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Introduction

For a certain class of pseudoconvex domains in €C* we want to study the bound-
ary behavior of the invariant metrics of Caratheodory and Kobayashi. Let us
first recall some definitions: For a domain D < € the Caratheodory pseudometric
is defined as

Carap(z, X)=sup{|(0f(2), X)| | f: D— 4,(0, 1), / holomorphic},
and the Kobayashi pseudometric is, by definition,

Kobp(z, X)=inf{R > 0| There exists a holomorphic map
f:4,(0, R™Y)— D such that f (0)=z, f'(0)= X}
for (z, X)eD x C".

Both pseudometrics are distance decreasing under holomorphic mappings.
Therefore they can be used in the study of the boundary behavior of proper
holomorphic mappings. [B-F1, H, D-F1].

Since the paper of Graham [Gr], the boundary behavior of the pseudometrics
of Caratheodory and Kobayashi on bounded strictly pseudoconvex domains
is well understood, (see also [H]). In the weakly pseudoconvex case Catlin
obtained precise estimates for the growth of Cara;, and Kob,, when D is a
pseudoconvex domain in €2 of finite type [Cal].

Except for some very special cases the precise boundary behavior of these
invariant metrics on a weakly pseudoconvex domain in €*, n= 3, is not known.
In this paper we want to generalize Catlin’s result to the class of pseudoconvex
domains which are of homogeneous finite diagonal type; by this we mean the
following:

Definition. Let P be a real-valued plurisubharmonic polynomial in €~ ! without
pluriharmonic terms (here n>2). Then the domain

Q={r=Rez, +P(z)<0}
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is called of homogeneous finite diagonal type, if

{(0.1) The polynomial P is weighted homogeneous, i.e. there exist positive integers
m,, ..., m,, such that for all t>0:

Pt 2mag, . f12mz)= P(2)

(where 2/ =(z,, ..., z,)).
(0.2) For a small positive number s the polynomial P(z')—2s) |z;|*™ is also
plurisubharmonic in €* 1. i=2

Observe that no holomorphic support function needs to exist in such a
domain as was first shown by Kohn and Nirenberg, [K-N], in a domain in
C? which has properties (0.1) and (0.2).

We are going to study the boundary behavior of the invariant pseudometrics
Carag, and Kobg, for domains of homogeneous finite diagonal type only under
the additional assumption that at most two of the variables z,, ..., z, appear
at a time in the Taylor terms of P.

In order to be able to state our results we need to introduce the following
auxiliary functions: Let Q@ be a domain of homogenecous finite diagonal type.
For 2<j<n, 25152 m; let

0.3) A,;(z)=max { ;;é% v, puzl, v+u=1}
and
g Alj(z)>}
0.4 EC.(2)= A At
04) =3 (25

for ze Q. On Q x €" we define the metric

@OrE X, &y iy
EEIE A

i=

(0.5) Mg(z, X)=

In Theorem 1 we compare Carag, Kobg,, and M,,.

Theorem 1 Suppose Q= {r=Rez,+ P(z)<0} is a domain of homogeneous finite
diagonal type and P is of the form

(0.6) P(z)= Z Pj(Zj)+ ijk(zp Zi),
j=2

i<k
where P, and P, are real-valued polynomials and, for j <k, Py has the form

_ YV SU K A
ij(zja Z)= Z CounaZj2j Ty Zg,
Vol K, A
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where the sum is extended over finitely many indices v, u, k, 2 with v+u=1,
K+ A= 1. Then, with a universal constant C{ >0, we have

(0.7) 1/Cy Mg(z, X)< Carag(z, X)<Kobg(z X)<C, Mg(z. X)

for (z, X)eQ x C".

We recall that, if D<= @" is a domain such that the Bergman kernel function
on the diagonal is positive everywhere on D, then log K, (z, 7) is the potential
of the Bergman metric B on D x C". It is well-known, [Ha], that B3 =(Cara,)’.
On the other hand, the functional b3 =K, B, viewed as a domain functional,
is increasing, when D decreases, i.e.

(0.8) If D' D thenb, | D' x C"2 b3 | D' x C".

In [He2] the author shows:

Theorem. If Q and P are as in Theorem 1, then, with a certain constant C >0,
we hate

09) =Kol D1 [1%6PSC

j=2

o=

From (0.8) and (0.9) we can then easily deduce that on the class of domains
as in Theorem 1 the metrics of Caratheodory, Kobayashi, and Bergman have
equivalent growth at the boundary. (In case that all the P, are zero the estimates
(0.7) and (0.9) are contained in McNeal [M1, Theorems 1 and 2].) Notice that
the equivalence of these metrics cannot be expected to hold for general pseudo-
convex domains. For counterexamples see [D-F2] and [D-F-H].

A qualitative estimate for the Kobayashi metric on uniformly extendable
bounded psecudoconvex domains was deduced in [D-F1] and [D-L], and for
the Bergman metric on pseudoconvex domains with a subelliptic J-Neumann
problem in [D-F-H]. McNeal proved in [M2], that the Bergman metric grows
in each direction at least as dist(+, bQ)™2**9 (with arbitrarily small §>0) in
a neighborhood of a point gebQ, such that a subelliptic estimate of order ¢
holds near ¢ for the /-Neumann problem on (0, 1)-forms. For the Caratheodory
metric of certain two-dimensional scaling invariant non-pseudoconvex domains,
and of real-analytically bounded pseudoconvex domains in €2, see [B-F1].
Range estimated in [Ra2] the Caratheodory metric on a real-analytic bounded
convex domain in C".

