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The book on maximum principles by Protter and Weinberger contains a maxi- 
mum principle for systems of essentially positive elliptic equations. These systems 
are weakly coupled, that is: no coupling in the derivatives. Recently the problem 
has been revisited by several authors, e.g. [-21] and [28]. Nagel uses semigroup 
theory for operator  matrices and finds as an application a positivity result for 
the elliptic system. De Figueiredo and Mitidieri use the maximum principle for 
one equation. In this note we will give a direct proof  by using an extension 
of the Kre in-Rutman Theorem. The underlying space will be (C(~)) k. In our 
approach it is sufficient to have operators with continuous coefficients. The 
three conditions we use can be described by: (i) essentially positive coupling 
matrix; (ii) full coupling; (iii) existence of a positive supersolution. We will show 
the existence of a unique first eigenfunction. Furthermore we will investigate 
the necessity of the three basic conditions. A partial result will be shown for 
some systems that are not far from essentially positive. (Essentially positive 
is also known as cooperative.) For  the last result we need pointwise estimates 
for Green functions. Recent results for such estimates are listed in an appendix. 
implications for the parabolic system will be given. 

1 Main result 

The domain ~ is a bounded, open and connected subset of IR" that satisfies 
a uniform exterior cone condition. We consider for u, f: ~ - ~ I R  k the following 
system of differential equations: 

(i.1) L u = H u + f  in 

u=O on 0 ~ ;  

whe re: 

* This work was supported in part by N.W.O., the Netherlands Organization for Scientific 
Research 



252 G. Swecrs 

L is a diagonal matrix of strictly elliptic second order operators, that is: 

(L~ 0 ) ,  ~ ~2 ~ ~? 
L= ".. with L , = - ~ a ~ ( ' ) g x ~ d x j + ~ b ~ ( . ) ~  +cV(-}, i ,~-'~i 

0 L k ,~ i 

n 

and for some L>0 :  ~a~(x)~i~j>)~l~l  2 for all x, ~ I R " ;  H is k x k matrix of 
i j  

functions on ~ with zero diagonal elements. 
We assume that the coefficients of L and H are in C(~); hence the elliptic 

operators L,  are uniformly elliptic. 
The three basic conditions in order to obtain a strong positivity result are 

the following. 

Condition I H is essentially positive (cooperative). 

A matrix H is called essentially positive if H,v(x)>O for all 1~4=v and xE~. 

Condition 2 H is fully coupled. 

That is, the index set {1, 2 . . . . .  k} cannot be split up in two disjoint nonempty 
sets ~ and [3 such that H,v(X)-0  in ~ for laecz, vel3. 

For an essentially positive matrix it means H, wi th / t ,v  = max {H,~ (x); x ~D}, 
is irreducible. See [19]. 

Condition 3 There is a positive strict supersolution oj (1.1) with f =  0. 

That is: there is ~e(Wlo21"(f~)c~ C(~)) k such that d0>0, ( L - H ) O > O  and either 
dp4=O on ~ or ( L - H ) O + O  in f~. 

Some notations Let u be a (vector)function in (C(f))) k. By u>>0 we mean that 
u~(x)>0 for all x e ~  (~) is open) and all components ve{1, 2 . . . . .  k}. 

For ~p in an ordered vector space we write q~ > 0 if 0 4: q~ _-> 0. 
An operator A is called strictly positive if A q0 > 0 for ~ > 0. 

Remark 1.! If all three conditions hold the supersolution t~ satisfies ~ >> 0. 
Indeed, if (L--H)t~__>0 and qb__>0, then Lqb_>_H~_>_0, hence L ~ > _ 0 ,  hence 

00~-0 or 0~>>0 by the scalar minimum principle ([23, Theorem 9.6]). Now if 
dO,-0 for ge~ and t ~ 0  for r e 6  and if both sets are nonempty, then 

k 

H , ~ 0 ~ = L , r  for ktez~. Hence H , ~ = 0  for ve[3 and H is not fully coupled, 
v = l  

a contradiction. 

Theorem 1.1 Let Conditions i, 2 and 3 be satisfied and fe(LP(~))) ~ with p>=n. 
Then the following holds. 
(i) There is a unique ue(Wt2~v(f2)~ Co(~)) k that satiffies (1.1). 

(ii) I f  f>=O then u > O ; / f f > O  then u>>O. 
(iii) There is a unique positive eigenfunction q/e(Wl2~"(fl)c~C0(~))k; ~ 0  and 
( L -  H) ~ = L ~ for some )~ > O. (Unique after normalizing). 

Remark t.2 If the Conditions 1 and 3 hold but the system is not fully coupled 
one still obtains (i) when ~ in Condition 3 is a supersolution that is strict in 
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every component (or in every fully coupled subset of components). Now the 
second part of (ii) only holds componentwise. There is still a first eigenfunction 
4 > 0 ,  but not necessarily 4>>0. The eigenfunction is unique if and only if the 
natural ordering of the fully coupled subsets is complete. 

Remark 1.3 In our proof we use Theorem 9.30 of [23] in order to solve 
(L~+13)uv=f, in ~, uv=0  on ~f~. Assuming b~, c"(.)~U~(f~), instead of contin- 
uity, will be sufficient. In that theorem it is also assumed that the domain satisfies 
an exterior cone condition. That  is the only part of our proof where the regularity 
of the domain plays a role. 

On the other hand, if one assumes Lipschitz-continuity of the coefficients 
of L~ one can solve the elliptic equation above if all boundary points are regular 
for the Laplacian. Hence the exterior cone condition in Theorem 1.1 can be 
replaced by this regularity. For  a survey concerning sufficient conditions on 
the regularity of the boundary, see [23, p. 139]. 

Remark 1.4 Assuming fE(LP(~)) k with p > n, it is possible to have the coefficients 
of H in Lq(~) with q > p n/(p-  n). 

Remark 1.5 The related eigenvalue problem: 

L u = L H u  in f2 

u = O  on ~ 

has been studied by several authors. See e.g. 1-32, 24, 9, 17]. 

Proof of Theorem 1.1 We will solve the system in two steps. In the first step 
we show for [3 large enough the following: 

L u = H u + f  in 

u = O  on ~f2 
-~  u = (L+ [3I)o l (H + ~I)U + (L+  [31)o 1 f, 

where (L+ 13I)o 1 is a diagonal matrix containing the inverse of Li + [3 with zero 
Dirichlet boundary condition on the i-th element of the diagonal. 

