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Introduction 

A Calabi-Yau manifold is by definition a projective manifold with trivial canoni- 
cal class but without any holomorphic 1-forms. One of the basic problems for 
those class of Ricciflat manifolds is the existence of rational curves. In dimension 
2 the Calabi-Yau manifolds are just the K3-surfaces and the existence of rational 
curves is well-known. In dimension 3 Wilson [W] recently showed that any 
Calabi-Yau 3-fold with b2(X)> 19 contains rational curves and he also shows 
existence of rational curves if there are certain special divisors on X. In this 
paper we show (Sect. 1). 

Theorem. Let X be a Calabi-Yau 3-fold and assume the existence of an (non-zero) 
effective non-ample divisor on X.  Then X contains a rational curve. 

Of course such a divisor can only exist if b 2 (X)> 2. 
The proof is based on some results of Wilson's and on a careful analysis 

of surfaces S e X  which are not ample divisors on X. In many cases we find 
rational curves inside S (e.g. when S is even not nef) but not always. 

In Sect. 2 we consider hyperbolic 3-folds X. Hyperbolicity means that there 
is not non-constant holomorphic f : ~  ~ X. We prove that - following a conjec- 
ture of Kobayashi - X has ample canonical class except possibly for Calabi-Yau 
3-folds without rational curves. 

w 0 Preliminaries 

We always denote by X a smooth complex projective manifold, co x will always 
be the  canonical sheaf (bundle), ~c(X) denotes the Kodaira dimension, and hq(X, 
~-) is the dimension of Hq(x,  2 )  for a suitable sheaf ,~" on X. 

(0.1) Div (X) is by definition the group of Cartier-divisors modulo linear equiva- 
lence. A Q-divisor on X is an element of Div(X) |  a R-divisor an element 
of D iv (X) |  N~(X)  will be the vector space of all real divisors modulo 
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linear equivalence, analogously we define N~ (X). b~ (X) is a finite-dimensional 
m-vector space of dimension p(X), the Picard number of X. Often we will not 
distinguish between a divisor D and its class in N~ (X). We denote K c N~ (X) 
the cone generated by the ample divisors. K is called the ample cone. 

We let Nl(X)..={1-cycles on X } / ~  where Z ~ Z '  iff DZ=DZ'  for all 
DeDiv(X).  N E ( X ) c  N 1 (X) will always denote the closed convex cone generated 
by the classes of irreducible curves. 

(0.2) Lemma Let X be a smooth projective 3-fold. Let DeDiv(X) be nef and 
H ample, lfD2=#O then D 2 H > 0 .  

Proof By (0.3) we have DZH>O (Kleiman). So assume D2=t=0 but D2H=O. 
Let V= {EeN~(X)IEDZ=O}. Then codim V=I .  Let Z_={EIED2<O}.  Since 
DZH=0,  Vc~K@ {0} and hence Z_ c~K+0.  Thus we find an ample H' with 
D 2 H' < 0. This contradicts the nefness of D by Kleiman's result. 

(0.3) Let us fix two notations from the theory of algebraic surfaces (cf. [BPV]). 

(a) An elliptic surface is a smooth projective surface S together with a surjective 
morphism p: S ~  C to a compact Riemann surface C such that the general 
fiber is a smooth elliptic curve. 

(b) A hyperelliptic surface S is an elliptic surface p: S ~ C' such that p is holo- 
morphically locally trivial and C is an elliptic curve. 

All what we nced of thc thcory of surfaces can be found in [-BPV]. 

(0.4) We need some facts concerning non-normal surfaces. These can be found 
in [-Mo, 3.36]. Let S be a projective non-normal Gorenstein surface. Let E c S 
be the non-normal locus, with structure given by the conductor ideal. Let f:  

-* S be the normalization of S, E the analytic preimage of E. 
Then there are exact sequences. 

0---* co~--* f *  (cos)---~ f *  (cos)@ (9~----~ 0 

0--* (gs--* f ,  (C~)---~ cos 1 | coe ~ O. 

(0.5) Definition. A Calabi-Yau manifold is a projective manifold with trivial 
canonical bundle co x and H 1 (X, (_gx)= 0. 

(0.6) Remark. Let X be an arbitrary projective malaifold with COx--(9 x. Then 
a theorem of Beauville [Be] states the existence of a finite &ale covering of 
the form 

Tx H Vj x IIXi 

with T a torus, Xi simply connected sympletic manifolds (of even dimension, 
in particular) and Vj simply connected manifold of dimension > 3 satisfying 
Hq(Vj, Cvj)=0, 0 < q < d i m  Vj. So the Vj are Calabi-Yau. 

