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Introduction 

For a certain class of pseudoconvex domains in ~" we want to study the bound- 
ary behavior of the invariant metrics of Caratheodory and Kobayashi. Let us 
first recall some definitions: For a domain D ~ 112" the Cararheodory pseudometric 
is defined as 

CaraD(z, X) = sup {1 (c?f(z), X) l If: D --, A ~ (0, 1), f holomorphic}, 

and the Kobayashi pseudometric is, by definition, 

KobD(z, X)=  inf{R > 0[There exists a holomorphic map 

f :AI (0 ,  R 1 ) ~ D s u c h t h a t f ( 0 ) = z , f ' ( 0 ) = X }  

for (z, X ) sD  x C ~. 
Both pseudometrics are distance decreasing under holomorphic mappings. 

Therefore they can be used in the study of the boundary behavior of proper 
holomorphic mappings. [B-FI, H, D-F1]. 

Since the paper of Graham [Gr],  the boundary behavior of the pseudometrics 
of Caratheodory and Kobayashi on bounded strictly pseudoconvex domains 
is well understood, (see also [H]). In the weakly pseudoconvex case Catlin 
obtained precise estimates for the growth of CaraD and KobD, when D is a 
pseudoconvex domain in 1122 of finite type [Ca]. 

Except for some very special cases the precise boundary behavior of these 
invariant metrics on a weakly pseudoconvex domain in C", n > 3, is not known. 
In this paper we want to generalize Catlin's result to the class of pseudoconvex 
domains which are of homogeneous finite diagonal type; by this we mean the 
following: 

Definition. Let P be a real-valued plurisubharmonic polynomial in I12"- 1 without 
pluriharmonic terms (here n > 2). Then the domain 

s {r= Rezl + Piz')< 0} 
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is called of homogeneous finite diagonal type, if 

(0.1) The polynomial P is weighted homogeneous, i.e. there exist positive integers 
m2 . . . . .  m,, such that for all t > 0: 

p(tl/2,~ z2 . . . . .  t 1/2,,. z,) = t P(z') 

(where z '= (z2 . . . . .  z,)). 
n 

(0.2) For  a small positive number  s the polynomial P ( z ' ) - 2 s  ~ [zjl 2~j is also 
plurisubharmonic in ~ ' -  ~. j -  2 

Observe that no holomorphic support  function needs to exist in such a 
domain as was first shown by Kohn and Nirenberg, [K-N~, in a domain in 
C 2 which has properties (0.1) and (0.2), 

We are going to study the boundary behavior of the invariant pseudometrics 
Cara~ and Kobo  for domains of homogeneous finite diagonal type only under 
the additional assumption that at most two of the variables z2, ..., z, appear  
at a time in the Taylor terms of P. 

In order to be able to state our results we need to introduce the following 
auxiliary functions: Let f2 be a domain of homogeneous finite diagonal type. 
For  2<j<n ,  2<l<_2mj let 

(0.3) Alj(z)=max ,. ,~ -~ v, I~ ,u=l 
( l ( ~ z j c z ~ l  - " J 

and 

(0.4) (do/(z) = Z 

for z ~ .  On 0 x 117 we define the metric 

I(~r(z), X)[ A 
(0.5) M ~ ( z ,  X ) - ~  L %(z)Ixjl.  

Iriz)l j=~ 

In Theorem 1 we compare  Caraa,  Kob.o., and M~. 

Theorem 1 Suppose Q =  { r = R e z  I + P ( z ' ) < 0 }  is a domain of homogeneous finite 
diagonal type and P is of the form 

(0.6) P(z') = ~ Pj(zj)+ ~ Pjk(zj, z~), 
j = 2  j < k  

where Pj and Pj~ are real-valued polynomials and, for j < k, Pjk has the form 

Cv#~) . Z j Z j  Z k 

v , / t ,  • ,  ) .  
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where the sum is extended over f ini tely  many indices v, p, K, ). with v + f l > l ,  
~c + 2 >__ 1. Then, with a universal constant Ca >0, we have 

(0.7) 1/C1 Me(z ,  X)  <= Cara~2(z, X) < Kob.e(z, X)  < C1 Me(Z, X )  

fi~r (z, X)~g2 x 112% 

We recall that, if D c (13 n is a domain such that the Bergman kernel function 
on the diagonal is positive everywhere on D, then log Ko(z,  i) is the potential 
of the Bergman metric B~ on D x (12% It is well-known, [Ha],  that B2~>(Carav) 2. 
On the other hand, the functional b~= K v B~, viewed as a domain functional, 
is increasing, when D decreases, i.e. 

(0.8) I f D ' c D  thenbav, ID' x C">=bZ[ D ' x  I~". 

In [He2] the author shows: 

Theorem. I f  Q and P are as in Theorem 1, then, with a certain constant C>0 ,  
we have 

r/  

(0.9) <= K e ( z  , Y.) Ir(z)12 ,'/' I~ (~)(z) z - ~ C. 
I j = 2  

From (0.8) and (0.9) we can then easily deduce that on the class of domains 
as in Theorem 1 the metrics of Caratheodory, Kobayashi, and Bergman have 
equivalent growth at the boundary. (In case that all the Pj~ are zero the estimates 
(0.7) and (0.9) are contained in McNeal [M1, Theorems 1 and 2].) Notice that 
the equivalence of these metrics cannot be expected to hold for general pseudo- 
convex domains. For  counterexamples see [D-F2]  and [D-F-HI.  

A qualitative estimate for the Kobayashi metric on uniformly extendable 
bounded pseudoconvex domains was deduced in [D-F1] and [D-L],  and for 
the Bergman metric on pseudoconvex domains with a subelliptic ~-Neumann 
problem in [D-F-HI.  McNeal proved in [M2], that the Bergman metric grows 
in each direction at least as dist(., bf2) -2~+~ (with arbitrarily small 3>0)  in 
a neighborhood of a point qebf2 ,  such that a subelliptic estimate of order e 
holds near q for the 8-Neumann problem on (0, l)-forms. For  the Caratheodory 
metric of certain two-dimensional scaling invariant non-pseudoconvex domains, 
and of real-analytically bounded pseudoconvex domains in ~2, see [B-F1]. 
Range estimated in IRa2] the Caratheodory metric on a real-analytic bounded 
convex domain in C". 

