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1. Introduction

The first purpose of this work is to prove a new L® — L? weighted estimate for the
linear wave equation in space dimension n=3 with weights associated with the
generators of the Poincaré group. The second purpose is to apply this estimate
together with the results of W. von Wahl [12], Klainerman [9], Hérmander [6] and
prove the global existence of small amplitude solution to the non-linear system of
wave and Klein-Gordon equations,

We study the Cauchy problem

@ ~Mo;=F(t,x,¢,Vp), j=1,.,N,
(6,2—A+M})(pj=ﬂ(t,x,(p, Vo), j=N+1,...,K, (1.1
¢;=¢;, Op;=eg; for t=0, j=1,.,K,

where 4 is the Laplace operator in R?, o =(¢,.,..., x). V@)=(3;9),j=0,1,2,3,
Op=0,, 0,=0,,, k=1,2,3 and M;>0 for j=N+1,...,K.

The investigation of the Cauchy problem (1.1) is important, since the coupled
system of wave and Klein-Gordon equations gives a model of interacting mass and
massless classical fields.

In the case, when M;=0, Klainerman [10] introduce the notion of the null
condition for the non-linear quadratic terms and prove that this condition leads
to the existence of global solution to the system. The approach in [10] essentially
uses the generators of the Poincaré group together with the radial vector field
10,4 x,0; +x,0, +x305.

The case, when M ;> 0, is rather different and leads to some essential difficulties.
First, the commutation relations of the radial fector field and the operator of the
Klein-Gordon equation show that the radial vector field is not convenient for the
investigation of the Klein-Gordon equation. Secondly, the null condition of
Klainerman [10] works well if the radial vector field is included in the Sobolev
norms. To overcome this difficulty we introduce a stronger version of the null
condition of Klainerman [10] for the quadratic nonlinearity in (1.1). The definition
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of the strong null condition, given in Sect. 2, is fulfilled for some important physical
examples of interacting mass and massless fields. We discuss these examples in
Sect. 2 in details. Qur main result is the following.

Theorem 1. Suppose f;,g,€ Cy° (R3), j=1,..., K and assume the non-linear terms in
(1.1) satisfy the strong nulf condition. Then there exists a sufficiently small o >0, such
that the Cauchy problem (1.1) has a unigue smooth solution ¢(t,x) for 0<e=<g,.

In the case of space dimension n>5 and nonlinearity of quadratic type the
existence of solution to the wave equation can be obtained by the aid of L? estimates
of W. von Wahl [12]. The same estimates work in the cases n=3,4,5 and
nonlinearity of cubic type. We refer to [11], where the Dirichlet problem has been
studied. The estimates in [12] are proved by using the Kirchhoff representation of
the solution to the wave and Klein-Gordon equations.

For the Klein-Gordon equation in space dimension n=3 Klainerman [9],
Hormander [6], Bachelot [1], [2] applied suitable estimates of Sobolev norms
associated with the Poincaré group.

Since we deal with the coupled system of wave and Klein-Gordon equations, we
have to estimate the weighted norms for the solution to the wave equation assuming
the weights are connected only with the Poincaré group. On the other hand, the
estimates for the wave equation obtained in [8], [10] include the radial vector field.
The approach developed in [9] shows that we have to neglect this field when we
study the Klein-Gordon equation. Thus, to prove the global existence of solution to
the Cauchy problem (1.1) we need a new estimate of the wave equation with norms
associated with the generators of the Poincaré group only.

To estimate the solution to the wave equation

©@2—-MDu=F (1.2)
with zero initial data, we denote by Iy,..., I}, the generators 0;, j=0,1,2,3,
Qu=x;0,—x0;, 15j<k=3, Qy;=10;+x;0,, j=1,2,3, of the Poincaré group.
Then for any u(t, x) e C*(R; C& (R?)) and any non-negative integer k we introduce
the seminorms (see [1], [6], [9])

lu(t,x)ik=”25k IFu(e,x)|, I*=IPrg..TEe, (13)
172
llu(t)Hk=<f lu(t,x)lzdx> . (1.4)
]Ra

Theorem 2. Suppose u(t, x) is a smooth solution to the wave equation (1.2) with zero
initial data and assume supp F< {(t, x); |x| S t + R} for some positive R. Then for t 20
we have the estimate

C o
t, L 22 F "

e x)l"‘1+t (,Z:O sslsrl:sI?O,t] “ (S)”kﬂ)
where I=[2""1, 2"*1] for r>0, I,=10,2].

