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The book on maximum principles by Protter and Weinberger contains a maxi-
mum principle for systems of essentially positive elliptic equations. These systems
are weakly coupled, that is: no coupling in the derivatives. Recently the problem
has been revisited by several authors, e.g. [21] and [28]. Nagel uses semigroup
theory for operator matrices and finds as an application a positivity result for
the elliptic system. De Figueiredo and Mitidieri use the maximum principle for
one equation. In this note we will give a direct proof by using an extension
of the Krein-Rutman Theorem. The underlying space will be (C(Q))*. In our
approach it is sufficient to have operators with continuous coefficients. The
three conditions we use can be described by: (i) essentially positive coupling
matrix; (ii) full coupling; (iii) existence of a positive supersolution. We will show
the existence of a unique first eigenfunction. Furthermore we will investigate
the necessity of the three basic conditions. A partial result will be shown for
some systems that are not far from essentially positive. (Essentially positive
is also known as cooperative.) For the last result we need pointwise estimates
for Green functions. Recent results for such estimates are listed in an appendix.
Implications for the parabolic system will be given.

1 Main result

The domain Q is a bounded, open and connected subset of R" that satisfies
a uniform exterior cone condition. We consider for u, f: Q — R* the following
system of differential equations:

(1.1) Lu=Hu+f in Q

where:

* This work was supported in part by N-W.O., the Netherlands Organization for Scientific
Research
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Lis a diagonal matrix of strictly elliptic second order operators, that is:
L, 0
L= , with L,= -Za
0 L, i

()

and for some A>0: Y af(x) & §;2% [E]? for all x, EeR”"; H is kx k matrix of
ij
functions on Q with zero diagonal elements.
We assume that the coefficients of L and H are in C(Q); hence the elliptic
operators L, are uniformly elliptic.
The three basic conditions in order to obtain a strong positivity result are
the following.

Condition 1 H is essentially positive ( cooperative ).
A matrix H is called essentially positive if H,,(x)=0 for all p=v and xeQ.
Condition 2 H is fully coupled.

That is, the index set {1, 2, ..., k} cannot be split up in two disjoint nonempty
sets o and [ such that Hw(x) 0in Q for pea, vef.

For an essentially positive matrix it means A, with H,,=max {H ,(x); xeQ},
is irreducible. See [19].

Condition 3 There is a positive strict supersolution of (1.1) with f=0.

That is: there is pe(W2," () n C(Q))* such that ¢ =0, (L— H) ¢ =0 and either
d+0o0ncQor(L-H)op+0in Q.

Some notations Let u be a (vector)function in (C(Q))*. By u» 0 we mean that
u,(x)>0 for all xeQ (Q is open) and all components ve{l,2, ..., k}.

For ¢ in an ordered vector space we write @ >0 if 0+ ¢ = 0.

An operator A is called strictly positive if 4 ¢ >0 for ¢>0.

Remark 1.1 1f all three conditions hold the supersolution ¢ satisfies ¢ > 0.
Indeed, if (L—H)$p =0 and ¢ =0, then Ldp=H $p=0, hence L, ¢, =0, hence

&,=0 or ¢,>0 by the scalar minimum principle ([23, Theorem 9.6]). Now if

(i) =0 for uea and ¢,>0 for veB and if both sets are nonempty, then

z H,,¢,=L,¢,=0 for uea. Hence H,,=0 for vep and H is not fully coupled,
v=1

a contradiction.

Theorem 1.1 Let Conditions 1, 2 and 3 be satisfied and fe(IP(Q)* with p=n.
Then the following holds.

(i) There is a unique ae(W,2:P(Q) n Co(Q)* that satisfies (1.1).

(i) If =0 thenuz0; if >0 thenu>0.
(iii) There is a unique positive eigenfunction ye(W2:" () Co(Q)); ¢>0 and
(L— H)r= AV for some L >0. (Unique after normalizing ).

Remark 1.2 If the Conditions 1 and 3 hold but the system is not fully coupled
one still obtains (i) when ¢ in Condition 3 is a supersolution that is strict in
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every component (or in every fully coupled subset of components). Now the
second part of (ii) only holds componentwise. There is still a first eigenfunction
>0, but not necessarily y>0. The eigenfunction is unique if and only if the
natural ordering of the fully coupled subsets is complete.

Remark 1.3 In our proof we use Theorem 9.30 of [23] in order to solve
(L,+PB)u,=f,in Q, u,=0 on 6Q. Assuming b¥, c*(-)eL*(Q), instead of contin-
uity, will be sufficient. In that theorem it is also assumed that the domain satisfies
an exterior cone condition. That is the only part of our proof where the regularity
of the domain plays a role.

On the other hand, if one assumes Lipschitz-continuity of the coefficients
of L, one can solve the elliptic equation above if all boundary points are regular
for the Laplacian. Hence the exterior cone condition in Theorem 1.1 can be
replaced by this regularity. For a survey concerning sufficient conditions on
the regularity of the boundary, see [23, p. 139].

Remark 1.4 Assuming fe(I?(Q))* with p> n, it is possible to have the coefficients

of H in I#(Q) with g2 pn/(p—n).

Remark 1.5 The related eigenvalue problem:

Lu=XHu in Q

u=0 on 0Q

has been studied by several authors. See e.g. [32, 24,9, 17].