It is well-known that the problem of estimating the Caratheodory metric 
is related to the problem of constructing peak functions which is also still open 
in the weakly pseudoconvex case with n > 3. The method of proving Theorem 1 
also gives an answer to the peak function problem for the class of domains 
considered in Theorem 1. 

Theorem 2 I f  P is a polynomial as in Theorem l, then each boundary point qcb f2  
is a peak point Jot the algebra A~ of  functions which are holomorphic on 
f2 and continuous on Q. 

A peak function is already known to exist at 0, if P satisfies conditions 
(0.1) and (0.2) with equal weights m 2 . . . . .  m,, see [B-F2]. The case n = 3  is also 
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conta ined in [B-F2]  (see Theo rem 3.8). Recent ly Noe]l I N ]  showed that  0 is 
a peak  point  in case that  P satisfies (0.1) with equal  weights m2 . . . . .  m,, and 
is not  ha rmon ic  on any  complex  line passing th rough  the origin in IE" 1 

An  immedia te  consequence of T h e o r e m  2 is : 

Corollary.  A domain of homogeneous j~mte diagonal type as in Theorem 2 is 
complete with respect to the distance functions of Caratheodory, Kobayashi, and 
Bergman. 

The me thod  of p rov ing  Theorems  1 and  2 is based on the cons t ruc t ion  
of certain analytic po lyhedra  DM associated with posit ive numbers  M. They 
generalize the po lyhedra  in t roduced  by Nagel  et al. in [N-S-W].  The geometr ic  
key l emma  is a local bumping  which generalizes the bumping  l emma  of Fornaess  
and Sibony IF-S] .  The analytic par t  of  the p roo f  consists in a const ruct ion 
of ho lomorph i c  auxil iary functions which have  large derivatives at a prescribed 
point  while the L~ over  f2 is bounded  independent ly  of the bounda ry  
distance of that  point .  This  in principle gives the left-hand side of  (0.7). The 
middle  inequali ty is known.  The  last one follows easily from the Schwarz-Pick 
lemma.  The same sort  of  ho lomorph i c  auxil iary functions as constructed for 
the es t imat ion of the C a r a t h e o d o r y  metric  will, together  with an a rgument  due 
to Bishop [Bi], give us a local peak  function at a given point  of the boundary .  
It  can be globalized in an e lementary  way ( L e m m a  5 in Sect. 2). 

Acknowledgement. The Theorems 1 and 2 of this paper were obtained when the author was 
visiting the Max-Planck Institut in Bonn in spring 1990. tie expresses his thanks to the institute 
for the invitation and support. 

Notational convention. In q2 d we will denote  by Bd(a, R) (resp. Ae(a, R)) the ball 
(resp. the polydisc) a round  the point  a with radius R. 

1 A local pseudoconvex supporting domain at a boundary point 

Let f2={r=Rezl+P(z ' )<O} be a pseudoconvex  doma in  as in Theo rem 1 
and 2. We choose a b o u n d a r y  point  qEb~? of the form q=(-P(q ' ) ,  q'), where 
q' = (q2 . . . . .  q,), I q'J < 1. If  we expand P in a Tay lo r  series at q' we will obta in  

(1.0) P(z')= P(q')+ Re h(q', z ' -q ' )+  ~, Pj(q', z ' -q ' )  
j = 2  

+ • ~k(qj, qk; zj--qj, Zk--qa ) 
j<k  

with real-valued po lynomia l s  ^ ' Pj(q, ") in I1~, and some (real-valued) po lynomia l s  
/~k such that  Pjk = O([zj--q~l IZk--qkl), for 2 < j < k < n .  Fur thermore ,  

1 ~l~lp 
h(q', w ' ) = 2 ~  (q')w '~ 

~! ~z '~ 

{ } where the sum is extended over  S = ~ = (:~z . . . . .  c~, c~/2 mj < 1 . 
j = 2  
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(1.1) 
j = 2  j < k  

Jbr ve(E ~, and 

F ( q , z ) = ( z a + P ( q ' ) + h ( q ' , z '  '" z' - q ) ,  --q'), 

for ze(E ". Then  (2 is mapped  under  F(q, .) biholomorphical ly  onto  the domain  

(1.2) D. = {v e ~~  I ~.(v) < 0}. 

Here  F(q, q)=0 .  In the sequel all work will be done on Oq. We will need a 
slightly generalized version of the bumping lemma in IF-S, Sect. 3]. 

L e m m a  1 There exist positive numbers ro, A, B, and C, and continuous .functions 
S2(q', ") . . . .  , S,(q', ") on the complex plane (E, such that for each j e { 2  . . . .  , n} the 
fi~llowing all hold: 

(I) For any u, we(E, and Re(O, 1), such that ]w]=<(1 +]ul/R) 2"JR one has 

S j ( q ' , u + w ) < S : ( q , u ) + C ~  - ' ' IIP~,dq, ")l R' 
j = 2  

(II) The Junction Sj(q', ") is subharmonic on A L(0, r0). 
(Ill) For we  z]l(O , ro) we have the inequality 

2mj  2m 2 

( 1 . 3 )  B ~  ^ ' - 
- ;Pi,,(q, ")l] twlZ<Sa(q ', w) ~ PJa(q,- ' w) 

/ = 2  / = 2  

2rnj 

- -A ~ II~.(q', ")ll Iwl z. 
1 = 2  

Here ~,,(q', ") is the homogeneous part of  degree 1 appearing in P~, and 
II/]d(q', ")ll is the maximum of  the moduli of  the coefficients of  Pj,~(q', "). 

Proof  Let us argue for j = 2 .  We abbreviate by C(i), for an even integer i, the 
following statement.  