(0."/) Proposition (Wilson). Let X be a Calabi-Yau 3-fold. Let D~Div(X), D3= 0, 
D nef, D .c2(X)~O or h~ for some m e n  and D 2 H > 0  for some 
ample H. 

Then there exists n e N  such that (gx(nD) is generated by global sections and 
the associated morphism 4): X -~ Y is an elliptic fiber space over a normal projective 
surface Y. 
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Proof [W, 3.2]. The assumption D.c2(X)+-O is only used to conclude 
h~ for some m. 

(0.8) Proposition. Let X be a Calabi-Yau 3-fold, D~Div(X),  D nef, D3=0, 
Dc2(X)4:0, and D2 H >O Jbr some ample H. Then X contains a rational curve. 

Proof Let q~: X--* S be the associated elliptic fiber space. As Wilson remarked,  
S is rational. Let us give an easy argument.  After eventually lifting back ~b 
to a desingularisation of S, we may  assume S smooth.  F r o m  H~(X, C x ) = 0  
we deduce by a Leray spectral sequence argument :  

H 1 (S, los) = O. 

Hence it is sufficient to know x(S)=  - oo in order  to conclude rationality. 
By Iitaka's (C3.1): K(S)+ x(Xy) for the general smooth  fiber Xy, we conclude:  

K(s)_<_0. 

H2( X, (fix)= 0 implies H2(S, (fls)= 0 (think of ho lomorphic  2-forms). Thus the 
Koda i ra  classification of surfaces says : S is hyperelliptic or an Enriques surface. 
H 1 (S, Cs)= 0 excludes the hyperelliptic surfaces. 

S being an Enriques surface, S carries - whether  minimal or not  - an "elliptic 
pencil"  S ~ I P  1 [BPV, p. 274]. Thus we obtain a map  ~: X- -*F1 .  Let Y b e  
its general smooth  fiber. We see easily ~:(Y)=0. By e)r~-CoxlY, we deduce 
HZ((flr)=H~ So the minimal model  Ym is K3  or a torus. Since Y,, admits 
an elliptic fibration over an elliptic curve, this is not  possible and finally S 
is rational. 

N o w  take a rat ional curve C o S .  Let Xc=qS- l (C) .  The general fiber of 
c~[X c is a smooth  elliptic curve (observe that  we may assume that  any fiber 
over y e S \ S i n g ( Y )  is (after reduction) elliptic because otherwise the fiber would 
contain rational curves). 

Let  f :  C ~ - I P I ~ C  be the normalizat ion,  X c = X c x c ~  and p: X c ~ X c  a 
minimal desingularisation. Since we may assume X c without  rat ional  curves, 
~: )?c ~ C is relatively minimal  (in the sense of [BPV]). 

Clearly ~c()(c)< 1. If ~c()?c)= - o %  X contains rat ional  curves. Next  suppose 
~c()?c)=0. Clearly )?c is minimal. If )?c has a fiber whose reduction is not  
smooth  elliptic, then X c contains a rat ional curve. If the reductions of all fibers 
are smooth  elliptic, then c2(37c)=0 ([BPV, p. 97]). Hence ) (c  is a torus or hyper-  
elliptic. Both is clearly not  possible. 

Last  assume x(.~c) = 1. Again red ~ -  ~ (y) is smooth  elliptic for all y, otherwise 
we are done. Now again c 2 ( ~ c ) = 0 ,  hence )~((flxc)=0 by Riemann-Roch.  More-  
over R 1 ~.((flr is topologically trivial ([-BPV, p. 162]), hence trivial (C~_IP~). 
The Leray  spectral sequence gives H l((flx~)-~ IE, so H z ((flXc)= 0. 

On the other  hand by [BPV, p. 162] : 

co~c _ p* ((tiP1 (a)) with some a > 0. 

Hence H ~ (Cxc) = H2 ((flY(c) :4= O. This ends the proof. 
The following is well known (cp. [W]): 

(0.9) Proposition. Let X be a Calabi-Yau, 3-fold D~Div(X) .  I f  D is big (D 3 >0) 
and nef but not ample, there exists a rational curve on X.  



308 T. Peternell 

w 1 Non-ample divisors in Calabi-Yau 3-folds 

In this section we prove the main result of the paper: 

(1.1) Theorem. Let X be a Calabi-Yau 3-fold, S c X  an irreducible hypersurface. 
Assume that S is not an ample divisor. Then X contains a rational curve. 

