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Introduction

A Calabi-Yau manifold is by definition a projective manifold with trivial canoni-
cal class but without any holomorphic 1-forms. One of the basic problems for
those class of Ricciflat manifolds is the existence of rational curves. In dimension
2 the Calabi-Yau manifolds are just the K3-surfaces and the existence of rational
curves is well-known. In dimension 3 Wilson [W] recently showed that any
Calabi-Yau 3-fold with b,(X)> 19 contains rational curves and he also shows
existence of rational curves if there are certain special divisors on X. In this
paper we show (Sect. 1).

Theorem. Let X be a Calabi-Yau 3-fold and assume the existence of an (non-zero)
effective non-ample divisor on X. Then X contains a rational curve.

Of course such a divisor can only exist if b, (X)=2.

The proof is based on some results of Wilson’s and on a careful analysis
of surfaces S= X which are not ample divisors on X. In many cases we find
rational curves inside S (e.g. when S is even not nef) but not always.

In Sect. 2 we consider hyperbolic 3-folds X. Hyperbolicity means that there
is not non-constant holomorphic f:€ — X. We prove that — following a conjec-
ture of Kobayashi — X has ample canonical class except possibly for Calabi-Yau
3-folds without rational curves.

§ 0 Preliminaries

We always denote by X a smooth complex projective manifold. wy will always
be the canonical sheaf (bundle), x(X) denotes the Kodaira dimension, and h?(X,
F) is the dimension of HY(X, #) for a suitable sheaf # on X.

(0.1) Div (X) is by definition the group of Cartier-divisors modulo linear equiva-
lence. A @Q-divisor on X is an element of Div(X)®z®, a R-divisor an element
of Div(X)®zR. Ni(X) will be the vector space of all real divisors modulo
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linear equivalence, analogously we define Ny (X). Nk (X) is a finite-dimensional
R-vector space of dimension p(X), the Picard number of X. Often we will not
distinguish between a divisor D and its class in Ng (X). We denote K = Ng (X)
the cone generated by the ample divisors. K is called the ample cone.

We let N;(X):={l-cycles on X}/~ where Z~Z' iff DZ=DZ' for all
DeDiv(X). NE(X)< N, (X) will always denote the closed convex cone generated
by the classes of irreducible curves.

(0.2) Lemma Let X be a smooth projective 3-fold. Let DeDiv(X) be nef and
H ample. If D* 40 then D* H>0.

Proof. By (0.3) we have D?H >0 (Kleiman). So assume D?=#0 but D*H=0.
Let V={EeNg(X)|ED*=0}. Then codim V=1. Let Z_={E|ED*<0}. Since
D*H=0, VnK=*{0} and hence Z_nK=+0. Thus we find an ample H' with
D? H' <0. This contradicts the nefness of D by Kleiman’s result.

(0.3) Let us fix two notations from the theory of algebraic surfaces (cf. [BPV]).

(a) An elliptic surface is a smooth projective surface S together with a surjective
morphism p: S— C to a compact Riemann surface C such that the general
fiber is a smooth elliptic curve.

(b) A hyperelliptic surface S is an elliptic surface p: S — C’ such that p is holo-
morphically locally trivial and C is an elliptic curve.
All what we nced of the theory of surfaces can be found in [BPV].

(0.4) We need some facts concerning non-normal surfaces. These can be found
in {Mo, 3.36]. Let S be a projective non-normal Gorenstein surface. Let EcS
be the non-normal locus, with structure given by the conductor ideal. Let f:
S — S be the normalization of S, E the analytic preimage of E.

Then there are exact sequences.

0— wzg—f*(ws)—f*(ws)®0p—0
0— Us—£,(O5)— w5 ' @wp—0.

(0.5) Definition. A Calabi-Yau manifold is a projective manifold with trivial
canonical bundle wy and H*(X, 04)=0.