~(i): There  exist positive numbers  r~, Ai, Bi, and Ci with the following proper-  
ty: If q'~(E ~ 1, I q ' l < l ,  and r , < r i  is a positive number  such that  for a suitable 
r e{2  . . . . .  i} we have the estimate 

LE(v, i) - , . ~ t IIPz,~(q, ) l l r , > C i m a x  ^ , = ]F Pz,~(q, ")11 r .  
l # v  

then there exists a cont inuous  function S~2"(q ', .) on (E with 
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(I') I f  u, w e 11; and 0 < R < 1 sa tisfy I w I < (1 + I u I/R) - 2 rtl 2 R,  then the es t imate  

2o l  2 

p, , R l S~ ~)(r u + w)_-< S~ ~)(q', u) + C; ~ II 2,~(q,')I 
/ = 2  

holds. 
(iF) 

(iH') 
The func t ion  S~' l ( q ', .) is sub harmonic  on A I(O, r .). 
On A l (0, r , )  it satisf ies the es t imate  

2t~ 2 2rrl 2 

-- ,_, i Pa.l(q, ")!l I w l ' < S ~ ) ( q  ', w ) -  ~ P2.t(q, w) 
[ = 2  / = 2  

2 m  2 

- A ~  ![e2.r(q',')!l Iwl z 
l = 2  

Roughly  speaking, g(i)  is a var iant  of  L e m m a  (3, 3, i) of  [F-S]  adap ted  to our  
situation. The difference between E(i) and  that  L e m m a  consists in the appea rance  
of p rope r ty  (I) (resp. (I')) which is not  discussed in IF-S] ,  and of the family 

rq:,q,,(vl, v 2 ) = R e v l +  ~, ~ , e 2 , k ( q ,  / ) 2 )  < 0  

k = 2  [ q " l  < !. 

of two-dimens ional  pseudoconvex  domains  which is pa ramet r ized  by q ' =  
(q3 . . . . .  q,). The  coefficients of  rq=.q,, depend smooth ly  on q' .  Now,  pursuing 
the const ruct ions  in the p roo f  of L e m m a  (3, 3, i) of IF-S]  step by step, we can 
prove  d~ for all even integers i<=2m= by induct ion on i. Also the p roo f  of  
the existence of a radius r o < r2m: such that  the hypotheses  of  g (2  m2) is fulfilled 
uniformly in q' with r ,  = r 0 is the same. 

Nex t  we treat  the coupl ing terms Pjk(qj, qk; " , ' )  appear ing  in formula  (1.1). 
First let us note that  

(1.4) ~k(qj, qk; Vj, Vk)= ~. "vU~awTJk ~,,, V') 
V,#,K,2 

where the sum is extended over  a finite set of indices v, tt, K, and 2 such tha t  
v + #, ~c + 2, v + •, a n d / t  + 2 are all positive, and 

(1.5) T J  k ( c / [ ) ' )  = ~jk  ,v -Iz 4c a, .u~(qj ,  qk) Vj Vj V k g~'. "v#K2'~tl 

The functions -jk avu,~;,(qj, qk) are po lynomia l s  in qj, qk of the form 

C'ABCD t4j t'lj t,1 k 
A ,B ,C ,D 

where we sum over  nonnegat ive  integers for which 

A + B + v + #  C + D + ~ c + 2  
(1.7) -t = 1. 

2 mj  2 mk 
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The numbers  C.ABCDl~jk'v#~c)" do not  depend on q'. With the abbreviat ions 

2 mj 
r (1.8) ~Nj(q, w)= ~ IlPj,t(q', ")11 Iwl ~ 

1=2 

and 

(1.9) aj(q;, w)=lqjl2m~ z [w12+lw[2~,  

for w~(12 and 2 < j < n  we can state our  estimates for the T ~ ; .  in 

Lem ma  2 There is a positive number N, depending only on the coefj~cients of 
P, such that, given a positive number ~5< 1/2, we have fi)r all j, k and all (v,. I~, K, )0 
as in (1.4) the estimate 

I T ~ . ( q ' ,  v')l_- < (~(~j (q j ,  Vj) 4- ~/J~k(qk, Vk)) -]- 6 N(aj (q j ,  Vj) ~- tTk(qk , Vk) ). 

For  the proof  of this we make use of the following sublemma which is 
not  hard to prove. 

Snblemma 2.1 (a) I f  M e N  + is given, then there exists a positive-number cM such 
that for any M-tuple ( a  1 . . . . .  aM)@l~ M one has 

M ei(v 1)o 2> ~,  sup ~ a~ c M _  l a~l. 
0-<0-< 27r v= l  v = l  

(b) Let k be a positive integer and F(u, (t)=~a~uu~f~ u a real-valued polynomial 

of  degree 2k  in tE such that for a certain positive radius R one has F(u, 8)>=0 
on A~(O, R); then, with a positive constant c k (which does not depend on the a~.) 
the estimate 

~ ( ~ la~,l) l u l ~ C k  ~ ( ~ lav,,l) lul  ~ 
modd v+#=rn meven v + g = m  

exists fi)r each ueA 1 (0, R). 
jk Proof of  Lemma 2 We begin by estimating all the terms T~,~). for which v + # > 2 ,  

K+)~__>2. F r o m  (1.5) and (1.6) we see that we have to consider terms of the 
form 

IqjI A+B F v~F"+~ Iqk] c+~ Ivkl ~+~, 

where the exponents  satisfy (1.7). Since v + p >= 2, we have 

([qjla+nlv;[~+u)mJ<=lqjl(A+B+~'+~')(m~ 1)[vy]a+n+v+V +lvjl(a+B+~+,')~J 
=< 2 (7; +B+v+#/2 .  

Correspondingly  
(I qk I c+~  I v~ I ~ + ~)'~ < 2 a c+~ 

Therefore,  because of (1.7), 

I Tj~u~a(q ', v')l< 2 S(aj(qj, vj) + Crk(qk, Vk)), 
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where S is the sum of the moduli  of  the coefficients ~ancot'J~'uu~z from (1.6). For  
large enough  3/1 it is less than 2 u' < 8 ~' 

Next  we estimate all the terms T~ko, with v, /~> 1. For  this we fix a vector 
d e ( E " -  ~ and a number  81 e(0, 1/2). For  uetE let 

fjk(u)=lvj[2lu]4 82to (vju2ej-+-vk u ) 

where we denote  by e~ the i-th unit vector  in ~"  ~. Then FSk_-->O everywhere, 
and thus 

(l.m) 
SiPs 0 ~ k ( u ) = l v J I 2  lu]4 gv~--~ffj (q'' vju2) 