The above estimate is one of the main tools in the proof of Theorem 1.
A similar result for the solution u(z, x) to the Klein-Gordon equation
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@} —A+Du=F
has been announced by Hormander [6]. More precisely, assuming

u(0,x)=3,u(0,x)=0
and
supp F<{(t, x); |x|S1+ R},

one can write the estimate (see [6])

C 0
lu(e, x)hémgﬁ (E’o e r HF(S)“IHS)-

The main idea in the proof of Theorem 2 is to represent the solution to the wave
equation by oscillatory integral over the isotropic cone. The stationary phase
method leads to an estimate of this oscillatory integral by the Radon transform of
the right-hand side F(¢, x) of the wave equation. A suitable estimate of the Radon
transform leads to the desired estimate.

The plan of the work is the following. In Sect. 2 we give some preliminary results,
the definition of the strong null condition and we recall the representation of the
solution to the wave equation by an oscillatory integral over the isotropic cone. The
estimate of these integrals is given in Sect. 3 by means of the Radon transform
in R?. The proof of Theorem 2 is given in Sect. 4. Finally, in Sect. 5 we prove the
stability of the solution and complete the proof of Theorem 1.

2. The Strong Null Condition and Preliminary Results

The non-linear terms in (1.1) will be supposed to have the form

P}(t’ x, ¢, V)= Qj(t’ x,Vo)+ Cj((P, Vo),

where C;(¢, /) are smooth functions,

Cio,¥)=0(loP +1YP’) near (¢,y)=(0,0)
and Q;(z,x, Vo)=0,(t,x, Vo, Vo) is given by the sesquilinear form
Qi(t,x, Vo, V)= 3. qr (1. %)0,0,0Yx @.1n
m,k,r,s

with g7 being smooth function of (¢, x) and 7 is the complex conjugate to z.
The quadratic part of the non-linear term is assumed to satisfy a stronger version
of the null condition introduced by Klainerman [10].

Definition 1. The sesquilinear form (2.1) satisfies the strong null condition if

(@ 07034745 (t, ) =0 ((It|+1xD~""7) as |t +|x|—>+ 0,
3

(b) z q;'"krs(t’x)"rns=0 fOI‘ any ’1=(’10a'11"729713),
r,s=0

nelR4, jmk=1,.. K
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Example 1. Let

0V, Vp,)=010,0,0, =0, 910,93,

Then Q satisfies the strong null condition. This is a typical non-linear term for
interacting fields.

Example 2. Consider the sesquilinear form

L(wl ’ ‘/’2) = (?OVS 'pl > l/’2>

connected with the pseudoscalar model of Yukawa (see [1], [2]). Here i/, , y, e €4,
{,) is the inner product in €*, y* = — y°y'y2y* and y°,..., y® are the Dirac matrices.
The above non-linear term takes part in the non-linear Dirac-Klein-Gordon
equation studied in [1], [2]. Theorem 4.2 in [1] shows that L is compatible in the
sense of B. Hanouzet and J. Joly [4] with the operator P+ M, where
P=7°0,47'0;+y*8,+7°0,

is the Dirac operator. An important role in [1] is played by the following
sesquilinear form associated with L:

3
Q(Vo, Vy)=L(Py, P¢)+1 2;0 n* L(0,9,0,%)

with (7*)=diag(1, —1, —1, —1) being the metric in the Minkowski space R*.
Taking advantage of the properties

Y ==t =2
of the Dirac matrices and the fact that y°y* are Hermitian matrices, one can check

that the sesquilinear form Q satisfies the strong null condition.
Next, we aim to clarify the role of the strong null condition.

Lemma 2.1. If the sesquilinear form

0, % Vo, V)= Y g™ (t,%)8,0n004

mk,r,s

satisfies the strong null condition, then for t 21, |x|<t+ R and any integer k 20 we
have

108, x, Vo, P¥)l = Ct ™ o (6, )i 1 W (&, X414 -

Proof. The condition (b) in the definition of the strong null condition means that
g™+ g™r=0. Hence, the sesquilinear form § with coefficients §™*=I*g™"
satisfies also the strong null condition for any aze Z*°. Thus, it suffices to study only
the case k=0. Given any j=1,2,3 from

we obtain the equality
aj:(t)—l (Qol'“.xiao) .

