g=fl2]  a-a [ X i Y = f l  2 
4 ~,, 

and 

2 c 6 ~ [ X ~ [ X , , X j ] f [ <  2mc6 1 - 2 ~ ( ~  
i,j = 2 (22- -  1) to [1 

2 1 - - )~xk2  

+ ]y=f] ] - r - )  

2(22 - 1) t~z_ ~ ~ [1 + [ Y j [2 - Ia -  ~ 
~,i 

+ - -  XiY~f l  2 . 
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Corresponding to (2.33), we have 

because to < 1. 

0 > 
F1 22F2 

to to 

@ t o  . 2 _jr_ t o  y2 _ C3o t3o - r  

__ C 3 1 t 2 -  2Xy2 - 2~. _ C32t  0 

Multiplying to to (2.38), we get 

t2  X 2 t2 V2 , 4 - 4 X  
O> - t o x  - C33(toy) 2~ + ~ 2  + ~ -- C30(to)) 

- -  C 3 1 ( t o y )  2 - z x -  C32  t2 . 

Since 1/2 < ). < 2/3, there exists a positive constant C34 such that 

t 2  y2  __ C 3 3 (to y)2;~ _ C 30 (to y ) 4 -  4;~ _ C 3 t ( to y)2 - 2 ;. < _ C 3 4  " r = 

Hence 

t~ x2 O > - t o X  + ~ - C 3 5 .  

(2.38) 

Theorem 2.1 Let X1 ,  X2 . . . . .  Xm be smooth vector fields on a compact maniJbld 
M satisfying the condition (2.2). Then there exists a constant 3o > 1 such that for  any 
positive solution u(x, t) o f  Eq. (1.1) on M x [0, oo), any 6 > 6o and t > O, we have the 
estimate 

1 ~ l X i u l  2 6 X o u  6 U t < c , l t _ ~ + C ;  
U 2 �9 11 U z 

where C'~ and C'z are positive constants depending on m, 3o, 3, a, a', b, b', c, c'. 

For  positive solutions of Eq. (1.2) we have 

Theorem 2.2 Let  u(x, t) be a positive solution of  the equation 

Lu(x)  = 0 

on M.  Then for 0 < 2 < 2/3, there exists a constant 60 = 60(2) such that for  any 
3 > 6o, u(x) satisfies the estimate 

where C~ is a positive constant depending on m, 2, 6, a, d ,  b, b', c, c'. 

The proof of Theorem 2.2 follows from Proposfition 2.1. 

It follows that F < C'  for some positive constant C'. 
For case 2 the modification is similar and we again have F < C'. This finishes 

the proof of Proposition 2.2. 
Combining Proposition 2.1 with Proposition 2.2, we obtain the following main 

result of this section. 
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3 Harnack inequalities 
In this section we shall derive Harnack  inequalities for positive solutions of Eq. 
(1.1) and Eq. (1.2). Let  Xt  . . . . .  Xm be smooth  vector  fields on a compac t  manifold 
M with a positive measure  g. We assume that X~ . . . . .  X,, satisfy Hhrmande r ' s  
condition: the vector  fields X ~ , . . . ,  X~ together  with their commuta to r s  up to 
certain finite order r span the tangent space at every point  of M. 

In this case there is a natural  distance d(x, y) on M associated to the opera tor  L: 

d(x, y) = inf{bl3 an admissible curve 7: [0, b] --* M with 

7(0) = x, 7(b) = y} (3.1) 

where an admissible curve 7 is a Lipschitz curve such that  

7'(s) = ~ ai(s)Xi(7(s)) 
i 

for some functions a~(s) satisfying ~'.i ai(s) z < 1. Balls for the metric d are denoted by 

Bx(r) = { y e M I d ( x ,  y) < r} .  (3.2) 

Theorem 3.1 Let Xx ,  Xz  . . . . .  X~  be smooth vector fields on a compact manifold 
M satisfying the condition (2.2) and Hhrmander's condition. Then there exists 
a constant 6o > 1 such that for any positive solution u(x, t) ofEq. (1.1) on M x [0, oo) 
and any 6 > 60, 0 < tl < t2, and x, y e  M, we have 

- -  exp dZ(x, y) + C's(tz - tt) , u(x, tl) < u(y, tz) \ t l ]  2(t2 L t~) 

where C; and C'5 are positive constants depending on m, 60, 6, a, a', b, b', c, c'. 

