Mathematische Zeitschrift © Springer-Verlag 1991

Calabi-Yau manifolds and a conjecture of Kobayashi

Thomas Peternell

Mathematisches Institut der Universität Bayreuth, Postfach 101251, W-8580 Bayreuth, Federal Republic of Germany

Received May 7, 1990

Introduction

A Calabi-Yau manifold is by definition a projective manifold with trivial canonical class but without any holomorphic 1-forms. One of the basic problems for those class of Ricciflat manifolds is the existence of rational curves. In dimension 2 the Calabi-Yau manifolds are just the K3-surfaces and the existence of rational curves is well-known. In dimension 3 Wilson [W] recently showed that any Calabi-Yau 3-fold with $b_2(X) > 19$ contains rational curves and he also shows existence of rational curves if there are certain special divisors on X. In this paper we show (Sect. 1).

Theorem. Let X be a Calabi-Yau 3-fold and assume the existence of an (non-zero) effective non-ample divisor on X. Then X contains a rational curve.

Of course such a divisor can only exist if $b_2(X) \ge 2$.

The proof is based on some results of Wilson's and on a careful analysis of surfaces $S \subset X$ which are not ample divisors on X. In many cases we find rational curves inside S (e.g. when S is even not nef) but not always.

In Sect. 2 we consider hyperbolic 3-folds X. Hyperbolicity means that there is not non-constant holomorphic $f: \mathbb{C} \to X$. We prove that – following a conjecture of Kobayashi – X has ample canonical class except possibly for Calabi-Yau 3-folds without rational curves.

§0 Preliminaries

We always denote by X a smooth complex projective manifold. ω_X will always be the canonical sheaf (bundle), $\kappa(X)$ denotes the Kodaira dimension, and $h^q(X, \mathscr{F})$ is the dimension of $H^q(X, \mathscr{F})$ for a suitable sheaf \mathscr{F} on X.

(0.1) Div (X) is by definition the group of Cartier-divisors modulo linear equivalence. A \mathbb{Q} -divisor on X is an element of Div(X) $\otimes_{\mathbb{Z}} \mathbb{Q}$, a \mathbb{R} -divisor an element of Div(X) $\otimes_{\mathbb{Z}} \mathbb{R}$. $N_{\mathbb{R}}^1(X)$ will be the vector space of all real divisors modulo linear equivalence, analogously we define $N_{\mathbb{Q}}^1(X)$. $N_{\mathbb{R}}^1(X)$ is a finite-dimensional **R**-vector space of dimension $\rho(X)$, the Picard number of X. Often we will not distinguish between a divisor D and its class in $N_{\mathbb{R}}^1(X)$. We denote $K \subset N_{\mathbb{R}}^1(X)$ the cone generated by the ample divisors. K is called the ample cone.

We let $N_1(X) := \{1 \text{-cycles on } X\} / \approx$ where $Z \approx Z'$ iff DZ = DZ' for all $D \in \text{Div}(X)$. $\overline{NE}(X) \subset N_1(X)$ will always denote the closed convex cone generated by the classes of irreducible curves.

(0.2) Lemma Let X be a smooth projective 3-fold. Let $D \in Div(X)$ be nef and H ample. If $D^2 \neq 0$ then $D^2 H > 0$.

Proof. By (0.3) we have $D^2 H \ge 0$ (Kleiman). So assume $D^2 \ne 0$ but $D^2 H = 0$. Let $V = \{E \in N_{\mathbb{R}}(X) | ED^2 = 0\}$. Then codim V = 1. Let $Z_- = \{E | ED^2 < 0\}$. Since $D^2 H = 0$, $V \cap K \ne \{0\}$ and hence $Z_- \cap K \ne \emptyset$. Thus we find an ample H' with $D^2 H' < 0$. This contradicts the nefness of D by Kleiman's result.

(0.3) Let us fix two notations from the theory of algebraic surfaces (cf. [BPV]).

(a) An elliptic surface is a smooth projective surface S together with a surjective morphism $p: S \rightarrow C$ to a compact Riemann surface C such that the general fiber is a smooth elliptic curve.

(b) A hyperelliptic surface S is an elliptic surface $p: S \rightarrow C'$ such that p is holomorphically locally trivial and C is an elliptic curve.

All what we need of the theory of surfaces can be found in [BPV].

(0.4) We need some facts concerning non-normal surfaces. These can be found in [Mo, 3.36]. Let S be a projective non-normal Gorenstein surface. Let $E \subset S$ be the non-normal locus, with structure given by the conductor ideal. Let $f: \tilde{S} \to S$ be the normalization of S, \tilde{E} the analytic preimage of E.

Then there are exact sequences.

$$0 \longrightarrow \omega_{\tilde{S}} \longrightarrow f^*(\omega_S) \longrightarrow f^*(\omega_S) \otimes \mathcal{O}_{\tilde{E}} \longrightarrow 0$$
$$0 \longrightarrow \mathcal{O}_S \longrightarrow f_*(\mathcal{O}_{\tilde{S}}) \longrightarrow \omega_S^{-1} \otimes \omega_E \longrightarrow 0.$$

(0.5) Definition. A Calabi-Yau manifold is a projective manifold with trivial canonical bundle ω_x and $H^1(X, \mathcal{O}_x) = 0$.

(0.6) Remark. Let X be an arbitrary projective manifold with $\omega_X \simeq \mathcal{O}_X$. Then a theorem of Beauville [Be] states the existence of a finite étale covering of the form

$$T \times \Pi V_i \times \Pi X_i$$

with T a torus, X_i simply connected sympletic manifolds (of even dimension, in particular) and V_j simply connected manifold of dimension ≥ 3 satisfying $H^q(V_i, \mathcal{O}_{V_i}) = 0, 0 < q < \dim V_j$. So the V_i are Calabi-Yau.

(0.7) Proposition (Wilson). Let X be a Calabi-Yau 3-fold. Let $D \in Div(X)$, $D^3 = 0$, D nef, $D \cdot c_2(X) \neq 0$ or $h^{\circ}(\mathcal{O}_X(mD)) \geq 2$ for some $m \in \mathbb{N}$ and $D^2 H > 0$ for some ample H.