(0.6) Remark. Let X be an arbitrary projective mahifold with wy~0y. Then
a theorem of Beauville [Be] states the existence of a finite étale covering of
the form

Tx IV, x I1X;

with T a torus, X; simply connected sympletic manifolds (of even dimension,
in particular) and V; simply connected manifold of dimension =3 satisfying
HY(V;, Oy )=0,0<g<dim V;. So the V; are Calabi-Yau.

(0.7) Proposition (Wilson). Let X be a Calabi-Yau 3-fold. Let DeDiv(X), D*=0,
D nef, D-c,(X)£0 or h°(Ox(mD))=2 for some meN and D* H>0 for some
ample H.

Then there exists neIN such that Oy(nD) is generated by global sections and
the associated morphism ¢: X — Yis an elliptic fiber space over a normal projective
surface Y.
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Proof. [W, 3.2]. The assumption D-c¢,(X)=%0 is only used to conclude
h°(Oy(mD)) = 2 for some m.

(0.8) Proposition. Let X be a Calabi-Yau 3-fold, DeDiv(X), D nef, D*=0,
De,(X)=%0, and D? H>0 for some ample H. Then X contains a rational curve.

Proof. Let ¢: X — S be the associated elliptic fiber space. As Wilson remarked,
S is rational. Let us give an easy argument. After eventually lifting back ¢
to a desingularisation of S, we may assume S smooth. From H'(X, 04)=0
we deduce by a Leray spectral sequence argument:

H'(S, Ug)=0.

Hence it is sufficient to know x{S)= — oo in order to conclude rationality.
By litaka’s (C; ,): k(S) +«(X,) for the general smooth fiber X, we conclude:

K(S)<0.

H*(X, 04)=0 implies H?(S, ¢5)=0 (think of holomorphic 2-forms). Thus the
Kodaira classification of surfaces says: S is hyperelliptic or an Enriques surface.
H'(S, 05)=0 excludes the hyperelliptic surfaces.

§ being an Enriques surface, S carries — whether minimal or not - an “elliptic
pencil” S —»1P; [BPV, p.274]. Thus we obtain a map ¢: X >IP,. Let Y be
its general smooth fiber. We see easily k(Y)=0. By wy~wy|Y, we deduce
H?*(Oy)=H®(wy)=*0. So the minimal model Y,, is K3 or a torus. Since Y, admits
an elliptic fibration over an elliptic curve, this is not possible and finally S
is rational.

Now take a rational curve C<S. Let Xc=¢ (). The general fiber of
¢| X is a smooth elliptic curve (observe that we may assume that any fiber
over yeS\Sing(Y) is {after reduction) elliptic because otherwise the fiber would
contain rational curves).

Let f: C~P,— C be the normalization, Xo=X:xC and p: X.> X, a
minimal desmgularlsanon Since we may assume X w1thout rational curves,
$: Xc—Cis relatively minimal (in the sense of [BPV]).

Clearly K(XC)<1 If k(X¢)= — o0, X contains rational curves. Next suppose
kK(X)=0. Clearly X, is minimal. If X¢ has a fiber whose reduction is not
smooth elliptic, then X contains a rational curve. If the reductions of all fibers
are smooth elliptic, then ¢,(Xo)=0 ([BPV, p. 97]). Hence X is a torus or hyper-
elliptic. Both is clearly not possible.

Last assume x(Xo)=1. Again red ¢~ '(y) is smooth elliptic for all y, otherwise
we are done. Now again c¢,(X)=0, hence y(0x ~=0 by Riemann-Roch. More-
over R' (0% o) is topologically trivial ([BPV, p. 162]), hence trivial (C~IP)).
The Leray spectral sequence gives H' (0 )~ C, so H*(0x_)=0.

On the other hand by [BPV, p. 162]:

Wz =p*(Up, (a)) with some a>0.

Hence H®(Ox_)=H?(0x_.)+0. This ends the proof.
The following is well known (cp. [W]):

(0.9) Proposition. Let X be a Calabi-Yau, 3-fold DeDiv(X). If D is big (D*>0)
and nef but not ample, there exists a rational curve on X.
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§ 1 Non-ample divisors in Calabi-Yau 3-folds

In this section we prove the main result of the paper:

(1.1) Theorem. Let X be a Calabi-Yau 3-fold, S =X an irreducible hypersurface.
Assume that S is not an ample divisor. Then X contains a rational curve.

