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I. Introduction 

The first purpose of this work is to prove a new L ~ - L 2 weighted estimate for the 
linear wave equation in space dimension n = 3 with weights associated with the 
generators of the Poincar6 group. The second purpose is to apply this estimate 
together with the results of W. yon Wahl [12], Klainerman [9], H6rmander [6] and 
prove the global existence of small amplitude solution to the non-linear system of 
wave and Klein-Gordon equations. 

We study the Cauchy problem 

(~2--A)cpj=Fj(t ,x ,~p,  Vq~), j = l  .. . . .  N ,  

( ~ - A + M ~ ) c p j = F j ( t , x , q ~ ,  Vq~), j = N + I  ..... K,  (1.1) 

r = efj, t3 t q~ = eg~ for t = 0, j = 1 ..... K, 

where A is the Laplace operator in lP,, a, r =((Pl . . . . .  r (Vq~)=(0~tp),j=0, 1,2, 3, 
t~o=tgt, Ok=Oxk, k = 1 , 2 , 3  and M i > 0  f o r j = N + l  ..... K. 

The investigation of the Cauchy problem (1.1) is important, since the coupled 
system of wave and Klein-Gordon equations gives a model of interacting mass and 
massless classical fields. 

In the case, when Mj=0 ,  Klainerman [10] introduce the notion of the null 
condition for the non-linear quadratic terms and prove that this condition leads 
to the existence of global solution to the system. The approach in [10] essentially 
uses the generators of the Poincar6 group together with the radial vector field 
tat + xlO~ + x2d2 + x3 0a. 

The case, when Mj > 0, is rather different and leads to some essential difficulties. 
First, the commutation relations of  the radial fector field and the operator of the 
Klein-Gordon equation show that the radial vector field is not convenient for the 
investigation of  the Klein-Gordon equation. Secondly, the null condition of 
Klainerman [10] works well if the radial vector field is included in the Sobolev 
norms. To overcome this difficulty we introduce a stronger version of the null 
condition of Klainerman [10] for the quadratic nonlinearity in (1.1). The definition 
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of  the strong null condition, given in Sect. 2, is fulfilled for some important physical 
examples of  interacting mass and massless fields. We discuss these examples in 
Sect. 2 in details. Our main result is the following. 

Theorem 1. Suppose f i, g j e C~  (IR 3),j  = 1 . . . . .  K and assume the non-linear terms in 
(1.1) satisfy the stron9 null condition. Then there exists a sufficiently small e o > O, such 
that the Cauehy problem (1.1) has a unique smooth solution q~ (t, x) for  0 < e < e o. 

In the case of space dimension n > 5 and nonlinearity of quadratic type the 
existence of  solution to the wave equation can be obtained by the aid of L p estimates 
of  W. yon Wahl [12]. The same estimates work in the cases n = 3 , 4 , 5  and 
nonlinearity of  cubic type. We refer to [11], where the Dirichlet problem has been 
studied. The estimates in [12] are proved by using the Kirchhoff representation of 
the solution to the wave and Klein-Gordon equations. 

For the Klein-Gordon equation in space dimension n =  3 Klainerman [9], 
H6rmander [6], Bachelot [1 ], [2] applied suitable estimates of Sobolev norms 
associated with the Poincar6 group. 

Since we deal with the coupled system of wave and Klein-Gordon equations, we 
have to estimate the weighted norms for the solution to the wave equation assuming 
the weights are connected only with the Poincar6 group. On the other hand, the 
estimates for the wave equation obtained in [8], [I0] include the radial vector field. 
The approach developed in [9] shows that we have to neglect this field when we 
study the Klein-Gordon equation. Thus, to prove the global existence of solution to 
the Cauchy problem (1.1) we need a new estimate of the wave equation with norms 
associated with the generators of  the Poincar~ group only. 