Then there exists $n \in \mathbb{N}$ such that $\mathcal{O}_X(nD)$ is generated by global sections and the associated morphism $\phi: X \to Y$ is an elliptic fiber space over a normal projective surface Y.

Proof. [W, 3.2]. The assumption $D \cdot c_2(X) \neq 0$ is only used to conclude $h^0(\mathcal{O}_X(mD)) \ge 2$ for some m.

(0.8) Proposition. Let X be a Calabi-Yau 3-fold, $D \in Div(X)$, D nef, $D^3 = 0$, $Dc_2(X) \neq 0$, and $D^2 H > 0$ for some ample H. Then X contains a rational curve.

Proof. Let $\phi: X \to S$ be the associated elliptic fiber space. As Wilson remarked, S is rational. Let us give an easy argument. After eventually lifting back ϕ to a desingularisation of S, we may assume S smooth. From $H^1(X, \mathcal{O}_X)=0$ we deduce by a Leray spectral sequence argument:

$$H^1(S, \mathcal{O}_S) = 0$$

Hence it is sufficient to know $\kappa(S) = -\infty$ in order to conclude rationality.

By Iitaka's $(C_{3,1})$: $\kappa(S) + \kappa(X_y)$ for the general smooth fiber X_y , we conclude:

 $\kappa(S) \leq 0.$

 $H^2(X, \mathcal{O}_X) = 0$ implies $H^2(S, \mathcal{O}_S) = 0$ (think of holomorphic 2-forms). Thus the Kodaira classification of surfaces says: S is hyperelliptic or an Enriques surface. $H^1(S, \mathcal{O}_S) = 0$ excludes the hyperelliptic surfaces.

S being an Enriques surface, S carries – whether minimal or not – an "elliptic pencil" $S \to \mathbb{P}_1$ [BPV, p. 274]. Thus we obtain a map $\psi: X \to \mathbb{P}_1$. Let Y be its general smooth fiber. We see easily $\kappa(Y)=0$. By $\omega_Y \simeq \omega_X | Y$, we deduce $H^2(\mathscr{O}_Y)=H^0(\omega_Y)\pm 0$. So the minimal model Y_m is K 3 or a torus. Since Y_m admits an elliptic fibration over an elliptic curve, this is not possible and finally S is rational.

Now take a rational curve $C \subset S$. Let $X_C = \phi^{-1}(C)$. The general fiber of $\phi | X_C$ is a smooth elliptic curve (observe that we may assume that any fiber over $y \in S \setminus \text{Sing}(Y)$ is (after reduction) elliptic because otherwise the fiber would contain rational curves).

Let $f: \tilde{C} \simeq \mathbb{P}_1 \to C$ be the normalization, $\tilde{X}_C = X_C \times_C \tilde{C}$ and $\rho: \hat{X}_C \to \tilde{X}_C$ a minimal desingularisation. Since we may assume X_C without rational curves, $\hat{\phi}: \hat{X}_C \to \tilde{C}$ is relatively minimal (in the sense of [BPV]).

Clearly $\kappa(\hat{X}_c) \leq 1$. If $\kappa(\hat{X}_c) = -\infty$, X contains rational curves. Next suppose $\kappa(\hat{X}_c) = 0$. Clearly \hat{X}_c is minimal. If \hat{X}_c has a fiber whose reduction is not smooth elliptic, then X_c contains a rational curve. If the reductions of all fibers are smooth elliptic, then $c_2(\hat{X}_c) = 0$ ([BPV, p. 97]). Hence \hat{X}_c is a torus or hyperelliptic. Both is clearly not possible.

Last assume $\kappa(\hat{X}_c) = 1$. Again red $\hat{\phi}^{-1}(y)$ is smooth elliptic for all y, otherwise we are done. Now again $c_2(\hat{X}_c) = 0$, hence $\chi(\mathcal{O}_{\hat{X}_c}) = 0$ by Riemann-Roch. Moreover $R^1 \hat{\phi}_*(\mathcal{O}_{\hat{X}_c})$ is topologically trivial ([BPV, p. 162]), hence trivial ($\tilde{C} \simeq \mathbb{P}_1$). The Leray spectral sequence gives $H^1(\mathcal{O}_{\hat{X}_c}) \simeq \mathbb{C}$, so $H^2(\mathcal{O}_{\hat{X}_c}) = 0$.

On the other hand by [BPV, p. 162]:

 $\omega_{\hat{X}_C} \simeq p^*(\mathcal{O}_{\mathbb{P}_1}(a))$ with some a > 0.

Hence $H^0(\mathcal{O}_{\hat{X}_c}) = H^2(\mathcal{O}_{\hat{X}_c}) \neq 0$. This ends the proof.

The following is well known (cp. [W]):

(0.9) Proposition. Let X be a Calabi-Yau, 3-fold $D \in Div(X)$. If D is big $(D^3 > 0)$ and nef but not ample, there exists a rational curve on X.

§1 Non-ample divisors in Calabi-Yau 3-folds

In this section we prove the main result of the paper:

(1.1) **Theorem.** Let X be a Calabi-Yau 3-fold, $S \subset X$ an irreducible hypersurface. Assume that S is not an ample divisor. Then X contains a rational curve.

Proof. (0) We begin with some general observations. Let $f: \tilde{S} \to S$ be the normalization, $\pi: \hat{S} \to \tilde{S}$ a minimal desingularization. First observe that \hat{S} may supposed to be minimal. In fact, if \hat{S} is not minimal, pick up a (-1)-curve $C \subset \hat{S}$. Since π is minimal, dim $\pi(C)=1$, hence $f\pi(C)$ is a rational curve in S and we are done.

Also we may assume $\kappa(\hat{S}) \ge 0$. Moreover, if \hat{S} is an elliptic surface $p: \hat{S} \to C$, the only singular fibers can be multiples of smooth elliptic curves, otherwise we obtain a rational curve in X. In fact, a singular fiber different from a multiple of a smooth elliptic curve consists of rational curves ([BPV, p. 150/151]). Since dim $f\pi(p^{-1}(x))=1$ we are done in this case. If $S^3 > 0$ and S is nef then X contains rational curves by (0.9). We distinguish two cases:

(1) S is not nef

(2) S is nef.

(1.2) Lemma. If S is not nef, X contains a rational curve.