Then the strong null condition yields
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@=R +R,+R;,

where
Ri=()7% Y 4™ Q0,2
m,k,r,s
Ry=—("? 2 4™ 0, QX Oo Wy »
m,k,r,s
Ry=—-("? Z 4" %, 00 P Qo5 Vi »
m,k,r,s

and the sum is over {1,2,3} for r,s. The assumptions =1, |x| S¢+ R imply that
IRy |+ IRy | +IR3| SCO) ™ oo (8, X1y [y (2, %)
and this completes the proof of the Lemma. 0O

Next, we recall some estimates and results concerning the solution to the wave
and Klein-Gordon equations. First, consider the wave equation

(3*~A)u=F. 2.2)

Since the generators of the Poincaré group commute with the D’Alembertian, we
shall use in the sequel the following result due to Klainerman {10].

Theorem 2.2. [10] Suppose u(t,x)e C* (R, x R?) solves (2.2) and assume
suppuusupp Fo {|x|<t+R}

for some real R>0. Then for any integer k =1 we have

Hu(t)llkéC(Ilu(S)llus:o-i'g (1+9) 1|F<s>|1k_1ds),

3 3 t
% 100l sC( %, 1080 hima ] FOt)

More precisely, only the first of the above inequalities is proved in [10]. The
second one, can be obtained by multiplying the wave equation by Jyu.
The next goal is to represent the solution to the wave equation (2.2) provided

F(t,x)eC®(R, ; S@R®), u(0,x)=0,u(0,x)=0. 2.3)

Lemma 2.3. Suppose u(t, x) is real-valued smooth solution to (2.2) and assume the
conditions (2.3) are fulfilled. Then we have

u(t, x)=Q2m)"*1(t,x),
where

I, x)=Im | F &, &)e'thr+ =g =1 ¢
RS
and F,(t, &) is the Fourier transform of Fx(0£s5s<1), i.e.

t
Ex,&)=( | F(s,y)e t=*>4gyds.
0 R3



688 V. Georgiev

Proof. The solution to (2.2) is
u(t,)=Qm)"3 | | Fs, )IE| ! sin (|&|(r—s))e™**dEds,
0 R3

where

F(s,&)= | F(s,y)e*tdy
RJ

is the partial Fourier transform. Comparing the above representation with the
needed equality and taking advantage of the fact that

F(-1,-9=Fx 9

for any real-valued function F(s,y), we complete the proof of the Lemma. [

Next, we turn our attention to the Klein-Gordon equation

(02— A+ M*u=F. 2.4

Multiplying the above equation by J,u and taking advantage of the fact the
generators of the Poincaré group commute with the D’Alembertian we obtain the
estimate
Lemma 2.4. Suppose M >0, u and F are smooth functions satisfying (2.4), so that

u(t,x), F(,x)eC*(R;S(R?).

Then for any k=0 we have

131
5 Jeulse( 3, 10 heo+] 1FOls)

lzt£1

The next estimate is obtained by Hérmander [6] and will play an essential role in
our investigations.

Theorem 2.5. [6] Suppose u(t, x) is a smooth solution to (2.4) and assume
suppuusupp F<{|x|<t+R}

for some R=0. Then for any t 20 we have
A+ u(, )L 2 C(”“(O)Hk+4+ 2 Isuf[’o " Z'HF(S) ‘|k+5)'
r=0 se€iprniy,

where I =[2""1,2"*1] for r21 and 1,=[0,2].

An important role in our analysis will be played by the space of the dual
variables te R, £=(¢;, &, &) e R3,
The operators corresponding to £;, are

ﬁjk":fjgk“ﬁkgj, on::—‘cgj—éjé;’ (2.5)
where 6*=3/0¢,. Then we have the relations
ijF(H)=F(ijH), (2.6)
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where F(H)= H is the Fourier transform of the function H(x) € S(IR*). Therefore,
the corresponding generators I’“; in the space of the dual variables has the same form
as the generators of the Poincaré group in the coordinate space. For this reason we
shall omit the hats for the operators in the space of the dual variables.