Proof of Theorem 1.1 We will solve the system in two steps. In the first step
we show for B large enough the following:

IR Bt H B DU (LD

u=0 on ¢Q

where (L+ BI)o ! is a diagonal matrix containing the inverse of L, +  with zero
Dirichlet boundary condition on the i-th element of the diagonal.
With 4 =(L+ B1I), ' (H+BI) the second step will be:

(I—Au=(L+pNH5'f

<>

v=

u=(I—A) " (L+pD;  f= i AV (L+BIDg £
(4]

Step 1 Set B=1vmax{—c"(x); xeQ, 1 <p=k}. Then the inverse of L, + B with
Dirichlet boundary conditions is well defined by [23, Theorem 9.30] as an opera-
tor on IF(Q)>C() and (L,+B)g ' f,e WZP(Q) N Co(Q) for all pe[n, o). The
maximum principle in [23, Theorem 9.6] shows that if f,>0 then (L,+ ), ' f,
> 0. The restriction to C(€) or Cy(Q) we will also denote by (L,+p); . Now
(L+BI), 'e ZUCE); (Co(Q)") is well defined and strictly positive.
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This operator (L, +B)g ! is compact as well. Indeed, let S denote the unit
ball in C(Q) and let veS. Since Q is bounded, |(L,+B)s 'v|=(L,+B); ‘1 and
lim (L, +B)o ' D(x)=0 and since WZP(Q)=C'(Q) the set (L,+P) 'S is
x—00

bounded and equicontinuous, and hence relatively compact by Arzela-Ascoli.

Lemma 1.2 (L+BI); 'e Z(CQ)); (Co(W)H) is strictly positive and compact.
Moreover, if fe(L7 ()" with £,>0, then (L+BI);* ),>0.

Next we will show some properties of A=(L+ 1), ' (H + e L (Cy ().

Since the restriction to C,(€) of every component operator is compact too,
(L+BD) 'e £ ((Co(Y)Y) is compact. Hence A is strictly positive and compact
as the product of a bounded, strictly positive and a compact, strictly positive
operator. The strong maximum principle [23, Theorem 9.6] also shows that
(L,+B)o '€ Z(Co(Q) is irreducible, that is: Cy(€2) and {0} are the only closed
lattice ideals in Co(Q) which are invariant under (L,+ B); '- The closed lattice
ideals in C,(Q) are sets {feCo(Q); f(x)=0 for xeK} with K a closed set in
Q. See the first example on p. 157 of [33]. Since every component of (L +BI)g '
is irreducible and since H+ I =1, the only possible lattice ideals, that are invar-
iant under A, are subsets of (Co(Q))F with every component equal to Cy(Q)
or {0}. From the fact that H is fully coupled it follows that they can only
be the trivial ones (Cy(Q))* or {0}. Indeed, let I be a non-zero closed A-invariant
ideal, then there is 0 <fel with f,>0. If H,,+0 then (Af),> 0. Repeating this
argument k times we find, since H is fully coupled, that (4*f),>0 for every
component v. Using the second part of Lemma 1.2 we can summarize:

Lemma 1.3 A=(L+ B '(H+BI)eZ(Co(Q)¥) is positive, irreducible and com-
pact. Moreover, if 0 <fe(I7(Q)) then 0 < A** 1 f.

Step 2 The operator Y, A”is well defined (and positive and bounded) if r(4) < 1.
v=0

By a theorem of de Pagter [29] one finds that the spectral radius r(A4) is positive.
Since A is compact and positive, the Krein-Rutman Theorem [27] shows that
r(A) is an eigenvalue with a positive eigenfunction. Similarly, since the dual
operator A’ too is compact (Schauder) and positive, r(4) is an eigenvalue of
A’ with a positive eigenfunction ¥e((Cy(Q)¥). Let (-, > denote the pairing
between (C,(Q))* and its dual. The operator A’ is defined by (A'®, u) =<, Au).
Since A is irreducible it follows that W is strictly positive. Indeed, let ue(C,(Q))*
satisfy u> 0. Then there is m such that <¥, A™u) >0 and it follows that (¥, u)
=(r(A)) "KWY, A"u>>0. See [33, Proposition I111.8.3]. In the first appendix we
state some of the results on Banach lattices that are used here.

By Condition 3 there is ¢pe(C(Q))* such that (L + B dp=(H+B/)d>0. By
the strong maximum principle [23, Theorem 9.6] and the fact that ¢ is a strictly
positive strict supersolution, one finds that ¢>(L+ Bl)g '(H+BHd=Ad>0.
Since W is strictly positive this results in (W, dp>(W, Ad)=
(A'Y, ¢>=r(A)<Y, ¢)>>0. This shows that r(4)< 1. With Lemma 1.3 we find
that A¥* 1 (L+PBI), ! f>» 0 if f>0. We may conclude:

Lemma 1.4 T= Y AY(L+BI); '€ LZ(L(Q)Y; (WZLP(Q) N Co(Q))) is well defined.
v=0

The restriction of Te L (Co(Q)¥) is positive, irreducible and compact. Moreover,

if 0<fe(I?(Q), then 0 TH.



Strong positivity in C(Q) for elliptic systems 255

A solution of (1.1) is defined by u= Tf. The positivity shows uniqueness.

