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1 Introduction

Let M3 ?(c) be an n + p-dimensional connected semi-Riemannian manifold of
index p and of constant curvature ¢, which is called as indefinite space form of index
p. If ¢ > 0, we call it as a de Sitter space of index p. It is seen that a complete
space-like hypersurface of a Minkowski space R}*? possesses a remarkable Be-
rnstein property in the maximal case by Calabi [2] and Cheng and Yau {3]. As
a generalization of the Bernstein type problem, a complete space-like maximal
submanifold M" of M}*?(c) was characterized by Ishihara [5] under a certain
conditions. An entire space-like hypersurface with constant mean curvature of
a Minkowski space is investigated by Goddard [4] and Treibergs [ 10]. Akutagawa
[1] and Ramanathan [9] investigated the complete space-like hypersurfaces in a de
Sitter space. They obtained independently that a complete space-like hypersurface
in a de Sitter space with constant mean curvature is totally umbilical if the
following are satisfied

H*<c, whenn=2; (1.1)
nH® <4(n—1)c, whennz=3. (1.2)

In this paper, we consider general submanifolds in an indefinite space form, we
obtain that a complete space-like submanifold in a de Sitter space with parallel
mean curvature vector is totally umbilical if the conditions (1.1) or (1.2) are
satisfied. Conditions (1.1) and (1.2) are best possible.

2 Local formulas and lemmas

Let M;*?(c) be an (n + p)-dimensional semi-Riemannian manifold of constant
curvature ¢ whose index is p. Let M” be an n-dimensional Riemannian manifold
immersed in M2*?(c). As the semi-Riemannian metric of M%*?(c) induced the
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Riemannian metric of M", the immersion is called space-like. We choose a local
field of semi-Riemannian orthonormal frames ey, . . . , €,4,in M} ?(c) such that at
each point of M", ¢4, . . ., e, span the tangent space of M" and forms an orthonor-
mal frame there. We make us of the following convention on the range of indices:
1£A4,BC,... sn+p1<ijk...Emn+1<5a,B,9,... n+p;and we
shall agree that repeated indices under summation sign are summed over respective

ranges. Let @, ..., @,+, be its dual frame field so that the semi-Riemannian

metric of M2¥?(c) is given by dsin+e = Y 0? — Y 0? = Y e 0%, where ¢ = 1 and
¢, = — 1. Then the structure equations of M%*?(c} are given by

de = — ZEBCOAB A g, Wyp + Wp4g = 0 N (21)

dwyp=— Zﬁchc A Wcp — %ZKABCDCUC A @p, 2.2)

K 4pcp = c485(04pdpc — d4cO5p) (2.3)

We restricted these forms to M”, then
w, =0, foro=n+1,...,n+p, 2.4

and the Riemannian metric of M" is written as ds® = Y of. We put w,; = ) hiw;.
From Cartan’s Lemma we have hf; = h}, where hf; are the components of the
second fundamental form of M". Let

h= TS0, 9)
1 2
H? = FZ(Zhﬁ) 26)

where H is called mean curvature. From (2.1), we obtain the structure equations of
Mn

doj=—Ywj Aw, o;+w0;=0, (2.7
dwjj=—You A oy —3Y Rjyox A @, (2.8)
and the Gaussian formula
Riju = c(Badj — dudy) — Y.(hi b — hich?) 29
The components of the Ricci curvature tensor Ric are given by
Ry =c(n—1)8; — Y hEh% + Y hihi; (2.10)
We have also the structure equations of the normal bundle of M”"
dw, = — Y .5 A wg, Wap + wp, =0, (2.11)
AWy = — Y gy A Wy — 33 Rypij; A 05, (2.12)
Rygij = — Y (hiy by — 5 ) (2.13)

For indefinite Riemannian manifolds, refer to O’Neill [8].

Let h{j denote the covariant derivatives of hf; so that
Y hipo = dhy — Y by — Y oy — Y B g, - (2.14)
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Similarly, let hfy, denote the covariant derivative of hf so that
zh?}u w, = dhiy — Zh;xjkwli - Zhﬁk Wy — Zh?jl Wy — thjk W,y (2.15)
Then we obtain
hix = hi;, for any « (2.16)
and the Ricci formula
h;‘ljkl - h?}tk = th'm ijkl - thm Ropia — Zh?j Raﬂkl . (217

The Laplacian Ahg; of the second fundamental form h is defined by AhY = 3 hfu.
From (2.17) we have