With A = ( L +  [3I)o 1(H+ [3I) the second step will be: 

(I-- A)u=(L+ ~I)o ~ f 

u = ( I - - A )  1(L+[3I)o i f =  ~ A ~ ( L + [ 3 I ) o t f .  
v = O  

Step 1 Set [3 = 1 v max { - c ~ (x); x e~,  1 __< g__< k}. Then the inverse of L~ + [3 with 
Dirichlet boundary conditions is well defined by [23, Theorem 9.30] as an opera- 
tor on LP(f~) ~ C(~)) and (L~ + [3)o 1 f,~ Wlo21p(92) c~ Co(fi) for all pe  [n, oo). The 
maximum principle in [23, Theorem 9.6] shows that if f, > 0 then (L~ + [3) o 1 f,  
>>0. The restriction to C(~) or Co(~) we will also denote by (L,+13)o 1. Now 
(L + [3I)o 1 ~ 50 ((C (~))k ; (C0 (~))k) is well defined and strictly positive. 
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This operator (L ,+  13)o 1 is compact as well. Indeed, let S denote the unit 
ball in C(~) and let v s S. Since f~ is bounded, I (L, + ~)~ 1 V [ ~ (L, + 13)o 1 1 and 
lim ((Lg+13)oll)(x)=0 and since W~oZ;~(f2)cC~(f~) the set (L,+[3)o~S is 

bounded and equicontinuous, and hence relatively compact by Arzela-Ascoli. 

Lemma 1.2 (L+13I)ol~((C(~)))k;  (Co(~))k) is strictIy positive and compact. 
Moreover, if fe(LP(~)) k with f,  > 0, then (( L + [J I)o ~ f), ,> O. 

Next we will show some properties of A = (L+ 13 I)o ~ (H + fi I) e ~ ((C O (fi))k). 
Since the restriction to Co(~) of every component operator is compact too, 

(L+~I)o  l eL~((C0(~)) k) is compact. Hence A is strictly positive and compact 
as the product of a bounded, strictly positive and a compact, strictly positive 
operator. The strong maximum principle [23, Theorem 9.6] also shows that 
(L ,+  13)o1~5r is irreducible, that is" Co(fi) and {0} are the only closed 
lattice ideals in Co(~ ) which are invariant under (L ,+  ~)o 1. The closed lattice 
ideals in C0(~ ) are sets {f~Co(~); f ( x ) = O  for x~K}  with K a closed set in 
~. See the first example on p. 157 of [33]. Since every component of (L + 13I) o 1 
is irreducible and since H + ~ I > I, the only possible lattice ideals, that are invar- 
iant under A, are subsets of (Co(~)) k with every component equal to C0(~ ) 
or {0}. From the fact that H is fully coupled it follows that they can only 
be the trivial ones (Co(~)) k or {0}. Indeed, let I be a non-zero closed A-invariant 
ideal, then there is 0 < f E l  with f,.>>0. If H,~=P0 then (AI)~>0. Repeating this 
argument k times we find, since H is fully coupled, that (AkfL~>0 for every 
component v. Using the second part of Lemma 1.2 we can summarize: 

Lemma 1.3 A = ( L +  ~ I)o l ( H + 1311~ 5~ (( Co(~)) k) is positive, irreducible and com- 
pact. Moreover, if 0 < fe(LP(~)) k then 0 ~ /tk + 1 f. 

Step 2 The operator ~ A ~ is well defined (and positive and bounded) if r(A) < 1. 
V=0 

By a theorem of de Pagter [29] one finds that the spectral radius r(A) is positive. 
Since A is compact and positive, the Krein-Rutman Theorem [27] shows that 
r(A) is an eigenvalue with a positive eigenfunction. Similarly, since the dual 
operator A' too is compact (Schauder) and positive, r(A) is an eigenvalue of 
A' with a positive eigenfunction ~e((C0(~))k) '. Let ( . , . )  denote the pairing 
between (Co(~)) k and its dual. The operator A' is defined by (A'~,  u) = ((I), A u). 
Since A is irreducible it follows that �9 is strictly positive. Indeed, let ue(C0((2)) k 
satisfy u>0.  Then there is m such that ( ~ ,  A " u )  > 0  and it follows that ( ~ ,  u) 
=(r(A))-m(~,  A " u ) > 0 .  See [33, Proposition III.8.3]. In the first appendix we 
state some of the results on Banach lattices that are used here. 

By Condition 3 there is 0e(C(~)) ~ such that (L + ~ I ) ~ > ( H + ~ I ) ~ > O .  By 
the strong maximum principle [23, Theorem 9.6] and the fact that ~ is a strictly 
positive strict supersolution, one finds that ~ > ( L +  13I)o~(H+ [3I)~=Aq~>0. 
Since �9 is strictly positive this results in ( ~ , 4 ~ ) > ( ~ , A ~ ) =  
( A ' ~ ,  O~)=r(A)(~ ,  ~ ) > 0 .  This shows that r(A)< 1. With Lemma 1.3 we find 
that A k + 1 (L+ 13 I) o ~ f-> 0 if f >  0. We may conclude: 

Lemma 1.4 T= ~ A*(L+13I)o~e~((L~(f~))k; (W~oiP(~)c~ Co(~)) k) is well defined. 
v = O  

The restriction of  Te  ~( (Co(~) )  k) is positive, irreducible and compact. Moreover, 
/f 0 < fe(LP (f2)) k, then 0 ~ Tf. 
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A solution of (1.1) is defined by u = Tf. The positivity shows uniqueness. 
It follows from the results stated in the first appendix, among them the 

Krein-Rutman Theorem [27], that T has a unique positive eigenfunction t~ 
with eigenvalue r (T)>0 .  Then ~ is an eigenfunction of L - H  with eigenvalue 
r (T) -1 .  Moreover, every eigenfunction of L - - H  in (Co((~)) k is also an eigenfunc- 
tion of T. This shows the uniqueness of the positive eigenfunction. []  

Bandle [-5] remarked that a similar proof holds for other boundary condi- 
tions as well. We might even have different boundary conditions for different 

d 
components. Consider Neumann boundary condition By uv = - ~ / ~  uv, where n 

is the outward normal. We have (with sufficient regularity) when [3 is large 
enough, for 

(Lv+ [3) uv= fv in fL 

Bvuv=0 on c?fL 

a compact and strongly positive solution operator (L~ + [3)by I e ~ (C (~); C(~)). 