It is well-known that the problem of estimating the Caratheodory metric
is related to the problem of constructing peak functions which is also still open
in the weakly pseudoconvex case with n=3. The method of proving Theorem 1
also gives an answer to the peak function problem for the class of domains
considered in Theorem 1.

Theorem 2 If P is a polynomial as in Theorem 1, then each boundary point geb €
is a peak point for the algebra A°(Q) of functions which are holomorphic on
Q and continuous on Q.

A peak function is already known to exist at 0, if P satisfies conditions
(0.1) and (0.2) with equal weights m,, ..., m,, see [B-F2]. The case n=3 is also
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contained in [B-F2] (see Theorem 3.8). Recently Nocll [N] showed that O is
a peak point in case that P satisfies (0.1) with equal weights m,, ..., m,, and
is not harmonic on any complex line passing through the origin in €* .

An immediate consequence of Theorem 2 is:

Corollary. A domain of homogeneous finite diagonal type as in Theorem 2 is
complete with respect to the distance functions of Caratheodory, Kobayashi, and
Bergman.

The method of proving Theorems 1 and 2 is based on the construction
of certain analytic polyhedra D,, associated with positive numbers M. They
generalize the polyhedra introduced by Nagel et al. in [N-S-W]. The geometric
key lemma is a local bumping which generalizes the bumping lemma of Fornaess
and Sibony [F-S]. The analytic part of the proof consists in a construction
of holomorphic auxiliary functions which have large derivatives at a prescribed
point while the L*-norm over Q is bounded independently of the boundary
distance of that point. This in principle gives the left-hand side of (0.7). The
middle inequality is known. The last one follows easily from the Schwarz-Pick
lemma. The same sort of holomorphic auxiliary functions as constructed for
the estimation of the Caratheodory metric will, together with an argament due
to Bishop [Bi], give us a local peak function at a given point of the boundary.
It can be globalized in an elementary way (Lemma 5 in Sect. 2).

Acknowledgement. The Theorems 1 and 2 of this paper were obtained when the author was
visiting the Max-Planck Institut in Bonn in spring 1990. He expresses his thanks to the institute
for the invitation and support.

Notational convention. In € we will denote by B,(a, R) (resp. 4,(a, R)) the ball
(resp. the polydisc) around the point ¢ with radius R.

1 A local psendoconvex supporting domain at a boundary point

Let Q={r=Rez,+P(z)<0} be a pseudoconvex domain as in Theorem I
and 2. We choose a boundary point gebQ of the form g=(—P(q"), '), where
q'=(q5, ..., q,), |9'| <1. If we expand P in a Taylor series at ¢" we will obtain

(1.0) P(Z)=P(q)+Reh(q, 7 —q)+ ZP, (q.2—q)

+ 2 Bulgy 4 2— a5 Zk—qk)

i<k

with real-valued polynommls P( +) in €, and some (real-valued) polynomials

Ek such that By =0(z;—q;| 1z, — qk|), for 2<j<k<n. Furthermore,
1 gl ’P
=2 &
aé %! 0z (q)w

j=2

iaj/2mj§1}.

where the sum is extended over S={a=(a2, ey O)
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Let

(11) Fq(L Rel‘l+ ZP(QBLJ)+ Z k(qj’ qk;vja Uk)

j=2 i<k

for ve@C”, and
Flg, 2)=(z,+ P(q)+h(q’, 2 ~q). 2’ —q),

for zeC". Then Q is mapped under F (g, -) biholomorphically onto the domain
(1.2) Q,={ve"|F,(v)<0}.

Here F(q, q)=0. In the sequel all work will be done on ﬁq, We will need a
slightly generalized version of the bumping lemma in [F-S, Sect. 3].

Lemma 1 There exist positive numbers ry, A, B, and C, and continuous functions
S,(q’,*), ..., S,(q',+) on the complex plane €, such that for each je{2, ..., n} the
Jollowing all hold :

(I) For any u, we@, and Re(0, 1), such that |w|<(1+|u|/R)"2™ R one has

Si(q, ut+wES;(g. w+C Y|P, ) R

j=2

(IT) The function S;(q',*) is subharmonic on 4 (0, ry).
(III) For we 4,(0, ry) we have the inequality

2m,

(1.3) —BZ Miwl=Si(q', w)— 3 Bald', w)

=2
AZH W iwl.

~

_Here J,(q *) is the homogeneous part of degree | appearmg in B, and
12.,(q',*)l is the maximum of the moduli of the coefficients of P g, ).

Proof. Let us argue for j=2. We abbreviate by &(i), for an even integer i, the
following statement.