3. Estimates of Oscillatory Integrals over the Isotropic Cone

Consider the oscillatory integral

I(t,x)=Im [ F,(|€], &)etli+=a)g|~Lge, 3.1)
IR:!

taking part in the representation of the solution to the wave equation. Here F,(z, )
is the Fourier transform of the function F(s, y)y(0<s<1), i.e.

t
E(z,&)=[ [ F(s,y)e”s+>Odyds.
0 R3

Sometimes we shall omit the index 7 and shall write simply #(z, ¢).
Lemma 3.1. Suppose
F(s,y)e C*(R; S(RY). (3.2)

Then for |x| 21 the oscillatory integral I{t, x) in (3.1) can be represented by

I(t,x)= =2x|x|"* Y oRe | F(g, cox/|x|)e""*1*1dg
1]

o=z
i Re [ g2 8 B (e, eyetteirrage,
15r<ks3 RO ixi
il el

where c,,(x, &) are bounded functions, homogeneous of degree O with respect to x, £,

-~

F,_=Q, F and ax b denotes the vector product of the vectors a,be R>.

Proof. We lose no generality assuming

x=(0,0,[x]).
Introduce polar coordinates
¢, =gsinfsing, & =gsinfcos ¢, £;=g0cos6. (3.3
Then I(t, x) becomes
2n ®
I, x)=Im | | J(o, ) odgdo, (3.4
0o 0

where

J(o, p)={ Fe=="sin 6dp .
0

Integrating by parts with respect to 8 into J(g, p), we get
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J(Q,(P)—— Z ld(lxlg) lF(Q’a—Qx/lxl)eLwlxl

+[ (ilx|@) 195 Feilxlec0 gg . (3.5)
4]

On the other hand, a direct calculation shows that
0,F (0, 0sin @sin ¢, ¢ sin B cos @, o cos )

=sin ¢, F+cos 9Q,, F.
Thus, setting
€1=0, ¢3=—cos¢p, ¢3=—singQ

and taking advantage of the identity

sinf@=

‘ Iél’

together with (3.4) and (3.5) we obtain the needed equality.
This completes the proof. O

Corollary 3.2. Suppose the assumptions of Lemma 3.1 are fulfilled and assume F is a
real-valued function. Then the oscillatory integral I(t, x) in (3.1) satisfies the estimate

I(,0|SCl™ Y, max

1Bls1 ne

jR(.Q”F)(r s, w, §)ds

>

where the maximum is taken over we$?, |t| ¢+ |x] and

RF)(p,w,5)= [ F(s,x)dS,
X.0=p
is the Randon iransform of F(s,.).

Proof. Given any unit vector n € S? and any bounded function g(w) on $? we have
the estimate

|~ 1dw‘<C max |g(w)|.

we$?

From this estimate and Lemma 3.1 we obtain

[I(t,x)|SClx|"* Y max |Re j QP F(g, pw)elelt*=2ldp| . (3.6)

18121 we$?

On the other hand, for any real number t we have

o

Re j F,(0, ow)e'™dg=Re _[ { F(s, pw) e~ dpds,

(=

where
F(s,&)= [ F(s,y)edy
RS

is the partial Fourier transform.
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The assumption that F is real-valued yields

F(S, ‘—é)=F(S, 5)

and we find
4] t ao
2Re | F (g ow)edg={ | F(s,pw)e" 9dgds.
(V] 0 —o

Now the relation (see [S])
T F(s, p0)edp = R(F)(z, w,s)
leads to the identity
2Re Z A ew)e"“‘de=£ R(F)(t—s,w,5)ds. 3.7

From this identity with t=1+x. and (3.6) we derive the desired estimate.
This proves the corollary. [

Lemma 3.3. Suppose the assumption (3.2) of Lemma 3.1 is fulfilled and

1<ix|<1)2.
Then we have
I(t,x)=Re Y | [ (t+x.0) ' Cslw)F(I'*F),(g, ow)e***dwdyg
1Bls1 0 §2

~Re Y [(t+x‘cu)“wj(i’j(t,gm)—-e“" 10, ow)) e *dwdp ,
=10 &

Where -Ei(sa .V) =ij(S, .V):
H(s,&)={ H(s,y)e”™dy
RS
is the partial Fourier transform,

F(H),:I?,(z,f):j IH(s,y)e"'“‘”'"dyds
0 R3

and Cy(w) are smooth functions on S*.
Proof. Introduce polar coordinates

o=k, w=¢l|fes’
in I(t, x). Thus we have

1¢t,x)=1Im | | F(o, ow)e®**?odnrdp .
0 &

It is possible to integrate by parts with respect to ¢ since
[t+x.wl2t—|x|=1t/2 (3.8

according to the assumptions of the Lemma.
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On the other hand, we have the relation

3
00,F (g, 0w)= — Y, 0;Q,;F(g, ow).