Proof. S not being nef there is a curve C with $S \cdot C < 0$, in particular $C \subset S$. So the normal bundle $\mathcal{N}_{S|X}$ is not nef. By adjunction formula

$$\omega_{\mathbf{S}} \simeq \mathcal{N}_{\mathbf{S}|\mathbf{X}|}$$

so ω_s is not nef.

If the reflexive sheaf $\omega_{\tilde{s}}$ is not nef, choose a curve $C \subset \tilde{S}$ with $(c_1(\omega_{\tilde{s}}) \cdot C) < 0$.

Since $\pi_*(\omega_S^{\underline{u}}) \subset \omega_S^{\underline{u}}$ for all $\mu \in \mathbb{N}$ and since $\kappa(\widehat{S}) \ge 0$ (so $\omega_S^{\underline{u}}$ is generated by global sections for $\mu \ge 0$), $\omega_S^{\underline{u}}$ is generated by global sections outside a finite set (Sing(S)) for suitable big μ . This clearly contradicts $(c_1(\omega_{\overline{X}}) \cdot C) < 0$.

Hence $\omega_{\tilde{S}}$ must be nef. This already excludes the case "S normal".

In the case "S non-normal" we still have some informations on the curves $C \subset \tilde{S}$ with

$$(*) \qquad (c_1(f^*(\omega_S)) \cdot C) < 0.$$

Namely $C \subset \tilde{E}$, \tilde{E} the preimage of the non-normal locus E of S. In fact, if $C \notin \tilde{E}$, we would obtain by

$$\omega_{\tilde{\mathbf{S}}} \simeq I_E \otimes f^*(\omega_{\mathbf{S}}) \quad (0.4):$$

($c_1(\omega_{\tilde{\mathbf{S}}}) \cdot C$) < 0,

a contradiction. So (*) holds. (*) implies that there are only finitely many curves C_1, \ldots, C_s with

hence

$$(c_1(\omega_S) \cdot C_i) < 0,$$
$$(S \cdot C_i) < 0.$$

Now let $t_0 = \inf \{t \in \mathbb{R}_+ | S + tH \text{ ample}\}$ and put $D_0 = S + t_0 H$. Clearly $t_0 \in \mathbb{Q}_+$, in fact

$$t_0 = \max_{1 \le i \le s} \{ t | (S + tH \cdot C_i) = 0 \}$$

If $D_0^3 > 0$ we conclude by (0.9).

If $D_0^3 = 0$ observe that $S c_2(X) \ge 0$ [M, Y], hence $D_0 c_2(X) > 0$. Since $S \cdot C \ge 0$ for all but a finite number of curves, $S^2 H \ge 0$ for any ample H, and so $D_0^2 H > 0$. Now apply (0.8) to get a rational curve.

(1.3) Lemma. If S is nef and $S^2 \neq 0$ (but $S^3 = 0$), X contains a rational curve or the normalization of S is a hyperelliptic surface (in particular smooth).

Proof. Assume that X does not contain a rational curve. Assume that $H^2(S, \mathcal{O}_S) = H^0(\omega_S) \neq 0$. Then the exact sequence

$$(S) \qquad \qquad 0 \longrightarrow \mathcal{O}_X(-S) \longrightarrow \mathcal{O}_X \longrightarrow \mathcal{O}_S \longrightarrow 0$$

yields a cohomology sequence

$$\begin{array}{c} H^{2}(\mathcal{O}_{X}) \to H^{2}(\mathcal{O}_{S}) \to H^{3}(\mathcal{O}_{X}(-S)) \to H^{3}(\mathcal{O}_{X}) \to 0 \\ \| & \| \wr & \| \wr \\ 0 & H^{0}(\mathcal{O}_{X}S)) & \mathbb{C} \end{array}$$

thus $h^0(\mathcal{O}_X(S)) \ge 2$. Since S is by assumption nef, X contains a rational curve by (0.8) as soon as we know $S^2 H > 0$. But $S^2 H > 0 \Leftrightarrow S^2 \neq 0$. So we must have $H^2(\mathcal{O}_S) = 0$, moreover $S \cdot c_2(X) = 0$ because otherwise we can again apply (0.8). By Riemann-Roch: $\chi(\mathcal{O}_X(S)) = \chi(\mathcal{O}_X(-S)) = 0$. Sequence (S) yields $\chi(\mathcal{O}_S) = 0$ since $\chi(\mathcal{O}_X) = 0$. The vanishing of $H^2(\mathcal{O}_X)$ implies therefore

$$h^1(\mathcal{O}_S) = 1.$$

We want to get some more informations from $S^3 = 0$, $S^2 \neq 0$. $S^3 = 0$ just says $c_1(N_{S|X})^2 = 0$, hence $c_1(\omega_S)^2 = 0$. $S^2 \neq 0$ implies (self-intersection formula) $c_1(N_{S|X}) \neq 0$ in $H^2(S, \mathbb{R})$, so $c_1(\omega_S) \neq 0$.

(1) Assume S to be non-singular. Then $c_1(\omega_S)^2 = 0$, $c_1(\omega_S) \neq 0$ gives $\kappa(S) = 1$. So $p: S \to C$ is an elliptic surface. By $h^1(\mathcal{O}_C) \leq h^1(\mathcal{O}_S) = 1$, we obtain $g(C) \leq 1$. By [BPV, p. 162]:

$$\deg(R^1 p_*(\mathcal{O}_X)^*) = \chi(\mathcal{O}_S) = 0.$$

So the canonical bundle formula [BPV, p. 161] gives

$$\omega_{s} \simeq p^{*}(\omega_{c} \otimes \mathscr{L}) \otimes \mathscr{O}_{s}\left(\sum_{i=1}^{s} (m_{i}-1) F_{i}\right)$$

where $m_i F_i$ are the multiple fibers and $\mathscr{L} = R^1 p_*(\mathscr{O}_X)^*$ is topologically trivial.