Corollary 1.5 Let Conditions 1, 2 and 3 be satisfied. Let  p > n. 
I f  ue(Wlo2~.P(~2) c~ C(~)) k satisfies 

(1.2) L u = H u + f  in f~ 

u=~b on 0~;  

with 0__< f6(LQ~)) k and 0__<~(C(0~)) k, then 0<~u or 0=u.  

Proof  Let ]3>0 be large enough. By [23, Theorem 9.18/9.30] there is a solution 
w ~ ( W & ( ~ )  ~ c ( ~ ) )  ~ of  

(L+ [3I)w=0 in D 

w = ~  on ~ .  

The function w is nonnegative and satisfies w,,~> 0 if ~ >  0. Then v = u - w  is 
the nonnegative solution of 

L v = H v + f + ( H + [ 3 I ) w  in 

v = 0  on ~f~. 

By Theorem 1.1 one finds that v>>0 if ( f+ (H+[3 I )w)>0 .  Since u = v + w > v  the 
result follows. [] 

The maximum principle for one equation does not use any regularity for 
the domain. To have a similar result for systems we have to modify Condition 3. 

Corollary 1.6 Let f~ be an open, bounded and connected subset o f  ~" .  Suppose 
Conditions I, 2 and 3 are satisfied. Moreover suppose dO in Condition 3 satisfies 
Op > ot 1 on ~ jor  some ot > O. Then u c(Wl2~P(~)c~ C(~)) k, with p > n, such that 

( L - - H ) u > 0  in 

u=>0 on Off2 

satisfies either u = 0 or u >~ O. 
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Proof. Suppose that uv(x0)<0 for some Xoef~.  Let c > 0  be the smallest number 
such that w = u + c ~ b > 0 .  Since w~(x)>0 for x in a neighbourhood of ~ ) ,  there 
is f l l  c ~  with smooth boundary, with w~(x)>0 on F~\~)a and such that Condi- 
tion 2 still holds on ~ .  Theorem 1.1 on f~  shows w>>0, a contradiction. If 
u_->0 then for every smooth domain fl~ cf2,  with F~\~ 1 small enough, Theo- 
rem 1.1 shows u>>0 or u = 0  in f~  and hence in ft. [] 

2 On conditions similar to Condition 3 

In order to have the literal version of the strong maximum principle, that is 
the following implication holds for all MMR + and f < 0  with 1 =(1 . . . . .  I) 7 .̀ 

L u = H u + f  in 

n ~ M I  on ~ 
u ~ M l  or u = M 1 ,  

we would need Condition 3 with qb = 1. 
In other words 

k 

(2.1) - c ~ +  ~ H~v__<0 for all g, 
v = 0  

which is the genuine restriction of Protter and Weinberger [31, (7) p. 190, 192]. 
De Figueiredo and Mitidieri use in [-21, 22] a supersolution ~ for which 

every component lies above c d(x, Of~) ~ (c>0,  9 < i). 
Consider the related parabolic system: 

(2.2) ( I ~ t + L )  u = H u + f  in E=f2  x (0, T) 

u(t) = e ( t )  

u ( 0 ) =  Uo. 

on (?~ for te(0, T) 

From semigroup-theory (see [14, Proposition7.1]) one knows that a 
Co-semigroup is positive if (and only if) the resolvent operator ( )~ I+L-H)  -~ 
is positive for all )~ large enough. For  Condition 3 this corresponds with the 
existence of dO>0 such that O~I+L--H)O>O for all Z large. Since qb=! will 
do, Conditions 1 and 2 are sufficient for a similar theorem in the parabolic 
case. 

Let f, t~, no>0.  One obtains if am( t0+0  that u(t)>>0 for all t>t~.  
For  a strong maximum principle for one equation Walter in [35] uses ~b 

that is strictly positive but not necessarily a strict supersolution. A similar result 
holds for systems. 

Condition 3a. There is a supersolution ~e(Wlo21"(f~)~C(D)) k of (1.1) with ~ > 0  
and ( L -  H) O? >= O. 

Assuming 0 o >> 0 instead of t~ > 0 is not really a restriction. 
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Corollary 2.1 Let Conditions 1, 2 and 3 a be satisfied. Let p > n. 
(i) Then there is a unique positive eigenJunction ~b6(WloZ~P(~)c~Co(~)) k with 

( L -  H) ~ = )~ dy for  some k >= O. (Unique  after normalizing). 
(ii) Let  uE(W[o2~P(~)~C(~)) k with u>=0 on ~f~ satisfy ( L - H ) u = > 0 .  I f  u satisfies 
u > -- M ~ / for  some M > O, then one o f  the jbllowing holds. 
(a) u = O  or (b) u>>O or (c) u = ~ t  with ~ < 0 .  

Remark 2.1 if  fl  has a uniform interior ball condi t ion it follows from the strong 
max imum principle that , ~ ( x ) > T d ( x ,  ~fl)  for every component  v (some 7>0) .  
See [35, Lemma 1]. Hence, if u is Lipschitz cont inuous and u__>0 on ~[l, then 
u > - M  ~ for some M. Then statement  (ii) becomes similar to the one in [35]. 

Proof  After replacing (L - -H)  by ( L + I - H )  Theorem 1.1 shows part  (i). 
(iia/b) Condi t ion 3a is weaker only i f ( L - H ) 0 = 0  in f~ and ~ = 0  on c'~ Ft. Hence, 
if these two equalities do not  hold, we can apply Theorem 1.1. Indeed, let 
be large enough. Since u > 0  on (?f~ and ( L + ~ I ) u > ( H + 1 3 I ) u  Theorem 9.6 of 
[23] shows that  u > (L+ 13 I)0- ~ (H + [3 I) u. Then w = (L+ [3 I)o ~ (H + [3 I) u satisfies 

(2.2) L w = H w + f  in 

w=O on gfL 

The function f = ( H  + ~ I ) ( I - ( L +  131)o ~(H + [3I))u satisfies 0 < f e ( C ( ~ ) )  k. F rom 
Theorem 1.1 it follows that  w = 0  or w ~>0 and hence u = 0  or u>w>>0.  
(iic) If ( L - H ) ~ b = 0  in ~ and qb=0 on 0 ~  it follows from Theorem 1.1 that  

is (a multiple of) the unique positive eigenfunction and the eigenvalue k = 0. 
Notice that  v = M ~ + u > 0  and ( L - H ) v = f > 0 .  If v > 0  on D~ or f > 0  then 
Condi t ion 3 is satisfied, with dO replaced by (L+13I)o ~ (H+13I )v ,  and the first 
eigenvalue is positive, a contradict ion.  Hence v = 0 on 0 ~ and ( L - H ) v  = 0, which 
shows that  v, and hence u, is a multiple of ~. [ ]  

We will end this section with a special case of(1.1). 