=1
Moreover, from

t
E(r,&)=[ | F(s,p)e "=+ dyds
0 RrR?

we get with Fy(1, )=y, F(t, y)
Q0,F,(1, )= F(Q0,F),(x, ) —e " F;(1, )+ F(0,8).

Combining the above relations with (3.8) and integrating by parts with respect to g
in I(t, x), we complete the proof. [

Following the proof of Corollary 3.2, from Lemma 3.3 we deduce

Corollary 3.4. Suppose the assumption (3.2) of Lemma 3.1 fulfilled and assume F is a
real-valued function. Then for

x[=2, 121
we have the estimate

14
@, x)|sCt ' max Y |f RUPF)(t—s, w,s)ds
18121 |0

T, w

3
+Ct™! Y, max max |R(y;F)(r,w, ),

j=1 o O0fsst

where the maximum is taken over we S* and teR.

4. Proof of Theorem 2

After a small translation in time and applying the L® — L estimates of W.von Wahl
[12], we see that without loss of generality we can assume
suppuusupp Fo {|x]<¢—1}. 4.1)

The estimates derived in Corollaries 3.2 and 3.4 suggest us to estimate the Radon
transform

RF)p,w.8)= | F(s,y)ds,. 4.2)

»o=p

Lemma 4.1. If supp F(s, y) < {|y|<s—1} and F is a smooth function, then we have

1/2
IR(F)(p, 0, )| SC(L+5)' ) (f IQ”F(S,y)lzdy) :

8152 \R?
Proof. From (4.2) and the assumption of the Lemma it follows that

SupppR(F)(ps W, S)E {P > nggs_ 1} :
Starting with the inequality
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IR(F)(p. 0, )| <[ 10,R(F)(p, , 5)|dp
0
and applying the Cauchy-Schwartz inequality we get
s 1/2
IR(F)(p, 0, S C(1+5)' (f 10,R(F) (P, w,S)IZdP> :
}

Since the vector fields Q;,, j, k=1, 2, 3, form a basis of the vector fields L tangent to
the sphere §2, for any smooth vector field L(w, 3,,) € T(S?) we have the identity

3
LR(F)(p,w,5)= ), ™w)R(E;F)(p,w,s),

k=1
where ¢*(w) are smooth functions on S?. Thus, the Sobolev inequality on §?
implies that
1, R(F)(pw, )P SC Y [ 18,RQPF)(p, w,5) dw.
Bls2 §?
Combining the above estimates with the Plancherel identity (see [5], chapter I)
i §10,RQPF)(p, w,5)Pdwdp=c | |QPF(s,y) dy,
R & R?
we complete the proof of the Lemma. 0O

Combining the above Lemma with Corollaries 3.2 and 3.4, we finish the proof of
the Theorem 2. O

5, Global Existence of Solution to the System
of Mass and Massless Wave Equations

In this section we shall prove the global existence of a solution to the system (1.1).
Since the strong null condition is invariant under the change of variable t— —1,
it is sufficient to prove the existence and uniqueness of solution in the class
C*(R, xR.

For any integer k >0, real number @ and non-negative ¢ introduce the weighted
L*-norm

u(O)l,a= sup sup (1+5)7° ¥ |Iu(s,y)l.
0555t yeR? laj Sk

For any smooth €X-valued function ¢ (¢, x) decaying sufficiently fast as |x| —»co, any
integer k and any real J set

N K
E(o;0)=3 lo;®Ok -1+ Y 1O -3p
j=1 j=N+1
and

K
Wes@:=max Y (1+9)7°|dg;0)]s,  A(@)=(0,00;-...059).