Proof (0) We begin with some general observations. Let f:  ~ S be the normal- 
ization, n: ~ ~ S a minimal desingularization. First observe that ~ may supposed 
to be minimal. In fact, if ~ is not minimal, pick up a ( - t ) - c u r v e  C c ~ .  Since 
n is minimal, dim n (C)=  1, hence fn (C)  is a rational curve in S and we are 
done. 

Also we may assume x(S~)>O. Moreover,  if ~ is an elliptic surface p: S ~  C, 
the only singular fibers can be multiples of smooth elliptic curves, otherwise 
we obtain a rational curve in X. In fact, a singular fiber different from a multiple 
of a smooth elliptic curve consists of rational curves ([-BPV, p. 150/151]). Since 
d i m f n ( p -  i (x)) = 1 we are done in this case. If S 3 > 0 and S is nef then X contains 
rational curves by (0.9). We distinguish two cases: 

(1) S is not nef 

(2) S is nef. 

(1.2) Lemma.  I f  S is not nef X contains a rational curve. 

Proof S not being nef there is a curve C with S - C < 0 ,  in particular C = S .  
So the normal bundle JVsl x is not nef. By adjunction formula 

cos ~ ~A#sl x, 

so ms is not nef. 
If the reflexive sheaf cos is not nef, choose a curve C ~  S with (Cl (cos)" C)<  O. 
Since n,(~o~)cco~ for all y e n  and since •(S*)=>O (so co~ is generated by 

global sections for y>~O), co~ is generated by global sections outside a finite 
set (Sing(S)) for suitable big #. This clearly contradicts (ca (~o~)-C)< O. 

Hence m s must be nef. This already excludes the case "S no rma l ' .  
In the case "S non-normal"  we still have some informations on the curves 

C ~ S with 

(*) (ca if* (cos))" c) < 0. 

Namely C c ~, /~ the preimage of the non-normal  locus E of S. In fact, if C r E, 
we would obtain by 

cos~--IE| (0.4): 

(ca (cos). C)<0, 

a contradiction. So (*) holds. (*) implies that there are only finitely many  curves 
Ca, ..., C~ with 

(cl (COs)" C3 < 0, 
hence 

(S. Cl) < 0. 
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N o w  let to = i n f  { t e N +  I S + t H  ample} and put  D o = S + t o  H. 
Clearly t o e Q + ,  in fact 

to = max  {tl(S+tH.Ci)=O}. 
l<_i<=s 

If D g > 0 we conclude by (0.9). 
If Do 3 = 0 observe that  S c2(X ) >=0 [M, Y], hence D O c z ( X ) >  0. Since S. C > 0  

for all but  a finite number  of curves, S 2 H > 0 for any  ample  H, and so D 2 H > 0. 
N o w  apply  (0.8) to get a ra t ional  curve. 

(1.3) Lemma .  I f  S is nef and $ 2 4 0  (but $3=0) ,  X contains a rational curve 
or the normalization of  S is a hyperelliptic surJdce (in particular smooth). 

Proof  Assume tha t  X does not conta in  a rat ional  curve. Assume  that  
H 2 (S, (gs) = H~  (COs) * O. Then the exact sequence 

(s) o- , (9x(-  S)-,(9,:-~(9s-,o 

yields a c o h o m o l o g y  sequence 

H2 ((9x) ~ H2 ((gs) --~ Ha ((gx ( -- S)) --~ H 3 (Cx) --~ 0 

o U~ r 

thus h~ Since S is by assumpt ion  nef, X contains  a rat ional  curve 
by (0.8) as soon as we know S E H > 0 .  But $2H>0,~$2:4=0.  So we must  have 
H2(Cs)=O, moreove r  S.CE(X)=O because otherwise we can again apply  (0.8). 
By R i e m a n n - R o c h :  Z (Cx (S)) = Z ((gx ( - S)) = 0. Sequence (S) yields )~ ((gs) = 0 since 
Z((gx) = 0. The  vanishing of H 2 ((9x)implies therefore 

hi ((gs) = 1. 

We want  to get some more  informat ions  f rom $ 3 = 0 ,  $2:#0.  $ 3 = 0  just  says 
cl(Nslx)2=O, hence ca(cos)E=0. Sz=#0 implies (self-intersection formula)  
cl(Nslx)+O in H2(S, N), so cl(cos)~O. 

(1 )  Assume S to be non-singular.  Then  cl(cos)Z=0, cl(cos):4=O gives ~c(S)=l. 
So p : S ~  C is an elliptic surface. By hl((9c)<hl((gs)= 1, we obta in  g(C)< 1. By 
[BPV, p. 162] : 

deg (R~ p ,  (Cx)*) = Z ((9s) = O. 