Jff Z ~jk ~ 1  v ~# U2V+ 1 v~av~,lo(qj, qk ) [ j lS j l )k  ~2U 
v,t~> 1 

21- E ~jk 1 ,,u>= tv l* av,o l (q j, qk) ;1 U; L'-~/~k/'/2v/~2gt+ l 

+ Z OVj~ j  "~u,~a\~l,Vju2ej+vk31 ek �9 
v,#.> 1 

r :+2>2  

N e w  apply Sublemma 2.1 b to F = FSk and u = 1. This gives, with the abbreviat ion 
~jk __ ~jk ~jk ~jk a~at o--a~u l o(qj, qk), a ~ o l  =a~uol  (qj, qk): 

(1.11) Z -sn i + l - n  (la~.to a~.ol 1) IvjlV+" Ivkl 
V,/I~ 1 

- - - -  T,:u~;~ q', vjej+ 81 Vkek _-<St ~vj0~j (q'' vJ) Ivjl2 +8 '  ~ J~ 1 
v ,~>l  

K + 2 > 2  

N 6 ~ ~s(q', v j) + a ;  s~ (~rj(qj, v) + ak (q~, vO), 

with a large constant  N 2 independent  of  q. Similarly we can estimate the absolute 
values of  the jk jk T~ o ~ ;. and where 2 > 1, by r d l  r z ,  K, 

81 ~k (q', Vk) + 8 ? N2 (a j (q j, v) + ak (qk, Vk)). 

jk and jk Finally the terms T~oo~ = Ti oox, v, 2 >  I, must  be estimated. 
Let 0 < 8 2 < i ,  and for 0 t i t ,  v~176 '. For  j, ke{2  . . . .  , n} we abbreviate wok 

- - - -  822 Vj'~ ei + v ~ ek- Compu t ing  the mixed partial derivative of  ?q at WSk,~ we obtain 

C~2 ~q 2mj . 

- -  a v o o  1 (1.12) vjffk ovjOg k (WOk) = ~ ~Sk 82V-2e,(V-t)ov)~fk 
v=2 

2ink ~2 zjk 
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jk where T jk denotes the sum of all the terms T;,~,,  for which v+2__> 1, or #+x_>_ 1. 
These have already been estimated in the desired way. Now,  taking the supre- 
m u m  over all 0elR, we obtain from Sublemma 2.1 a" 

(1.~3) 
2ink 2mj 

la~oolllvjl  Ivkl 
2 = 1  1 ' = 2  

I 2mj 2m k 
__<ClSUp ~ ~ j k  6 2 1 - 2  i(l 1)O l ~" atoo] e vagk+ Z a~lkoo:~ei(l-a)~ 

0 e R  ~ -  ----2 ) . = 1  

~_~C 1 sup L~jl Iv~l ~-~Q~ (w~ + c ,  a 2 ( ~ j ( q '  , @+~k(q ' ,  V~)) 
0e~R I ~ ~ j  t., ~k I 

-~- C 1 6 2 N2 (O'j (q j, v j) + cx k (qk, Vk)) 

by (1.12). The second term on left side of  (1.13) can be dropped.  So we will 
get the desired estimate for jk Ti ooa, if we can estimate 

~ (wOO 

in a suitable way. F r o m  the plur isubharmonici ty  of fq it follows, that, for each 
0~lR, 

Ivj[ Iv~l ~vjO~ < [vile ~vjO~j Ovk(~g k 

= ,~: I vii2 0 vj ~ ej 0 vk 0 f~ (w~ 

But 

where 

9: ~q 9 2 0, (3: ~o)+ r~, Ivjl2 0v~0~j (w~ 
9 2 

)k  o TJ=lvJl2 ~ OVj~-)j Yv'u~)-(WJk)" 
v,#> l 

F r o m  this we conclude that  

a~ Ivjlz ,~ j  O~j ( ~ ~  02 ~J(q" vj)+62 ~k(q', Vk) 

+ a - ~3 (% (q j, v j) + (rk (qk, v0), 

with a large constant  N 3 independent  of q. The corresponding  estimate is valid 
also for 321v k 12 92 fq/~ v k 0 vk at the point  W~k. Taking the supremum over 0 e N ,  

j k  we get the desired estimate for ]T(okoa[. Similarly we can treat the terms [T~ool I. 
Thus  the lemma follows, if we choose  61 = 62 = 6/10, N = N1 + N2 + 5/3. 
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We are now ready to introduce the defining function for a pseudoconvex 
bumping for ~q at q. Let for v ~ C" 

(1.14) 4)~(v)= ReVl + ~ Sj(q'; vj) 
/ = 2  

4)2(v)=fq(v)--s  ~ Wj(qj, vj), 
j = 2  

where we define for 2 < j  < n 

Wi(q j, v )  = I qj 4- vjI 2 ~J - [q2 ]2mJ - 2 Re 

Finally, let for 0 < a < 1" 

[q212mJ 
q.i 

Vj. 

0.15) o = a 4 ) l + ( 1 - a ) 4 ) 2 .  

Then ~0 has the following properties. 

L e m m a 3  (1) The function 4) 1 is pIurisubharmonic on the tube T~o=CX 
A, 1(0, ro) and continuous on (U ~ 
(2) The function q~2 is plurisubharmonic and smooth on 117." 
(3) For sufficiently small a, the .function (p satisfies, with a universal constant 
A > 0  

(1.16) 
n A 

1 ~=2~j(q,,vi)+fq(v)<__9(c,)<=fq(V)__2 - ~2~j(q, ,L) ) 
A j  j= 

(4) There exists a positive constant A 1 with the following property: I f  v '= 
(v 2 . . . . .  v,) and w '=(w2,  . . . ,  w,} are vectors in ~"  i and R 2 . . . .  , R ,  are positive 
numbers, such that (with m = m  2 + . . .  + m,) 

,w,r Rj 2m 

for  j = 2 . . . . .  n, then 
tl 

qo(O, v' + w')<= qg(O, v')+ A ,  ~ ~j(q ' ,  Rj). 
j = 2  

Proof  Properties (1) and (2) are obvious because of Lemma 1 and assumption 
(0.2) about  P In order to show (3), we write 

(1.17) 4), (v)-- fq(v) =j.= Sj(q ,  vj)-- t=2 ,I(q, vj 

Z A r. 
- ~ ( q ,  vj, vk). 

j<~ 
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If 6e(0, 1//2) is small, we can estimate by Lemma 2 

(1.18) 
n 

~k(q'; L), vk)<(2m) 4 ~ 5 JJj(q', v j)+3 -u  aj(qj, t%). 
j<k j = 2  

The definition of the functions ~i(q ' ,  v~) together  with (0.2) implies, with a posi- 
tive constant  A2, independent  of q, that 

a j(qj, v j)<= A 2 ~j(q' ,  v i ). 