It follows from the results stated in the first appendix, among them the
Krein-Rutman Theorem [27], that T has a unique positive eigenfunction
with eigenvalue r(T)>0. Then ¥ is an eigenfunction of L—H with eigenvalue
#(T)"!. Moreover, every eigenfunction of L—H in (C,(Q))* is also an eigenfunc-
tion of T. This shows the uniqueness of the positive eigenfunction. []

Bandle [5] remarked that a similar proof holds for other boundary condi-
tions as well. We might even have different boundary conditions for different

. .. d
components. Consider Neumann boundary condition B, u,= BT where n
n

is the outward normal. We have (with sufficient regularity) when B is large
enough, for

(L,+Bu,=f, in Q
B,u,=0 on dQ,

a compact and strongly positive solution operator (L, + B),.' € Z (C(Q); C(Q)).

Corollary 1.5 Let Conditions 1, 2 and 3 be satisfied. Let p=n.
If ue(W2:P(Q)n C(Q)Y satisfies

loc
(1.2) Lu=Hu+f in Q
u=\y on ¢Q;
with 0 fe(I? () and 0 <\yre(C(CQ)Y, then 0<n or 0=u.

Proof. Let B>0 be large enough. By {23, Theorem 9.18/9.30] there is a solution
we(WP(Q) n C(Q) of
(L+BHw=0 in Q
w=Vy on 0Q.

The function w is nonnegative and satisfies w,>0 if y,>0. Then v=u—w is
the nonnegative solution of

Lv=Hv+f+(H+BHw in Q
v=0 on ¢Q.

By Theorem 1.1 one finds that v> 0 if (f+(H +BI)w)>0. Since u=v+w2v the
result follows. []

The maximum principle for one equation does not use any regularity for
the domain. To have a similar result for systems we have to modify Condition 3.

Corollary 1.6 Let Q be an open, bounded and connected subset of R". Suppose

Conditions 1, 2 and 3 are satisfied. Moreover suppose ¢ in Condition 3 satisfies

d=al on Q for some a>0. Then ue(WA? ()~ C(Q), with p 2 n, such that
(L—H)uz0 in Q

uz0 on 0Q
satisfies either u=0 or u> 0.
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Proof. Suppose that u,(x,) <0 for some x,€Q,. Let ¢ >0 be the smallest number
such that w=u+c ¢ =0. Since w,(x)>0 for x in a neighbourhood of ¢Q, there
is Q; = Q with smooth boundary, with w {x)>0 on Q\Q, and such that Condi-
tion 2 still holds on Q,. Theorem 1.1 on Q, shows w0, a contradiction. If
u=0 then for every smooth domain Q, cQ, with Q\Q, small enough, Theo-
rem 1.1 shows u»0 oru=01in €, and hence in Q. [

2 On conditions similar to Condition 3

In order to have the literal version of the strong maximum principle, that is
the following implication holds for all MeR™* and f<0 with 1=(1, ..., )7:

Lu=H f in Q
" u+ m = u<<M1l or u=M1,

usMl on 6Q

we would need Condition 3 with ¢p=1.
In other words

k
2.1 —c*+ Y H,,<0 forall p,

v=0

which is the genuine restriction of Protter and Weinberger [31, (7) p. 190, 192].
De Figueiredo and Mitidieri use in [21, 22] a supersolution ¢ for which
every component lies above cd(x, Q)% (¢>0, 3 < 1).
Consider the related parabolic system:

-

2.2) (l;t+L>u=Hu+f in E=Qx(0,T)

u(t)=o(r) on 0Q for te(0,T)
u(0)=u,.

From semigroup-theory (see [14, Proposition 7.1]) one knows that a
C,-semigroup is positive if (and only if) the resolvent operator (A +L—H)™!
is positive for all A large enough. For Condition 3 this corresponds with the
existence of ¢ >0 such that (AI+L—H)$ >0 for all X large. Since ¢ =1 will
do, Conditions 1 and 2 are sufficient for a similar theorem in the parabolic
case.

Let f, @, uy = 0. One obtains if u,,(z;)%0 that u(t)>0 for all t>1,.

For a strong maximum principle for one equation Walter in [35] uses ¢
that is strictly positive but not necessarily a strict supersolution. A similar result
holds for systems.

Condition 3a. There is a supersolution $e(W2"( QN CEQY of (1.1) with ¢>0
and (L—H)$p=0.

Assuming ¢ > 0 instead of ¢ >0 is not really a restriction.
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Corollary 2.1 Let Conditions 1,2 and 3a be satisfied. Let p=n.

(i) Then there is a unique positive eigenfunction Ye(WZ2(Q)n Cy(Q))
(L— H)Wr =X for some A= 0. (Unique after normalizing ).

(i) Let ue(W2(Q)nC()* with u=0 on dQ satisfy (L—H)u=0. If u satisfies
u= — M for some M >0, then one of the following holds.

(@) u=0or (b)ux 0 or (c) u=a Y with a<0.

K with

Remark 2.1 1f Q has a uniform interior ball condition it follows from the strong
maximum principle that o, (x}=vd(x, ¢Q) for every component v (some v>0).
See [35, Lemma 1]. Hence, if u is Lipschitz continuous and u=0 on 09, then
u= — M\ for some M. Then statement (ii) becomes similar to the one in [35].

Proof. After replacing (L— H) by (L+1— H) Theorem 1.1 shows part (i).

(ita/b) Condition 3a is weaker only if (L— H)d=01in Q and ¢ =0 on Q. Hence,
if these two equalities do not hold, we can apply Theorem 1.1. Indeed, let f3
be large enough. Since u=0 on JQ and (L+BlHu=(H+pBI)u Theorem 9.6 of
[23] shows that u=(L+BDg *(H+PBDHu. Then w=(L+BI); ' (H + BI)u satisfies

2.2) Lw=Hw+{ in Q

w=0 on ¢Q.