0ssgt j=1

Let R=max {|x|; xesupp fusuppg} and T>0 be fixed. Consider the truncated
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cone K={(t,x); |[x|St+R}. Let X(k,0,T) be the Banach space formed by the
functions

(1, ) CF*1([0, T x mB;cK)n(z'ﬁl 2+ 1-i(j0, Tl;HfuR%«:"»)
j=0

supported in X with norm

“‘P“x= ”‘P“x(k,d,T)=Ek+1((P; T)+ Wy ol@; T).

Here k is an integer and 6>0. Define the following complete metric space
L=L(o,k,&,6,T)

L={peX(k,5,T); 90, x)=¢f, 4,0(0.)=¢g. |¢]x0}.

The metric in L is determined by g(¢,¥)=|l¢ —y|x. Given any o(t,x)e L, we
define the map

¢:0—2¢(p)eX
so that x(t, x)= ¢(g) is solution to the Gauchy problem
@O} -My=Fe.V9), j=1,..,N, 051=T,
02 —A+M})y;=Fo,Vp), Jj=N+1,..,K, O05tsT, 5.1
xi=¢f;, oOxy=¢g; for t=0, j=1,... K.

We shall show that ¢=¢(0,k,¢,8,T) is a contraction map from L into itself
provided >0, >0, ¢>0 are chosen sufficiently small and independent of 7.

First, we note that the assumptions concerning the non-linear functions
C,(¢@, V) guarantee that

“Cj(‘l” V@)(‘)Hk§(1 +1)72 HA(P(t)”kP(F’ kAo Olpyzy+1, -1) 5.2

where :20 and P(F,k, M)=0(M*) near M =0. Moreover the quadratic part
Q(Ve)=0(1, x, Vo) of the non-linear function F in (1.1) satisfies the estimate

HQ(V(p)(t)“kéC'(l +1)7! ”A(p(t)”k[(p(t)l[k/21+l, -1 (5.3

Further, we combine Theorem 2.2 and Lemma 2.4 and derive from (5.1) the
inequality

K 1
Waro(1; r)§c(s+ L [+ [FO -1+ “Fj(s)“zk)ds)
From (5.2), (5.3) and Lemma 2.1 we find
qu,o(x;t)éc(sﬂ (1+s)71 I'Vzk,o((P;S)P(Ekn((P;S))dS), (5.4
[

where P(z)=0(|z|) near z=0. Applying the assumption @€ L we get
Waks(t; ) S Cle+0%/8). (5.5)
The application of Lemma 2.1 gives
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”Q(V(P)(t)"n—l SC(1+n72 H‘P(t)"zk|¢(t)|k+1,—1-
The estimates of Theorem 2 and Theorem 2.5 together with (5.2) yield
E i (DS Cle+ Wy s(93 ) P(Ey14(051)) (5.6)

provided §<1/2andk+1+5<2k,i.e. k> 6. From (5.4), (5.6) and the definition of
the space L we deduce

Hxnxécw(a"‘al/&)
with some constant C’ independent of T, ¢, g, 4. Thus, choosing
0<1/2, 0=6/(4C"), €e=0/4C"), (5.7

we conclude that |x]y<o/2 and hence y=¢(p)e L provided pe L.
To show that ¢ is a contraction map we take ¢, e L. Then

=¢@)—¢W)

is a solution to the Cauchy problem

@ =Dy =Fle,Vo)—F(,Vy), j=1,...,N, 0=:gT,
=0, 0xr=0 for ¢=0, j=1,.,K.

To estimate the quadratic part Q of F we apply the relation
Qe Vo)-QWi, V)=0(Vo—Fy, Vo) +Q(Vy, Vo~ Vy)
and via Lemma 2.1 we get
l@Fo) -y ®)]-.
=Ca ‘H)—zH((o—‘p)(I)Hk(kP(t)hk/z]n,—1+|‘//(t)|[k/2]+1,—1)
+C(1+t)"2|(¢~ll/)(t)‘[k/2]+l,—l(ll‘p(t)l‘k+||l/’(t)|lk)
SUA+07 o -y |y P(FK, Jolx+v]xn. 8>0.
Similarly, we have
@)~ 2PN D= CU+0)" 2 o~y | x (o] x + ¥ ]2

Now we replace the estimation of the cubic term C; given in (5.2) by the following
inequality

1(C (0, Vo) — C; (0, V) (@) |k
SUA+D"2 o —y| xPEK, o]+ v,

P(F,k,2)=0()A]). Repeating the application of L® and L? estimates for the wave
and Klein-Gordon equation we get

l*lx=16(0)~ W) xSCo5~* o -
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with some constant C independent of T, o, 8. Taking ¢ < 8/(2 C) we conclude that ¢
is a contraction map.