& (i): There exist positive numbers r;, 4;, B;, and C; with the following proper-
ty: If ¢e@" 7, |¢'| <1, and r, <r, is a positive number such that for a suitable
ve{2, ..., i} we have the estimate

E(, i) |5, z2C max Hlsz,v(q’,')\! i

then there exists a continuous function $$(q, ) on € with
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(I} If u, weC and 0< R < 1 satisfy |w|<(1 +|u|/R) 2™ R, then the estimate

2m,

S, u+w) =SSP, w+C: Y 1B (g, 7) | R

=2

holds.
(1) The function S$(q', -) is subharmonic on A4, (0, r,).
(IIT") On A(0, r,) it satisfies the estimate

2m; 2my
=B ) 1B ) Wl SS9, w)— Y Bu(g w)
=2 =2
2m, R
< A ) 1B (g I wl
=2

Roughly speaking, & (i) is a variant of Lemma (3, 3, i) of [F-S] adapted to our
situation. The difference between & (i) and that Lemma consists in the appearance
of property (1) (resp. (I')) which is not discussed in [F-S], and of the family

2my
({r‘“"*”(”“ v))=Rev;+ Y, B y(d, v2)<°}>| |
g’|<1

k=2

of two-dimensional pseudoconvex domains which is parametrized by ¢'=
(g3, --., g,)- The coefficients of r,, .. depend smoothly on ¢”. Now, pursuing
the constructions in the proof of Lemma (3, 3, i) of [F-S] step by step, we can
prove &(i) for all even integers i<2m, by induction on i. Also the proof of
the existence of a radius r, <r,,, such that the hypotheses of §(2m,) is fulfilled
uniformly in g" with r,_=r, is the same.

Next we treat the coupling terms IAj-k(qj, qx;*,*) appearing in formula (1.1).
First let us note that

(1‘4) I’);k(qp qx- Uj: Uk): Z ’ij}fki(q,v U,)

VoK, A

where the sum is extended over a finite set of indices v, pu, x, and 4 such that
v+ u, K+ 4, v+k, and p+ 4 are all positive, and

(1.5) T/5 (', v)=alk i (a) q) v} 0 F o7
The functions /%, ,(g;, 4,) are polynomials in g;, g, of the form

(1.6) a g ad= Y bl atabaf ap
A,B.C,D

where we sum over nonnegative integers for which

A+B+v+p C+D+r+4

i.
2m; 2my

(1.7)
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The numbers b4+ do not depend on ¢'. With the abbreviations

2mj N ‘

(1.8) Biq,wy= Y |Bi(q, ")l |w]
=2

and

(1.9) ai(q;, w=lg;I>™ 2 w* +{w[*™,

for we© and 2 <j<n we can state our estimates for the T/% , in

Lemma 2 There is a positive number N, depending only on the coefficients of
F, such that, given a positive number & <1/2, we have for all j, k and all (v,. u, k, 7)
as in (1.4) the estimate

ITJZ‘K;.(q', v)] é(s('%j(Qj: Dj)+<%k(qk, Uk))+(57N(O-j(qj’ Uj)‘f”("k(‘ha O

For the proof of this we make use of the following sublemma which is
not hard to prove.

Sublemma 2.1 (2) If MeZ™ is given, then there exists a positive-number ¢, such
that for any M-tuple (a, ..., ay)eC" one has

M
ZCM Z |av|

v=1

M
Z a4 et 1o
v

v=1

sup
0s0<2m

(b) Let k be a positive integer and F(u, @)=Y a,,u*u* a real-valued polynomial
v, i

of degree 2k in @© such that for a certain positive radius R one has F(u, 1)=0

on 4,(0, R); then, with a positive constant ¢, (which does not depend on the a,,)

the estimate

1Y laDiu"se Y (Y lay,Diul”

modd v+u=m meven vytu=m

exists for each ueA (0, R).

Proof of Lemma 2 We begin by estimating all the terms T}, , for which v+ =2,
k+Az2. From (1.5) and (1.6) we see that we have to consider terms of the
form

e N T el PN ke

El
where the exponents satisfy (1.7). Since v+ u =2, we have
(Iqj|A+B lvj[v+u)mj§ ‘qj|(A+B+v+u)(mJ* 1) | vi|A+B+v+u+|vj|(A+B+v+u)mj
§2O.;1+B+v+u/2.
Correspondingly
(|qk|C+D IUk|K+}L)Mk§ZG£+D+K+M2'

Therefore, because of (1.7),

Inj;fxl(q,’ v,)tézs(aj(qj’ Uj)+ak(qk9 vk))a
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where § is the sum of the moduli of the coefficients bifpi#4¢* from (1.6). For
large enough N, it is less than 2V < § M.

Next we estimate all the terms TJk,, with v, u=1. For this we fix a vector
v'eC" ! and a number §,€(0, 1/2). For ueC let

0% F, u
bl 2 4 [
Fy(w)=]v}* |ul EPS 0 (b ule, T 5, >

where we denote by e; the i-th unit vector in €*~'. Then F;, 20 cverywhere,
and thus

< 2 4 6213 ’ 2
(110)  0SFlw)=e; [ul* =25 (q', vu?)
UjOUj
+ X vualiiolgs qk) v} o ud
v,uz 1l
+ z V‘uavuol(qp qk) U L 1/ u u2”+l
v,uz1
2 "
+ A A= Tjk l(q’ U'uze'+Uk~7€k>.
v.uél dujovy TS
x+Az2