We substitute (l.18) and (1.3) into (1.17). What  we obtain, is, with a positive 
constant  Ba > B: 

n 

( 1 . 1 9 )  - B I  Z J~J(q, tJJ)~CI)l(V)-Fq(V) 
j = 2  

n n 

=< - (A - (2 m)* &) ~" ~j(q ' ,  v)  + (2 m) 4 5 - N ~ aj(qj, vj). 
j = 2  j = 2  

Now let g = A ( 2 m )  -~. In order  to obtain (3) we therefore only need to show 
that, for a suitable A 3 > 0, independent  of q, the estimate 

(1.20) 1 ~_2qj(qj, Vj)<--__cl)2(V ) %(l))<= --A 3 (Tj(qj, vj) 
A 3  j =  j = 2  

holds. But Lemma  5.3 in [-RalJ implies, with a constant  A ] > 0 :  

1 
A'-, ~.i--< wj__< & o-j. 

From this and from (1.14) we obtain (1.20). Thus condit ion (3) is satisfied by 
q) if we choose a: A3&~V/(A~&S+(2m)6). 

Let us now prove (4). By Lemma  1, (I), the assertion is true for ~1. So 
we need to show it only for q~2, or, equivalently, for Fq and the functions Wj. 
(See (1.141). Let  v'ell2 ~ 1 be fixed, and 

/~j = Rj 1 + i~2 R~ / " 

For  any w '=  (wz . . . . .  w , ) e C  "-1,  such that J wj[</~j,  for all j = 2 . . . . .  n, we write 

. /2mj ) 
(1.21) Fq(O,w '+v ' ) -Fo(O,v )= j~=2~2Tj , ( v ' ,w ' )+  2Sjk(V' ,W')  , 

1=2  j<k 

with the abbreviat ions 

and 
TjI(U• 

' ^ , w ) = ~ , ~ ( q , v j + w ) -  A , ~,~(q, v j) 

S j k ( v ' ,  ' w )=  P~k(qj, qk; Vj+Wj, Vk+Wk)--~k(qj,  qk; Vj, Vk). 
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Now, because of the homogeneity of Pj.l(q'; ") we have 

ITjt(v', w')l<-_A5 [l~,t(q', ")ll Iwjl(Ivjl+lwjlr 1 

<=As I Pj, z(q', ")[I /~j( lvj l+eJ 

< A s ! l ~ , z ( q , ' ) l / ~ R j  _1 Rift 

<=A5 ]lPj,~(q', ")11 R} 

<= A 5 ~j(Ct' , R j), 
because 

( + 1 Rj 1 Rj]  <=Rj for 2<_l<_2mj. 

Similarly, I Sjk] is less than a sum of at most (2 m) 4 terms of the form 

c~~ +~ +~+e ~k(q'; 0) 
T=const  ~ t T b ? t , ~ , ~ g  ~ ([WjI([VjI+Iwj[) "+b '([VkI+Iw~[) "+d 

+IWkI(IvjI+IwjI)~+b(tV~I+Iwkl)~+d ') 

If we use 

and 

Ivil+lw~l<=R~ 1+ Ri] 

- Rj Rk / 

for ie{j, k}, we obtain 

T< const ~"+b+~+aPJk (q';O) R~+bR~ +a. 

This implies because of Lemma 2 (with 6 = 1/2) 

T ~ / t  6 (o~j (q,,/)j) _1_ '~k (q', Uk)), 

G. Herbort 

(1.22) ~,~q={Uc=_Z3ro/4 An ' v j )<0} .  

We have 
~'~q O T3ro/4 c2 ~r~q. 

where the constants As, A6 are again universal. The functions Wj are estimated 
in the same way as the ~I above. From this the inequality (4) follows, and 
the proof of Lemma 3 is complete. 

In particular, we have found an optimal exterior domain of comparison 
for ~q at 0, namely 
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Also note that q)(v)=Rev~+O(v') ,  where ~5(v')=cp(0, v'). It will be on ~q that 
we construct bounded holomorphic auxiliary functions which will be needed 
for the proof  of Theorem 1 and 2. In the next section we prove a comparison 
lemma for holomorphic functions from which it will follow that, in order to 
prove Theorem 1, it is enough to estimate the Caratheodory metric of f]q on 
the interior normal at 0. For  the proof  of Theorem 2 we will construct a peak 
function on ~q, which gives us a local peak function for g2 at q. By means 
of the comparison lemma we finally make out of that local peak function a 
global one. 

2 B o u n d e d  h o l o m o r p h i c  a u x i l i a r y  f u n c t i o n s  

We begin with a lemma which is based on the U- theory  for the [ operator  
due to H6rmander  [HS].  It is essential for the construction of holomorphic 
functions which satisfy U estimates. These will imply an L ~ estimate via the 
mean value inequality. This idea was also used in [B-F1; Ca; F-S, Sect. 2; 
Ra2]. 

L e m m a  4 Let GclF.  a be a pseudoconvex domain and G ' c  G be open. Suppose 
U and ~ are plurisubharmonic on G, and 0 is strictly plurisubharmonic on G'. 
Let  a ~-closed (0, D-form ~ on G be given with smooth coefficients such that 
supp(7) c G', and 

(2.1) I(cO= j" Is 2 - v - ~  [e~q,e d Z2a is finite. 
G 

Then there exists a smooth solution u~eC~(G).(or  the equation Ju~=c~ with the 
.following properties." 

(2.2.1) ~ lu=12e - v  edZ2a<2I(c~). 
G 

I f  x e G \  G' and 71 (x) . . . . .  ?a (x) > 0 are radii, such that 

(x) = {y ~ C a I ]Yj-- xi[ <= ? j (x) fi)r all 1 < j <= d} c G \  G', 

then 

(2.2.2) I u~ (x) l 2 < (t~l (x)" . . .  �9 ?a (x)) - 2 ( m a x  e U + o) .  I (c 0 . 
h(x) 

Here, d)c2a denotes the Lebesgue measure in II? a, and Ic~]oa~, is the length of 
with respect to the Kfihler metric on G' with potential ~t. 