The function f=(H + BN —(L+ B '(H + BD)u satisfies 0<fe(C(Q)) . From
Theorem 1.1 it follows that w=0 or w> 0 and hence u=0 or uzw> 0.

iic) If (L—H)$p=0 in Q and ¢=0 on ¢Q it follows from Theorem 1.1 that
¢ is (a multiple of) the unique positive eigenfunction and the eigenvalue A=0.
Notice that v=M{y+u=0 and (L—H)v=f=0. If v>0 on 0Q or f>0 then
Condition 3 is satisfied, with ¢ replaced by (L+B1)g ' (H+BI)v, and the first
eigenvalue is positive, a contradiction. Hence v=0 on ¢Q and (L— H)v=0, which
shows that v, and hence w, is a multiple of . [

We will end this section with a special case of (1.1).

Corollary 2.2 Suppose that the Conditions | and 2 are satisfied and suppose H
is a constant matrix. Moreover let the operators L, have a common eigenfunction
v>»0 (v=00n Q) with L,v="%,v for all n.

Let A=()\,). Then the following two statements are equivalent.
(i) There is a vector peR* with p>0 and (A—H)p>0.
(ii) If u satisfies (1.1) with =0, then u=0; if £>0 then u>0.

Proof of Corollary 2.2 (i) = (ii): Condition 3 is satisfied with ¢ =vp.

(i) => (i): If (A~ H)p =0 then it follows from (ii) and (L—H)pv=v(A—H)p=0
that pv=0, and hence p=90. So A— H is nonsingular and there exists a vector
p with (A—H)p>0. Again by (ii) and (L— H)pv=v(A—H)p>0 it follows that
pv>0and hence p>0. []

Remark 2.2 Suppose Condition 1 holds. Then the following four statements are
equivalent for constant H (see [7, pp. 134--138]):

(ili) A—H is a nonsingular M-matrix;

(iv) A—H is semipositive in matrix sense; there is peR* with p>0 and
(A-H)p>0([7,1,,]);

(v) all the leading principal minors of A— H are positive ([7, E,;]);
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(vi) A— H is inverse-positive in matrix sense: (A — H) ! exists and each element
of (A— H) ! is positive ([7, N3g]).

De Figueiredo and Mitidieri show in [21] by a different proof that, for coop-
erative systems with constant coefficients and L,=A, (v) is a necessary and
sufficient condition in order to have a maximum principle. Another proof of
this result by using (vi) instead of (v) is given by Clément and Egberts in [15].

Remark 2.3 Suppose Conditions 1 and 2 hold and H is constant. Then the state-
ments (i) in Corollary 2.2 and (iv) are equivalent. One direction is trivial, the
other is shown as follows.

Let p be the vector in (i), and set A=(A+BI)” '(H +BI), with B positive
and large enough for A+ BI to have strictly positive diagonal elements. Then
A is a positive operator and p>Ap>A2p>...>A*p>0. Since the system is

k—1
fully coupled one finds p> A*p. Then k= ) A™p satisfies k>0 and

m=20

(A—H)k=(A+BI)(p— A*p)>0.

3 Near the first eigenvalue

In this section we will fix p>n. Condition 3 will be satisfied if one replaces
L by L—c for some ¢ sufficiently negative (take ¢=1 and —c1>|(L—H)¢]|).
Then T¢: (IP(Q))* —(C, () defined, for B> 0, by

T'=(L—cI—H), ' = Z (L+(B—c) o "(H+BD) (L+(B—c) D)o !
v=0

is compact and strictly positive. T((I7(Q))*) with norm |[(L—cI—H)ull, is a
Banach space. Since L— Ao — H=(I—(c—*q) T)YL—cI— H) we find from Theo-
rem 1.1:

Proposition 3.1 Suppose Conditions 1 and 2 are satisfied. Then there exists hgeR
such that

(i) L—AoI—H: T(IZ(Q))— (I2(Q)F is a Fredholm operator of index 0, and
N (L—Xo I — Hy=span{uy} with u,>0;

(i) for A <Xq the operator T*=(L—AI—H)y': (IP(Q))F —(Co(Q))* exists and is
compact. Moreover, if 0 <ue(I?(Q))* then 0 < T*u.

Remark 3.1 Barta proved in [6] that the lowest eigenvalue A, of
—Au=Au in Q,
u=0 on 09,

satisfies, if we C2(Q) and w(x)>0 for all xeQ,

xoginf{iﬁ(‘z%; er} .
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The result has been extended to nonselfadjoint scalar problems in [30]. A similar
result holds for systems that satisfy Conditions1 and 2. For a function
we(C({Q) n C?(Q)) that satisfies w0, we find:

xoginf{(@‘ﬂz)v(”_; xeQ, vell, ..., k}}.

Denote this infimum by A,. Since w> 0 it follows that (L—A, I—H)w>0. If
the last inequality is not an equality or if w40 on ¢Q, we find that Condition 3
is satisfied for L—A, I—H. Hence by Theorem 1.1 A,—2x,>0. In the case of
two equalities w is a multiple of the first eigenfunction and Ay,=2X,. From the
last fact we also find:

Xo=supi{i,; 0<we(C(Q)n CHY)).

For A —%y>0 but small enough there is an anti-maximum principle as in [12]
at least when the boundary ¢Q is C'-'. The proof is similar to the one of
Clément and Peletier. Instead of assuming this regularity, we prefer to assume
the consequence of this regularity that is used in the proof, namely a compact
imbedding of appropriate Banach spaces. As a result one will still have an
anti-maximum principle for a smaller class of right hand sides when the bound-
ary is less smooth.