Now apply Sublemma 2 1bto F=Fj and u=1. This gives, with the abbreviation
d{:’}no a\}fno(qp qi), awm _avuol(qp qi):

(LID 3 (@liol+1alo  Dlol" v

vuzl

p
Jﬁ. (q', Uj) ‘vjlz—}_él Z

el J vouz1

0? 1
"""""" — U U, €
v, 0, ch} q, 01 k €k
Kk+iz2

<0, %;(q, Uj)+51_N2(O-j(q1's v))+ 0 (qu, vi)),

with a large constant N, independent of g. Similarly we can estimate the absolute
values of the T7§, , and Ty%,,, where k, 1>1, by

0, Bilq, Uk)+5fN2(Uj(Qj, )+ 04 (qr, Vi)

Finally the terms TJf,, and T{OOZ, v, A2 1, must be estimated.
Let 0<d,<1, and for 6eR, v ——e“’ v, For 5 ke{2, ..., n} we dbbreVlate w
=083 19¢;+vj e,. Computing the mixed partial derivative of 7 7, at wh, we obtain’

2

(1.12) v; Lk avk

ik 2v=2 Liv=1)8 v =
jk)— Zav00152 € Uj U

2my, 62 Tjk
=~k —i(A-1)8,, =1 =

+ ) a{gp.e€ U 0p +0; 0 ——=—

g o4 IR k&vjévk

(Vng),
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where T* denotes the sum of all the terms TvJ‘fK,, for whichv+A>1,0r u+x=1.
These have already been estimated in the desired way. Now, taking the supre-
mum over all #elR, we obtain from Sublemma 2.1a:

2my 2my
(1.13) Z|5100;HL HUHI+ Z52v 2|av001”vj|v|vkl
A=1 v=2
2m; ) ) 2my,
Scysup | Y afo, 031 €TV + Y afk TR0yt
6eR |j=p =1
8% F 0
N ’
= sup\L e 6‘5‘11: (Win)i +c; 02(B(q', v)+ B (q, v)

+c, ;M (0;(g;, ;) + 04 (qy, vy))

by (1.12). The second term on left side of (1.13) can be dropped. So we will
get the desired estimate for T/%,,, if we can estimate

2
0% F 0

Si=sup |v;| |v;| |z (W0
Jk 9e][£>| ]|| k| avjavk( Jk)

in a suitable way. From the plurisubharmonicity of 7, it follows, that, for each

feR,
2~ O2F 12 627 1/2
Il O 550 00) (1P 502 )
J J k
1 0 F . 0*F,
é;s—zlvjfz ijaqb_'j (ng)+62lvklz 30,00, (ij)
But
07 bkl .
2 q By __ 4. 12 2.0
[v;] ap 85_(ij)—|bj| avjélﬁ;((szvj)‘*‘Tj,
where
. 02
Tj:|vj!2 Z)lbijj'é‘éj V#K}.(wjk)
v.u=

From this we conclude that

1 0%,
?IUJIZOU i -(w Jk);<— 0, Bi(q's 1))+ 63 Br(q, vy)
2

+5_N3(0j(qj’ Uj)‘*'o'k(% ),

with a large constant N, independent of q. The corresponding estimate is valid
also for 6, |v,|? 62 "q/(? v, 87, at the point w9,. Taking the supremum over feR,
we get the desired estimate for | T{%,,|. Similarly we can treat the terms |TJ/%, 1.
Thus the lemma follows, if we choose 8, =8,=6/10, N=N, + N, + N;.
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We are now ready to introduce the defining function for a pseudoconvex
bumping for Q at g. Let for veC*

(1.14) @, (r)=Rev, + iSj(q’;vj)

j=2

D, (v)=F,(v —sz Wilg;, vy),

i=2

where we define for 2<j<n

|2m-

}q, b

Wilg;, Uj)=|qj‘+vj‘2mj_|qj'|2m"*

Finally, let for O<a<1:
(1.15) p=ad;+(1—-a)d

Then ¢ has the following properties.

Lemma 3 (1) The function @ is plurisubharmonic on the tube T, =Cx
A, 1(0, ro) and continuous on C"

(2) The function @, is plurisubharmonic and smooth on C"

(3) For sufficiently small a, the function ¢ satisfies, with a universal constant
A>0

1 n n
R R RYACELIEELA DR N

ji=2 j=2

(4) There exists a positive constant A, with the following property: If v =
(vy, ..., v,) and W =(w,, ..., w,) are vectors in € ! and R,, ..., R, are positive
numbers, such that (with m=m,+ ... +m,)

A

R;

@0, v +W)= (0, )+ 4, ) B;(d, R).

j=2

le[__<_Rj<l+Zn:
i=2

Jorj=2,...,n, then

Proof. Properties (1) and (2) are obvious because of Lemma 1 and assumption
{0.2) about P. In order to show (3), we write

n

(L.17) #0-F= (S,-m: 0)- 3 Ba. vj))

Z k(q p Uk)-

<k
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If 5€(0, 1/2) is small, we can estimate by Lemma 2
(1.18) Y Beld’s v ) S@m)* Y 6B, 0)+5 0,0y v).
i<k j=2

The definition of the functions 4 ,(q’, v;) together with (0.2) implies, with a posi-
tive constant A4,, independent of g, that