Proof. The existence of a solution u,e  C ~ {G) of/?-u~ = ~ satisfying (2.2.1) follows 
from a slight modification of Theorem (2.2.1') in I-H6]. If x e G \ G  7 then u, is 
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holomorphic near zi(x). So we obtain by the mean value inequality, applied 
2 

to  U~ 

lu~(x)12<Vol(3(x)) -a ~ lu=(y)l 2 d)~2a(y) 
a~x) 

=<rr-a(Ft(x).....?a(x))-2maxe v+O [ lull 2e ~' O d ~ 2 d  " 

21(x) G 

This together with (2.2,1) will imply estimate (2.2.2). 
We next show a comparison lemma for holomorphic functions on general 

pseudoconvex domains of homogeneous finite diagonal type. 

Lemma 5 (Comparison Lemma) Let g?' = {r' = Re z 1 + P'(z') < 0} be a general 
domain of homogeneous finite diagonal type (No assumptions about P' but (0.1), 
and (0.2)!). Let 0<p~, 6<1 and qebf2'. Assume ~here exists a pseudoconvex 
domain Q'q with the properties 

(2.3) O' ~ B~(q, 9 p , ) c  O'qc~ B.(q. ~- p,) 

(2.4) {r' <3} c~(B,(q, 9 p~),\/~,(q, 6pt)) c f),q. 

Further, let E be a j~nite set in (2'c~B,(q, �89 with # E  elements. Then there 
exists a positive constant 7 depending on Pl, 6, and # E, such that the following 
holds: 

Let X be a smooth cut-off function, 0=<7~=< 1, Z(x)= 1, for x<=(vs)2 and X(x)=O 
for x > 1, let LE No, and mfO ~ C (0'q ~ B, (q, 9 P 1)) a funct ion such that 

IIJ0tl - ~ ~ I. 
lg~ (Q'+c~(B.(q, ~ Pl)" B~(q, �88 p,))) - -  

7hen there exists a smooth function u~ on f2;= {r'< 6} satisfying 

(2.5) 
\ Pl / 

(2.6.1) II u~ [I L~ (rv~ < 7, 

and 

(2.6.2) uZi vanishes of E h order at the points of E. 

Proof We apply Lemma 4 to the form 

{kT(Z(Iz-ql2/p~)fo(z)), on Q'c~A' 
~ = / 0 ,  on O ' \A '  

where A =B,(q, p t ) \B, (q ,  ~Pa). Note that f2;~ ' *' ' A ~ f2q. Further, in the situation 
of Lemma 4, we have d = n, G = f2;. We also need to choose the right plurisubhar- 
monic weight functions on G. They were constructed by the author in [Hel,  
Satz 5]. 
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Lemma 5.1 For small 6 > 0  there exist plurisubharmonic functions Ve and ~' 
on f2' o with the following properties: 

With suitable positive constants Co, c~, ..., c3, depending only on p~, 6, and 
# E :  

(2.7) 0<=r (/eC~(O'~), and c~g(O'-eo Izl2)>0 on f2'~c~B,(O, 2p~) 

(2.8) VL,~C2(f2'a\E), and VE is strictly pturisubharmonic on Q'~\E. We have V~(z) 
< ~ log I z - e [  2 +Cl for an); zef2'~. 

t'~E 

(2.9) On f2'~ one has VE~C2, and VE> --% on g2'~\B.(q, �88 Pl). 

Proof Satz 5 in [He l ]  implies the lemma for 6 = 0  and # E = I ,  But the argu- 
ments of the proof given there go through also for a small positive 6 and a 
finite set E. 

To continue the proof of Lemma 5 we introduce two functions, namely 

and 

U = r ' - - s ' a '  + ( n +  L) VE, 

0=0', 
n 

where # (z ' )=  y" Izjl2~3, and (m'2 . . . .  , m',) is the set of weights associated to P' 
j - 2  

according to (0.1) and s' is the number appearing in (0.2) for P'. Let u~ be 
the function u, from Lemma 4. (It is obvious that I(c~) is finite.) Then (2.5) 
follows immediately. Property (2.6.2) is implied by (2.2.1) for u L~, since e x p ( - U  
- ~ ' )  behaves like Iz-e1-2~+L) near any point eeE. For the proof of (2.6.1) 
we distinguish three cases: 
(a) Let zeO'c~(B.(q, 17 - 13 . ~o Pl) \B,(q ,  ~P l ) ) ,  then, with a small radius r~ > 0  depend- 
ing only on Pl and (5, we have 

A,(z, rl)cg2'oc~(B,(q, 9 p , ) \~ , (q ,  �88 

Thus by the mean value inequality (with c =(g  rf)-") 

If(z)12<c ~ Ifl2dA2. 
An(z,rl)  

< 2 c  j" (IJol2+lu~l=)d,,tz. 
An(z,rt) 

< 2 c ( 1 + (  max e v+*) ~ Itt~lZe-V-*d)~2.) 
An(Z, rl) Ul 3 

< 2 c(1 + 2 exp(6 + (n + 1 + L) c2) I(~). 

Since l(cQ < c 4 e tn +L)c3 with a constant c4 independent of E, we obtain 

If(z)l~<__cs(p,, 6, #E) 

with a universal constant c5(pl,6, #E) ,  and finally luL(z)IE~21f(Z)I2+2~ 
yi:=2(C5+ 1). 
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(b) Suppose  now z~f2'nBn(q, 13 Y~Pl). Then  for small enough r 2 > 0  (depending 
only on Pl ,  and  ,5) u L is ho lomorph ic  on A,(z, re). Apply  (2.2.2) of  L e m m a  4 
with G'=f2a~(B,(q, 33 27 ' r ~ p O \ B . ( q ,  n. x~P~)) (=Dsupp(~)), and ?i(z)=r2,  i =  1 . . . . .  
(c) Finally,  if z~f2'  c~ (C" \B , (q ,  17 ~ P 0 ) ,  we choose,  with a small  posit ive cons tant  
c independent  of  z and  E 

^ C ^ C 

r l ( z ) = ~ 6  and P2(z) . . . . .  r.(z)=2;-6(l+lz'12) -2 . . . . .  2,.. 