Corollary 2.2 Suppose that the Conditions I and 2 are satisfied and suppose H 
is a constant matrix. Moreover let the operators L~ have a common eigenfunction 
v ~ O  ( v = O  on 0~)) with L~ ,v=k~v  for all p. 

Let  A = (k,). 7hen the following two statements are equivalent. 
(i) There is a vector pe lR  k with p > 0  and ( A - H ) p > 0 .  

(ii) I f u  satisfies (1.1) with f > 0 ,  then u > 0 ;  if f > 0  then u~>0. 

Proof  o f  Corollary 2.2 (i) ~ (ii): Condi t ion  3 is satisfied with ~b = v p. 
(ii) ~ (i): If ( A - - H ) p = 0  then it follows from (ii) and ( L - H ) p v = v ( A - H ) p = O  
that p v = 0 ,  and hence p = 0 .  So A - H  is nonsingular  and there exists a vector  
p with ( A - H ) p > 0 .  Again by (ii) and ( L - H ) p v = v ( A - H ) p > O  it follows that  
p v > 0 a n d h e n c e p > 0 .  [ ]  

Remark 2.2 Suppose Condi t ion 1 holds. Then  the following four s tatements are 
equivalent for constant  H (see [7, pp. 134--138]): 
(iii) A - H  is a nonsingular  M-matr ix ;  
(iv) A - - H  is semipositive in matr ix sense; there is pe lR k with p~>0 and 
( A - H ) o > >  0 ([7, 127]); 
(v) all the leading principal minors  of A - H  are positive ([7, E 17]); 
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(vi) A - - H  is inverse-positive in matrix sense: ( A - H )  i exists and each element 
o f ( A - H )  1 is positive ([7, N38]). 

De Figueiredo and Mitidieri show in [21] by a different proof that, for coop- 
erative systems with constant coefficients and L , = A ,  (v) is a necessary and 
sufficient condition in order to have a maximum principle. Another proof of 
this result by using (vi) instead of (v) is given by C16ment and Egberts in [15]. 

Remark  2.3 Suppose Conditions 1 and 2 hold and H is constant. Then the state- 
ments (i) in Corollary 2.2 and (iv) are equivalent. One direction is trivial, the 
other is shown as follows. 

Let p be the vector in (i), and set A=(A+I3 I )  1(H+13I), with 13 positive 
and large enough for A+I3I  to have strictly positive diagonal elements. Then 
A is a positive operator and p > A p > A 2 p > . . . > A k p > O .  Since the system is 

k--1 

fully coupled one finds p >> A k p. Then K = ~ A m p satisfies K >> 0 and 
m--0 

( A -  H) K = ( A  + [3 I)(p--  Ak p)>> O. 

3 Near the first eigenvalue 

In this section we will fix p>n .  Condition 3 will be satisfied if one replaces 
L by L--c  for some c sufficiently negative (take ~ = 1 and - c  1 >](g-H)~pI) .  
Then TO: (LP(f~)) k ~ ( C o ( ~ ) )  k defined, for [3>0, by 

ct) 

T ~ = ( L - c I - H ) o  ~ = y ,  { (L+( f~ - - c ) l )o l (H  +fJI))~'(L+(fJ--c)I)o 1 
v=O 

is compact and strictly positive. T"((LP(~)) k) with norm i l (L--cI  H)ullr is a 
Banach space. Since L - X o I - H = ( I  ( c - L o ) T C ) ( L - c I - - H )  we find from Theo- 
rem 1.1 : 

Proposition 3.1 Suppose Conditions 1 and 2 are satisfied. Then there exists ~,o e lR 
such that 
(i) L - X o I - H :  TC((LP(~))k)---*(LP(~)) g is a Fredholm operator of  index O, and 

~ # ( L -  X o I -  H) = span {no} with u o >> 0; 
(ii) for  )~ < ~,o the operator r ~ = ( L -  ~ I - -  H)o 1 : (Lp(f~))k __, (C o (~))k exists and is 
compact. M o r e o v e r , / f  0 < ue(LP(f~)) k then 0 ~ T ~ u. 

Remark  3.I Barta proved in [6] that the lowest eigenvalue Z, o of 

- A u = ~ , u  in fL 

u=O on tVf~, 

satisfies, if w E C 2 ( ~ )  and w(x)>0 for all xef~, 

;~o=>inf{ - A w ( x )  } 
w(x) ; x e f ~  . 
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The result has been extended to nonselfadjoint scalar problems in [30]. A similar 
result holds for systems that satisfy Conditions 1 and 2. For  a function 
we(C(~) ~ C~(f~)) k that satisfies w>>0, we find: 

~'~ ( w,.(x) xe fL  . . . . .  r e { l ,  k}}. 

Denote this infimum by )~w. Since w ~ 0  it follows that ( L - k ~ l - H ) w > = O .  If 
the last inequality is not an equality or if w + 0  on ~f2, we find that Condition 3 
is satisfied for L - - Z , , I - H .  Hence by Theorem 1.1 k o - k ~ >  0. In the case of 
two equalities w is a multiple of the first eigenfunction and Z0=)~,,. From the 
last fact we also find: 

Lo = sup {Zw; 0 <{ we(C(~) ~ C 2 (fft))k}. 

For 2.--Lo>0 but small enough there is an anti-maximum principle as in [12] 
at least when the boundary 6f~ is C ~'1. The proof is similar to the one of 
C16ment and Peletier. Instead of assuming this regularity, we prefer to assume 
the consequence of this regularity that is used in the proof, namely a compact 
imbedding of appropriate Banach spaces. As a result one will still have an 
anti-maximum principle for a smaller class of right hand sides when the bound- 
ary is less smooth. 

Following arguments from [2, 3] we define, using the eigenfunction Uo from 
Proposition 3.1, the ordered Banach space (even a Banach lattice) 

~={ue(Co(~))~; lu( ') l<~:Uo(')  for some x>0}  
with norm 

"ull~ = sup { ;-}!~!x! x ( u o )  ~ ix,, ; x~ f2, v~ { l . . . . .  k}}. 