Jj(qja Uj)é A, %j(ql’ v.i)'

We substitute (1.18) and (1.3) into (1.17). What we obtain, is, with a positive
constant B, > B:

(119) B, Y A,(d v) < B, (0)—7,(0)

i=2

< —(A-2m* ZJ(Q,LJH(Zm) RDRICINPY

j=2 j=2

Now let §=A4(2m)~". In order to obtain (3) we therefore only need to show
that, for a suitable A5 >0, independent of g, the estimate

n n

(1.20) ~Ai Y 65(q; v) D, (1) —F (1) S — Z (g5 v)
3 j=2

holds. But Lemma 5.3 in [Ral] implies, with a constant 4, >0:

1
0= WisAio;.
From this and from (1.14) we obtain (1.20). Thus condition (3) is satisfied by
¢ if we choose a:=A4; 6" /(A 6" +(2m)°).
Let us now prove (4). By Lemma 1, (I), the assertion is true for @,. So

we need to show it only for &,, or, equivalently, for 7, and the functions W,.
(See (1.14)). Let v'eC" ! be fixed, and

_R,<1+i |”"I)‘2m
! i=2 Ri

For any w'=(w,, ..., w,)eC" ™!, such that le-féﬁj, forallj=2, ..., n, we write

(1.21) 7,(0, w'+0)—7,(0, v) i <Z G, W)+ Y S, w’)),

Jj=2 N=2 i<k
with the abbreviations

T, (v, w)=P (g, v;+w)—B,(q, v))
and
S (v, W,):Ek(qja Qs V;+ W, Uk‘*‘Wk)_I?'k(qJ', dic> Ujs U)-
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Now, because of the homogeneity of P, ,(¢'; -) we have
| T, WIS As 1B (g ) w4 w )
<As| B (g, Ri(|v;|+R) !
NINES!
<43 16, ARy (1)

j

because

N
I@-(l—{—lw;il) <R; for 2<1<L2m;.

Similarly, | S;,] is less than a sum of at most (2m)* terms of the form

a+b+c+d O /.
a Bk(q 90)
Cviattdvg e}

T=const (w;ly;l +|Wj|)a+b71(|vk|+|Wkl)c+d

Wil oy 4wy (ol + )71,

If we use

A
5 <R (1
o+l = ( o

i

and

. 0], Ly ~2m2m
ISR ER |1+ 14+
il SRR 1+ 4

J

for ie{j, k}, we obtain
a+b+c+d ij

T=const | sl
= vs a0 dv; O}

(4 0)‘ R§*O Ry,

This implies because of Lemma 2 (with = 1/2)
T=Ae(#;(q, v)+B:(q, i),

where the constants A5, A4 are again universal. The functions W, are estimated
in the same way as the T;, above. From this the inequality (4) follows, and
the proof of Lemma 3 is complete.

In particular, we have found an optimal exterior domain of comparison
for , at 0, namely

~ AL
(1.22) QqZ{UE T3ro/4 @(U)+Zzﬂj(q/, b1)<0}.
j=2

We have
Q,N Ty ac=Q,.
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Also note that ¢(v)=Rev, + @(v"), where @(v")=¢(0, v'). It will be on Qq that
we construct bounded holomorphic auxiliary functions which will be needed
for the proof of Theorem 1 and 2. In the next section we prove a comparison
lemma for holomorphic functions from which it will follow that, in order to
prove Theorem 1, it is enough to estimate the Caratheodory metric of Qq on
the interior normal at 0. For the proof of Theorem 2 we will construct a peak
function on Qq, which gives us a local peak function for Q at g. By means
of the comparison lemma we finally make out of that local peak function a
global one.

2 Bounded holomorphic auxiliary functions

We begin with a lemma which is based on the I*-theory for the & operator
due to Hormander [HG]. It is essential for the construction of holomorphic
functions which satisfy I? estimates. These will imply an L estimate via the
mean value inequality. This idea was also used in [B-F1; Ca; F-S, Sect. 2;
Ra2].

Lemma 4 Let G’ be a pseudoconvex domain and G'<G be open. Suppose
U and  are plurisubharmonic on G, and ¥ is strictly plurisubharmonic on G'.
Let a ¢-closed (0, 1)-form a on G be given with smooth coefficients such that
supp(x)= G, and

(2.1 Io)= | |x|35,e V"% d Ay is finite.
G

Then there exists a smooth solution u,e C*(G) for the equation 0u,=a with the
Sollowing properties:

(2.2.1) [ lu,Pe V¥ d i, <21().
G

If xeG\G' and #,(x), ..., #,(x)>0 are radii, such that

A(x)={yeC||y;—x;|SF,(x) for all 1Sj<d} < G\G,
then

(2.2.2) [y (X) 2 S (Fy (x)- ... - F4(x)) "2 (max e’ ) I(«).
A(x)

Here, d A,, denotes the Lebesgue measure in €9 and la|s5, 1s the length of
a with respect to the Kdhler metric on G’ with potential .