Proof. (0) We begin with some general observations. Let f: §— S be the normal-
ization, n: § — § a minimal desmgularlzatlon First observe that § may supposed
to be minimal. In fact, if § is not minimal, pick up a (— 1)-curve CcS. Since
7 is minimal, dim n(C)=1, hence fn(C) is a rational curve in S and we are
done.

Also we may assume x(S)=0. Moreover, if S is an elliptic surface p: S-C,
the only singular fibers can be multiples of smooth elliptic curves, otherwise
we obtain a rational curve in X. In fact, a singular fiber different from a multiple
of a smooth elliptic curve consists of rational curves ([BPV, p. 150/151]). Since
dim fr(p~!(x))=1 we are done in this case. If §*> >0 and § is nef then X contains
rational curves by (0.9). We distinguish two cases:

(1) S is not nef
(2) S is nef.

(1.2) Lemma. If S is not nef, X contains a rational curve.

Proof. S not being nef there is a curve C with S-C<0, in particular C<=S.
So the normal bundle A4"gy is not nef. By adjunction formula

wSﬁL/V‘slx,

SO g 18 not nef.

If the reflexive sheaf wy is not nef, choose a curve C < § with (¢, (wg)- C)<0.

Since 7, (w4 = wé for all ueN and since x(5)=0 (so w4 is generated by
global sections for u>0), w§ is generated by global sections outside a finite
set (Sing(S)) for suitable big p. This clearly contradicts (¢, (wg)}- C)<O0.

Hence wg must be nef. This already excludes the case “S normal”.

In the case “S non-normal” we still have some informations on the curves
C =8 with

*) (i {f*(ws)-O)<

Namely C < E, E the preimage of the non-normal locus E of S. In fact, if C¢+ E,
we would obtain by

ws~ I ®f*(ws) (0.4):
(¢1(wg)- C) <0,

a contradiction. So (*) holds. (*) implies that there are only finitely many curves
C,, ..., C, with

(cq(ws)- C) <0,
hence
(S-C)<0.
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Now let to=inf {teR , |S+tH ample} and put Do=S+1, H.
Clearly t,e®., , in fact
to= max {t{(S+tH -C)=0]}.

1<iss

If D3 >0 we conclude by (0.9).

If D3 =0 observe that S ¢,(X)=0 [M, Y], hence D, c,(X)>0. Since §-C=0
for all but a finite number of curves, S* H=0 for any ample H, and so D2 H > 0.
Now apply (0.8) to get a rational curve.

(1.3) Lemma. If S is nef and S*+0 (but S*=0), X contains a rational curve
or the normalization of S is a hyperelliptic surface (in particular smooth).

Proof. Assume that X does not contain a rational curve. Assume that
H?(S, Og)= H%(wg)%0. Then the exact sequence

(S) 0—Ox(—S)—0x— 0s—0
yields a cohomology sequence

H?(Oy) — H*(Og) — H>(Ox(—8)) — H*(x) — 0
[ 2 fle
0 H(C4S)) C

thus h°(04(S))=2. Since S is by assumption nef, X contains a rational curve
by (0.8) as soon as we know S? H>0. But S2 H>0<S5%+0. So we must have
H?(0g)=0, moreover S-c¢,(X)=0 because otherwise we can again apply (0.8).
By Riemann-Roch: y(0,(S)) = x(Ox(— S))=0. Sequence (S) yields y(Og)=0 since
%(0)=0. The vanishing of H%(¢) implies therefore

W (Cg)=1.

We want to get some more informations from S*=0, $240. $3=0 just says
¢;(Ns;x)*=0, hence c¢,(ws)*=0. S?+0 implies (self-intersection formula)
¢, (Ng;x) %0 in H*(S, R), s0 ¢, (wgs) +0.