If g(C) = 1 the formula implies the non-existence of any singular fiber because otherwise $h^0(\omega_S) > 0$. But then $\kappa(S) = 0$! If g(C) = 0 our formula and $h^0(\omega_S) = 0$ imply s = 1 and $m_1 = 2$ or s = 0. But if s = 1, m = 2 we have $\kappa(S) = -\infty$ and if s = 0: $\kappa(S) = 0$. So (1) does not occur if X contains no rational curve. (2) Now let S be singular but normal. In this case if $c_1(\omega_{\tilde{S}})^2 < c_1(\omega_{\tilde{S}})^2 = 0$, the minimality of \hat{S} yields $\kappa(\hat{S}) = -\infty$, which gives rational curves. Hence $c_1(\omega_{\tilde{S}})^2 = c_1(\omega_{\tilde{S}})^2 = 0$, which just means $\omega_{\tilde{S}} \simeq \pi^*(\omega_{\tilde{S}})$, i.e. S has only rational double points. So $\kappa(\hat{S}) = 0$. In particular \hat{S} contains a rational curve, consequently \hat{S} cannot be a torus or hyperelliptic. By [BPV, p. 67] we easily see: \hat{S} is not Enriques, hence \hat{S} must be a K 3 surface. Then $\omega_{\tilde{S}} \simeq \vartheta_{\tilde{S}}$, contradiction.

(3) Finally let S be non-normal.

(3.1)
$$\kappa(\hat{S}) = 0.$$

Since $\pi_*(\omega_{\hat{S}}) \subset \omega_{\hat{S}}$ and $f_*(\omega_{\hat{S}}) \subset \omega_{S}$ we have

$$H^0(\omega_{\tilde{s}})=0.$$

So \hat{S} is Enriques or hyperelliptic. The Enriques case is excluded as before. If \hat{S} is hyperelliptic, we must have $\hat{S} = \tilde{S}$ and we are done by our assumption.

(3.2)
$$\kappa(\hat{S}) = 1.$$

Again we have for the elliptic surface $p: \hat{S} \rightarrow C$:

$$H^0(\omega_{\hat{\mathbf{S}}})=0.$$

Since p has at most multiple fibers (as singular fibers) we have $c_2(\hat{S})=0$ ([BPV, p. 97]), hence $\chi(\mathcal{O}_{\hat{S}})=0$ and $h^1(\mathcal{O}_{\hat{S}})=0$. Now the contradiction is the same as in (1).

Again $H^2(\mathcal{O}_{\tilde{S}}) = 0$ and by the positivity of $\chi(\mathcal{O}_{\tilde{S}})$: $H^1(\mathcal{O}_{\tilde{S}}) = 0$. Since we also have $H^q(\mathcal{O}_{\tilde{S}}) = 0$, $q = 1, 2, \tilde{S}$ has only rational singularities and since the only smooth rational curves in \tilde{S} are (-2)-curves, \tilde{S} even has at most rational double points, in particular $\omega_{\tilde{S}}$ is locally free. It follows: $c_1(\omega_{\tilde{S}})^2 = c_1(\omega_{\tilde{S}})^2 > 0$. Using $\omega_{\tilde{S}} \simeq I_{\tilde{E}} \otimes f^*(\omega_{S})$ and $c_1(\omega_{S})^2 = 0$:

$$0 < \tilde{E}^2 - 2(c_1 f^*(\omega_s) \cdot \tilde{E}).$$

Since $\omega_{\tilde{S}}$ is nef, we obtain $\tilde{E}^2 > 0$. If we take squares in $f^*(\omega_{\tilde{S}}) \simeq \omega_{\tilde{S}} \otimes \mathcal{O}_{\tilde{S}}(\tilde{E})$, we obtain $0 = c_1(\omega_{\tilde{S}})^2 + \tilde{E}^2 + 2(c_1(\omega_{\tilde{S}}) \cdot \tilde{E})$. Since $\omega_{\tilde{S}}$ is nef and $\tilde{E}^2 > 0$, $c_1(\omega_{\tilde{S}})^2 > 0$, this is impossible!

(1.4) Lemma. Assume S to be nef, $S^2 \neq 0$ and that the normalization of S is hyperelliptic. Then X contains a rational curve.

Proof. By (0.4) we have

(*)
$$\omega_{\tilde{s}} \simeq I_{\tilde{E}} \otimes f^*(\omega_{s})$$

where \tilde{E} is the analytic preimage of the non-normal locus E of S – equipped with the structure given by the conductor ideal. Since $c_1(\omega_S)^2 = 0$, we have $c_1(f^*(\omega_S))^2 = 0$. Since $f^*(\omega_S)$ is nef, we can describe the structure of $f^*(\omega_S) \cdot \tilde{S}$ being hyperelliptic, \tilde{S} is an analytic fiber bundle $\tilde{p}: \tilde{S} \to \tilde{C}$ over an elliptic curve \tilde{C} . On the other hand we have an elliptic fibration $\tilde{q}: \tilde{S} \to \mathbb{P}_1$. We denote by F_i fibers of \tilde{p} , by G_i fibers of \tilde{q} . Then we have:

(a)
$$f^*(\omega_s) \equiv \Sigma n_i F_i, \quad n_i > 0$$

or

(b)
$$f^*(\omega_s) \equiv \Sigma m_i G_i, \quad m_i > 0.$$

This follows from $b_2(\tilde{S}) = 2$. From (*) we conclude:

(a)
$$\tilde{E}$$
 consists of fiber of \tilde{p}

(b) \tilde{E} consists of fibers of \tilde{q} .

We want to prove first:

(**) $f^*: H^2(S, \mathbb{Z}) \to H^2(\tilde{S}, \mathbb{Z})$ is an isomorphism. First assume (a). \tilde{p} clearly induces a continuus map $p: S \to C$ to some curve C. Moreover there is a diagram

Now it is easy to check that C carries a complex structure such that both g and p are holomorphic; g is a modification. Since $h^1(\mathcal{O}_S) = 1$, we must have (by $p_*(\mathcal{O}_S) = \mathcal{O}_C$)) $h^1(\mathcal{O}_C) \leq 1$, hence C is smooth elliptic and g is biholomorphic. So the picture is as follows: there are points $x_1, \ldots, x_s \in C$ such that $f|\tilde{p}^{-1}(x_i)$ is étale onto $f(p^{-1}(x_i))$ (all fibers of \tilde{p} , p are smooth elliptic: for the fibers of \tilde{p} this is clear; for the fibers of p it is true since otherwise $R^1 p_*(\mathcal{O}_S)$ would have torsion, consequently $h^1(\mathcal{O}_S) > 1$ by the Leray spectral sequence).