Proof. The existence of a solution u,e C*(G) of du,=u satisfying (2.2.1) follows
from a slight modification of Theorem (2.2.1) in [H&]. If xe G\ G’ then u, is
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holomorphic near A(x). So we obtain by the mean value inequality, applied
to u?2
|u ()P VOl ™! § 1uy(11* d 224(3)
A(x)
S A (X)L Fg(x) TP max eV Y [ u,Pe VTV d 4,y
Alx) G

This together with (2.2.1) will imply estimate (2.2.2).
We next show a comparison lemma for holomorphic functions on general
pseudoconvex domains of homogeneous finite diagonal type.

Lemma 5 (Comparison Lemma) Let Q'={r'=Rez, +P'(z')<0} be a general
domain of homogeneous finite diagonal type (No assumptions about P" but (0.1),
and (0.2)!). Let 0<p,, d<1 and qeb$2. Assume there exists a pseudoconvex
domain Q, with the properties

(23) Q/mBn(q’%pl)CQ;mBn(qS%pl)
(24) {r'<d}n(B,(q. 80 )\B,(q, §p N <= 2.

Further, let E be a finite set in Q' nB,(qg, 1 p;) with #E elements. Then there
exists a positive constant y depending on p,, 8, and #E, such that the following
holds:

Let y be a smooth cut-off function, 0=y =1, x(x)=1, for x <(3)?* and y(x)=0
for x=1, let LeN,, and f,eO(2,~B,(q, 3 p,)) a function such that

liA

Il ol L.

an(g N (By(g: §p1)\Balgs 2010

Then there exists a smooth function uf on Q;=1{r' <d} satisfying

z—
25 T=2(Z 5 e - e
(2.6.1) HuII::HLm(Q')éy,
and
(2.6.2) uk  vanishes of I order at the points of E.

Proof. We apply Lemma 4 to the form

[3(xlz—ql*/p}) fo(2), on @A
1o, on Q\A’

where 4'=B,(q, p.)\B,(q, § p;)- Note that Q5 A’ CQ;. Further, in the situation
of Lemma 4, we have d=n, G =Qj. We also need to choose the right plurisubhar-
monic weight functions on G. They were constructed by the author in [Hel,
Satz 5].
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Lemma 5.1 For small 6>0 there exist plurisubharmonic functions Vg and
on (5 with the following properties:

With suitable positive constants ¢, ¢, ..., ¢3, depending only on p,, d, and
#E:

(27) 0sy'Sco, Y'eC™(Q)), and 8 0(Y' ¢ |2|7)20 on Q51 B, (0,2 p,)

(2.8) VyeC*(Q\E), and Vg is strictly plurisubharmonic on Qi\E. We have V,(z)
< > loglz—el*+¢, for any zeQj.

eck

(2.9) On Q one has Vy<c,, and Vg = —c,5 on Q5\B,(q, 2 p,).

Proof. Satz 5 in [Hel] implies the lemma for 6=0 and # E=1. But the argu-
ments of the proof given there go through also for a small positive § and a
finite set E.

To continue the proof of Lemma 5 we introduce two functions, namely

U=r—se+{n+ L)V,
and
=y,
where o'(z')= ) |z;]*™, and (m), ..., m}) is the set of weights associated to P
j=2

according to (0.1) and s is the number appearing in (0.2) for P’. Let uk be
the function u, from Lemma 4. (It is obvious that I(«) is finite.) Then (2.5)
follows immediately. Property (2.6.2) is implied by (2.2.1) for uk, since exp(— U
—1') behaves like |z—e| ?®* D near any point e€E. For the proof of (2.6.1)
we distinguish three cases:

(a) Let ze Q' n(B,(g, 12 p,)\B,(q, 12 p,)); then, with a small radius r, >0 depend-
ing only on p, and J, we have

An(za rl)cgém(Bn(Qa %pl)\gn(q: %.01))

Thus by the mean value inequality (with c=(nr?)"")
f@Pse [ [f1Pdis,
An(z,r1)

<2c¢ | (fol* +Iugl?)d 4y,

Anlz,r1)

<2c(l+(max ™) | JubPe V" ¥d2,,)
Anlz,ry) 05

S2c(l+2exp(d+(n+1+L)cy) I().
Since I(x) <c, e "V with a constant ¢, independent of E, we obtain
|f(z)|2§c5(pl, 57 #E)

with a universal constant cs(p;, d, # E), and finally |uk(z)?<2|f(2)]*+2<
Pr=2(cs+1).



238 G. Herbort

(b) Suppose now zeQ' " B,(q, +2 p,). Then for small enough r, >0 (depending
only on p,, and 8) uk is holomorphic on A,(z, r;). Apply (2.2.2) of Lemma 4
Wlth GI: ;sﬂ (Bn(q! %pl)\Bn(q: g—%pl)) (qupp(“»’ and fi(z):r27 i= 17 cees M

(¢) Finally, if ze Q' n(C"\ B, (g, +{ p,)), we choose, with a small positive constant
¢ independent of z and E

P o

’A.n(z)=‘ *5(] +|Z/‘2)—2m27,..72m"'

fl(z)zg— 8 and #,(2)=...

BN

Then the corresponding polydisc A(z) is contained in Q5\G’". Applying (2.2.2)
of Lemma 4, we get, with a constant cg=c¢(p,, 0, # E),

()P S ol ]2 PR Dme s o) <ol

for a large constant ¢, uniformly in z. Here we abbreviated m=m,+ ... +m
Hence condition (2.6.1) is satisfied for y=(y, +c,)"2r; "

In order to construct the auxiliary functions which are relevant for the proof
of Theorems 1 and 2 we introduce some more notations.