Following arguments from [2, 3] we define, using the eigenfunction u, from
Proposition 3.1, the ordered Banach space (even a Banach lattice)

2B ={ue(Co(Q)); lu(*)|Zxuy(-) for some x>0}

_ uy(x)
i, =sup ﬂ (@), ()

with norm

;xeQ, vell, ..., k}}

Condition 4 There exists a Banach space %, with %< %, <> (I?(Q), such that
T #, — # is compact.

If Q has a C''-boundary it follows from the construction of T¢ and [23,
Theorem 9.15] that T ue(W?>?(Q) n Co(Q)) for ue(I7(Q))*. By the Rellich-Kon-
drachov Theorem ([1, Theorem 6.2]) W2?(Q) is compactly imbedded in C'(Q).
The strong maximum principle shows that uy >0 and uy(x)> ad(x, Q)1 (some
a>0) for xeQ. Then ve(C! (Q)n C,(Q)* satisfies |v| <cu,. Hence we may take
B, = (P Q).

Theorem 3.2 Suppose Conditions 1 and 2 are satisfied and let hy be as in Propo-
sition 3.1. Take 0<fe(IP(QM) and let ue(W2P(Q) N Co(Q)Y be a solution of
(L—AI—H)u=f.

(1) If Ay <A, then 0 £ u, that is, for some component v and some x€€: u,(x) <0.
(i1} Suppose Condition 4 also holds and that te%,. Then there is 8>0, which
depends on f, such that, whenever Lo <A <<ho+39, it follows that u<0.

Remark 3.2 1f =%, and 0<f, then there is no solution in #. If ue# is a
solution, then for k large enough u+«Ku, is positive and satisfies (L—Aq[
—H)(u+ xuy)=f>0. Hence the conditions of Theorem 1.1 for L—A,{—H are
satisfied and its first eigenvalue is positive, a contradiction.
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Proof. (1) Suppose Ao <A and 0 <u (v =0 since f+0), then Condition 3 is satisfied
for L—AI—H and A <X, by Theorem 1.1, a contradiction.

(11) The proof of the second part uses the ideas of [12].

(ita) Define the Banach space

A=T2,),
with the norm [|[(L—c¢I— H)ul|, and set & =(L— Lo I — H) #. First we show that
(3.1) B =span{uy} ® .

Since (L—Ag I —H)=({I—(Ay—¢)T)NL—cI—H)e ¥ (#; #,)is a Fredholm opera-
tor of index zero, it is sufficient to show that uy¢ % Let Te Z(C,(Q)*) denote
the restriction of T° T is compact, strictly positive and irreducible., Similar as
in step 2 of the proof of Theorem 1.1, the dual operator T’ is also compact
and strictly positive, and r(T")=r(T)= (A, —c¢)”* >0. By the Krein-Rutman The-
orem there exists a strictly positive eigenvector W, of T’ with T'¥,=(,
—¢)7'¥,. Hence (¥, Tuy)> =(hg—c) ' (¥, uy>>0.

Suppose fe¥ that is, there exists we#, such that f=(L—A,I—H)T'w=
w—(Ay—c) Tw. It follows that

(o, T =< Wo, T'W— (Ao — ) T T W) =W, T*W) —(ho — ){¥,, T T*w) =0.

This shows that uy,¢.%. Moreover, we can define continuous projections £:
B, —span{uy} and I — By: B, — & in the following way:

(Fo, T
(Fo, up> 0

Clearly B f=0 for fe.¥ and Byu,=u,.

Secondly we show that T°(¥)c ¥ Let ueT(¥). Then it follows that there
exists we#, with u=T(L—Xo I —H)Tw=(L—Aol—H)T‘T‘we.¥. Hence one
also has # N =T(Y) and

(3.2) Bf=(h,—0) for fe A, .

(3.3) A =span{uy} & T().

(iib) The decomposition is invariant under (L— X I — H) for arbitrary A.

If we(L-AT—H)T(Y) then w=(L—AI—H)T(L—AyI—H)Tu for some
ue4,. Since (L—AI-~H)T(L—Aol—H) Tu=(L—Ao I —H)T(L—AT—H)T¢n,
we find that

(L=AI—H)TY(S )= .

Clearly (L—A 1 —H)uy=(ko— M) u,.

Let (L—A1-— H), denote the restriction of (L-—iI— H) to T°(%). There is
6,>0 such that for A<X,+8, the operator (L—AT—H),: T(¥)—> % is an
isomorphism and, for [A—Xy[<8,, T}=(L—AI—H), ! is an analytical function
of .

For 0<|A—Xy|<d;, by setting f=P f+f, with f, =(I — R)fe ¥ the solution
u can be written as

= 2
s BT

(3.4) u=
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(iic) Since T}=Tr > (A—Ao)T})" and T}e: & — % is compact, there exists
n=0

¢, >0 such that | TM, |, <c, for all A with | L—2,| <$3,. Hence

(3.5) —c,upSTH <cjug.

Let B f=au,. By (3.4) and (3.5) it follows that

Set 3=min{33,, c; ' a}. For Ae(hy, Ao +d) one finds u<0. [

4 When the coupling matrix is not essentially positive; the non cooperative case

One will not find a positivity result for a system with large ‘negative coupling’
or with small negative coupling and general positive boundary values.