(1) Assume S to be non-singular. Then ¢, (wg)? =0, ¢,(wg)*0 gives k(S)=1.
So p:S — C is an elliptic surface. By h' (¢ <h'(€g) =1, we obtain g(C)<1. By
[BPV, p. 162]: '

deg(R* p,(0)*)=1(05)=0.

So the canonical bundle formula [BPV, p. 161] gives
S
ws~p* (Wc® L) s ( Z (m;—1) Fi)
i=1

where m; F; are the multiple fibers and ¥ =R p, (Ox)* is topologically trivial.

If g(C)=1 the formula implies the non-existence of any singular fiber because
otherwise h°(ws)>0. But then x(S)=0! If g(C)=0 our formula and h%(wg)=0
imply s=1 and m;=2 or s=0. But if s=1, m=2 we have k(S)=— o0 and
if s=0: k(8)=0. So (1) does not occur if X contains no rational curve.
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(2) Now let S be singular but normal. In this case if ¢, (wg)* <c,(wg)* =0, the
minimality of § yields x(§)= — oo, which gives rational curves. Hence ¢, (wg)?
=¢,(ws)* =0, which just means ws~n*(ws), 1.e. S has only rational double
points. So k( @ 0. In particular § contains a rational curve, consequently S
cannot be a torus or hyperelliptic. By [BPV, p. 67] we easily see: S is not
Enriques, hence § must be a K 3 surface. Then wg =~ 0, contradiction.

(3) Finally let S be non-normal.

(3.1) x(S)=0.

Since n, (wg) = wg and f, (wz) © wg we have
H(wg)=0.

So S is Enriques or hyperelliptic. The Enriques case is excluded as before. If
S is hyperelliptic, we must have §=3S and we are done by our assumption.

(3.2) k(S)=1.
Again we have for the elliptic surface p: §— C:
HO (G)g) =0.

Since p has at most multiple fibers (as singular fibers) we have ¢, (S)=0 ([BPV,
p.- 97]), hence x(0g)=0 and h'(05)=0. Now the contradiction is the same as
in (1).

(3.3) k(S)=2.

Again H?(0)=0 and by the positivity of x(0g): H!(0g)=0. Since we also have
H%(05)=0, q»—l 2, § has only rational singularities and since the only smooth
rational curves in S are (—2)-curves, § even has at most rational double points,
in particular wg is locally free. It follows: c;(wg)?=c,{ws)*>0. Using
w5 = I®f *(ws) and ¢ (w5)*=0:

0<E>—2c, f*(wy) E).

Since wg is nef, we obtain E2>0. If we take squares in f*( ws)~ws®(OS(E)
we obtain 0=c, (wz)* + E2 +2(c, (ws)- E). Since wg is nef and E2>0, ¢, (wg)* >0,
this is impossible!

(1.4) Lemma. Assume S to be nef, S*+0 and that the normalization of S is hyperel-
liptic. Then X contains a rational curve.

Proof. By (0.4) we have
*) w3 = ®f*(ws)

where E is the analytic preimage of the non-normal locus E of S — equipped
with the structure given by the conductor ideal. Since c¢;(ws)*=0, we havg
¢ (f*(ws))? =0. Since f *(ws) 1s nef, we can describe the structure of f*(wg)-S

being hyperelliptic, § is an analytic fiber bundle j: §— C over an elliptic curve
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C. On the other hand we have an elliptic fibration §: §—P,. We denote by
F; fibers of j, by G, fibers of §. Then we have:

(a) fHwg=Zn F;,  n>0
or
(b) SHowgd=2m;G;,  m;>0.

This follows from b,(S)=2. From (*) we conclude:

(a) E consists of fiber of p
(b) E consists of fibers of §.