To estimate the solution to the wave equation 

(~2 _ A)u = F  (1.2) 

with zero initial data, we denote by F 1 .. . . .  /'1o the generators 0j, j = 0 ,  1,2, 3, 
t2jk = Xj O k -- Xkt? j, 1 --<_J' < k _-< 3, faoj = taj + xjt~,, j = 1,2, 3, of the Poincar6 group. 
Then for any u (t, x) e C ~ (1R; Co ~ (IRa)) and any non-negative integer k we introduce 
the seminorms (see [1 ], [6], [9]) 

tu(t,x)lk= ~ IF'u(t,x)l, r ' = r ; ' r l ' . . r ; d  o, (~.3) 
I~1 _~k 

Theorem 2. Suppose u(t, x)  is a smooth solution to the wave equation (1.2) with zero 
initial data and assume supp F c {(t, x); Ixl <-_ t + R }for some positive R. Then for  t > 0 
we have the estimate 

~ . s a g o .  

where / . ,=[2  "-1, 2'+1]for r > 0 , / 0 = [ 0 , 2 ] .  

The above estimate is one of  the main tools in the proof  of  Theorem 1. 
A similar result for the solution u(t, x )  to the Klein-Gordon equation 
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( d ~ - A + l ) u = F  

has been announced by H6rmander [6]. More precisely, assuming 

u(O, x) = O,u(O, x) = 0 
and 

s u p p F ~  {(t,x);lxl__<t+R}, 

one can write the estimate (see [6]) 

lu (t, x)lk < (1 + t) 3/2 ,= o ~l,,~ c0,,l 

The main idea in the proof of Theorem 2 is to represent the solution to the wave 
equation by oscillatory integral over the isotropic cone. The stationary phase 
method leads to an estimate of this oscillatory integral by the Radon transform of 
the right-hand side F(t, x) of the wave equation. A suitable estimate of the Radon 
transform leads to the desired estimate. 

The plan of the work is the following. In Sect. 2 we give some preliminary results, 
the definition of the strong null condition and we recall the representation of the 
solution to the wave equation by an oscillatory integral over the isotropic cone. The 
estimate of these integrals is given in Sect. 3 by means of the Radon transform 
in R 3. The proof of Theorem 2 is given in Sect. 4. Finally, in Sect. 5 we prove the 
stability of the solution and complete the proof of Theorem 1. 

2. The Strong Null Condition and Preliminary Results 

The non-linear terms in (1.1) will be supposed to have the form 

vj(t ,  x, ~o, Wp) = Q~(t, x, v~o) + cj(~0, v~o), 

where Ci(~o, ~) are smooth functions, 

C~(q~,~b)=O([~plS +l~l 3) near (r 

and Qj(t, x, V~o)= Qj(t, x, VqJ, vq~) is given by the sesquilinear form 

Qj(t,x, V~p, V~)= ~ qj'~'~'tk , x'O) ,r (2.1) 
ra,k,rj$ 

with q~.k,~ being smooth function of (t, x) and ~ is the complex conjugate to z. 
The quadratic part of the non-linear term is assumed to satisfy a stronger version 

of the null condition introduced by Klainerman [10]. 

Def'mition 1. The sesquilinear form (2.1) satisfies the stron9 null condition if 

(a) I(~(~,q'j'k's(t,x)l=O ((Itl+lxl) -I~j-p) as Itl+lxl--)+oo, 
3 

(b) ~ q'j'k's(t,x)qJls=O for any q=(q0,)h,)h,~/3), 
r , s=O 

tleF,.4, j , m , k =  l ..... K. 
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Example 1. Let 

Q (Vqh, 17~02) = 0t ~01 02 ~: - ~2 q~l ~ ~02, 

Then Q satisfies the strong null condition. This is a typical non-linear term for 
interacting fields. 

Example 2. Consider the sesquilinear form 

L($a, ~k:) = (7~ 01, ~2) 

connected with the pseudoscalar model of Yukawa (see [1], [2]). Here $q, ~b2 E eL ~, 
( , )  is the inner product in ~-'*, 7s = _ ivo~,13~73 and vo ..... 73 are the Dirac matrices. 
The above non-linear term takes part in the non-linear Dirac-Klein-Gordon 
equation studied in [1], [2]. Theorem 4.2 in [1] shows that L is compatible in the 
sense of B. Hanouzet and J. Joly [4] with the operator P+M, where 

P=~~ 1 +y2a2+~303 

is the Dirac operator. An important role in [1] is played by the following 
sesquilinear form associated with L: 

3 
Q(V~o, V~k)=L(Pcp, g~b)+ ~ qZUL(~x(o, Ouq/) 

~.,O =0  

with (r/x~)=diag(1, - 1 ,  - 1 , -  1) being the metric in the Minkowski space F,*. 
Taking advantage of the properties 

7a75 = _ ~,5~?, ~,aT~ + yu~,a =2qau 

of the Dirac matrices and the fact that 3,~ a are Hermitian matrices, one can check 
that the sesquilinear form Q satisfies the strong null condition. 