Weinberger in [36] considers invariant sets for elliptic systems which are
not necessarily the positive cone. Cosner and P.W. Schaefer in [16] consider
restrictions of the cone for the right hand side that allow a decoupling. Results
in a different direction are obtained by using the following result from potential
theory.

Under sufficient regularity of the boundary and the elliptic operator L, there
is >0 such that for all f>0:

(4.1) (I —&(L) ) L) ' f>0;

(LYy ' is the inverse of L with zero Dirichlet boundary condition.

This result (see (6.8) in the appendix) shows that u>0if f>0in

4.2) Lu=f—¢v in §,
Lv=f in Q,
u=p=0 on Q.

Results for this system can be found in [34, §, 10].

The estimate is used for right hand side f with some components equal
to zero in [11] to obtain a solution with all components positive.

We will consider the non cooperative case as a perturbation of the coopera-
tive system (1.1) and allow all positive right hand sides f. Uniformly with respect
to f, we get positivity of some fixed components of the solution.

Consider

4.3) Lu=Hu—gPu+f in Q

u=0 on 09);
with
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. 0P ) L
(1) PZ(O 0), where P is a constant m x (k —m) matrix with B;>0;

(ii) H is constant and L,=L, for all ve{l, 2, ..., k} with ¢' 20;
(iil) if n>3, the coefficients of L, are Holder continuous and 6QeC*!; if n=2,
the coefficients of L, are Lipschitz continuous and ¢QeC?,

Let o respectively B denote the first m, respectively the last k—m components
and rewrite (4.3) as:

Lyu,=H,u,+H,zu;—ePug+f, in Q,

Lgug=Hg, u,+Hypu,+1g in Q,
u,=0 on JdQ,
u,=0 on 0Q.

Set u,=v,—w_such that the system becomes:

4.4) L,w,=H, w,+cPu; in Q,
Lyv,=H,,v,+H,guy+1, in Q,
Lgug=Hg,v,+ Hggug—Hg,w,+1f;, in Q,

w,=0 on 0Q,
v,=0 on 0Q,
u; =0 on 9Q.

To solve for w,, we have to consider the system
4.5) Li=H,i+f in Q
=0 on 0Q,

which is not necessarily fully coupled. However, since y=(L—H);'1>0 we
have that (L,—H,,)x,=H, 25+1,>0 and Condition 3 is satisfied on every
fully coupled component. Use Theorem 1.1 on these subsets and one finds that
(L,—H,,)o ' is well defined and positive. Hence (L,— H_,,); ! P is positive and

Wo=6(L,— Hy,,)o ' Pug.

Set v=(¥,, ug) and define B: (Co () - (Co(Q))* by

0 0
“.) 5 =<0 HB,(LQ—HM)(;‘P) '

This yields a boundary value problem with the non local term B:

4.7 Lv=Hv—eBv+f in Q
v=10 on 0Q.
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The solution u is then as follows:

(4.8) u,=v,—s(L,—H,,) ' Py,

We will show that we do have a uniform positivity result for v, and hence
for uy. In general such a result can not be found for the other components

of u.
From (4.7) we find that v= —g(L—H), Bv+(L H); 'f and hence, since
(L—H), ! and B are bounded operators in {C, (), for £ small enough:

=Y (—e(L—H); ' B)'(L—H); ' f
v=0
is well defined. Moreover:
4.9) Z g(L—H), ' B)*(I—e(L—H); ' By(L—H); ' f.

Since (L—H)y ' B is a positive operator, it is sufficient to establish positivity
of the operator K,: (L,(Q))F —(Co(Q))* defined by:

(4.10) K,=(—e(L—H)y ' B)(L—H);"'

For (L— H); ' we can use the expression from Lemma 1.4 and with setting p=1

we get (L—H); '= i (L+ Dy "(H+ DY (L+Dg !

v=0

Lemma 4.1 Let p=n. Assume the Conditions 1, 2 and 3 are satisfied for (1.1).
Also let (i) (ii) and (ili) be true. Then there is a constant ¢>0 such that for
all ue(L,(Q)) with uz0:

— k-1
(@.11) Z YH+ IV us(L—H)g'uge Y FY (H+1'u
v= v=0
Moreover, if o is a subset of {1,2,...,k}, then there is a constant ¢>0 such

that for all u,e(L,(Q))* with u,=0:

(4.12) c*z FYUH, + D u, (L~ H, )5 ' u, < zm“ (H,,+D'u

v=

Here & denotes the operator defined by (F u)(x)= j E,(x, yyu(y)dy, E, is defined
in (6.3) and (6.4) of the appendix.
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Proof. The left hand side inequality of (4.11) is a direct consequence of

© k-1
(L—H) =Y (L+ D) " (H+DVL+D "= Y (L+D N H+DY(L+D

v=0 v=0

and Theorem 6.1 and the remark thereafter. For (L,— H_,), * the analogue holds.
Proof of the right hand side:

(i) Decomposition
Because of assumption (ii) we can write

(L—H) ‘= i(L1+1)"V“)(H+1)".

v=0

Let peCo(Q) be the first eigenfunction of L, with eigenvalue A,. Since H+1
is irreducible, (H + I)* ! contains just positive elements and the finite dimension-
al version of the Krein-Rutman Theorem gives an eigenvector {eIR¥, with {;>0
for all i and with eigenvalue p(H +I). Set u,=p(H +1)—1. Then:

= 1
(4.13) (L—H) 'ol= Z(Ko+1)“‘v+"(uo+1)V<PC=X “u

v=0 (4] 0

0]