Condition 4 There exists a Banach space ~J~l with ~ , ~ 1  c+(LP(ff2)) k, such that 
TC: ~1 --+~J~ is compact. 

if  f~ has a Cl ' l -boundary  it follows from the construction of T c and [23, 
Theorem 9.15] that T C u~(W2'P(f~)r Co(~)) k for u~(LP(~)) k. By the Rellich-Kon- 
drachov Theorem ([1, Theorem 6.2]) WZ'V(f~) is compactly imbedded in C 1 (~). 
The strong maximum principle shows that u0>>0 and Uo(X)>>~d(x, #~)1 (some 
cz>0) for xef l .  Then ve(C 1 (~)~  Co(f))) k satisfies [v]<cuo.  Hence we may take 
'~1 = (LP (f2)) k. 

Theorem 3.2 Suppose Conditions 1 and 2 are satisfied and let ~,o be as in Propo- 
sition3.1. Take O<fE(LP(f~)) k and let ue(WloZlP(f~)r k be a solution o f  
( L - - k l - H ) u = f .  
(i) I f  ~o<~,  then O~u, that is, fi~r some component v and some x ~ :  u~(x)<O. 

(ii) Suppose Condi t ion4 also holds and that f ~ .  Then there is fi>O, which 
depends on f, such that, whenever E o < X < k o + ~, it fol lows that u ~ O. 

Remark3 .2  If Z = k  0 and O<f, then there is no solution in ~.  If u ~  is a 
solution, then for n large enough u+Ku0 is positive and satisfies ( L - - L o I  
- H ) ( u + n u o ) = f > O .  Hence the conditions of Theorem 1.I for L - k o l - H  are 
satisfied and its first eigenvalue is positive, a contradiction. 
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Proof (i) Suppose ;%<;~ and 0_-<u (u4=0 since f=t= 0), then Condi t ion  3 is satisfied 
for L - k I - H  and ~<~-o by Theorem 1.1, a contradict ion.  
(ii) The p roof  of  the second part  uses the ideas of [12]. 
(iia) Define the Banach space 

~ = T C ( ~ l ) ,  

with the no rm I I (g-  c I -  H) u!l 1 and set Y = (L-- ;% 1--  H) ~ .  First we show that 

(3.1) N' 1 = span {Uo} @ ,9 ~. 

Since (L-- ;% I -- H) = (I - ()~o -- c) T c) ( L -  c I -- H) e S (~ ;  3~ 1 ) is a F redho lm opera-  
tor of  index zero, it is sufficient to show that  Uor Let Te  c~((Co(~)) k) denote 
the restriction of T c. T is compact ,  strictly positive and irreducible. Similar as 
in step 2 of the p roof  of Theorem 1.1, the dual opera tor  T'  is also compac t  
and strictly positive, and r(T') = r(T) = ()% - c)-  1 > 0. By the Kre in -Ru tman  The- 
orem there exists a strictly positive eigenvector ~o of T '  with T ' ~ o = ( ;  % 
--C) -11"T/J 0. Hence (Wo, Tuo)  = (Zo- -c )  1 <~o, no) >0 .  

Suppose  f E ~  that  is, there exists w E ~ l  such that f=(L-~,oI-H)TCw= 
w - (;% -- c) T ~ w. It follows that  

(~o ,  T~f) = (To ,  T w-- ( ;%--  c) T TCw) = (hUo, TCw) -(;L o -- c) (~go, T T~w) =0 .  

This shows that  UoqL~ Moreover ,  we can define cont inuous  projections Po: 
~1 --+ span {uo} and I - P o '  ~1 --,5~ in the following way:  

<~o, T~ f> 
(3.2) Po f=( ;ko -C)  <To, Uo > uo for f ~ l .  

Clearly Po f = O for fe  c f  and P0 uo = uo. 
Secondly we show that  T~(CJ)c~.  Let u~T%9"O. Then it follows that there 

exists w e ~1 with u = T ~ ( L -  Z o I - H) T ~ w = ( L -  Zo I - H) T ~ T ~ w e o~ Hence one 
also has ~ c~ 5f = T~(,~) and 

(3.3) ~ = span {Uo} | T%~) .  

(iib) The  decomposi t ion  is invariant  under  (L- ;~  I - H )  for arbi t rary Z. 
If wE(L-;~I-H)T~(Sf) then w=(L-; , I -H)Tr for some 

u ~ l .  Since (L--?~I--H)TC(L-)~oI-H)Tu=(L--~oI--H)T(L--)~I--H)T~u, 
we find that 

(L--)~ I -- H) T~(cJ ~ ~ Y.  

Clearly (L-- Z I - H) Uo = (~-o - )~) Uo. 
Let (L-EI-H), .  denote the restriction of (L--)~I-H) to Tr There is 

5 ~ > 0  such that  for k < ~ , o + 8 ~  the opera tor  (L-E1-H)r: T ~ ( c ~ ) ~  is an 
i somorphism and, for [ E - Z 0 [  < 8  t, T~=(L--),,I--H)71 is an analytical function 
of  ~,. 

Fo r  0 < ] k -  kol < 6~, by setting f =  Po f +  f~ with fl = (I - Po) f~ ~, the solut ion 
u can be written as 

- 1  
(3.4) u - -  Po f +  T~ f 1 . 

~ . -  ~,o 



Strong positivity in C(fi) for elliptic systems 261 

(iic) Since T)~=T~~ L((X-)~0)T~~ and T, ~~ J ~  is compact, there exists 
n = O  

Cs>0 such that ITfffl I[,,<c s for all X with I )~-)~ol <�89 Hence 

(3.5) --Of no ~ T : ' f  I ~ c f u  0 . 

Let Po f =  ~ uo. By (3.4) and (3.5) it follows that 

+4 uo 

Set/5 = min {�89 ~ ,  %7 a ~}. For X~(ko, ;% +/5) one finds u ~ 0. [] 

4 When the coupling matrix is not essentially positive; the non cooperative case 

One will not find a positivity result for a system with large 'negative coupling' 
or with small negative coupling and general positive boundary values. 

Weinberger in [36] considers invariant sets for elliptic systems which are 
not necessarily the positive cone. Cosner and P.W. Schaefer in [16] consider 
restrictions of the cone for the right hand side that allow a decoupling. Results 
in a different direction are obtained by using the following result from potential 
theory. 