So the canonical  bundle  formula  [BPV, p. 161] gives 

) 09 s ' ~p*  (COC(~cP)@(9S (m i - -  1) F i 
i=1 

where mi Fi are the mult iple  fibers and Lf = R 1 p ,  ((gx)* is topological ly  trivial. 
If  g ( C ) =  1 the formula  implies the non-exis tence of any singular  fiber because 

otherwise h~ But then x ( S ) = 0 !  If g ( C ) = 0  our  fo rmula  and  h~ 
imply s = l  and m ~ = 2  or s = 0 .  But if s = l ,  m = 2  we have  x ( S ) = - o o  and 
if s = 0 :  x (S )=0 .  So (1) does not  occur  if X conta ins  no ra t ional  curve. 
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(2 )  Now let S be singular but normal. In this case if c~(cos) z <cl(cos)Z=0, the 
minimality of S yields x(S~ = - 0% which gives rational curves. Hence Cl (cos) 2 
=cl(cos)Z=O, which just means cos~- n* (cos), i.e. S has only rational double 
points. So x(S~)=0. In particular ~ contains a rational curve, consequently ;~ 
cannot be a torus or hyperelliptic. By [BPV, p. 67] we easily see: S is not 
Enriques, hence S must be a K 3 surface. Then cos ~- (gs, contradiction. 

(3 )  Finally let S be non-normal. 

( 3.t ) K(s~)=0. 

Since n.  (cos) c cos a n d f .  (cos) c cos we have 

H~ 

So ~ is Enriques or hyperelliptic. The Enriques case is excluded as before. If 
is hyperelliptic, we must have ~ =  S and we are done by our assumption. 

(3.2) K(S ~) = 1. 

Again we have for the elliptic surface p: ~--* C: 

H~ (cos) = 0. 

Since p has at most multiple fibers (as singular fibers) we have c2(~ = 0 ([-BPV, 
p. 97]), hence z(C~)=0 and h~(Cs)=O. Now the contradiction is the same as 
in (1). 

(3.3) K(s3=2. 

Again H2(d0s)=0 and by the positivity of Z(Cs): H 1 (Cs)=0. Since we also have 
Hq(0s)=0, q= 1, 2, ~ has only rational singularities and since the only smooth 
rational curves in $ are ( -  2)-curves, ~ even has at most rational double points, 
in particular cos is locally free. It follows: c~(cos)E=c~(cos)2>0. Using 
cos ~- I~:| (cos) and ci (COs) 2 = 0: 

0 </~2 _ 2(c i f *  (COs)"/~)" 

Since cos is nef, we obtain /~2>0. If we t/lke squares in f*(cos)"~cos| 
we obtain 0 = cl (cos) 2 +/~2 + 2 (c 1 (cos)"/~)- Since cos is nef and/~2 > 0, cl (cos) 2 > 0, 
this is impossible! 

(1.4) Lemma. Assume S to be nef, S 2 4:0 and that the normalization of S is hyperel- 
liptic. Then X contains a rational curve. 

Proof. By (0.4) we have 

(*) cosmic |  *(cos) 

where /~ is the analytic preimage of the non-normal locus E of S - equipped 
with the structure given by the conductor ideal. Since cl(cos)2=0, we have 
cl(f*(cos))2=0. Since f*(cos) is nef, we can describe the structure of f *  (cos) . ~ 
being hyperelliptic, ~ is an analytic fiber bundle p: ~--* (~ over an elliptic curve 
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C. On the other  hand  we have an elliptic f ibrat ion q: S ~ P 1 .  We denote  by 
Fi fibers of/3, by Gi fibers of  q. Then we have:  

f*(~s)=ZniFi, ni>O (a) 

or 

(b) .f*(cns)= Zm2 G1, mi>O. 

This follows f rom bz(S)= 2. F r o m  (*) we conclude:  

(a) /~ consists of fiber ofl3 

(b) /~ consists of fibers of q- 

We want  to p rove  first: 
(**) f * :  H2(S, ~)---~H2(S, 7Z) is an i somorphism.  First assume (a). /3 clearly 
induces a cont inous  m a p  p: S ~ C to some curve C. M o r e o v e r  there is a d i ag ram 

o ~ : ) S  

* , C  

N o w  it is easy to check that  C carries a complex  structure such that  bo th  
g and  p are ho lomorph ic ;  g is a modificat ion.  Since hl(fgs)= 1, we must  have 
(by p,(Cs)=Cc) ) h a (Cc)< 1, hence C is smoo th  elliptic and g is b iholomorphic .  
So the picture is as follows: there are points  xl  . . . . .  x ~ C  such that  f] /3-1(xl)  
is 6tale onto f(p-l(xi)) (all f b e r s  of/~, p are smoo th  elliptic: for the fibers of 
p this is clear;  for the fibers of p it is true since otherwise R 1 p,(Cs) would 
have torsion, consequent ly  h x (Cs)> 1 by the Leray  spectral  sequence). 