Next, we aim to clarify the role of the strong null condition. 

Lemma 2.1. If  the sesquilinear form 

Q(t,x, vu,, re)= Y. q'~"(t.x)O,r 
m,~,J',s 

satisfies the strono null condition, then for t => I, Ix I< t + R and any integer k > 0 we 
have 

IQ(t, x, Iz~0, V~')lk < Ct- 1 I~(t, x)l~+ t I~(t, x)lk+ x. 

Proof. The condition (b) in the definition of  the strong null condition means that 
q'~"+q't"=O. Hence, the sesquilinear form {~ with coefficients ~'~'~=F'q "a'~ 
satisfies also the strong null condition for any ~ ~ 7/. ~~ Thus, it suffices to study only 
the case k = 0. Given any j = 1,2, 3 from 

12oj=tOi+ xjOo 

we obtain the equality 

Then the strong null condition yields 
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Q=R1 + R 2 + R 3 ,  
where 

R l = ( t )  -2 ~ q"~'r~Oorq~.t2os~//k, 
m,k,r,s  

q ~o.tP,.X~ao~k, /h=-(t)  
m,k,r,s  

R 3 = - (  t ) -2  E rnkvs q X, doq~t2o~'k, 
m,~,r,$ 

and the sum is over {1,2, 3} for r, s. The assumptions t > 1, Ix[-< t + R  imply that 

IR1 l+ IR2I + IR31 < C(t)- 1 I~o(t, x)h [~p (t, x)ll 

and this completes the proof  of the Lemma. [] 

Next, we recall some estimates and results concerning the solution to the wave 
and Klein-Gordon equations. First, consider the wave equation 

( a ~ - A ) u = r .  (2.2) 

Since the generators of the Poincar6 group commute with the D'Alembertian, we 
shall use in the sequel the following result due to Klainerman [10]. 

Theorem 2.2. [10] Suppose u(t, x)e  C~ (P,+ x R 3) solves (2.2) and assume 

supp u u supp F c  (Ixl <= t + R } 

for some real R > O. Then for any integer k > 1 we have 

Ilu(t)llk_-__c u(s)LIk..=o+I (l +s)lle(s)llk_lds , 
o 

Ileju(t)ll <=c IIg( )ll d  
j=0  0 

More precisely, only the first of the above inequalities is proved in [10]. The 
second one, can be obtained by multiplying the wave equation by d0u. 

The next goal is to represent the solution to the wave equation (2.2) provided 

F(t,x)~C~176 ; S(R3)),  u(O,x)=a,u(O,x)=O. (2.3) 

Lemma 2.3. Suppose u(t, x) is real-valued smooth solution to (2.2) and assume the 
conditions (2.3) are fulfilled. Then we have 

u (t, x) = (2 n)- 3 I(t, x), 

where 

I(t ,x)= Im S P,(l~l,~)e~t'lr162162 
IR 3 

and Pt(~, ~) is the Fourier transform of  Fx(ONs~_t ), i.e. 
t 

L('r, ~)=J j F(s,y)e-'t~+y'~ldyds, 
o 1R 3 
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Proof. The solution to (2.2) is 

u(t ,x)=(2n)  -3 i 
o 

where 

w ?(s, O1#1 -~ sin(l~l(t-s))d~ed~ds, 
R3 

F(s ,{ )=  j F(s,y)e-ir'edy 
R3 

is the partial Fourier transform. Comparing the above representation with the 
needed equality and taking advantage of  the fact that 

P,(-*, -r O 

for any real-valued function F(s,y), we complete the proof of  the Lemma. [] 

Next, we turn our attention to the Klein-Gordon equation 

(0 I -  A + M2)u= F. (2.4) 

Multiplying the above equation by Otu and taking advantage of the fact the 
generators of the Poincar~ group commute with the D'Alembertian we obtain the 
estimate 

Lemma 2.4. Suppose M >  O, u and F are smooth functions satisfying (2.4), so that 

u( t ,x) ,  F( t , x )~C~ 

Then for any k ~ 0 we have 

Z tlo= (t)ll - -<c II0'u(s)llk,=oo+I IlF(s)ll  ds . 