Under sufficient regularity of the boundary and the elliptic operator L, there 
is e > 0  such that for all f >O: 

(4.1) (I-- ~(L)o a)(L)o 'f>> O; 

(L)o ~ is the inverse of L with zero Dirichlet boundary condition. 

This result (see (6.8) in the appendix) shows that u~>0 if f > 0  in 

(4.2) L u = f - e v  in 92, 

L v = f  in 92, 

u = v = 0  on 092. 

Results for this system can be found in [34, 8, 1 0]. 
The estimate is used for right hand side f with some components equal 

to zero in [1 1] to obtain a solution with all components positive. 
We will consider the non cooperative case as a perturbation of the coopera- 

tive system (1.1) and allow all positive right hand sides f Uniformly with respect 
to f, we get positivity of some fixed components of the solution. 

Consider 

(4.3) L u = H u - - a P u + f  in f~ 

u=O on 8~;  
with 
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(i) P=(~ ~), where P is a constant m x(tc-m) matrix with Pu>O; 

(ii) H is constant and L~=L~ for all rE{l ,  2 . . . .  , k} with c I >0 ;  
(iii) if n>3 ,  the coefficients of L, are Hblder continuous and (?f~eC"~; if n=2 ,  
the coefficients of L, are Lipschitz continuous and ~f~eC 2'~. 

Let :t respectively 13 denote the first m, respectively the last k - m  components 
and rewrite (4.3) as: 

L=u~=H~=u:+H=~u~-aPu~+f= in fL 

L~u~=H~u~+H~u~+f~ in f2, 

u ~ = 0  on 0f~, 

u~=0 on c3f~. 

Set u~ = v~-w~ such that the system becomes: 

(4.4) L,w==H=~w=+gPu~ in fL 

L, v= = H=~ v, + H=~ u~ + f~ in fL 

L~u~=H~v~+H~u~--H~=w~+fl~ in f~, 

w==O on Of~, 

v:=O on ~f~, 

u~=O on #f~. 

To solve for w,, we have to consider the system 

(4.5) L~f i=H~,f i+~ in ~, 

f i=0  on 0~,  

which is not necessarily fully coupled. However, since ~(=(L--H)o 1 1 > 0  we 
have that (L,-H, , )?&=H,~ z~+l ,>>0 and Condition 3 is satisfied on every 
fully coupled component.  Use Theorem 1.] on these subsets and one finds that 
( L , - H ~ ) o '  is well defined and positive. Hence (L~--H~,)o'  P is positive and 

w~ = g(L~-- H ~ ) o  1 p u~. 

Set v=(v, ,  u~) and define B: (Co(~)) k -, (Co(~)) k by 

(: 0 ) 
(4.6) B = H ~ , ( L ~ -  H ~ , ) o '  P " 

This yields a boundary value problem with the non local term B: 

(4.7) L v = H v - - ~ B v + f  in fL 

v=O on ~ .  
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The solut ion u is then as follows: 

(4.8) u , = v ~ - e ( L ~ - - H ~ )  Ipv~ ,  

Ufi = V [ ~ .  

We will show that  we do have a uniform positivity result for v, and hence 
for u~. In general such a result can not  be found for the other  components  
ofu .  

F rom (4.7) we find that  v = - c ( L - H ) o  1 B v + ( L - H ) o l f  and hence, since 
( L - H ) o  ~ and B are bounded  operators  in (Co((~)) k, for ~ small enough:  

v = ~ ( - ~ (L-- H)o 1 B) v ( L -  H)o  a f 
v = O  

is well defined. Moreover :  

(4.9) v =  ~ (a(L--H)o ~ B)2v(I -e(L--H)g ' B ) ( L - H ) o  I f. 
v = O  

Since ( L - H ) o l B  is a positive operator ,  it is sufficient to establish positivity 
of the opera tor  K~: (L v (f~))k __+ (Co (~))k defined by: 

(4.10) K~=(I - -~ (L-  H)o'  B ) ( L - H ) o '  

For  ( L -  H)o ~ we can use the expression from L emma  1.4 and with setting [3 = 1 

we get (L-- H)o ~ = ~ ((L+ I)o t (H + I))"(L+ I)o 1. 
,v=0  

Lemma 4.1 Let p>=n. Assume the Conditions 1, 2 and 3 are satiffied for (1.1). 
Also let (i) (ii) and (iii) be true. Then there is a constant c > 0  such that .for 
all ue(Lv(f~)) k with u > 0: 

(4.11) 
k - I  k -1  

C-I E f f ' + ' ( U + l ) ~ u < ( L - H ) o  'u<=c ~ f f ~ + ' ( H + I y u .  
v = O  v = O  

Moreover, if ~ is a subset of {l, 2 . . . . .  k}, then there is a constant c>O such 
that jbr all u~ ~ (Lp (~))~ with u, >= 0: 

k--1 k -1  

(4.12) c ' ~ o~v+l(H~+I)Vu~<=(L~-H~)o lu'<=c ~o~-v+a(H,~+/)vu,. 
v = O  v = O  

Here ~ denotes the operator defined by (~- u)(x)= S F,(x, y)u(y)dy,  F. is defined 

in (6.3) and (6.4) of the appendix, n 
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Proof The left hand side inequality of (4.11) is a direct consequence of 

(L--H)-~ = ((g+l)-l(H+l))v(g+[)-l>__ ~ ((L+I)-t(H+I))~(L+I)-~, 
v = O  v = 0  

and Theorem 6.1 and the remark thereafter. For  ( L ~ - H ~ ) o  i the analogue holds. 
Proof of the right hand side: 

(i) Decomposition 

Because of assumption (ii) we can write 

(L--H) 1= ~ ( L 1 + I  ) tv+l)(H+l),." 
v = O  

Let q0~Co(~) be the first eigenfunction of L1 with eigenvalue X o. Since H + I  
is irreducible, (H + I) k- 1 contains just positive elements and the finite dimension- 
al version of the Krein-Rutman Theorem gives an eigenvector ~ e N  k, with ~i > 0  
for all i and with eigenvalue p(H + I). Set go = 9(H + I)--1. Then: 

(4.13) ( L _ H ) _  1 q) ~ = ~ ()~o + 1)_~v+ ,)(po + 1)v q0 ~ _  1 q~. 
v = o ~ o  - Po 

From Condition 3 it follows that )~o > go. 
Since ~>0  there are positive numbers cl and c 2 such that for every 

jE{I,  2 . . . .  , k}, with ej the j - th  unit vector: 

(4.14) cl (H+I) k 1 ej<=~< c:(H+I) k- 1 ej. 