We want to prove first:
(**) f*: H*(S, Z)—> H?(S, Z) is an isomorphism. First assume (a). p clearly
induces a continous map p: S — C to some curve C. Moreover there is a diagram

]

Now it is easy to check that C carries a complex structure such that both
g and p are holomorphic; g is a modification. Since h'(0g)=1, we must have
(by p(U5)=07)) h'(0c)£1, hence C is smooth elliptic and g is biholomorphic.
So the picture is as follows: there are points xi, ..., x,e C such that f|p~(x,)
is étale onto f(p~'(x;)) (all fibers of p, p are smooth elliptic: for the fibers of
p this is clear; for the fibers of p it is true since otherwise R! p,(05) would
have torsion, consequently h'(O5)> 1 by the Leray spectral sequence).

Now our claim is an immediate consequence of the exact sequence ([BK,
3.AT]):

Q‘——VJ

..—— HY(S, Z)—— H*(S, Z)® H(E, Z)— HY(E, Z))—— ...

Now assume (b). Similarly as in (a) we have a diagram

S S
i)l Jq
P 0

1
with a possibly singular rational curve D. The only thing to do is to prove
smoothness of D; then we can argue as in (a). Taking direct images of the
exact sequence (0.4) we obtain:

N N

qu*(w.g_l@wE)_)Rl q*((gs)_'Rl q*(f*(@S‘))'_’Rl q*(w.; 1®('0E)""0
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Assume D to be singular, so h!'(0p)=1. By Leray’s spectral sequence and
h?(0g)=0:

(+) HO(R! 4,(Cg)=0.

Since g, (ws ' ®wy) is concentrated on points, we get ¢, (wg ' Qwg)=0.
Taking cohomology of (0.4) and using h!(0g) =1, h* () =0, we deduce:

HY (g '®wg)=0.
By Leray’s spectral sequence again, it follows

R' g, (w5 ' ®@wg)=0.
So (+) gives
R'q,(O5)=R" q,(f,(C3)).

Now use the so-called Serre spectral sequence
E54=R"q, (R, (C3)
converging to R? " 9(q-f), (Os) to deduce

R'q,(f4 ()~ R (q-f)(Cs).

Since gof=ho{ we can again use this spectral sequence to compute

R! (q Of)*(ﬁs) = h* ((911’1)'
In summary:
Rl q* ((95) > h* (@Pl)a

contradicting (+). So (**) is proved completely.

Since H?*(S, 0)=0, (**) gives us a nef line bundle Lg£0 on S which is
not a multiple of wg. In fact there exists a nef line bundle L on § which is
not a multiple of f*(ws) and L is by (**)-up to numerical equivalence — of
the form f*(Lg). Now consider the restriction map

ri H3(X, Q) - H2(S, Q).

Since ¢, (wg)e HX(S, Q) is non-zero and not ample {nor negative), r must be
onto.

Hence there is a line bundle L on X with L{S~L% for some melN (use
HY(X, 0)=0for g=1, 2). We may assume m=1.

First assume that L is nef.

By (0.9) we may assume I>=0. L+ S is nef and moreover L+S is big: it
is sufficient to see LS?>0, which follows from

LS*=(c((f*(Ls) ¢, (f*(ws))
=(c; p*(F})-¢; §*(F;))>0
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(F;, ample line bundles on C resp. P,). If L+ S is not ample, we get again a
rational curve. If L+ § is ample, we deduce

(L+S-c,(X))>0,
hence L-¢,(X)>0.
Now I?H>0, so X contains a rational curve by (0.8). So we may assume
that L is not nef.

(1) Suppose first p(X)=3.
() Assume furthermore

{D|S=0}c{D>=0}.

By our assumption, there is DeDiv(X) such that D|S=0, D*>0. Choose u>0
such that (L+puD)*>0. Put L=L+uD. Then L|S=L|S and I*>0. I claim that
there is HeDiv(X)®Q@ ample with the following property: if ¢, is chosen such
that L+t,HedK then either (L+t,H)*>0 or L+tSeK for every t>0.
In fact, assume L+tS¢K for t>0. For HeK let ty(H) be the unique number
with
L+ty(H)-HedK.