N o w  our  claim is an immedia te  consequence of  the exact sequence ([BK, 
3.A.7]): 

... ,Hq(S, 7Z) ,Hq(~,Z)OHq(E, JE) ) Hq(/~, :E}) , . . .  

N o w  assume (b). Similarly as in (a) we have a d i ag ram 

P1 h , 0 

With a possibly singular  ra t ional  curve D. The  only thing to do is to prove  
smoothness  of  D; then we can argue as in (a). Tak ing  direct images of  the 
exact sequence (0.4) we obta in :  

O--*q,(co s a| R'  q,((gs)--~ R 1 q,(f,(C~))--~ R' q,(~o s '| 
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Assume D to be singular, so h~((9o)=l .  By Leray 's  spectral  sequence and 
h e (Cs) = 0: 

(+)  n ~ (R 1 q ,  (Cs)) = O. 

Since q ,  (~Os 1 |  is concent ra ted  on points, we get q ,  (~,s 1 |  
Tak ing  cohomology  of (0.4) and  using h 1 ((gs)= 1, h 2 ( (~s) :  0, we deduce:  

H 1 (~Os 1 | = 0. 

By Leray 's  spectral  sequence again, it follows 

R 1 q,(o9 s l |  = 0 .  

So ( + ) gives 
U 1 q,  (Cs) ,.~ R 1 q ,  ( f ,  (C~)). 

N o w  use the so-called Serre spectral  sequence 

E~'q= RP q ,  (Rqf,((~s)) 

converging to R p +q(q of ) .  ((gs) to deduce 

R '  q ,  ( f ,  (C~)) -~ R '  (q o f ) ,  (C~). 

Since q o f =  h o ~ we can again  use this spectral  sequence to compu te  

R '  (q o f ) ,  (C~) - h ,  ((gF,). 

In s u m m a r y :  

R 1 q ,  (Cs) ~ h ,  (Cp,), 

contradic t ing (+) .  So (**) is p roved  completely.  
Since H2(S, (~)=0, (**) gives us a nef line bundle Ls~-O on S which is 

not a mult iple  of  e) s. In fact there exists a nef line bundle L on S which is 
not  a mult iple  off*(cOs) and  L is by (**)-up to numerical  equivalence of 
the form f *  (Ls). N o w  consider  the restr ict ion m a p  

r: H E ( x , Q ) ~ H 2 ( S , Q ) .  

Since cl(Ogs)eH2(S, t1~) is non-zero  and not  ample  (nor negative), r must  be 
onto. 

Hence  there is a line bundle  L on X with LIS~-L"~ for some m e n  (use 
Hq(X, C ) = 0  for q = 1, 2). We m a y  assume m =  1. 

First  assume tha t  L is nef. 
By (0.9) we m a y  assume La=0 .  L + S  is nef and moreove r  L + S  is big: it 

is sufficient to see LS2> O, which follows f rom 

LS  z = (cl ( f *  (Ls) 'cl  ( f *  (e)s))) 

=(C t/3*(F1) 'c 1 q*(F2))>0 
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(F~ ample line bundles on (~ resp. P1). If L+S is not ample, we get again a 
rational curve. If L + S is ample, we deduce 

(L + S- c2 (X)) > 0, 
hence L- c2 (X) > 0. 

Now LZH>0,  so X contains a rational curve by (0.8). So we may assume 
that L is not nef. 

(1) Suppose first p (X)>3 .  
(c 0 Assume furthermore 

{DIS=O}={D3=O}. 

By our assumption, there is DeDiv(X)  such that DIS-O, D3>0.  Choose p>~0 
such that (L+pD)3>O. Put L=L+#D. Then L[S-LIS and L3>0. I claim that 
there is H e D i v ( X ) |  ample with the following property:  if t o is chosen such 
that L+toHeOK then either ( L + t o H ) 3 > 0  or L+tSeK for every t>>0. 

In fact, assume L +  tSr for t>0 .  For  HeK let to(H) be the unique number  
with 

L+to(H).HeOK. 

If H~--*S in NI(X),  then l i m t 0 ( H v ) = ~  (otherwise we find c > 0  such that L 
+cSeOK). Now choose He(Div(X)| near to S such that 

tg (H) > to (H) 
and 

LHZ > L,2 H. 