Then the cor responding  polydisc zl(z) is conta ined  in f2 ; \G ' .  Apply ing  (2.2.2) 
of  Lernma 4, we get, with a cons tant  c6 = c6(pl, c~, :~ E), 

I u'i'(z) l 2 < c6 (1 + I z' 12) 2/~- ,~.  e-~'~'~z') __< c~ 

for a large cons tan t  c7 uniformly in z. Here  we abbrev ia ted  m = m  2 + . . .  + m n .  

Hence  condi t ion (2.6.1) is satisfied for 7 = (71 + eT)t/2 r~-". 
In  order  to cons t ruc t  the auxiliary functions which are relevant  for the p roof  

of  Theo rems  1 and 2 we in t roduce some more  notat ions.  
F o r  M > 0 let Rj(M) be the solut ion of the equa t ion  

(2.10) ~j(q', Rj(M))= I/2 M 
for 2 =<j_-< n, and 

5 " Ivjl ~ 
QM(V') = r~oo j~"-2"2 R j ( M )  z " 

Let us also denote  by ?' (resp./~) the opera to r s  0 (resp. ~-) in the space fit" 
( V 2 , . ,  . ,  t~n}" 

F r o m  n o w  on we assume that  M is so large that  Rj(M)< 1/2 for 2 < j < n  (note 
that  Rj(M)<M-L'z'~J). Then the "e l l ipso id"  {v'[QM(v')<5 } is conta ined  Jn 
A,_ 1 (0, �89 r0). 

L e m m a  6 With a certain positive constant A7 we have Jbr each M > 0 :  

M[~(v ' )]~AT,  

Jbr any v' e D'M = A 1(0, Rz (M)) x . . . • A I(O, R,(M)). 

Proof Fol lows immedia te ly  f rom (1.16) in L e m m a  3. 

L e m m a  7 With a suitable positive constant As the following holds: There exist 
for any large enough M holomorphic functions l~M . . . . . .  j 7  on A, ~ (0, ro) such 
that 

(2.1 l) lfM(O) = 1, 0'1 ~M(O) = 0 

(2.12) O;~M(O)=dv~/RdM) for 2<l<_n 

(2.13) I ~fM(v') I < A s (i  + Q,~t (v')}"' e M~co')/z 

for all v' eA,_l(O, �88 and 1 <-l<-n; here ml -----(m2 + . . .  +m,).n. 

Proof We choose a s m o o t h  cut-off  funct ion )~1 on IR, 0< )~1<1 ,  I)(~l<2, such 
that  Xl (x )=  1 for x < � 8 8  and ZI ( x ) = 0  for x >  1. For  M > 0  we define the functions 
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1~1---1, ~,~(v')=v/R~(M), 2<j<n .  Then we solve on G:=A,_~(O, ro) the Y- 
equation according to Lemma 4 (where d = n -  1) given by 

(2.14) c. y M -  ~ u  :=g  (~gM Zt ~ QM). 

The plurisubharmonic weight functions U and ~ are defined by 

and 

~ = $ M = l o g (  1 +QM) 

U =  UM=log(l + [v '12 )+n logQM+M (o. 

We estimate the L 2 integral /(jc%) associated to the form jaM. Since 
supp(jc~M) ~ {�88 < Q~t _-< 1 }, and ~3' (3' OM > �88 (3' QM ^ (?' QM on supp(jc~M) we obtain 

2 ,< , by virtue of Lemma 6 the estimates [jc%[o,,,:,,M = 16ro 2 and 

(2.15) I(j~M) <= A'8 Rz (M)2"... "R,(M) z. 

By Lemma 4 we obtain a smooth function yM on A,-I(0,  ro) such that the 
function jr~.-=Z1 ~ is hotomorphic on A,-1 (0, ro). Because of the 
term nlogQM occuring in U~ it satisfies (2.11) and (2.12). Let us discuss (2.13). 
We fix a v '~d,_ 1(0, ~r0) and distinguish two cases: 

(a) QM(v')>5. If we set ?~(v')=(ro/5n)(l+Q~(v'))"/"Rj(M), 2<j<n ,  and 
A(v')=Al(vz,?z(v'))x. . .XAl(V,,#,(v')) ,  then A(v') is relatively compact in 
el,_ 1(0, r0)\supp(j~M), and (2.2.2) of Lemma 4 applies. Since j~M(v')=-juu(v') ,  
we obtain 

I j]'M (v') I z ~ (F 2 (v')" ... �9 ~, (v')) 2 I (fl~M) max e v" +*~ 
3(v') 

From (2.15), the definition of the ~(v') and (4) of Lemma 3 the estimates 

and 

^ , !  I(j~M)(r~ (v)..... e . ( v ' ) ) -  ~ __< A ~  (1 + Q M  (v'))  ~ " '  ( '  - ~ ' ~  

max e vM +*'' < (2 e)" + 6 QM (v')" e M~ 
?(v') 

follow and imply (2.13). 

(b) Assume Qu(v')< 5. Now, by the maximum principle we can estimate 

[ifM(v')l < max IjYM(W')I. 
w':Q.w(w')= 5 

The right-hand side of this is less than a positive constant A~' independent 
o f q  and M, (this follows from part (a)). Since on {QM<5} we have eMc~ 
uniformly in q and M, now (2.13) is completely shown. 
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3 Proof of the Theorems 

Proof of Theorem 1 

Lower estimate for the Caratheodory metric 

Any point zes can be written as z = ( - P ( z ' ) + i l m z ~ ,  z ')+r(z)el,  where ea is 
the first unit vector in l~ ". We may assume for the estimation of Carat(z,  X), 
Xetl7 ", that Imz~ =0,  and Iz'[< 1, for f2 is invariant under translation by vectors 
of the form (ia, 0 . . . .  ,0), a real, and the scaling map S;.(v):= 
(J[Vl,)~l/2m2V z . . . . .  2 1 / 2 r a " V n )  , 2 positive. We now write q=(--P(z') ,z ') ,  and let 

t = -r(z) .  Then we apply Lemma 7 with M =-n, and consider the functions 
t 

on 0q. From (2.13) we see that 

(3.1) Ijh,(v) l <A8(1 + Q~(v')) ~' e ~ ~(') 

Our claim is that jht e H oo (0q), and [I ~ht II L ~ )  ~ A9, independently of q and t. 
Let vef2q. If QM(v')<I, then Ijh~(v)[<__2~"'As. If QM(v')> 1, then there exists 

a j e { 2  . . . . .  n) 

Ivjl a > rg 
Rj(M) 2 = 5n QM(v'). 