If H,—S in N'(X), then lim¢,(H )= o0 (otherwise we find ¢>0 such that
+cSedK). Now choose He(Div(X)®®@) ~ K near to S such that

t3(H)>to(H)
and - N
LH?>1?H.

The second inequality can be achieved since

LS*=18*>0, I?S=I*S=0.
Hence: (L+t,H)? > 0.
But then it is easy to get DeDiv(X), not nef, with D> H>0, DH?>0. Hence
there is a rational curve by [W].

(B) Now let {D|S=0}={D*=0}.

Let V= N'(X) be the linear space generated by S and {D|S=0}. Since p(S)=2,
V is hypersurface. Let r: N'(X)— N'(S) be the restriction. Then r(0K) is a
cone in N'(S)~IR? containing interior points. In fact, otherwise r(0K)=R . [S],
hence for any nef non-ample D we would have D|S=as$. In other words: 0K < ¥
which is clearly impossible. So for every DedK we find D’ arbitrary near to
D such that D'edK and D'|S+aS, ie. D'¢V and also D" with D”"¢0K and
D"eV.

In particular: V¢ 2K (otherwise we would locally have V=0K).

Let Doe{D>*=0}. If D, is “general”, i.e. a smooth point of {D>=0}, then
D{+0. Then any neighborhood of Dy contains points D with D*>>0 as well
as D? <0 (consider the cubic polynominal q(t)=(D,+tH)> where H is ample
with D3 H 0, then g changes sign at t =0). We conclude - by our above remarks
— that in every neighborhood U of S there are De U, D not nef, with D3>0.

In fact there are De U NV, D¢ K, and since S? %0 we find D’e U with D'3>0,
D'?H >0, D'H*>0. So by [W] X contains rational curves.

(2) Now assume p(X)=2.
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In this case 0(Ku —K)=L,uUL,, L, lines in N!'(X). Since we may assume
0K <{D*=0}, p(D)=D? vanishes on L; and it follows easily p=p, p, ps, p;
linear, with L;={p;=0},i=1, 2.

If p;%p;, i=1, 2, choose a Cartier divisor DeL;. Let H be ample and
let Do=D+t,HedK. Then one may assume t,€@Q and using D, it is quite
easy to construct a rational curve.

So let p;=p,. Then: SeL,, and D?=0 for all DeL,. Now take DeL,.
By the existence of L we know D|S to be ample. So D*S>0 and D20, contra-
diction.

This finishes the proof of (1.4).

(1.5) Lemma. If S is nef and S* =0, X contains a rational curve.

Proof. Assume again that X has no rational curve. Since §? =0, the self-intersec-
tion formula gives ¢, (wg)=0 in H?(S, R). We first assume

(1 H?(05)= H° (ws)#0.

By c¢,(ws)=0 we conclude wg~0s. Since f, n, (0§ cw§: k(S)=0. Hence we
can find y, such that w§°~ 0.

If = or f are not isomorphisms we would obtain a non-zero section of w§°
with zeroes. So S must be smooth. wg being trivial, § cannot be hyperelliptic.
S cannot be Enriques since then X has a rational curve.

Hence S is K3 or a torus.

Now h°(wg)=h?(0g)=1. Consequently

h°(Ox(8)=2.

Observe that we are not allowed to apply (0.8) since S*H =0 for all ample
H!
Instead we consider the meromorphic map

y: X —~P, =PH"(Ox(S).
We claim that i is everywhere defined. So let B be the base locus of y and
take x,eB. Then for all §'e|S}|: x,e8. Choose Sy, S,€|S| irreducible. Then
x0€8;NS,, and hence §; NS, contains a curve. So S, S, is an effective 1-cycle
on S, and non-zero, so S, S,+0, and $?= S, S,+0, contradiction. Thus B+ &
and Y a morphism. We also have

Ox(S)=y*(Op,(1)).