Now our claim is an immediate consequence of the exact sequence ([BK, 3.A.7]):

 $\dots \longrightarrow H^{q}(S, \mathbb{Z}) \longrightarrow H^{q}(\widetilde{S}, \mathbb{Z}) \oplus H^{q}(E, \mathbb{Z}) \longrightarrow H^{q}(\widetilde{E}, \mathbb{Z})) \longrightarrow \dots$

Now assume (b). Similarly as in (a) we have a diagram

with a possibly singular rational curve D. The only thing to do is to prove smoothness of D; then we can argue as in (a). Taking direct images of the exact sequence (0.4) we obtain:

$$0 \to q_*(\omega_S^{-1} \otimes \omega_E) \to R^1 q_*(\mathcal{O}_S) \to R^1 q_*(f_*(\mathcal{O}_{\bar{S}})) \to R^1 q_*(\omega_S^{-1} \otimes \omega_E) \to 0.$$

Assume D to be singular, so $h^1(\mathcal{O}_D) = 1$. By Leray's spectral sequence and $h^2(\mathcal{O}_S) = 0$:

Since $q_*(\omega_s^{-1} \otimes \omega_e)$ is concentrated on points, we get $q_*(\omega_s^{-1} \otimes \omega_e) = 0$. Taking cohomology of (0.4) and using $h^1(\mathcal{O}_s) = 1$, $h^2(\mathcal{O}_s) = 0$, we deduce:

$$H^1(\omega_s^{-1}\otimes\omega_F)=0.$$

By Leray's spectral sequence again, it follows

$$R^1 q_*(\omega_{\mathbf{S}}^{-1} \otimes \omega_{\mathbf{E}}) = 0.$$

So (+) gives

$$R^{1}q_{*}(\mathcal{O}_{S}) \simeq R^{1}q_{*}(f_{*}(\mathcal{O}_{\tilde{S}}))$$

Now use the so-called Serre spectral sequence

 $E_2^{p,q} = R^p q_* (R^q f_*(\mathcal{O}_{\tilde{S}}))$

converging to $\mathbb{R}^{p+q}(q \circ f)_*(\mathcal{O}_{S})$ to deduce

$$R^1q_*(f_*(\mathcal{O}_{\tilde{S}})) \simeq R^1(q \circ f)_*(\mathcal{O}_{\tilde{S}}).$$

Since $q \circ f = h \circ \tilde{q}$ we can again use this spectral sequence to compute

$$R^1(q \circ f)_*(\mathcal{O}_{\tilde{\mathbf{S}}}) \simeq h_*(\mathcal{O}_{\mathbb{P}_1}).$$

In summary:

 $R^1 q_*(\mathcal{O}_S) \simeq h_*(\mathcal{O}_{\mathbb{P}_1}),$

contradicting (+). So (**) is proved completely.

Since $H^{\mathbb{Z}}(S, \mathcal{O}) = 0$, (**) gives us a nef line bundle $L_S \equiv 0$ on S which is not a multiple of ω_S . In fact there exists a nef line bundle \tilde{L} on \tilde{S} which is not a multiple of $f^*(\omega_S)$ and \tilde{L} is by (**)-up to numerical equivalence – of the form $f^*(L_S)$. Now consider the restriction map

$$r: H^2(X, \mathbb{Q}) \to H^2(S, \mathbb{Q}).$$

Since $c_1(\omega_s) \in H^2(S, \mathbb{Q})$ is non-zero and not ample (nor negative), r must be onto.

Hence there is a line bundle L on X with $L|S \simeq L_S^m$ for some $m \in \mathbb{N}$ (use $H^q(X, \mathcal{O}) = 0$ for q = 1, 2). We may assume m = 1.

First assume that L is nef.

By (0.9) we may assume $L^3 = 0$. L+S is nef and moreover L+S is big: it is sufficient to see $LS^2 > 0$, which follows from

$$LS^{2} = (c_{1}(f^{*}(L_{S}) \cdot c_{1}(f^{*}(\omega_{S})))) = (c_{1} \tilde{p}^{*}(F_{1}) \cdot c_{1} \tilde{q}^{*}(F_{2})) > 0$$

 $(F_i \text{ ample line bundles on } \tilde{C} \text{ resp. } \mathbb{P}_1)$. If L+S is not ample, we get again a rational curve. If L + S is ample, we deduce

$$(L+S\cdot c_2(X))>0,$$

hence $L \cdot c_2(X) > 0$.

Now $L^2H > 0$, so X contains a rational curve by (0.8). So we may assume that L is not nef.

(1) Suppose first $\rho(X) \ge 3$.

 (α) Assume furthermore

$$\{D \mid S \equiv 0\} \subset \{D^3 = 0\}.$$

By our assumption, there is $D \in Div(X)$ such that $D | S \equiv 0, D^3 > 0$. Choose $\mu \ge 0$ such that $(L + \mu D)^3 > 0$. Put $\tilde{L} = L + \mu D$. Then $\tilde{L}|S \equiv L|S$ and $\tilde{L}^3 > 0$. I claim that there is $H \in \text{Div}(X) \otimes \mathbb{Q}$ ample with the following property: if t_0 is chosen such that $\tilde{L} + t_0 H \in \partial K$ then either $(\tilde{L} + t_0 H)^3 > 0$ or $\tilde{L} + t S \in K$ for every $t \ge 0$.

In fact, assume $\tilde{L} + tS \notin K$ for t > 0. For $H \in K$ let $t_0(H)$ be the unique number with

$$\tilde{L} + t_0(H) \cdot H \in \partial K.$$

If $H_v \to S$ in $N^1(X)$, then $\lim t_0(H_v) = \infty$ (otherwise we find c > 0 such that \tilde{L} $+cS \in \partial K$). Now choose $H \in (\text{Div}(X) \otimes \mathbf{O}) \cap K$ near to S such that

and

$$\tilde{L}H^2 > \tilde{L}^2 H.$$

 $t_0^2(H) > t_0(H)$

The second inequality can be achieved since

$$\tilde{L}S^2 = LS^2 > 0, \quad \tilde{L}^2S = L^2S = 0.$$

Hence: $(\tilde{L} + t_0 H)^3 > 0$.

But then it is easy to get $D \in Div(X)$, not nef, with $D^2 H > 0$, $DH^2 > 0$. Hence there is a rational curve by [W].