The second inequality can be achieved since 

LS2=LS2>O, ~2S=L2S=0. 
Hence: (L + to H) 3 > 0. 

But then it is easy to get DeDiv(X) ,  not nef, with DZH>0, DH2>O. Hence 
there is a rational curve by [W]. 

(fl) Now let {D[S=_O}c{D3=O}. 
Let V~N1(X) be the linear space generated by S and {DIS=0}.  Since p(S)=2,  
V is hypersurface. Let r: NI(X)~NI(S) be the restriction. Then r(0K) is a 
cone in N I(S),,~IR 2 containing interior points. In fact, otherwise r (0K)=  IR + [S], 
hence for any nef non-ample D we would have DIS =-aS. In other words: 0K c V, 
which is clearly impossible. So for every DECK we find D' arbitrary near to 
D such that D'~OK and D'IS4:aS, i.e. D'r and also D" with D"~OK and 
D"~ V.. 

In particular: Vr OK (otherwise we would locally have V= OK). 
Let Do~{D 3 =0}. If D o is "general",  i.e. a smooth point of {D s =0}, then 

Doe+0. Then any neighborhood of D o contains points D with D 3 > 0  as well 
as D 3 < 0  (consider the cubic polynominal q(t)=(Do+tH) 3 where H is ample 
with D~ H 4= 0, then q changes sign at t = 0). We conclude - by our above remarks 

- that in every neighborhood U of S there are D~U, D not nef, with D3>0.  
In fact there are/3 e U c~ V,/3 r c3 K, and since S 2 # 0 we find D' E U with D' 3 > 0, 

D ' 2 H > 0 ,  D ' H E > 0 .  So by [W] X contains rational curves. 

(2) Now assume p (X)=2 .  
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In this case ~3(Ku- -K)=L~wLz ,  Li lines in NI(X). Since we may assume 
0Kc{D3- - -0} ,  p(D)=D 3 vanishes on L i and it follows easily P=PlP2P3, Pi 
linear, with Li = {Pi = 0}, i = 1, 2. 

If  P3@Pi, i = 1 ,  2, choose a Cartier  divisor DcL 3. Let H be ample and 
let Do=D+toHeOK. Then one may  assume t o e Q  and using D O it is quite 
easy to construct  a rat ional  curve. 

So let p3=P2  . Then :  SeLz,  and D2=O for all DeLa. N o w  take DeLa. 
By the existence of L we know DIS to be ample. So D2S>O and D2 :#0, contra-  
diction. 

This finishes the p roo f  of (1.4). 

(1.5) Lemma.  l f  S is nef and Sz= O, X contains a rational curve. 

Proof Assume again that  X has no rational curve. Since S 2 =0 ,  the self-intersec- 
t ion formula gives c 1 (e)s)=0 in H2(S, IR). We first assume 

(1) H2 ((gs) = H 0 (e)s) 4: 0. 

By c l (e ) s )=0  we conclude O~s~-(9 s. Since f ,  7t , (co])cco]:  ~c(S')=0. Hence we 
can find P0 such that ~9~~ C s. 

If rc or  f are not  i somorphisms we would  obtain  a non-zero section of  ~o~ ~ 
with zeroes. So S must  be smooth,  co s being trivial, S cannot  be hyperelliptic. 
S cannot  be Enriques since then X has a rat ional  curve. 

Hence S is K 3 or  a torus. 
N o w  h ~ (~Os) = h 2 ((-gS) ---= 1. Consequent ly  

h~ 2. 

Observe that  we are not  allowed to apply (0.8) since S 2 H = 0  for all ample 
H~ 

Instead we consider the meromorph ic  m a p  

6: X----IP~ = IP(H~ 

We claim that  ~ is everywhere defined. So let B be the base locus of  ~ and 
take xoeB. Then for all S'EIS[: xoeS'. Choose  $1, S2elSI irreducible. Then 
xoeS1 c~$2, and  hence $1 ~ $ 2  contains a curve. So SI Sz is an effective 1-cycle 
on Sa and non-zero,  so S~ $24:0, and $2=S~ $2~0, contradict ion.  Thus B + ~  
and ~ a morphism.  We  also have 

(gx(S) ~ ~t* ((9~, (1)). 