ARG = hixi; — 3 Him Ruije — 2 Ak Roje — 2 Bt Rug i - (2.18)
Lemma 2.1 (see Omori [7] and Yau [11]). Let M" be an n-dimensional complete
Riemannian manifold whose Ricci curvature is bounded from below. Let F be a

C>-function bounded from above on M", then for any e > 0, there exists a point p in
M?" such that

supF —e < F(p),
|grad F| < ¢, (2.19)
AF <e¢.
Lemma 2.2 (see Okumura [6]), Let aq, . . ., a, be real numbers satisfies Zaj =0
and Y a} = K*(K > 0), then we have
1%} < (n — Dt — D]V K3,

3 Theorem and its proof

Theorem. Let M” be an n-dimensional complete space-like submanifold in M} *(c)
with parallel mean curvature vector. If

H? <, when n=2, 3.1
n?H? < 4(n — )c, whennz3. (3.2)
then, M" is totally umbilical.
Proof. From (2.18) and Gaussian formula, we have
ARG = 3 hi; + nchl — ¢ b by + Y himhbihl; — 23 hiy hE bl
+ Zh;ih&khfj - Zh;ihfnjhek + Y hhaih; . (3.3)

Because the mean curvature vector is parallel, we have that mean curvature H is
constant.

If H=0, M" is maximal. From the theorem 1.1 in [5], we know that M" is
totally geodesic.

If H # 0, we can choose ¢, ; in such a way that its direction coincides with that
of mean curvature vector k. Then

wg.n+1 =0, H = constant, (3.4)
HaHn+1 - Hn+1Ha , (35)
trH"*! = nH, trH*=0, af+n+1, (3.6)
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where H* denote the matrix (h).

Putting
Hij = h’;’j“ Hé;, h=hf a+xn+1l, 3.7
we have
| ull? = tr(p)? = ¥ = tr(H™')2 — nH? (38)
Itl2= Y u(@@?= Y I¢1*= Y @)= Y GH*, (39
B+nt+1 B+n+1l BEnt+1 B+n+1
tru=0, tr(t¥) =0, B+£n+1, (3.10)
S=lul*>+llt|*>+nH?, (3.11)

where S is the square of length of the second fundamental form. Hence, it may be
seen that || t||? as well || 4||* are independent of the choice of the frame field and are
functions globally defined on M".

A submanifold M" is said to be pseudo-umbilical if it is umbilical with respect
to the direction of the mean curvature vector h, ie., hj*!= HJ;. From
(3.7) ~ (3.11) one can easily see that M" is pseudo-umbilical if and only if || u||? =
M?" is totally umbilical if and only if it is pseudo-umbilical and || 7 ||?> = 0.

ARG = nchft' — ncH 8y + Y Kok P hbychfy — 23 hia  hE HE,
+ Zh:‘,,flh,‘;kh - nHZh"’L‘h',;,j’1 + Zh"“h" i > (3.12)
Ah; = nCh;j + Zh:mh,’;‘kh 22}1 khgtjh + thihrp;lkhkj
- nHZh" it + Zh e hE, a+n+1. (3.13)
A pl? =Y (') + nc) (W) — n®cH? + Y hng P B okt
. 2Zhn+1h,‘;uh hn+1 + Zhn+1h h,ilj+1 _ nthn+lhn+1hn+1
+ zh;nf lhrﬂ;lkhkih'i‘;—l
=Y (i ')? + ne) (W *)* — n*cH? — nH tr(H"* 1)
+ Z te(H" 1 H?)? + [te(H"*1)2]2 . (3.14)

B+n+1i
Here we use H"*' H? = HP H** 1. ‘
P = Y Gl +ncltl*+ Y himhbihihg

atn+l a+ntl

-2 Z h::khnghfkhﬁi‘*' z h:;ihrﬂ;xkhgjhg;

a$+n+i atnt1
~nH Y hhEEEU+ Y R hBHGRS . (3.15)
a+n+l axnt+l

On the other hand,
tr(H"*Y)? = trp® + 3H[tr(H"* ') — nH?*] + nH? . (3.16)
(3.14) and (3.16) imply
A 1?2 (| pl? +nH?Y? — nH[tr(p)* + 3H | p||* + nH?] + ne| p|f?
= ul2Chul® + nc — nH*} — nH tr(p)® . (3.17)
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Since tr u = 0, we can apply Lemma 2.2 to the eigenvalues of u and hence

[tr(p)| < (n = 2)[n(n — D172 1 p)? . (3.18)
Hence,

A0l Z 1?0 pl? + ne — nH?> 1= nlH|(n = 2) [n(n — 1)]7 2 || )|
= [ul?{lul?=nlH|(n~2nm~ DI | pll + nc —nH?} . (3.19)

From (2.10), we know that the Ricci curvature of M” is bounded from below.
Putting F = — (|| u||*> + a)~*/?, since M" is space-like and F is bounded, we can
apply Lemma 2.1 to the function F. For given any positive number ¢ > 0, there
exists a point p at which F satisfies the properties (2.19) in Lemma 2.1. Conse-
quently, the following relationship.