(β) Now let $\{D | S \equiv 0\} \subset \{D^3 = 0\}$.

Let $V \subset N^1(X)$ be the linear space generated by S and $\{D | S \equiv 0\}$. Since $\rho(S) = 2$, V is hypersurface. Let r: $N^1(X) \to N^1(S)$ be the restriction. Then $r(\partial K)$ is a cone in $N^1(S) \simeq \mathbb{R}^2$ containing interior points. In fact, otherwise $r(\partial K) = \mathbb{R}_+ [S]$, hence for any nef non-ample D we would have $D | S \equiv aS$. In other words: $\partial K \subset V$, which is clearly impossible. So for every $D \in \partial K$ we find D' arbitrary near to D such that $D' \in \partial K$ and $D' | S \neq aS$, i.e. $D' \notin V$ and also D'' with $D'' \notin \partial K$ and $D'' \in V$.

In particular: $V \not\subset \partial K$ (otherwise we would locally have $V = \partial K$).

Let $D_0 \in \{D^3 = 0\}$. If D_0 is "general", i.e. a smooth point of $\{D^3 = 0\}$, then $D_0^2 \neq 0$. Then any neighborhood of D_0 contains points D with $D^3 > 0$ as well as $D^3 < 0$ (consider the cubic polynominal $q(t) = (D_0 + tH)^3$ where H is ample with $D_0^2 H \neq 0$, then q changes sign at t = 0). We conclude – by our above remarks - that in every neighborhood U of S there are $D \in U$, D not nef, with $D^3 > 0$.

In fact there are $\tilde{D} \in U \cap V$, $\tilde{D} \notin \partial K$, and since $S^2 \neq 0$ we find $D' \in U$ with $D'^3 > 0$, $D'^2 H > 0$, $D' H^2 > 0$. So by [W] X contains rational curves.

(2) Now assume $\rho(X) = 2$.

In this case $\partial(K \cup -K) = L_1 \cup L_2$, L_i lines in $N^1(X)$. Since we may assume $\partial K \subset \{D^3 = 0\}$, $p(D) = D^3$ vanishes on L_i and it follows easily $p = p_1 p_2 p_3$, p_i linear, with $L_i = \{p_i = 0\}$, i = 1, 2.

If $p_3 \neq p_i$, i=1, 2, choose a Cartier divisor $D \in L_3$. Let H be ample and let $D_0 = D + t_0 H \in \partial K$. Then one may assume $t_0 \in \mathbb{Q}$ and using D_0 it is quite easy to construct a rational curve.

So let $p_3 = p_2$. Then: $S \in L_2$, and $D^2 = 0$ for all $D \in L_1$. Now take $D \in L_1$. By the existence of L we know D | S to be ample. So $D^2 S > 0$ and $D^2 \neq 0$, contradiction.

This finishes the proof of (1.4).

(1.5) Lemma. If S is nef and $S^2 = 0$, X contains a rational curve.

Proof. Assume again that X has no rational curve. Since $S^2 = 0$, the self-intersection formula gives $c_1(\omega_S) = 0$ in $H^2(S, \mathbb{R})$. We first assume

(1)
$$H^2(\mathcal{O}_S) = H^0(\omega_S) \neq 0.$$

By $c_1(\omega_S) = 0$ we conclude $\omega_S \simeq \mathcal{O}_S$. Since $f_* \pi_*(\omega_S^{\mu}) \subset \omega_S^{\mu} \colon \kappa(\hat{S}) = 0$. Hence we can find μ_0 such that $\omega_S^{\mu_0} \simeq \mathcal{O}_S$.

If π or f are not isomorphisms we would obtain a non-zero section of $\omega_{S^0}^{\mu_0}$ with zeroes. So S must be smooth. ω_S being trivial, S cannot be hyperelliptic. S cannot be Enriques since then X has a rational curve.

Hence S is K3 or a torus.

Now $h^0(\omega_s) = h^2(\mathcal{O}_s) = 1$. Consequently

$$h^0(\mathcal{O}_X(S)) = 2.$$

Observe that we are not allowed to apply (0.8) since $S^2 H = 0$ for all ample H!

Instead we consider the meromorphic map

$$\psi: X \rightarrow \mathbb{P}_1 = \mathbb{P}(H^0(\mathcal{O}_X(S))).$$

We claim that ψ is everywhere defined. So let *B* be the base locus of ψ and take $x_0 \in B$. Then for all $S' \in |S|$: $x_0 \in S'$. Choose S_1 , $S_2 \in |S|$ irreducible. Then $x_0 \in S_1 \cap S_2$, and hence $S_1 \cap S_2$ contains a curve. So $S_1 S_2$ is an effective 1-cycle on S_1 and non-zero, so $S_1 S_2 \neq 0$, and $S^2 = S_1 S_2 \neq 0$, contradiction. Thus $B \neq \emptyset$ and ψ a morphism. We also have

$$\mathcal{O}_{\chi}(S) \simeq \psi^*(\mathcal{O}_{\mathbb{P}_1}(1)).$$

(1.5.1) Any fiber of ψ is smooth. If S is K3 any fiber is K3 and we have $R^q \psi_*(\mathbb{Z}) = 0$ for q = 1, 3 and $R^2 \psi_*(\mathbb{Z}) \simeq \mathbb{Z}^{22}$. By Leray spectral sequence we deduce

$$H^{3}(X,\mathbb{Z})=0.$$

But $b_3(X) > 0$ since $H^3(X, \mathcal{O}) \simeq \mathbb{C}$ (then use Hodge decomposition). If S is a torus, any fiber of ψ is a torus. Then $R^1 \psi_*(\mathbb{Z}) \simeq \mathbb{Z}^4$. For the Leray spectral sequence (E_r^{pq}) associated to ψ and the sheaf \mathbb{Z} we have

$$E_2^{0,1} = H^0(\mathbb{R}^1\psi_*(\mathbb{Z})) = \mathbb{Z}^4,$$

$$E_2^{2,0} = H^2(\mathbb{P}_1, \mathbb{Z}) = \mathbb{Z},$$

hence $E_3^{0,1}$ contains a \mathbb{Z}^3 , so by $E_3^{0,1} \subset H^1(X, \mathbb{Z}) = 0$, we obtain a contradiction.