Proof  Let 7 be an admissible curve given by 1': [0, b]--* M, with 7 (0 )=  Y and 
}'(b) = x. We define t/: [0, b] ~ M x I ts ,  tz] by 

"(s) = (?(s)' ( b -  s)tz + s t ' )  

Clearly tl(O)= (y, tz) and t / (b)=  (x, tl). In tegrat ing (d/ds)(logu) along 7, we 
have 

(d) logu(x,  t l ) - l o g u ( y ,  t 2 ) = i  ~ l ~  ds 
0 

Applying Theorem 2.1, we get 

log \u (y ,  t2)]  = o 

(tz - t l)  ] 
(log u)~ f ds . 

{~  logul+(t2-q)(C]t-~ +C~) l a~ II Xi 
b~ 

(t2 -- t l )  12 X o l o g u ) } d s  -~ ( 6 - 1 ~ ' X ,  logu - 
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]Xi logu[ 2) =< oi { ~  (laillX~logu[ (t2 - tl)2b6 

+!t2 t'i(clt-1 + cl/ 

< la~l z 
o 2(tz - ti) 

+ C~ t-  ~ + C'2 + ~ - -  ds. (3.3) 

Since t = (b - S)tz/b + sta/b, and 7 is admissible, (3.3) gives 

l o g \ ~ j < 2 ( t 2 _ t z ~ )  +C~6- t log  + C '26- '+ 

Because ? is an arbitrary admissible curve between x and y we therefore obtain 

log \ ~ f f  < 2 ( t 2 -  t , )  + C~6- ' l og  ~ -I- C ~ - '  - i - - -  (t2 - t , ) .  

The theorem follows by taking exponentials of the above inequality. 
If we apply Theorem 2.2 instead, the same method yields 

Theorem 3.2 Let u(x) be a positive solution of the equation 

Lu (x) = 0 

on M. Then there exists a constant 6o > 1 such that for any c5 > 60 and x, y ~ M, we 
have 

u(x) < exp(Cd(x, y))u(y) 

for some positive constant C. 

Various mean value type inequalities can be obtained from Theorem 3.1 and 
Theorem 3.2. For example, we have 

( 1"~12[t2"~c; \ t [ 6r2- tt) ) u(x, t ,)  < S u2(Y , tz)dy)  t O )  exP/2 , t  2 + C;(t2 - t ,)  . (3.4) 
BM, r) 

4 An upper estimate for the heat kernel 

Let M be a compact manifold with a positive measure/z. Let X1, X2 . . . . .  X~, be 
smooth vector fields on M satisfying H6rmander's condition and condition (2.2). 
We assume that the operator L = y '~Xf - Xo is self-adjoint with respect to the 
measure #. Our goal in this section is to derive an upper estimate for the funda- 
mental solution H(x, y, t) of Eq. (1.I) on M • M • (0, oo). 
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Let d(x, y) be the distance function on M as defined in (3.1) and 

1 
p ( x , y , t ) = ~ d 2 ( x , y ) ,  (t > 0).  

For  d(x, y) we have 

[Xidle(x, y) ~= 1 
i 

in the weak sense on M. Therefore p(x, y, t) satisfies 

Define 

Then we also have 

Following [8] we set 

1 
5 Y,.. IX,p12 + et <= O . 

9(x, y, t) = -p (x ,  y, (1 + 2c0T - t ) .  

~I X;~I 2 + ~ o ,  
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(4.1) 

(4.2) 

(4.3) 

(4.4) 

F(y, t) = j H(y, z, t)H(x, z, T)dz 
S~ 

for x e M ,  0 -< t_< z < (1 + 2~)T, and $I - M. Then for any subset $2 c_ M, we 
have 

Lemma 4.1 

F z (z, z) dz <= f H 2 (x, z, T) dz sup exp ( -  p (x, z, (1 + 2e) T)) 
$2 $1 zeSz 