For M >0 let R;(M) be the solution of the equation

ne

(2.10) Bi(d', Ry(M)=1/2M
for 2<j<n, and
N
Ou(v)= r(z) 11;2 Rj(]\/f)z

Let us also denote by ¢ (resp. &) the operators J (resp. ¢) in the space (E;’v;‘m.u").

From now on we assume that M is so large that R;(M)<1/2 for 2<j<n (note
that R;(M)<M™"?™). Then the “ellipsoid™ {¢'|Qy()<5} is contained in
An—1(0> ‘ZLrO)'

Lemma 6 With a certain positive constant A, we have for each M >0:
M|p()[£4,,

Jorany veDy=4,(0, R,(M)) x ... x 4,(0, R, (M)).

Proof. Follows immediately from (1.16) in Lemma 3.

Lemma 7 With a suitable positive constant Ag the following holds: There exist
for any large enough M holomorphic functions | fag, ..., wfar 08 A, (0, 7o) such
that

(2-11) 1]M(O)=1, 5’1]1\4(0):0
(2.12) 3 fu(©)=dv/R(M) for 25I<n
(2.13) | S ()| S Ag(1+ O (v M0

forallved,_,(0,2ry) and 1Z1<n; here m=(m, + ... +m,) n.

Proof. We choose a smooth cut-off function y; on R, 0=y, £1, |¢11£2, such
that y, (x)=1 for x<4, and ¥, (x)=0 for x= 1. For M >0 we define the functions
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Eu=1, Gyu()=v/R;(M), 25j<n. Then we solve on G:=4,_,(0,r,) the J-
equation according to Lemma 4 (where d=n—1) given by

(2.14) g'/juszaM::a,(ng %1°Qm)-
The plurisubharmonic weight functions U and s are defined by

Y=y y=log(1+Qy)
and
U=Uy=log(1+[v*)+nlogQy+M¢.

We estimate the [” integral [(jo,) associated to the form j;a,. Since
supp(jay) = {3 0y <1}, and 6’5’1&1‘4_40 QM N Qw on supp(jay) we obtain
by virtue of Lemma 6 the estimates | 05|75y, S 16 ré, and

(2.15) I(op) S Ay Ry (M)2- .- R (M)2.

By Lemma 4 we obtain a smooth function ju, on 4,_,(0,ry) such that the
function ﬂ, =31°Qn j8m— Mar 1S holomorphlc on 4,_,(0, ry). Because of the
term nlog 0,, occuring in UM it satisfies (2.11) and (2.12). Let us discuss (2.13).
We fixav'ed,_, (0, 2r,) and distinguish two cases:

(@) Oy @)25. If we set Fi(0)=(ro/5n) (14 Q) )" ™M R; (M), 2<j<n, and
A(v) Ay (L, F(0)) X ... X A (v, £,(0)), then A(Y) is relatlvely compact in

A,-4(0, ro)\supp(jaM), and (2.2.2) of Lemma 4 applies. Since ;fi, (v)= — jup ("),
we obtain
| i T @) PSP @) ... Fo(0) 2 I(jory) max Vs t¥a
A(v)

From (2.15), the definition of the #;(v') and (4) of Lemma 3 the estimates

I(g) (P (V) .. £, (1)) 2 S AG(L+ Qp ()2 1M
and

max eUM+|[;M é(z e)n+6 QM(v/)n eMtjz(v')
A

follow and imply (2.13).
(b) Assume Q,,(v")<5. Now, by the maximum principle we can estimate

| fM )€  max lj](M(W’)I
wiQm(w)=35

The right-hand side of this is less than a positive constant 43" independent
of g and M, (this follows from part (a)). Since on {Q,, <5} we have eMo2 > 43
uniformly in ¢ and M, now (2.13) is completely shown.
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3 Proof of the Theorems

Proof of Theorem 1

Lower estimate for the Caratheodory metric

Any point zef can be written as z=(—P(z')+ilmz,, z')+r(z)e,, where e, is
the first unit vector in €". We may assume for the estimation of Caraq(z, X),
XeC, that Imz, =0, and |z'| <1, for Q is invariant under translation by vectors
of the form (iaq,0,...,0), a real, and the scaling map S,(v)=
Ay, AVPm2p,, . A2y, A positive. We now write g =(—P(z), z'), and let

t=—r(z). Then we apply Lemma 7 with M:%, and consider the functions

A =exp (5 0.} Fu)

on Q,. From (2.13) we see that

G-D D) S Ag(1+ Q)™ 2.

Our claim is that ;h EHOO(Q ), and ||| Lo, S Ao, independently of g and ¢.
Let veQ,. If QM( N1, then [ A (D) 2™ Ag. If Q\(v)>1, then there exists
aje{2, .. }
'Uj|2 7(2)

Rj(M)2 Z § QM(U,)'

So, (3) of Lemma3, together with %,(q,v;)=2%; (q R;(M) i-—iM/)g
(r2/10n M) O, (v') implies (M)

A s
o) = 4 Biq,v) < ~30n ArQy).