(1.5.2) Now let us consider the case where ψ has some singular fibers $X_s, s \in \mathbb{P}_1$.

If $X_s = kS'$ with S' irreducible reduced then $kS' \sim S$, so S' has the same properties as S and we obtain the contradiction by substituting simply S by S' in our previous considerations or - if $h^2(\mathcal{O}_{S'}) = 0$ – go to (2). Now assume that X_s has several components S_i , $1 \leq i \leq r$, $r \geq 2$. Let k_i be the multiplicity of S'_i . If some S'_i is not nef we are done. Thus we may assume all S'_i to be nef.

Since $(\sum_{i}k_{i}S'_{i})^{2}H=0$ for any ample *H*, there is either some i_{0} with $S'_{i_{0}}^{2}H>0$ or $S'_{i} \cap S'_{j} = \emptyset$ for $i \neq j$. In the first case $S'_{i_{0}}^{3}=0$ because otherwise $S'_{i_{0}}$ is big and nef and *X* has rational curves. So we can apply our results from (1) to $S'_{i_{0}}$, and finish. In the second case ψ has some disconnected fibers X_{s} and therefore $h^{0}(\mathcal{O}_{X_{s}}) \geq 2$, moreover $\phi_{*}(\mathcal{O}_{X})$ has rank ≥ 2 at some points. So $\psi_{*}(\mathcal{O}_{X})$ has torsion and thus $h^{0}(\psi_{*}(\mathcal{O}_{X})=h^{0}(\mathcal{O}_{X})) \geq 2$, contradiction.

(2)
$$H^2(\mathcal{O}_S) = H^0(\omega_S) = 0.$$

The arguments at the beginning of the proof apply here, too. So S is smooth and $\kappa(S)=0$. By our assumption S cannot be K3 or a torus. If S is Enriques, X contains a rational curve. So assume S to be hyperelliptic. Fix an ample divisor H and let $g(t)=(S+tH)^3$. Since $S^2=0$, g has a double zero at 0. Let t_0 be the third zero. Necessarily t_0 is rational. Put

$$D_0 = -(S + t_0 H).$$

First assume that D_0 is nef. Then $D_0^3 = 0$ but $D_0^2 \neq 0$, in fact $D_0^2 H > 0$. Assume $D_0 c_2(X) = 0$. So

$$S + t_0 H \cdot c_2(X) = 0.$$

Since $S \cdot c_2(X) \ge 0$ and $H \cdot c_2(X) > 0$, we get $t_0 = 0$, which is impossible. Hence $D_0 c_2(X) > 0$. Now apply (0.8) to obtain a rational curve.

In case D_0 not nef there is an uniquely determined t_1 such that $-(S+t_1H)$ is nef but not ample, $t_1 \neq t_0$.

Let $D_1 = -(S + t_1 H)$. So $D_1^3 > 0$, D_1 is nef but not ample.

By [CP] there is an irreducible curve C or an irreducible surface $Y \subset X$ with $D_1 \cdot C = 0'$ or $D_1^2 \cdot Y = 0$. If $D_1 \cdot C = 0$, t_1 is rational and we are done by (0.9). If $D_1^2 \cdot Y = 0$ and Y is not nef we are done by the first part of the proof. If Y is nef we conclude from

$$(S+t_1H)^2 Y=0, S^2=0$$

that t_1 is rational and finish as before.

The existence of a rational curve in case $D^3 > 0$ for some nef D can also easily be deduced from the results of Wilson [W].

Combining (1.2)–(1.5), Theorem (1.1) is proved completely.

(1.6) Corollary. Let X be a Calabi-Yau 3-fold, f: $X \rightarrow Y$ a surjective non-finite map to a projective variety of positive dimension. Then X contains a rational curve.

§2 A conjecture of Kobayashi

In this section we deal with hyperbolic manifolds. Hyperbolicity is defined (originally) via the Kobayashi pseudo-metric but for our purposes the following equivalent statement for compact manifolds known as Brody's theorem is more convenient:

(2.1) A compact complex manifold X is hyperbolic iff any holomorphic map $f: \mathbb{C} \to X$ is constant.

As general reference for hyperbolicity we use the survey article of Kobayashi [K] and Lang's introductory book [L].

We want to study the following

(2.2) Conjecture of Kobayashi. Let X be a projective manifold. If X is hyperbolic, the canonical bundle ω_X is ample.

For Riemann surfaces the proof is 19^{th} century, for surfaces it follows essentially from Enriques-Kodaira classification. Hence dim X=3 is the first interesting case. The results of Sect. 2 put us into position to almost solve Kobayashi's conjecture in dimension 3. The result is this.

(2.3) Theorem. A 3-dimensional projective hyperbolic manifold X has ample canonical bundle ω_X with the following possible exception that X is a Calabi-Yau manifold with any effective divisor being ample and $\rho(X) \leq 19$.

The rest of this section is more or less the proof of (2.3). It will be given in several steps some of which hold in any dimension.

(2.4) Proposition. Let X be a n-dimensional hyperbolic projective manifold. Then ω_X is nef.

Proof. If ω_X is not nef then X contains a rational curve by Mori's fundamental theory [Mo], [KMM].

(2.5) Corollary. Let X be a smooth projective hyperbolic 3-fold. Then $\kappa(X) \ge 0$. Moreover $h^0(\omega_X) > 0$ or $q(X) = h^1(\mathcal{O}_X) > 0$.

Proof. ω_X being nef by (2.4) this is just a theorem of Miyaoka [M]: what we need is (by Riemann-Roch): $c_1(X) c_2(X) \ge 0$.

(2.6) Proof of Theorem (2.3) in case $\kappa(X) = 0$. So assume $\kappa(X) = 0$ in (2.3).

1. Case: q(X) > 0. Then by [V, U], X is up to bimeromorphic equivalence

a) an abelian variety

b) a fiber space $\tau: X \to C$ over a smooth curve C with general fiber an abelian surface or a K3 surface.

c) a fiber space $\tau: X \to Y$ over a smooth surface Y with general fiber an elliptic curve.

Obviously in cases b) and c) X cannot be hyperbolic. In case a) we find a diagram

where A is an abelian variety, π is a modification and τ a sequence of blow-up's with smooth centers. Now for general $x \in Z$ we find $f: \mathbb{C} \to Z$ holomorphic and non-constant such that f(0) = x – this is an easy exercise. Thus X cannot be hyperbolic.