• sup exp(p(x, z ,H + 2 e ) T -  0 )  - 
z e S 2  

Proof As a function of y, F(y, t) satisfies Eq. (1.1), therefore 

0 = 2 f e~ L , -  ~ F(y, t) .  (4.5) 
o n  

Integrat ing the right hand side of (4.5) by parts and using (4.4) we get 

0 = - 2 i  Y e~ z - 2 i e 'F•  XIFXI9 
O M  0 i 

+ i I e~  S e"F2l,=~ + ~ e~ 
O M  M M 

< - ~ e'~V2[,=* + I eaFZl,=o 
M M 

+1 2 

- 2 ! ~ e g ~ ( X , F  ~ F X i g )  �9 
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Hence 

B u t  
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e~ ~) < ~ e~176 0).  
M M 

H ( x , y , T ) ,  if y e S 1  ; 
F(y, 0) = 0, o therwise .  

Thus  

.I eg(X'~"~ 0) < sup exp( - -p (x ,  z, (1 + 2~)T) S Hz(  x, z, T)dz . 
M z e S l  $1 

On the other hand  

j" e~ z) > ~ eO(X'Y'~)FZ(y, v) 
M $2 

> inf e x p ( - p ( x ,  z, (1 + 2 ~ ) T -  z)) S F2(z, z)dz . 
z~S2 $2 

This proves L e m m a  4.1. 

Theorem 4.1 Let X1, X2 . . . . .  X,~ be smooth vector fields on a compact manifold 
M satisfying Hdrmander's condition and the condition (2.2). Let L be self-adjoint with 
respect to the measure # on M. Then for some 6 > 1 and 0 < e < 1, the fundamental 
solution H(x, y, t) of Eq. (1.1) satisfies the estimate 

H(x, y, t)<= C(~)~ '12(B~(xStt)) V -  "2(Br(w/t))exp C'5et - ~  ~ t  J 

where C(~) depends on e with C(~) ~ ~ as e --* O. 

Proof Applying Theorem 3.1 to the function F(y, t) in L e m m a  4.1 and take 

$1 = By(,r $2 = B~(,4/t) with z" = (1 + :QT, we have 

H 2 (x, z, T) dz = F 2 (x, T) 
e 

< V - l ( B x ( x / t ) )  S F2(z , (  1 + ~ ) T ) d z  
B,,~.,.'~) 

x (1 + a)ZC~exp ~ + 2C;~T 

By(./t) 

x exp + 2C;  :~T + 2c~T 

- inf p(x, z, (1 + 2~)r)~. 
/ 
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So we obtain 

!), ) J H Z ( x ' z ' T ) d z <  V- ' (B~(x/ t ) ) (1  + c 0 : C i e x p \  2c~T  +2C's,:~r 

x e x p ( -  inf p ( x , z , ( l + 2 ~ ) T ) ) .  
z �9 By( .~/~)  

Applying Theorem 3.1 once more to H(x, z, t) and setU'ng T = (1 + .)t ,  this yields 

( ( 4 6 + 2 ~ +  1) 
< V-~(B~(v#tt))V-~(BY(\/t))(1 + :04C'exp \ 2 ~ ( s  c0 

+ 2C;~(2 + ~) t )  

•  inf p(x,z ,(!  +~)(1  + 2 c 0 t ) ) .  (4.6) 
zeBy(vt) 

X G Byf, ,~ , then If 

d2(x, y) 1 
inf p(x, z, (1 + ,:0(1 + 2~)/) = 0 > 

Otherwise, d(x, y) > \ / t  and we have 

(4.7) 

( d ( x ,  y )  - v 4 )  2 d ~ix, z) 
inf p(x,z,(1 +:0 (1  + 2 ~ ) t ) =  inf >- 

~ , ( , 5 )  =~,<, ,  2(1 + ~)(1 + 2c0t - 2(1 + c0(1 + 2:0t 

Applying the inequality 

d 2(x, y) t 
(d(x, y) - ,f~)2 > (l + ~1 

to the above and setting 2(1 + ~)2(1 + 2~) = 2 + e/2 we obtain 

2d2(x, y) 2(1 + ~) 
inf p(x, z,(1 + :0(1 + 2cOt ) > 

~R,I,,'~) (4 + ~)t c~(4 + ~) " 

This together with (4.6) and (4.7) proves Theorem 4.1. 
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