The application of the contraction mapping principle yields the existence and
uniqueness of solution to (1.1) in the complete metric space L(o, k, &, 8, T) provided
k > & and the positive numbers o, &, § are chosen sufficiently small and independent
of T. To show that the solution ue L to (1.1) is a smooth function we use the
inclusion

L(o,k. &6, T) = C*"1([0, T]x R*; C¥).

From the inclusion L(o,k+1,¢9,T)cL(o,k,¢,6,T) and L(o,k,e6,T,)
€ L(o,k,¢ 3, T,), T, 2T,, and the uniqueness of the solution in L we conclude that
there exists a global smooth solution u supported in {|x|<¢+R}.

Turning to the uniqueness of the solution, we see that it is sufficient to show that
for any smooth solution u(z, x) to (1.1) one can prove

ueL(o,k,6,6,T). (5.8)

First, we note that the usual energy estimates and the Gronwall lemma show that if
(1, x) is a smooth solution to the Cauchy problem

@Q+M)e=F(t,x,0,Vp), for |x—x°<t°—t, M20,

0(0,9=2,0(0,9)=0 for |x—x9<e°,

then ¢ (2, x) =0 for |x — x°| £ t° — 1. This observation shows that the solution to (1.1)
is supported into the cone {|x|<¢+R}. To prove (5.8) it remains to check the
inequality

lelx=a.

This follows from the estimates (5.4) and (5.6) applied with y = ¢. In fact, from (5.4)
with y=¢ we derive

t
W2k,0(Z;t)§C(5+ j(1+5)—1 %k,o(X;S)P(Ek+1(X;S))dS>-
0
Applying the Gronwall lemma we deduce

Wik o(x; 1) S Ceexp <1n (2+¢) sup P(Ek+1(x;S))>

0=<sst
sO\
Wy s(;)SCe sup (1 +s)—5+Sup{P(Em(x;f));O_S.rés} )
: - 0<s=t
On the other hand from (5.6) and the Gronwall lemma we get with f(£)=E, ,,(x;¢)
the following estimates

f(SCe (1 +h(f;t) sup (1 +s)"‘f;‘)”"), t20, f(O)SCe. (59
0sSsst
Here h(f;t)=sup {g(f(z)); 0=t <1}, g(u) is a nonnegative function satisfying the
estimate
gW)SClu] for Julst (5.10)
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and C is a constant independent of ¢,¢, 6, /.
To finish the proof it suffices to apply the following.

Lemma 5.1. Suppose f(¢) 20 is a continuous function, g(u) is a bounded function and
the estimate (5.10) is fulfilled. Then for any 6,0 <& < C, one can finde=¢(6) >0, such
that (5.9) implies f(1)<2Cs, t=0.

Proof. Let T=T(4,C, f) be determined by
T=sup {t=20; f(1)<é/C, 011}

If C26<6/2, then the estimates (5.9) yield f(0)SCe<é/(2C). Hence, T>0 is
correctly defined. For 0 <t < T we have f(t) <1, since < C, so (5.10) implies with
h(f;f)=sup{g(f(z));0=1<1}

I+ )07 (14)CC 0= 1
Applying the first estimate in (5.9) together with (5.10) we obtain
SWO=Ce(1+CF(@)), 0=:<T, F@)=sup{f(x);0=1=1}.
Hence, F(t)<Ce(1+ CF(t)) and choosing C2e<1/2 we find
F(y=sup{f(x);0<t=t}52Ce, 0=¢<T. (5.11)

With 2Ce £6/(2C) we have f(1) £6/(2C) and from the definition of T we conclude
that T=co. Thus, (5.11) completes the proof of the Lemma. O

The application of the above Lemma guarantees that ||y is small and this
completes the proof of (5.8). The application of the contraction mapping principle
yields the uniqueness of the solution.

This completes the proof of Theorem 1. [
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