(1.5.1) Any fiber of ¢ is smooth. If S is K 3 any fiber is K3 and we have Ry (Z)
=0 for g=1, 3 and R*y,, (Z)~Z>*. By Leray spectral sequence we deduce

H3(X,Z)=0.
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But b3(X)>0 since H3(X, ¢)~C (then use Hodge decomposition). If S is a
torus, any fiber of  is a torus. Then R'y (Z)~Z* For the Leray spectral
sequence (E?9 associated to i and the sheaf Z we have

ES ' =H°(R'Y (Z)=1",
E3°=H*(P,,Z)=Z,

hence EY'! contains a Z3, so by ES'! =« H' (X, Z)=0, we obtain a contradiction.

(1.5.2) Now let us consider the case where  has some singular fibers X, selP,.

If X, =kS’ with §’ irreducible reduced then kS’ ~ S, so S’ has the same proper-
ties as S and we obtain the contradiction by substituting simply S by S’ in
our previous considerations or — if h*(05)=0 — go to (2). Now assume that
X, has several components S;,, 1<i<r, r=2. Let k; be the multiplicity of S;.
If some §; is not nef we are done. Thus we may assume all S; to be nef.

Since ()_k; $)*H =0 for any ample H, there is either some i, with S;2H>0
or S;nS;=9 for i%j. In the first case S;>=0 because otherwise S; is big and
nef and X has rational curves. So we can apply our results from (1) to S
and finish. In the second case { has some disconnected fibers X and therefore
h°(0x)=2, moreover ¢, (C) has rank 22 at some points. So ,(O) has torsion
and thus h°(Y . (Ox) =h°(0x)) = 2, contradiction.

2 H*(05)=H’(ws)=0.

The arguments at the beginning of the proof apply here, too. So § is smooth
and x(S)=0. By our assumption S cannot be K3 or a torus. If S is Enriques,
X contains a rational curve. So assume S to be hyperelliptic. Fix an ample
‘divisor H and let g(f)=(S+tH)>. Since S*=0, g has a double zero at 0. Let
to be the third zero. Necessarily t, is rational. Put

Doz "‘(S+t0H).

First assume that D, is nef. Then D=0 but D3+0, in fact D H>0. Assume
Dy ¢, (X)=0. So

S+toH-cy(X)=0.

Since S:¢,(X)=0 and H-c,(X)>0, we get t,=0, which is impossible. Hence
Dy ¢, (X)>0. Now apply (0.8) to obtain a rational curve.

In case D, not nef there is an uniquely determined ¢, such that —(S+1¢, H)
is nef but not ample, t, +1¢,.

Let D, = —(S+t, H). So D?>0, D, is nef but not ample.

By [CP] there is an irreducible curve C or an irreducible surface YoX
with D,-C=0 or D?.Y=0. If D,-C=0, 1, is rational and we are done by
(0.9). If D?-Y=0 and Y is not nef we are done by the first part of the proof.
If Yis nef we conclude from

S+t H?Y=0, S*=0

that t, is rational and finish as before.

The existence of a rational curve in case D®>0 for some nef D can also
easily be deduced from the results of Wilson [W].

Combining (1.2)H1.5), Theorem (1.1) is proved completely.
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(1.6) Corollary. Let X be a Calabi-Yau 3-fold, - X — Y a surjective non-finite
map to a projective variety of positive dimension. Then X contains a rational
curve.

§2 A conjecture of Kobayashi

In this section we deal with hyperbolic manifolds. Hyperbolicity is defined (origi-
nally) via the Kobayashi pseudo-metric but for our purposes the following equiv-
alent statement for compact manifolds known as Brody’s theorem is more conve-
nient:

(2.1) A compact complex manifold X is hyperbolic iff any holomorphic map
f: € - X is constant.

As general reference for hyperbolicity we use the survey article of Kobayashi
[K] and Lang’s introductory book {L].

We want to study the following

(2.2) Conjecture of Kobayashi. Let X be a projective manifold. If X is hyperbolic,
the canonical bundle wy is ample.

For Riemann surfaces the proof is 19™ century, for surfaces it follows essentially
from Enriques-Kodaira classification. Hence dim X =3 is the first interesting
case. The results of Sect. 2 put us into position to almost solve Kobayashi’s
conjecture in dimension 3. The result is this.