2. Case: q(X) = 0. By (2.5) we know $h^0(\omega_X) > 0$ (in fact $h^0(\omega_X) = 1$). So we can view ω_X as an effective divisor $D = \sum_{i=1}^{s} k_i D_i$ with $s \ge 0$, $k_i > 0$ and D_i prime divisors.

Suppose first s > 0. Then by $[W2]: \kappa(D_i) \leq 0$ where \hat{D}_i is a desingularisation of D_i . But then D_i contains rational curves and we are done. If s=0, ω_X is trivial. By Beauville's theorem already mentioned in (1.2), the universal cover \tilde{X} of X is of the form

$$\widetilde{X} = \mathbb{C}^k \times \prod_{j=1}^r V_j \times \prod_{i=1}^t X_i$$

where X_i are (even-dimensional) sympletic manifolds and V_j simply-connected Calabi-Yau manifolds. If k>0, either $\tilde{X} = \mathbb{C}^3$ of t=1 and $\tilde{X} = \mathbb{C} \times X_1$ and X is not hyperbolic. If k=0, we must have r=1, t=0. Hence X is Calabi-Yau! Now apply (1.14) to conclude.

(2.7) **Proposition.** A projective 3-fold X with $0 < \kappa(X) < 3$ is never hyperbolic.

Proof. Because of the existence of the Iitaka fibration, X has up to bimeromorphic equivalence the structure of a fiber space $X \to S$ whose general fiber X_s satisfies $\kappa(X_s)=0$. Since X_s is a curve or a surface we obtain rational or elliptic curves in X_s and hence X cannot be hyperbolic.

(2.8) Proposition. Let X be a projective 3-fold of general type ($\kappa(X) = \dim X$). If X is hyperbolic, ω_X is ample.

Proof. By (2.4) ω_X is nef. Hence ω_X^m is generated by global sections for some $m \ge 0$ (see e.g. [KMM]). So we obtain a modification $\phi: X \to X'$ to a normal projective variety X' with the following properties:

a) X' is Q-Gorenstein, the reflexive sheaf $\mathcal{O}_{X'}(mK_{X'})$ is locally free $(K_{X'}$ denote a canonical divisor)

b) $\omega_X^m = \phi^*(\mathcal{O}_{X'}(mK_{X'}))$

c) X' has only canonical singularities. (see [R])

By passing to the canonical cover of an affine neighborhood of a singularity of X' (see [R, KMM]) we may assume that X' is Gorenstein.

Since canonical singularities are rational ([KMM]), we can apply [R, 2.14] to obtain (a lot of) rational curves in the exceptional locus of a suitable des-

ingularisation of X' and hence also in the exceptional locus of ϕ . Alternatively, apply directly [R, 2.6].

The proof of (2.3) is now complete.

References

- [B] Bcauville, A.: Variétés Kähleriennes dont la première classe de Chern est nulle.
 J. Differ. Geom. 18, 755–782 (1983)
- [BK] Barthel, G., Kaup, L.: Topologie des espaces complexes compacts singulières. Montreal Lect. Notes, Vol. 80 (1982)
- [BPV] Barth, W., Peters, C., van de Ven, A.: Compact Complex Surfaces. Berlin Heidelberg New York: Springer 1984
- [C] Clemens, H.: Curves on higher-dimensional complex projective manifolds. Proc. Int. Congr. Math., Berkeley 1986, 634-640 (1987)
- [GR] Grauert, H., Riemenschneider, O.: Verschwindungssätze für analytische Kohomologiegruppen auf komplexen Räumen. Invent. Math. 11, 263–292 (1970)
- [H] Hirzebruch, F.: Some examples of threefolds with trivial canonical bundle. Notes by J. Werner, MPI Bonn 1985
- [K] Kawamata, Y.: Pluricanonical systems on minimal algebraic varieties. Invent. Math. 79, 567–588 (1985)
- [Ko] Kobayashi, S.: Intrinsic distances, measures and geometric function theory. Bull. Am. Math. Soc. 82, 357-416 (1976)
- [KMM] Kawamata, Y., Matsuda, K., Matsuki, K.: Introduction to the minimal model problem. Adv. Stud. Pure Math. 10, 283-360 (1987)
- [L] Lang, S.: Introduction to Complex Hyperbolic Spaces. Berlin Heidelberg New York: Springer 1987
- [M] Miyaoka, Y.: The Chern classes and Kodaira dimension of a minimal variety. Adv. Stud. Pure Math. **10**, 449–476 (1987)
- [Mo] Mori, S.: Threefolds whose canonical bundles are not numerically effective. Ann. Math. 116, 133-176 (1982)
- [R] Reid, M.: Canonical 3-folds. In: A. Beauville (ed.) Géométrie algébrique Angers, 1979, 273-310 (1989)
- [U] Ueno, K.: Birational geometry of algebraic 3-folds, in Géométrie algébrique Angers 1979 (ed. A. Beauville), 311–323 (1980)
- [V] Viehweg, E.: Weak positivity and the additivity of the Kodaira dimension for certain fiber spaces. Adv. Stud. Pure Math. 1, 329–353 (1983)
- [W] Wilson, P.M.H.: Calabi-Yau manifolds with large Picard number. Invent. Math. **98**, 139–155 (1989)
- [W2] Wilson, P.M.H.: The components of mK_V for threefolds with $\kappa(V)=0$. Math. Proc. Camb. Phic. Soc. 97, 437–443 (1985)
- [We1] Werner, J.: Kleine Auflösungen spezieller dreidimensionaler Varietäten. Bonner Math. Schr. 186, Bonn: Thesis 1987
- [We2] Werner, J.: Neue Beispiele dreidimensionaler Varietäten mit c₁=0. Math. Z. 203, 211-225 (1990)
- [Y] Yau, S.T.: Calabi's conjecture and some new results in algebraic geometry. Proc. Natl. Acad. Sci. USA 74 (1977)

Note added in proof

Recently Y. Kawamata has proved (2.8) in any dimension (Y. Kawamata: Moderate degenerations of algebraic surfaces, to appear in Proceedings of the Algebraic Geometry Conference Bayreuth 1990)