For the second part let ~j be the unit vector in IR: and ~ the restriction of 
to IR ". Let i~ ( j ' )  if ((H~+I)k-l~j)i@O ( j ccz ( j )~ ) ,  and let n~(j) denote the 

projection on the ~(j') components. Then, for some ci, c2 >0:  

(4.15) Cl(H~+I)k-1 ~j<=n~(j)~ <=Cz(H~+l)k l~j, 

and 

(4.16) (H, ,  + I) n~t~)~, = n~tj~(H,, + I) n,tj)~ 

(ii) Componentwise 

Applying ( L - H ) - 1  to uj ej, with uj > 0, one gets" 

(L-- H) -  1 uj ej = ~ ((L+ I)-  1 (H + I)) ~ (L+ I) i uj ej 
v = 0  

k - 2  

= ~ (L1 + 1) -~v+ 1)uj(H+i)~e~ 
v = 0  

+(L1 + 1) 1 -k ~ (L1 + l) -(~+ ~) uj(H+I) '(H+ i)k-~ ej. 
v = O  
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Since all the involved operators are positive, (4.14) shows" 

(4.17) ct(L~ + 1) ~-k ~ (L1 + 1) -l~+~) u:(H+I)~(H+I) k ~ e i 
v=O 

< ( L I + I )  t-k ~ (L~+I)  ("-:)uj(H+I)"~ 
v = 0  

__<(L1 + 1)1 k ~ (L, + 1)-(~+~)(lao+ 1)vUj~ 
v=O 

=(L 1 + 1) ~ -k(L, -I.to)-' u;~ 

< ~ c 2 ( L 1 + 1 )  1 k ( L  1 p o ) - l ( H + / )  k l u j e j .  

Hence there is c > 0 such that 

(4.18) ( L -  H) ~ ujej 

<=c ~ (LI+I) - t"+II (H+I)~+ILI+I)  1 k(gl--I.lo) l (S+I )k -1  ujej. 
\ V  ~ 0 

Using (4.15) and (4.16) in (4.17), with n~tj)r instead of r and H:~ instead of 
H, we get the analogous inequality for (L~--H:O -1 uj~s. Since this is true for 
every component, we can replace uj ej by u in (4.18), respectively uj ~j by u~. 

( iii) Estimates for the Green functions 

Using the result stated in Theorem 6.1 and the remark thereafter there is c > 0  
such that 

k - 2  

E (L1 + 1)-Iv+ 1)(H + i)v u + (L~ -- Po)-a (L, + 1)' -k(H + I) k- 1 U 
v=O 

k - 1  

<c ~ ~ + 1 ( H  +I)~u. 
v = 0  

With (4.18) it shows the right hand side of(4.11). Similarly we obtain (4.12). []  

By using Lemma 4.1 the sufficient condition for positivity will be merely 
algebraic. Define the diagonal matrix E~ by: 

(E,)ii={1 if iE~, 
0 if ir 
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Theorem 4.2 Assume the Conditions 1, 2 and 3 are satisfied for  (1.1). Also let 
(i), (ii) and (iii) be satisfied. Suppose that for  some e > 0: 

v + l  

(4.19) E~(HE~)"P<c  ~ H" 
s = O  

for r e { l , 2  . . . . .  k 3}. 

Then there is % > 0  such that, fi)r all ~e[0, %) and fe(Lp(~)) k with f > 0 ,  the 
solution v of  (4.7) satisfies ~ >> 0 or v = 0 = f. Hence respectively ul~ >> 0 or u = 0 = f. 

Remark  4.1 For 3 x 3 systems condition (4.19) is void. 

Remark  4.2 Although for every f > 0  with f i>0  for ieT, there is e i > 0  such 
that for every ~e[0, es) the solution u satisfies u>>0, one cannot expect a uniform 
result for u as Theorem4.2 states for v. Hence, the result above cannot be 
used for the parabolic case. By discretizing the time variable and solving the 
elliptic problem for every time step one looses positivity of the inhomogeneous 
term after the first step. 

Proof  We will show that the operator K~, defined in (4.10), is positive for ~: 
positive but small enough. By Lemma 4.1 we have appropriate estimates for 
( L -  H)o '. 

in order to show that ~(L--H)o 1 B ( L - H I O * < ( L - H ) o  I for some ~>0  it 
is sufficient, by Lemma 4.1, that for some c > 0 

(4.20) 
k - I  k - 1  k - 1  

~ Z . ~ ' ' v + ~ + 3 ( H + I ) " E ~ H E ~ ( ( H + I ) E ~ ) V P ( H + I )  ~ 
p = 0  v = 0  x = 0  

k - - I  

__<c F~ 3 ~ + ~ ( H + I )  ~. 
v = 0  

Notice that (H + I) k- ' has strictly positive entries. Since we know from Corol- 
lary 6.2 of the appendix that there is c > 0  such that . ~ 2 < c , ~  (and for any 
celR: o ~ $ c ~  2) we may show just as well that there is c > 0  with: 

k - 1  k - 1  k - 1  k - 1  

2 2 2 ~"+"+'+3H"E~HE:(HE:) *PH~<=c 2 o~v+~(H+I) ~" 
I~=0 v = O  ~ = 0  v = O  

This last inequality is true if and only if there is c > 0 with 

k - - 1  

f ly+ 3 E~(HE~),,+ 1 P < c  ~ ff~a+l ( H + I ) "  
g = 0  

for all ve{0, 1 . . . . .  k - l } .  

Again since ~ " 2  ~_ Co~- and ~-;~c,~ -2 it is sufficient that" 

v + 2  

�9 ~-"+3E~(HE~) v+l P ~ c  ~ ~ " + I ( H + I ) "  
l a = 0  

for all ve{0, 1 . . . .  , k - l }  
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or equivalently, there is c > 0  such that: 

v + 2  

E~(HE~) ~+1 P < c  ~ H ~' 
lu=O 

for all va{O, 1 . . . . .  k - l } .  