From Condition 3 it follows that A, > .
Since {»0 there are positive numbers ¢, and ¢, such that for every
je{l, 2, ..., k}, with e, the j-th unit vector:

(4.14) ci(H+I) "e;<C<c,(H+I) e,

For the second part let & be the unit vector in R* and §, the restriction of
¢ to IR“. Let iea() if ((Hm+1)"_1éj)i4:0 (jea(j)c=a), and let =, ;, denote the
projection on the a(j} components. Then, for some ¢, ¢, >0:

(4.15) cl(Haa+I)k_1éj§“a(j)€a§CZ(Hau+1)k71éja
and
(4'16) (Haoz+1) na(j)ga:nm(j)(Haa_i—I) Ttoz(j) Ca

é na(j)(Hmu+I) cagna(j)(uo + 1)€a‘

(ii) Componentwise
Applying (L—H)™"' to u;e;, with u;20, one gets:

(L—H) 'uje;= Y (L+D7"(H+ D) (L+D) " ' use;

<
Ip1s

=Y (Li+1) "V y(H+ Ve

v=0

+(Ly+1)'FY (L + D7D (H+ D' H+ 1) e,

v=0
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Since all the involved operators are positive, (4.14) shows:

(4.17) Ly A1) F Y (L D) (H A DH D e,

<L +1)'- k}:LH OOy (H+ 1Y

v=0

<(L,+1)' " kz Li+ 1) (e + 1) u,g

v=0
=(L,+ ! ¥k(L1 —pp) ! “jg
Scy (L + 1)17’((141 —Ho)” I(H+I)k7 ! U;€;.

Hence there is ¢ >0 such that
(4.18) (L—H)™! ue;

k—2
<e(Y (Lt 17 DD Ly 1)L =) (D e

v=0

Using (4.15) and (4.16) in (4.17), with m,,{, instead of { and H,, instead of
H, we get the analogous inequality for (L,—H,,)” "' u;&;. Since this is true for
every component, we can replace u;e; by u in (4.18), respectively u;&; by u,.

(iii) Estimates for the Green functions

Using the result stated in Theorem 6.1 and the remark thereafter there is ¢ >0
such that

k—2
LA DTTOHE I ut (L = po) T (Ly + DV THH D!

v=0

<c i YH+1)u

With (4.18) it shows the right hand side of (4.11). Similarly we obtain (4.12). [

By using Lemma 4.1 the sufficient condition for positivity will be merely
algebraic. Define the diagonal matrix E, by:

1 if iea,
(E“)”={0 if i¢a
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Theorem 4.2 Assume the Conditions 1, 2 and 3 are satisfied for (1.1). Also let
(1), (i) and (ii1) be satisfied. Suppose that for some c>0:

v+1
(4.19) Ey(HEP=ZcY H®  for ve{l,2, ..., k—3}.

s=0

Then there is €,>0 such that, for all €€[0,e,) and fe(L,(Q)* with £=0, the
solution v of (4.7) satisfies ¥ 0 or v=0=1{. Hence respectively uz>0 or u=0=f.

Remark 4.1 For 3 x 3 systems condition (4.19) is void.

Remark 4.2 Although for every =0 with f;>0 for ico, there is &,>0 such
that for every e€[0, £,) the solution u satisfies u> 0, one cannot expect a uniform
result for u as Theorem 4.2 states for v. Hence, the result above cannot be
used for the parabolic case. By discretizing the time variable and solving the
elliptic problem for every time step one looses positivity of the inhomogeneous
term after the first step.

Proof. We will show that the operator K., defined in (4.10), is positive for &
positive but small enough. By Lemma 4.1 we have appropriate estimates for
(L—H), "

In order to show that e(L—H)y; ! B(L—H), ' S(L—H)y ! for some £>0 it
is sufficient, by Lemma 4.1, that for some ¢>0

k—1k—1k—1

(4.20) Y Y Y F I (H 4 I EgHE,(H+ D) E,)' P(H + I
p=0 v=0 1=0

k

<c

v

1
FHHAIY.

(gl

It

0

Notice that (H+I)*"! has strictly positive entries. Since we know from Corol-
lary 6.2 of the appendix that there is ¢>0 such that #2<c¢# (and for any
ceR: F £ cF?) we may show just as well that there is ¢ >0 with:

k—1 k—1 k—1 k—1
Y Y Y FH S HEE HE (HE) PH <c Y FY Y (H+1).

=0 v=0 t=0 v=0

This last inequality is true if and only if there is ¢ >0 with

k—1
FYVIIEGHEY ' PLceY FHYH+DM forall vel0, 1, ..., k—1}.

u=0
Again since #2<c% and & £c%? it is sufficient that:
v+2

FYIEJHE) ' P<c Y F* Y H+D*  forall ve{0, 1, ..., k—1}
n=0
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or equivalently, there is ¢ >0 such that:

v+2
EgHE)' " 'P<c) H* forall ve{0,1,...,k—1}.

u=0

Finally, since H is irreducible we have that the matrix I+ H + ... + H*~ ' contains
only strictly positive elements. Which means that it suffices to check the last
inequality for ve{0, 1, ..., k—4}. [

We will end this section with an example.

Let Q be a bounded, sufficiently smooth domain in IR". Let u be a solution

of

(4.21) (—A+Du;=u,—cuy+f, in Q,
(—A+Duy=uy;—eu,+f, in Q,
(—A+Duy=u,+f, in Q,
(—A+NDug=u,+f, in Q

U, =u,=uy;=u,=0 on Q.