(1.5.1) Any  fiber of qJ is smooth.  I f S  is K 3  any  fiber is K3  and we have Rq~,(2g) 
= 0 for q = 1, 3 and R 2 r  (Z)~-Z 22. By Leray spectral sequence we deduce 

H 3 ( X , ~ ) = O .  
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But b3(X)>0 since H3(X, ( f ) ~  (then use Hodge  decomposition).  If  S is a 
torus, any fiber of  ~ is a torus. Then R~O,(2g)~;g  4. For  the Leray spectral 
sequence (E~ q) associated to ~ and the sheaf 7Z we have 

E ~ = H ~ (R 1 ~ ,  (TZ.)) = 7Z, 4, 

E22'~ = H 2 ( ~ ,  7Z) =2g, 

hence E ~ contains a Z 3, so by E ~ ~Hl(X, 7Z.)=0, we obtain a contradict ion.  

(1.5.2) N o w  let us consider the case where ~ has some singular fibers Xs, s~lP~. 
If  Xs = kS' with S' irreducible reduced then k S ' ~  S, so S' has the same proper-  

ties as S and we obtain the contradict ion by substituting simply S by S' in 
our  previous considerat ions or  if h2(Cs,)=O - go to (2). N o w  assume that  
X~ has several componen t s  Si, 1 < i < r ,  r > 2. Let ki be the multiplicity of  S'i. 
If some S'i is not  nef we are done. Thus we may  assume all S'i to be nef. 

Since (~k l  S'~)eH=0 for any ample H, there is either some io with ,2 Sio H > 0  
or S'i n S'j= 0 for i4:j. In the first case S'i 3 = 0  because otherwise S'io is big and 
nef and X has rational curves. So we can apply our  results f rom (1) to S'~o ' 
and finish. In  the second case ff has some disconnected fibers Xs and therefore 
h ~ (Cxs) > 2, moreover  ~b, ((gx) has rank > 2 at some points. So i f ,  (Cx) has torsion 
and thus h ~ (0 ,  (Cx) = h ~ ((gx))_>- 2, contradict ion.  

(2) H 2 (Cs) = H ~ (COs) = 0. 

The arguments  at the beginning of  the p roof  apply here, too. So S is smooth  
and K(S)=0. By our  assumption S cannot  be K 3  or a torus. If S is Enriques, 
X contains a rational curve. So assume S to be hyperelliptic. Fix an ample 
d ivisor  H and let g ( t ) = ( S + t H )  3. Since $ 2 = 0 ,  g has a double  zero at 0. Let 
to be the third zero. Necessarily to is rational. Put  

D O = - (S + t o H). 

First assume that Do is nef. Then D 3 = 0  but D24=0, in fact D2H>O.  Assume 
Do c2 (X) = 0. So 

S + t o H . c 2 ( X ) = O .  

Since S.c2(X)>=O and H . c 2 ( X ) > O ,  we get t o = 0 ,  which is impossible. Hence 
Do c2 ( X ) >  0. N o w  apply (0.8) to obtain  a rat ional  curve. 

In  case Do not nef there is an uniquely determined t l such that - ( S +  tl H) 
is nef but not  ample, tl 4: to. 

Let  D1 = - ( S + t ~ H ) .  So D 3 > 0 ,  D~ is nef but  not  ample. 
By [CP]  there is an irreducible curve C or  an irreducible surface Y c X  

with D1.C=O'  or  D 2 . y = o .  If D I . C = O ,  tl is rat ional and we are done by 
(0.9). If D 2. Y=0  and Y is not  nef we are done by the first par t  of the proof. 
If Yis nef we conclude from 

(S + tl H) 2 Y=0,  $2=0 

that  t~ is rat ional  and finish as before. 
The existence of  a rat ional  curve in case D 3 > 0  for some nef D can also 

easily be deduced from the results of Wilson [W].  
Combin ing  (1.2)-(1.5), Theorem (1.1) is proved completely. 
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(1.6) Corollary. Let X be a Calabi-Yau 3-fold, f: X - ~  Y a surjective non-finite 
map to a projective variety of positive dimension. Then X contains a rational 
curve. 

w 2 A conjecture of Kobayashi 

In this section we deal with hyperbolic manifolds. Hyperbolicity is defined (origi- 
nally) via the Kobayashi pseudo-metric but for our purposes the following equiv- 
alent statement for compact manifolds known as Brody's theorem is more conve- 
nient: 

(2.1) A compact complex manifold X is hyperbolic iff any holomorphic map 
f: tE-~ X is constant. 

As general reference for hyperbolicity we use the survey article of Kobayashi 
[-K] and Lang's introductory book ILl.  

We want to study the following 

(2.2) Conjecture of Kobayashi. Let X be a projective manifold. I f  X is hyperbolic, 
the canonical bundle m x is ample. 

For Riemann surfaces the proof is 19 th century, for surfaces it follows essentially 
from Enriques-Kodaira classification. Hence dim X--3  is the first interesting 
case. The results of Sect. 2 put us into position to almost solve Kobayashi's 
conjecture in dimension 3. The result is this. 

