Math. Z. 205, 487-490 (1990) **Mathematische Zeitschrlft** 9 Springer-Verlag 1990

A characterization of IP,, by vector bundles

Thomas Peternell

Mathematisches Institut, Universität Bayreuth, Postfach 101251, D-8580 Bayreuth, Federal Repubhc of Germany

Received June 8, 1989; in final form February 1, 1990

1 Introduction

In this short note we want to give a characterization of the complex projective space via vector bundles which had been conjectured by Mukai [Kat].

Theorem. *Let X be a compact complex manifold of dimension n, E an ample vector bundle on X of rank n + 1 satisfying*

$$
c_1(E)=c_1(X).
$$

Then $X \simeq \mathbb{P}_n$ *and* $E \simeq \mathbb{O}_{\mathbb{P}_n}(1)^{n+1}$.

Here $c_1(X)$ means the first Chern class of X i.e.: $c_1(X)$ is the anti-canonical class of X .

The theorem being "clear" for $n \le 2$, Mukai gave a proof in case $n = 3$.

For the general proof given here it is essential to examine carefully extremal rational curves (in the sense of Mori) on X and on the projectivized bundle $P(E)$.

2 Proof of the theorem

We begin with the easy

Lemma 1. Let *E* be an ample vector bundle of rank $n + 1$ on P_n . Assume $c_1(E) = c_1(\mathbb{P}_n)$. *Then* $E \simeq \mathcal{O}_{\mathbf{P}}(1)^{n+1}$.

Proof. Let $l \subset \mathbb{P}_n$ be a line. Then the condition on the Chern class and the ampleness of E imply $E|l \approx \mathcal{O}_{\mathbf{P}_i}(1)^{n+1}$

So the vector bundle

$$
F = E \otimes \mathcal{O}_{\mathbb{P}_n}(-1)
$$

is trivial on any line. Hence F is trivial [OSS, p. 51] and our claim follows.

Now let X denote a compact manifold of dimension n and E an ample $(n+1)$ bundle on X with $c_1(E) = c_1(X)$.

Then the anti-canonical bundle K_X^{-1} is ample, i.e. X is Fano. Our strategy is to look at the compact manifold

$$
\mathbb{P}(E) \xrightarrow{\pi} X.
$$

(IP is always taken in Grothendieck's sense).

 $P(E)$ is a 2*n*-dimensional manifold with anti-canonical bundle

$$
K_{\mathbf{P}(E)}^{-1} = \mathcal{O}_{\mathbf{P}(E)}(n+1).
$$

This is an easy consequence of $c_1(E) = c_1(X)$.

E being ample, $\mathcal{O}_{\mathbb{P}(E)}(1)$ is ample and hence $\mathbb{P}(E)$ is a Fano manifold.

Lemma 2. Pic $(X) = \mathbb{Z}$

The proof of Lemma 2 relies on Mori theory. We refer for this to [Mo] and [KMM]. Some of the facts coming up in the proof are also important for our later considerations.

Proof. Since K_X is not nef, there is an extremal ray R on X, which is represented by an extremal rational curve C_0 satisfying

(*)
$$
0 < (K_X^{-1} \cdot C_0) \leq n+1
$$

([Mo, 1.4]).

Since

 $c_1(E) = c_1(X)$

 $(c_1 (E) \cdot C_0) \geq n + 1$,

and since clearly

we have

(**) $(K_{\mathbf{Y}}^{-1} \cdot C_0) = n + 1$.

So in the notation of [Wi] R has length $n + 1$. By (**) and [Wi, 2.4.1] we conclude $Pic(X) = \mathbb{Z}$.

On $P(E)$, besides the extremal ray R_1 defining the projection π we have a second extremal ray R_2 since $K_{\mathbb{P}(E)}^{-1}$ is ample 0 and $b_2(\mathbb{P}(E)) \ge 2$ (see [Mo, 1.4]). R_2 defines a surjective morphism $\psi : \mathbb{P}(E) \to Z$ to a normal projective variety Z. ψ has connected fibers and the following property:

(+) for any irreducible curve $C \subset X$, $\dim \psi(C) = 0$ holds if and only if its class [C] belongs to R_2 (see [KMM, Io]).

Lemma 3. *If* dim $Z < 2n$, then $X \simeq \mathbb{P}_n$ (and $\mathbb{P}(E) \simeq \mathbb{P}_n \times \mathbb{P}_n$, $Z \simeq \mathbb{P}_n$).

Proof. Let F_s be a fiber of ψ . We first claim:

(1) $\pi|F_{\rm s}$ is finite.

Assume to the contrary that π contracts a curve in F_s .

Because of $(+)$, all curves on F_s are homologous (up to positive multiples). We conclude that π contracts all curves in F_s , hence dim $\pi(F_s)=0$.