I=t --< 1 \1~1 = l o 

The next estimate is obtained by HSrmander [6] and will play an essential role in 
our investigations. 

Theorem 2.5. [6] Suppose u(t, x) is a smooth solution to (2.4) and assume 

supp u w supp F___ {Ixl < t + R } 

for some R >__ O. Then for any t >__ 0 we have 

where ~ = [2'- 1, 2' + l I for r > 1 and/o = [0, 2]. 

An important role in our analysis will be played by the space of the dual 
variables z e IR, { = ({a, {2, Ca) ~ F'3" 

The operators corresponding to f2~k are 

~jk = r Ok - {k ~'/, ~oj = - zOj - {j~,, (2. S) 

where 0"k= d/0{ k. Then we have the relations 

~kjF(n) = F(12kjH) , (2.6) 
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where F(H) = / t  is the Fourier transform of the function H(x) c S(~4).  Therefore, 
the corresponding generators/~ in the space of the dual variables has the same form 
as the generators of the Poincar6 group in the coordinate space. For this reason we 
shall omit the hats for the operators in the space of the dual variables. 

3. Estimates of Oscillatory Integrals over the Isotropie Cone 

Consider the oscillatory integral 

I ( t , x )=  Im ~ P,(141, 4)eit'lr ~ ell~l-t dr (3.1) 
R3 

taking part in the representation of the solution to the wave equation. Here Ft(z, 4) 
is the Fourier transform of the function F(s, y) Z (0 < s < t), i.e. 

)=~ J F(s,y)e-it~s+r'~dyds. 
0 R3 

Sometimes we shall omit the index t and shall write simply F(~, 4). 

Lemma 3.1. Suppose 

F(s, y) ~ C o~ (~ ;  S(IR3)). (3.2) 

Then for [xl > 1 the oscillatory inteoral I(t, x) in (3.1) can be represented by 

I ( t , x )=  -27tlxl -a E ~rRe ~/0(0, trOx/lxl)e'et*l~l+'ldo 
o = +  0 

C~, (X, 4 ) 
+Ix[ -1 ~ Re ~ 141-2 Pk,(lr 4)e't'lr 

l<,<k<3 ~3 ~ X ~-~ 

where ck,(x, 4) are bounded functions, homooeneous of  degree 0 with respect to x, 4, 
Pk, = f2k,P and a • b denotes the vector product o f  the vectors a, b ~ IR 3. 

Proof. We lose no generality assuming 

x = (0,  0,  Ix l ) ,  

Introduce polar coordinates 

4~ = ~ sin 0 sin q~, r = Q sin 0 cos ~p, ~3 = Q cos O. (3.3) 

Then I(t, x) becomes 

where 

I ( t , x ) = I m  ~ S J(o,~o)e'Q'ododq ~, (3.4) 
0 0 

J(e, q~) - Pe~Qtxt~176176 sin OdO. 
0 

Integrating by parts with respect to 0 into J(Q, ~o), we get 
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J(Q, ~o) = - ~ ier(lxlQ)-xP(O, ~Qx/Ixl)e ~1~1 
a" = "t- 

+ ~ (i Ixl o)-  1 OoZe i Ixlgcas0 dO. (3.5) 
0 

On the other hand, a direct calculation shows that 

t~0P(0, 0 sin 0 sin q~, Q sin Ocos ~o, 0 cos 0) 

= sin ~0~"~31 F - ~ -  c o s  ~0 ~'~32 ~ .  