/ 

(r2/lO n M) Q~(v') implies 

A r~ A t QM(v'). 
(o(v) < - ~  Mj(q', vj) < - 40~  

Substitute this in (3.1). This gives I jht(v)l<A'9,=Assup(l+x)~'e -bx with b=  
r~ A/80. x> 1 

Let F(q,.) be the biholomorphic mapping introduced at the beginning of 
Sect. 1 (between (1.1) and (1.2)). We want to apply the Comparison Lemma, 
Lemma 5, to f2'=f2, and ^' faq=F(q,.)-l(s~q). Certainly we can find positive 
numbers p~ and 6, independent of q and t such that (2.3) and (2.4) hold. Let 
if;z be the functions associated by the comparison lemma to fo=jhtoF(q,.),  
where E = {z), and L =  2. Then [[j/~zllL~(~) < A lo uniformly in z. Further, for any 
vector X E C", we have, since F (q, z) = - t el, because of (2.11), and (2.12): 

and 

n 
(ct ~(z), X)=(0 t  h t ( -  t e l), F ( q, z ) ' X ) = ~ t  e- "/2 ( O r(z), X) 

(c3jfi~(z), X ) = e  -"/2 IXjl 
R i (n/t) ' 2 <j < n. 
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Using the definition of Carar~(z, X) we obtain from this 

(3.2) 
e-n/2 (l(Or(z)'X)[ + ~ [XJt 1 

Carat(z ,  X)> 2nA1 ~ t Rj(n/t)]" 
j=2 

Since with a universal constant A 1 ~ > 0 

1 
. . . .  <= R ~ (n/t)  ~ j (z) < A 11 (3.3) Aa~ 

the right-hand side of (3.2) is greater than or equal to (2 n Alo All e)- ~ M~(z, X), 
as was to be shown. 

Upper estimate for the Kobayashi metric 

Let z and X be as before, likewise q and t. From the definition of the radii 
Rj(n/t), 2 <j<n, it follows easily that 

A,:=Al ( - t ,  2 ) x  A,(O, R2(n/l)) x ... x A,(O, R,(n/t))c~2 q. 

Consequently 

Kobo(z, X) = K o b G ( - -  t el, F (q, z)' X) <= KObA, ( -  t el, F (q, z)' X) 

{ 21((?r(z)'X)l ]Xjl/Rj(n/t),j=2, n} = max ..., 
t 

~A12 M~(z, X) 

with A12 independent of z and X. The proof  of Theorem 1 is now complete. 

Proof of Theorem 2 

The principal tool for the proof  of Theorem 2 is 

Lemma 8 Let q be a boundary point of f2, such that l m q l = 0 ,  and ]q '[< 1. 
(This assumption causes no loss of generality.) Then on '~q there exists a peak 
function at 0 i~ the algebra A~ 
Proof For  M > 0  let fM(v)=exp(Mvt/2) lf.u(v') on f2o" Here lfM is the function 
constructed in Lemma 7. We prove at first that  fM is, in a sense, an "a lmos t"  
peak function. Note that JM(0)=I .  For c5>0 let U6={vef~q I IRev~l+lv 'F>6}.  
Our claim is that for any positive 6 there exists a number  Mo>0,  such that 
for all M > Ms one has 

(3.4) sup I fMI --< �88 
U~ 
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If v~U6 and QM(v')> 1, then, similarly as in the proof  of Theorem 1 we have 
Mrp(v)<-bQM(v'), where b is a positive universal constant. Thus Mo(v)< 
-(b Q~(v')+ m q0 (v))/2. Now (2.13) implies 

(3.5) , M ~o(v)). I fM(v) INAs(I+QM(v ' ) )  '~ exp (--b QM(v)+~ 

Obviously (3.5) remains valid, after enlarging A8, if necessary, also for vEUa 
with QM (v') < 1. 

With a universal constant A~3>0 we have, as we can see from (1.16): 

(3.6) [ q)(v)_ Re v I I .<A131#[2. 

We let c = 1/(4 + A 1 s) and distinguish two cases: Case (I): [ v'] < c 3. Since q0 (v) < 0 
on ~q, we see from (3.6) that Rev~<e2A136 z. Since v~U~, Rev~ cannot be 
positive (note that c is small!). So ReVl=--(lRev~l+lv'l)+lv'[<--3+c6<= 
--36/4. Now (3.6) implies that ~o(v)< - 6 / 2 .  Case (II): [v'[>c6. In this case we 
must have Qm(v')>=Al,,Mtc2O 2, with ~= 1/(2rn2+ ... +2m,) .  Thus (3.5)implies 
that one can choose in any case a number  M~ such that (3.4) is satisfied for 
each M > Ma. 

Let A ~  be a positive number  such that  Hfvtl[L~(f~q)~A16 for all M. Then 
we can apply the arguments given in [Bi, pp. 633 634], in a slightly modified 
way to the functions gM=fM/A16, and find a strictly increasing sequence (Mk) k 
of positive numbers such that 

k = l  

is the desired peak function for ~q at 0 with respect to A~ where 71 = I/AI~, 
72 =371,  and fl=A16(72--70/1--(72-70. 

^ '  F ( q ,  . ) - 1  . . . .  We apply the comparison lemma to ( 2 ' = 0 ,  Qq= (Oq), where Oq 

= v q~(v)+~j_~,C~j(q'; v j )<0  , and the function fo=l/(fqof(q,')--l).  Here, 

fq is the peak function from Lemma  8 for ~q. We choose E = ~  and L = I .  
What  we obtain, is a function f~e (~(Q), whose real part  is less than some constant 
A~7 and which blows up at q. Hence 

f q - - A t v +  1 
gq- fq--A17 -- 1 

is the desired peak function for (2 at q with respect to A~ for fq is of the 
form f~ = Z f o - u ,  with a certain cut-off function Z which vanishes outside the 
domain of definition of f0 and a function ueC~ Furthermore,  since 
Z.fo~C~ we have fq~C~ and finally gq~C~ 
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