(2.3) Theorem. A 3-dimensional projective hyperbolic manifold X has ample canoni- 
cal bundle cox with the following possible exception that X is a Calabi- Yau manifold 
with any effective divisor being ample and p(X)<= 19. 

The rest of this section is more or less the proof of (2.3). It will be given 
in several steps some of which hold in any dimension. 

(2.4) Proposition. Let X be a n-dimensional hyperbolic projective manifold. Then 
mx is nef 

Proof If co x is not nef then X contains a rational curve by Mori's fundamental 
theory [Mo],  [KMM].  

(2.5) Corollary. Let X be a smooth projective hyperbolic 3-fold. Then ~c(X)>O. 
Moreover h ~ (cox) > 0 or q (X) = hi ((gx) > O. 

Proof cox being nef by (2.4) this is just a theorem of Miyaoka I-M]: what we 
need is (by Riemann-Roch): c I (X)c : (X)>  O. 

(2.6) Proof of Theorem (2.3) in case K(X)= 0. So assume K(X)= 0 in (2.3). 

1. Case: q(X) > O. 
Then by IV, U], X is up to bimeromorphic equivalence 

a) an abelian variety 
b) a fiber space z: X-~  C over a smooth curve C with general fiber an abelian 
surface or a K 3 surface. 
c) a fiber space z: X ~ Y over a smooth surface Y with general fiber an elliptic 
curve. 
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Obviously in cases b) and c) X cannot be hyperbolic. In case a) we find a 
diagram 

Z 

A X 

where A is an abelian variety, n is a modification and z a sequence of blow-up's 
with smooth centers. Now for general x ~ Z  we find f:  ~ Z holomorphic and 
non-constant  such that f ( 0 ) = x  this is an easy exercise. Thus X cannot be 
hyperbolic. 

2. Case: q (X) = O. 
By (2.5) we know h~ (in fact h~ So we can view cox as an 

effective divisor D = s ki Di with s > 0, ki > 0 and Di prime divisors. 
i = l  

Suppose first s>0 .  Then by [W2]:  K(Di)<0 where / ) i  is a desingularisation 
of D~. But then D~ contains rational curves and we are done. If s = 0 ,  cox is 
trivial. By Beauville's theorem already mentioned in (1.2), the universal cover 
)~ of X is of the form 

)~=~kxfl ~xflX~ 
j - 1  i = 1  

where X i a r e  (even-dimensional) sympletic manifolds and Vi simply-connected 
Calabi-Yau manifolds. If k > 0 ,  either )~=tI7 3 of t = l  and ) ~ = C x X 1  and X 
is not hyperbolic. If k = 0 ,  we must have r =  t, t =0.  Hence X is Calabi-YauI 
Now apply (1.14) to conclude. 

(2.7) Proposition. A projective 3-fold X with 0 < x(X)  < 3 is never hyperbolic. 

Proof. Because of the existence of the I i taka fibration, X has up to b imeromorph-  
ic equivalence the structure of a fiber space X ~ S whose general fiber X~ satisfies 
K(X~)=0. Since X~ is a curve or a surface we obtain rational or elliptic curves 
in X s and hence X cannot be hyperbolic. 

(2.8) Proposition. Let X be a projective 3-fold of general type (rc (X) = dim X). 
I f  X is hyperbolic, cox is ample. 

Proof. By (2.4) co x is nef. Hence co~ is generated by global sections for some 
m>>0 (see e.g. [KMM]) .  So we obtain a modification 49: X ~ X '  to a normal  
projective variety X'  with the following properties: 

a) X'  is Q-Gorenstein,  the reflexive sheaf (Px,(mKx,) is locally free (Kx, denote 
a canonical divisor) 
b) " -  cox - 49* (Cx,(mKx,)) 
e) X'  has only canonical singularities. (see [R]) 

By passing to the canonical cover of an affine neighborhood of a singularitiy 
of X'  (see [R, K M M ] )  we may assume that X'  is Gorenstein. 

Since canonical singularities are rational ( [KMM]) ,  we can apply [-R, 2.14] 
to obtain (a lot of) rational curves in the exceptional locus of a suitable des- 
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ingularisation of X' and hence also in the exceptional locus of qS. Alternatively, 
apply directly I-R, 2.6]. 

The proof of (2.3) is now complete. 
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Note added in proof 
Recently Y. Kawamata has proved (2.8) in any dimension (Y. Kawamata: Moderate degenerations 
of algebraic surfaces, to appear in Proceedings of the Algebraic Geometry Conference Bayreuth 1990) 