So $F_s \subset \pi^{-1}(x) \simeq \mathbb{P}_n$ for some $x \in X$.

A characterization on \mathbb{P}_n by vector bundles 489

Consequently $\psi | \pi^{-1}(x)$ has some positive-dimensional fiber. This is only possible if $\psi(\pi^{-1}(x))$ is a point. Hence $F_s = \pi^{-1}(x)$. But the extremal rays R_1 and R_2 are different, contradiction!

So π | F_s is finite for all $s \in \mathbb{Z}$. In particular dim $F_s \leq n$.

Take s general so that F_s is smooth. F_s is a Fano manifold since we have by the adjunction formula

$$
K_{F_s}^{-1} \cong \mathcal{O}_{\mathbf{P}(E)}(n+1)|F_s.
$$

This formula also shows that F_s has index $\geq (n+1)$. Recall that the index of a Fano manifold X is the biggest $r \in \mathbb{N}$ such that there is some $L \in Pic(X)$ with $L^r = K_x$.

Since the index of a Fano manifold is always bounded by $\dim +1$, we conclude that index(F_s) = n+1 and the Kobayashi-Ochiai theorem [KO] says that $F_s \simeq \mathbb{P}_n$.

By (1) we obtain a finite surjective map $\mathbb{P}_n \to X$. Then $X \simeq \mathbb{P}_n$ by a theorem of Lazarsfeld [La].

What remains to treat is the case where dim $Z = 2n$, i.e. ψ is a modification. Of course this case must be excluded.

We will use the following generalization of a theorem of Ionescu [Io] communicated to me by J. Wisniewski:

Lemma 4 (Wisniewski). *Let X be a projective manifold with extremal ray R. Let*

$$
l(R) = min \{K_X^{-1} \cdot C | C \text{ a rational curve in } R\}
$$

be the length of R. Let $A =$ *union of all curves in R.*

Assume that the contraction of R has a non-trivial fiber of dimension $\leq d$. Then:

 $\dim A \geq \dim X + l(R) - d - 1$.

Remark. Ionescu's result is dim $A \ge 1/2$ (dim $X+1(R)-1$), not involving d; Wisniewski's proof is to look carefully to Ionescu's method.

Lemma 5. ψ *is not a modification.*

Proof. We apply Lemma 4 to the extremal ray R_2 on the projective $2n - \text{fold } \mathbb{P}(E)$. In order to compute $I(R_2)$, take an extremal curve *l* belonging to R_2 .

Since $K_{\mathbb{P}(E)}^{-1} = \mathcal{O}_{\mathbb{P}(E)}(n+1)$, we have

$$
(K_{\mathbb{P}(E)}^{-1} \cdot l) = m(n+1), \quad m \in \mathbb{N}.
$$

On the other hand

$$
(K_{\mathbf{P}(E)}^{-1} \cdot l) \leq \dim \mathbb{P}(E) + 1 = 2n + 1
$$
,

l being extremal. Hence $m=1$ and $l(R_2)=n+1$.

By the same arguments as in Lemma 3, every fiber of ψ has dimension $\leq n$. So we can apply Lemma 4 with *d=n* to obtain:

$$
\dim A \geqq \dim \mathbb{P}(E), \quad \text{i.e.} \quad A = \mathbb{P}(E),
$$

and ψ cannot be a modification.

References

- [La] Lazarsfeld, R. : Some applications of the theory of positive vector bundles. (Lect. Notes Math., vol. 1092, pp. 29–61). Berlin Heidelberg New York: Springer 1984
- $[Io]$ Ionescu, P.: Generalized adjunction and applications. Math. Proc. Camb. Philos. Soc. 9, 452-472 (1986)
- [Kat] Birational geometry of algebraic varities-open problems. Report on a conference in Katata, August 1988 (Org.: Miyaoka, Mori, Mukai, Kollár)
- **[KMM]** Kawamata, Y., Matsuda, K., Matsuki, K. : Introduction to the minimal model problem. Adv. Stud. Math. 10, 283-360 (1987)
- [Mo] Mori, S. : Threefolds whose canonical bundles are not numerically effective. Ann. Math. 116, 133-176 (1982)
- [oss] Okonek, C., Schneider, M., Spindler, H. : Vector bundles on complex projective spaces. Basel: Birkhäuser 1980
- [Wi] Wiśniewski, J.A.: Length of extremal rays and generalized adjunction. Math. Z . 200, 409-427 (1989)
- [KO] Kobayashi, S., Ochiai, T.: Characterizations of complex projective spaces and hyperquadrics. J. Math. Kyoto Univ. 13, 31-47 (1973)
- [Mo] Mori, S.: Projective manifolds with ample tangent bundles Ann. Math. 110, 593–606 (1979)