(2.3) Theorem. A 3-dimensional projective hyperbolic manifold X has ample canoni-
cal bundle wy with the following possible exception that X is a Calabi-Yau manifold
with any effective divisor being ample and p(X)<19.

The rest of this section is more or less the proof of (2.3). It will be given
in several steps some of which hold in any dimension.

(2.4) Proposition. Let X be a n-dimensional hyperbolic projective manifold. Then
wy is nef.

Proof. If wy is not nef then X contains a rational curve by Mori’s fundamental
theory [Mo], [KMM].

(2.5) Corollary. Let X be a smooth projective hyperbolic 3-fold. Then k(X)=0.
Moreover h°(wy)>0 or q(X)=h'(04)>0.

Proof. wy being nef by (2.4) this is just a theorem of Miyaoka [M]: what we
need is (by Riemann-Roch): ¢; (X) c,(X)=0.

(2.6 ) Proof of Theorem (2.3) in case k(X)=0. So assume x(X)=0 in (2.3).

1. Case: g(X)>0.
Then by [V, U], X is up to bimeromorphic equivalence

a) an abelian variety

b) a fiber space t: X — C over a smooth curve C with general fiber an abelian
surface or a K 3 surface.

¢) a fiber space 7: X —» Y over a smooth surface Y with general fiber an elliptic
curve.
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Obviously in cases b) and ¢) X cannot be hyperbolic. In case a) we find a
diagram
VA

where A is an abelian variety, = is a modification and 7 a sequence of blow-up’s
with smooth centers. Now for general xeZ we find f: € —» Z holomorphic and
non-constant such that f(0)=x — this is an easy exercise. Thus X cannot be
hyperbolic.

2. Case: q(X)=0.
By (2.5) we know h°(wy)>0 (in fact h°(wy)=1). So we can view wy, as an

effective divisor D=3 k; D; with s 20, k;>0 and D, prime divisors.
i=1
Suppose first s>0. Then by [W2]: k(D) <0 where D, is a desingularisation
of D;. But then D, contains rational curves and we are done. If s=0, wy is
trivial. By Beauville’s theorem already mentioned in (1.2), the universal cover
X of X is of the form

r t
X=C'x[]1Vix ] x:
j=1 i=1

where X; are (even-dimensional) sympletic manifolds and V; simply-connected
Calabi-Yau manifolds. If k>0, either X=C> of t=1 and X=Cx X, and X
is not hyperbolic. If k=0, we must have r=1, t=0. Hence X is Calabi-Yau!
Now apply (1.14) to conclude.

(2.7) Proposition. A projective 3-fold X with 0 <x(X)< 3 is never hyperbolic.

Proof. Because of the existence of the [itaka fibration, X has up to bimeromorph-
ic equivalence the structure of a fiber space X — S whose general fiber X satisfies
k(X=0. Since X is a curve or a surface we obtain rational or elliptic curves
in X, and hence X cannot be hyperbolic.

(2.8) Proposition. Let X be a projective 3-fold of general type (k(X)=dim X).
If X is hyperbolic, wy is ample.

Proof. By (24) wy is nef. Hence w is generated by global sections for some
m>» 0 (see e.g. [KMM]). So we obtain a modification ¢: X - X' to a normal
projective variety X' with the following properties:

a) X' is Q-Gorenstein, the reflexive sheaf Oy.(mKy) is locally free (K. denote
a canonical divisor)
b) of=¢*(Ox(mKy.))
¢) X' has only canonical singularities. (see [R])
By passing to the canonical cover of an affine neighborhood of a singularitiy
of X' (see [R, KMM]) we may assume that X' is Gorenstein.

Since canonical singularities are rational ((KMMYJ), we can apply [R, 2.14]
to obtain (a lot of) rational curves in the exceptional locus of a suitable des-
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ingularisation of X’ and hence also in the exceptional locus of ¢. Alternatively,
apply directly [R, 2.6].
The proof of (2.3) is now complete.
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