Thus, setting 
c2x--0, ca:-- - c o s  cp, c31-- - s i n ~  

and taking advantage of the identity 

s in0= ~-~x 

together with (3.4) and (3.5) we obtain the needed equality. 
This completes the proof. [] 

Corollary 3.2. Suppose the assumptions of  Lemma 3.1 are fulfilled and assume F is a 
real-valued function. Then the oscillatory integral I(t, x) in (3.1) satisfies the estimate 

II(t,x)l<-Clxl-X ~ max li R(OOF)(z-s ,  co, s)ds , 
I#1__<1 ~,co 

where the maximum is taken over 09 e S 2, [zl < t + Ixl and 

R(F)(p, o), s) = ~ F(s, x) dS~ 
X. fO~p 

is the Randon transform of  F(s,.). 

Proof. Given any unit vector r/e S 2 and any bounded function 0(to) on S 2 we have 
the estimate 

!2 g@o)l q • col-l&o =< C max Ig(co)l. 
t o e s  2 

From this estimate and Lemma 3.1 we obtain 

IZ(t,x)l<Clxl -~ ~, max [Re T f2~P(O, Qco)e~t'+~'~'ldo . (3.6) 
I # l ~ l  a~e$  2 I 0 

On the other hand, for any real number z we have 

t ao 

Re ~ P,(Q, e~)e'~" do= Re ~ S .~(s, eco)e""-" deds, 
0 0 0 

where 
P(s, r ~ F(s,y)e-'"~dy 

IR a 

is the partial Fourier transform. 
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The assumption that F is real-valued yields 

P(s, - r =F(s, ~) 
and we find 

2Re ~ P~(O, 0og)e"'do=} ~ P(s, Oco)e"t'-"dods. 
0 0 - - m  

Now the relation (see [51) 

leads to the identity 

?(s, Oo~)d~'do = R(F)(~, co, s) 

t 

2 Re ~/e,( 0, Oog)ei~*dQ=I R(F)(z-s, o9, s)ds. 
0 0 

From this identity with z = t+x.o9 and (3.6) we derive the desired estimate. 
This proves the corollary. [] 

Lemma 3.3. Suppose the assumption (3.2) of  Lemma 3.1 is fulfilled and 

Then we have 

I(t, x) = Re 

l<=lxl<=t/2. 

Z 7 [. (t +x.og)-' Ca(og)F(VOF),(e, pco)eiQ{'+"')dogd 0 
I~1<1 o $~ 

j (t + x. co)-' ~o.~(J~g (t, 0o9) - eitn~j (0, 0o9)) eiQX" ~' dcodQ, 
$2 

(3.8) 

691 

(3.7) 

3 

j = l  0 

where Fj(s, y) = y j F(s, y), 

Fl(s, 4)= ~ H(s,y)e-~Y'~dY 

is the partial Fourier transform, 
[ 

F ( H ) , = / ~ t ( z , ~ ) = j  ~ H(s,y)e-"'~+"~)dyds 
o IR3 

and Co(og) are smooth functions on S 2. 

Proof Introduce polar coordinates 

e=l ,~l ,  ~ = ~ / I ~ I E S  :~ 
in I(t, x). Thus we have 

I(t, x )=Im  ~ j P,(O, Oog)e~"+x~ 
0 Sa 

It is possible to integrate by parts with respect to 0 since 

It +x .  col ~ t--Ixl _-> t/2 

according to the assumptions of  the l..emma. 
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On the other hand, we have the relation 

3 

ea~P(o, oco) = - ~ co~o jP(o ,  Qco) . 
)=1  

Moreover, from 
r ' 

Ft( "~, )=S S r(s,y)e-"'~+e'Y~dY ds 
0 N3 

we get with Fj( t , y )=yiF( t , y  ) 

f20~L(~, r = F(Oo~F),(~, ~ ) - e - ' " ~ ( t ,  ~ ) + ~ ( 0 ,  r 

Combining the above relations with (3.8) and integrating by parts with respect to 0 
in I(t, x), we complete the proof. [] 

Following the proof  of  Corollary 3.2, from Lemma 3.3 we deduce 

Corollary 3.4. Suppose the assumption (3.2) of Lemma 3.1fulfilled and assume F is a 
real-valued function. Then for 

we have the estimate 

II(t, x)l < Ct-  1 max 

3 

+Ct  -1 

Ixl ~ t/2, t > 1 

~, i R(FPF)(  z - s , c~  s) ds  
I#1_-<1 o 

max max [R(yiF)(z, og, s)l, 
j = l  it, ca O<s<_t 

where the maximum is taken over co e S 2 and z �9 ~ .  