The conditions of Theorem 4.2 are satisfied for this system. Hence there exists
€9 >0 such that for all £€[0, g,) the following holds. For f>0 the solution
u satisfies u; >0 and u, > 0.

5 Appendix 1

In this paper we used the following results on a Banach lattice E with dim(E)> 1.

Krein-Rutman Theorem [27] Let Te ¥ (E) be a compact and positive operator
with r=r(T)>0. Then there is 0 <ueE with Tu=ru.

De Pagter Theorem [29] Let Te ¥ (E) be a positive, irreducible and compact
operator. Then r(T)> 0.

Corollary (of [33, Theorem V.5.21) Let Te ¥ (E) be a positive and irreducible
operator withr=r(T)>0 as an eigenvalue and T' d=r ¢ for some 0 < beE'. Then:
(i) r is the unique eigenvalue of T with a positive eigenvector;

(ii) {ueE; Tu=ru} has dimension one.

6 Appendix 2

In Sect. 4 we used pointwise estimates for Green functions. With sufficient regu-
larity of the coefficients and of the boundary of the domain all Green functions
for second order elliptic operators (zero Dirichlet boundary conditions) have
a similar behaviour. Results of this type have been obtained for n> 2 by Hueber
and Sieveking [25, 26] and independently by Zhao [37] and Cranston et al.
[18]. Results for n =2 are published by Ancona in [4].
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Theorem 6.1 (Hueber-Sieveking) Let L be a strictly elliptic operator on IR" with
n>2:

¢

(-
e T ()

n 62 n
(6.1) L= =) ay(") 55+ L bi(")
ij J i

1 x; ;
with Hélder-continuous coefficients and ¢=0. Let Q be a bounded C'-'-domain
and let G denote the Green function (zero Dirichlet boundary condition). Then
there is >0 such that:

(6.2) a P E(x, )EG(x, <SaF(x,y)  for x, yeQ,
with
(6.3) F,(x, y)=|x—y| " min(d(x, 0Q) d(y, ¢Q), |x—y|?).

In Theorem 8 of [4] Ancona states a similar estimate. Let L, and L, denote
second order strictly elliptic operators as in (6.1). He assumes that L, and L,
have Lipschitz continuous coefficients and that the domain (in IR* with n=2)
has a C%* boundary except at a closed set ®. At @ the boundary is Lipschitz
and satisfies some technical conditions. If L, and L, have the same principal
part on @ there is ¢ >0 such that the corresponding Green functions satisfy

Gi(x, y)

c i< )gc for all x, yeQ.

- GZ(-X: y
By using a result of Zhao in [38] we obtain (6.2) for n=2 with
(6.4) Fy(x, y)=log(1+d(x, Q) d(y, 0€) [x—y|?).

As a consequence of Theorem 6.1 one gets:

Corollary 6.2 Let Q be a bounded C'''-domain in R" with n=3. Let L, and
L, be two elliptic operators satisfying the conditions of Theorem 6.1. Let G, and
G, denote the Green functions. Then there is B> 0, depending on Q, such that :

6.5) M—G-Wéﬁ(lxﬁlz*wby—zl“) Jor x,y,zeQ.

Remark 6.1 Cranston et al. [18] showed a theorem related to Corollary 6.2
{which they call the 3G Theorem) to obtain the estimates for the Green functions.

Zhao showed in [38] a similar estimate for n=2 and L= —A. Using the
result of Ancona the equivalent of (6.5) for n=2 is:

GI(X’ Z) GZ(Za )7)
Gl(xa y)

It follows from (6.5) respectively (6.6) that there is M eIR such that:

(6.6) <c(max(—log|x—z|, )+ max(—log|y—z|, 1)).

67 j G162 Ga(a, )

dz<M forall x, yeQ.
Q Gl(xs y) - Y
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Then for e<M ™! and 0420 it follows that:

6.8) (I—&(L3)o N(Lao 1))
=G, NfWdy—ef [Gix,2) G (z,y) f(ydyd:
O Q Q
Gi(x, 2) Gy{z, )

o l1— 2 A 2 dz i dy
Gy (1o § PN 0z s

G, (x, 1—eM)f(y)dy>0 for xeQ.

Remark 6.2 If L, =L, = —A then:

(6.9) |- Glx, Z()G(Z '—)dz_EXrQ

E7 is the expectation for Brownian motion killed outside Q, starting in x and
conditioned to converge to y. The path lifetime is 1. See e.g. [20].

Remark 6.3 Without using the relation with conditioned Brownian motion or
potential theory, bounds for (6.9) have been considered in [34, 8, 10]. In the
one dimensional, respectively the radially symmetric case on the ball in R"
one finds the following expression for the smallest bound M.

(6.10) M= i(?»n)“,

where {A,} is the set of all eigenvalues of

—Ad=rd in Q

o=0 on 0Q.

See [34] and [10].
The series in (6.10) only converge in a basically one dimensional domain.

Remark 6.4 For x=y and x, y¢0Q one finds immediately that

j‘ Gl(xs Z) GZ(Za .)/)_

dz>0.
Gy(x, )

Q

However, there is no uniform positivity result for —u when ¢ is large, where
u is the expression in (6.8). Since one can show that

hm j Gl (x’ QMQEELXZ dZ = 07
o Gy(x,y)

there is for every £> 0 a function f'e C(Q), with =0, and xeQ such that u(x)>0.
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