Finally, since H is irreducible we have that the matrix I + H + . . .  + H k 1 contains 
only strictly positive elements. Which means that it suffices to check the last 
inequality for re{0,  1, ..., k 4}. [] 

We will end this section with an example. 
Let f2 be a bounded, sufficiently smooth domain in IR". Let u be a solution 

of 

(4.2i) ( - -A+  i)ll I :O2--~ . l l4+f  1 in s 

(--A-+- I)uz=U3-~:u4+f2 in ~, 

( - A +  l ) n 3 = u 4 + f  3 in ~, 

( - A +  l )u4=u  I +['4 in ~, 

u 1 = u 2 = o 3 : u 4 : 0  on ~?~. 

The conditions of Theorem 4.2 are satisfied for this system. Hence there exists 
c o>0  such that for all e~[,0, e0) the following holds. For f > 0  the solution 
u satisfies u3>>0 and u4>>0. 

5 Appendix 1 

In this paper we used the following results on a Banach lattice E with dim(E)> 1. 

Krein-Rutman Theorem [27] Let Tc2~(E)  be a compact and positive operator 
with r = r ( T ) > 0 .  Then there is O < u ~ E  with T u = r u .  

De Pagter Theorem [291 Let T e e S ( E )  be a positive, irreducible and compact 
operator. Then r (T)>0 .  

Corollary (of [33, Theorem V.5.2]) Let Te2~(E)  be a positive and irreducible 
operator with r = r(T)  > 0 as an eigenvalue a~d T' do = r do .for some 0 < do E E'. Then : 
(i) r is the unique eigenvatue o f  T with a positive eigenvector ; 

(ii) {uEE; T u = r u }  has dimension one. 

6 Appendix 2 

In Sect. 4 we used pointwise estimates for Green functions. With sufficient regu- 
larity of the coefficients and of the boundary of the domain all Green functions 
for second order elliptic operators (zero Dirichlet boundary conditions) have 
a similar behaviour. Results of this type have been obtained for n > 2 by Hueber 
and Sieveking [25, 26] and independently by Zhao [-37] and Cranston et al. 
[-18]. Results for n >2  are published by Ancona in [4]. 
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Theorem 6.1 (Hueber-Sieveking) Let L be a strictly elliptic operator on ~ with 
n > 2 :  

{6.1} L = - -  aij(') ex iOx j  F-Zbi(')-(Sx +c( ' )  
i j  i 

with HOlder-continuous coefficients and c >O. Let f~ be a bounded C~'l-domain 
and let G denote the Green Jhnction (zero Dirichlet boundary condition). Then 
there is ~ > 0 such that." 

i6.21 cx-l F,(x, y)<=G(x, y)<czF,(x, yt for x, yu fL  

with 

t6.3} F,(x, y)= Ix--y[-"  min(d(x, (?f~) d(y, ~f2), I x - y lZ ) .  

In Theorem 8 of [4] Ancona states a similar estimate. Let L~ and L 2 denote 
second order strictly elliptic operators as in (6.1). He assumes that L1 and L2 
have Lipschitz continuous coefficients and that the domain (in IR n with n__>2) 
has a C 2'~ boundary  except at a closed set O. At �9 the boundary is Lipschitz 
and satisfies some technical conditions. If L~ and L2 have the same principal 
part  on q~ there is c > 0 such that the corresponding Green functions satisfy 

G l ( x ' Y ) < c  for all x, ye fL  
C- 1 =< G2(x, Y) = 

By using a result of Zhao in [38] we obtain (6.2) for n = 2 with 

(6.4) Fz(x, y)=log(1  +d(x,  Of~) d(y, ?~f~) [ x -  yl z). 

As a consequence of Theorem 6.1 one gets" 

Corollary 6.2 Let f2 be a bounded Cl'l-domain in IR" with n>-_3. Let LI and 
L 2 be two elliptic operators satisfying the conditions of Theorem 6.1. Let G~ and 
G2 denote the Green functions. Then there is [3 > O, depending on ~, such that" 

(6.5) Gl(x ' z )  G2(z' Y) <=f3(lx-zl2 " + l y - z l  2 ") for x,y,z~g~. 
G 1 (x, y) 

Remark 6.1 Cranston et al. [18] showed a theorem related to Corollary 6.2 
(which they call the 3 G Theorem) to obtain the estimates for the Green functions. 

Zhao  showed in [38] a similar estimate for n = 2  and L = - A .  Using the 
result of Ancona the equivalent of (6.5) for n = 2 is: 

(6.6) G1(x, z) G2(z, y) < c ( m a x ( - l o g  I x - z l ,  1 ) + m a x ( - l o g  l y -  zl, 1)). 
G1 (x, y) 

It follows from (6.5) respectively (6.6) that there is M ~IR such that: 

(6.7) S Gl (x ' z )  Gz(z'Y) d z < M  foral l  x, yef~. 
n G1 (x, y) - 
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Then for a <  M-1  and 04=f>0 it follows that: 

(6.8) ((I -- e(L2) o ') (L1)o lf)(x) 
= j  G t ( x , y ) f ( y ) d y - e j  y G 2(x,z) G, (z ,y ) f (y )dydz  

F~ ~ f l  

= j" 6,(x,  y) 1 - e  c~(x, y) 
t~ 

> ~ Gl ( x , y ) ( l -aM) f ( y )dy>O for x e n .  
gl 

Remark 6.2 If L1 =L2 = --A then: 

(6.9) n~ G(x,z) G ( z , y ) d z =  E~. ,~n. 
(x, y) 

E~. is the expectation for Brownian motion killed outside fL starting in x and 
conditioned to converge to y. The path lifetime is "on. See e.g. [20]. 

Remark 6.3 Without using the relation with conditioned Brownian motion or 
potential theory, bounds for (6.9) have been considered in [34, 8, 10]. In the 
one dimensional, respectively the radially symmetric case on the ball in 1R" 
one finds the following expression for the smallest bound M. 

(6.10) M = ~ 0~.)- ', 
n = l  

where {k,} is the set of all eigenvalues of 

-Ad~=kd~ in 

(~=0 on #t~. 

See [34] and [10]. 
The series in (6.10) only converge in a basically one dimensional domain. 

Remark 6.4 For  x4=y and x, yea?t2 one finds immediately that 

Gl(x, z) Gz(z, y) dz>O. 
G 1 (x, y) f~ 

However, there is no uniform positivity result for - u  when e is large, where 
u is the expression in (6.8). Since one can show that 

lira ~ Gl(x, z) G2(z, y) dz=O, 
x ~  n 61 (x, y) 

there is for every e > 0  a function f e  C(f~), with J~=__ 0, and x e ~  such that u(x)>0.  
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