Substitute this in (3.1). This gives |, (v)| < Ag:=Agsup(l+x)™ e "> with b=
2 xz1
r5 A/80.

Let F(g,*) be the biholomorphic mapping introduced at the beginning of
Sect. 1 (between (1.1) and (1.2)). We want to apply the Comparison Lemma,
Lemma 5, to @'=Q, and Q;:F(q,-)_l(ﬁq). Certainly we can find positive
numbers p, and J, independent of g and ¢ such that (2.3) and (2.4) hold. Let
ﬁ be the functions associated by the comparison lemma to f,=h,cF(g,*),
where E= {z}, and L=2. Then || A,/| () < 4,0 uniformly in z. Further for any
vector X e €C", we have, since F(q, z)= —te,, because of (2.11), and (2.12):

(@1 he(2) X) =@ h(—te)), Flg, 2 X)= ¢ "*(r(2), X)

and

@0, X)=e™ UL a<jen
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Using the definition of Cara,(z, X) we obtain from this

(3.2) Carag(z, X)= e "? (}(ﬁr(z), X)\+i | X;] )

2nd,, t &, Rynft)

Since with a universal constant 4,, >0
1 ,
(33) ;1:'§Rj(”/t) Ci(2)=A4y,

the right-hand side of (3.2) is greater than or equal to (2nd,,4,, )" ' My(z, X),
as was to be shown.

Upper estimate for the Kobayashi metric

Let z and X be as before, likewise g and t. From the definition of the radii
R;(n/t), 2<j<n, it follows easily that

A=Ay (—t, ;)x A0, Ry(n/t) x ... x 4,(0, R,,(n/t))cf)q.

Consequently

Kobg(z, X)=Kobg,(—te,, F(g, 2) X)SKob,, (~te,, F(g, 2 X)
21(@r(2), X .
— max {L‘t)ﬂ XI/R (1), =2 ... n}
SA; Mg(z, X)

with A4, independent of z and X. The proof of Theorem 1 is now complete.

Proof of Theorem 2

The principal tool for the proof of Theorem 2 is

Lemma 8 Let g be a boundary point of Q, such that Img,=0, and |g'|<1.
(This assumption causes no loss of generality.) Then on Q, there exists a peak
function at 0 in the algebra A°(Q).

Proof. For M >0 let f,,(v)=exp(Mv,/2) [y (v') on Qq. Here |, fy, is the function
constructed in Lemma 7. We prove at first that fy, is, in a_sense, an “almost”
peak function. Note that f,,(0)=1. For §>0 let U;={veQ,||Rev,|+|v' |26}
Our claim is that for any positive ¢ there exists a number M;>0, such that
for all M = M, one has

(34) sup FES S
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If veU; and Q,(v')= 1, then, similarly as in the proof of Theorem 1 we have
Mo < ~bQ) V), where b is a positive universal constant. Thus M ¢(v) <
—(bQy()+ M ¢ (v))/2. Now (2.13) implies

B3 IS A Qu exp (= Q)+ o).

Obviously (3.5) remains valid, after enlarging Ay, if necessary, also for veU;
with Q,, (v') £ 1.
With a universal constant 4,5>0 we have, as we can see from (1.16):

(3.9) lp@)—Rev |45V

We let c=1/(4+ A, ;) and distinguish two cases: Case (I): |v'|Zc 4. Since ¢ (v) <0
on Qq, we see from (3.6) that Rev, <c? A, 582 Since veU; Rewv, cannot be
positive (note that ¢ is small!). So Ree;=—(|Rev |+|v'})+|v]|E£—0+cd=
—34/4. Now (3.6) implies that ¢(v)< —d¢/2. Case (II): [v']>c¢d. In this case we
must have Q, (V)= A, M?c? 6%, with e=1/2m,+...+2m,). Thus (3.5) implies
that one can choose in any case a number M; such that (3.4) is satisfied for
each M = M.

Let 4,4 be a positive number such that || fyll <@, =46 for all M. Then
we can apply the arguments given in [Bi, pp. 633-634], in a slightly modified
way to the functions g, =f/4:6, and find a strictly increasing sequence (M),
of positive numbers such that

X

.fq::B Z {1 *()'2_"/1))kng

k=1

is the desired peak function for Q, at 0 with respect to A°(Q,), where y, =1/4,,

y2=371,and B=A,6(y2—7)/1=(72— 1) N
We apply the comparison lemma to Q' =Q, Q,=F(q,-)” '(Q,), where Q

AL .
={v cp(v)+—§ > Biq'; vj)<0}, and the function f,=1/f,°F(q,*)—1). Here,
i=2
f, is the peak function from Lemma 8 for Q,. We choose E=2 and L=1.
What we obtain, is a function fqe(D(Q), whose real part is less than some constant
A, and which blows up at q. Hence

_Jom At
Ba= 7 4,1

is the desired peak function for Q at g with respect to A°(Q), for fq is of the
form f,=yfo—u, with a certain cut-off function y which vanishes outside the

domain of definition of f, and a function ueC*(Q). Furthermore, since
1-foeC®(Q\{q}), we have f,e C°(2\{q}), and finally g e C°(Q).
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