$F*(p) 4l m(p)I* <3e* = F(p)e. (3.20)

can be derived by the simple and direct calculation. For a convergent {e,}
such that ¢, —0 (m—o0), there exists a point sequence {p,} such that the
sequence { F(pn)} converges to F, because { F(pn,)} is a bounded sequence, by
taking a subsequence, if necessary. From the difinition of the supremum and
(2.19), we have Fo =supF and hence the definition of F gives rise to

lim [| u(pm) |1 = sup|l u |
On the other hand, it follows from (3.20) that we have

$FH(pm)A | 1(pm)lI* < 367 — F(Pm)em - (3.21)

The right hand side of (3.21) converges to 0 because F is bounded. Accordingly, for
any positive number ¢ > 0 (¢ < 2) there is a sufficiently large integer m for which we
have

F(pm)* Al u(pm)l® <¢. (3.22)
This relationship and (3.19) yield
2=l u(pm) |* = 20 — 2[n(n — DI~ 2n| HI| p(pm) I®
+ 2(nc — nH?* — ea) | u(pm)|> — ea®* < 0.

Hence, {|| #(pm) |} is bounded. Thus the supremum of F satisfies Fy = supF > 0.
According to (3.22), we have

limsup 4| u(p)I* 0. (3.23)

(3.19) implies

supll ul|l? [sup |l pll* — (n — 2)[n(n — )]~ *?n| H| sup|| u|| + (nc — nH?)] < ?3-24)
1), when n =2 and H? < c, .

supll g [* [supll pfI* + nc —nH?*] 0.
Hence sup(| u]|2 = 0, ie., [ ul|?> = 0.
2), when n = 3 and n*H? < 4(n — 1)c, we have also
sup|l | =0, hence || ul|>=0.

That is, M" is pseudo-umbilical. Hence h};"! = HJ;;.
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From (3.15), we get
1P = Y @) +ncltl* + Y, ki Rhuhlhg

afn+1l a+n+l

—2 Y RS KRG+ Y hHEu kbR
atn+1 a+ntl

—nH Y RLARG+ Y ke hEhbh
a+xn+1 atntl

= Y @l+ncltl®’+ Y [t(H.Hpl?

a+n+l afEn+i

—nH|t|> =2 ) huhhkl g
B,a+n+1

+ Y R RERGRG + Y RGhERGRS (3.25)

a,f+nt+1 a,f+nt+1

Here we make use of h};'! = HJ;;.

We put S, =Y hihi; for o, ﬁ=i= n+ 1. Then (S,)is a (p— 1) x(p—1)
symmetrix matrix.. It can be assumed to be diagonal for a suitable choice of
€nt2s - -5 €nsp. Set S, =8, and we have |7]|? = )'S,. In general, for a matrix
A = (a;;), we put N(A) = tr(A’A). Now we have from (3.25)

= Y @) +mc—nH)|*+ ) S2

afntl axntl

+ Y N(H*H® — H*H").

a,f+n+1

Obviously, N(H*H? — H®H*) = 0. Let
(P—Vor= Y Se=1Mtl%[(p~D(p—20,]/2= ) 8.5,

axnt+l ;<ﬁ .
a,f+nt+
Thus we have
Y Si=(p—Dol+(p—1)(p—2}-0),
a+nt+l
(p—D*(p—lt—0)= Y (S.—Sp?*.
a;:f+1
Hence, Y SZ=[1/(p—DH|*+[1/(p—1)] 2 (Ss — Sg)*. Thus we obtain
a+n+l
aﬁ*n+1

140t 2 (e — nH?)||7)% + [1/(p — D1I7)* .

We make use of the similar methods of proof of || u||? for |t||%. We have
l]|> = 0. Hence, M" is totally umbilical.

Remark. When n = 2, condition (3.1) is best possible from [1] and [9]. When
n = 3, condition (3.2) is also best possible from following exampie.

Example. We consider Riemannian product H'(c;) x §""1(c,), where n =3,
¢y =2 —n)c and c, = [(n — 2)/(n — 1)]c. Because H'(cy) x S" *(c;) = S (c),
then we can get n? H? = 4(n — 1)c.
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