4. Proof of Theorem 2 

After a small translation in time and applying the L ~~ - L 1 estimates ofW. von Wahl 
[12], we see that without loss of generality we can assume 

supp u u supp F c {Ixl < t -  1 }. (4.1) 

The estimates derived in Corollaries 3.2 and 3.4 suggest us to estimate the Radon 
transform 

R(F)(p,  tn, s )= I F(s ,y )dS , .  (4.2) 
y,c~=p 

Lemma 4.1. I f  supp F(s,y) c {lYl__<s- 1} and F is a smooth function, then we have 

IR(F)(P, CO, s)l~_C(l +s) m ~ [I2BF(s,Y)I2dY . 
lOIN2 3 

Proof. From (4.2) and the assumption of  the Lemma it follows that 

supppR(F)(p,  og, s)c_ {p ; 0 < p < s - 1 } .  

Starting with the inequality 
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s 

IR ( F)(p, co, s)l <~ I~pR (F)(p, co, s)ldp 
o 

and applying the Cauchy-Schwartz inequality we get 

,R(F)(p, co, s)l<C(l+s)X/2(i  lapR(F)(p, co, s),2dp) in �9 

Since the vector fields f2jk, j, k = 1,2, 3, form a basis of the vector fields L tangent to 
the sphere S 2, for any smooth vector field L(co, 0,~)e T(S 2) we have the identity 

3 

LR(F)(p, co, s) = ~, dk(co)R(t2jkF)(p, co, s), 
j ,k=l 

where dk(ta) are smooth functions on S 2. Thus, the Sobolev inequality on S 2 
implies that 

IOpR(r)(p, co, s)l 2 <C ~ ~ ]OpR(t2~V)(p, co, s)12dco. 
101<2 S 2 

Combining the above estimates with the Plancherel identity (see [5], chapter I) 

~ It3pR(fffF)(P, co, s)12d~ =c I It2aF(s,Y)[ 2ay, 
R s 2  ~3 

we complete the proof of the Lemma. [] 

Combining the above Lemma with Corollaries 3.2 and 3.4, we finish the proof of 
the Theorem 2. [] 

5. Global Existence of Solution to the System 
of Mass and Massless Wave Equations 

In this section we shall prove the global existence of a solution to the system (1.1). 
Since the strong null condition is invariant under the change of variable t--* - t ,  
it is sufficient to prove the existence and uniqueness of solution in the class 
C ~ (~.+ x R3). 

For any integer k _>0, real number a and non-negative t introduce the weighted 
L ~176 

lu(t)tk,a= sup sup (1 +s) -~ ~, IF~u(s,y)l. 
o_<s_<t y~F3 lal__<k 

For any smooth IEX-valued function go (t, x) decaying sufficiently fast as ]xl--, o~, any 
integer k and any real 6 set 

N K 

gk(q~;t)= ~ I%(t)k,-x+ ~ I~0j(t)l~,-3/2 
j= t  j = n + l  

and 
K 

W~,~(cO;t)= max Y'. (l+s)-~l[A%(s)llk, A(q~)=(q~,0orO,-..,0~q~) �9 
O<s<-t j = l  

Let R = max {Ixl; x ~ s u p p f ~  supp 9} and T> 0 be fixed. Consider the truncated 
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cone K= {(t,x);[xl<t+R}. Let X(k, 6, T) be the Banach space formed by the 
functions 

/2k+x ) 
~o (t, x) ~ c k +'([0, rl • ~3; ~K) n [ j@o c'k +' -i(I~ TI; u s ( ~ ;  r 

supported in K with norm 

((~oI[ x = I[~I[x,k,,,T)= Ek+,(~; r ) +  W,~,,(~; r ) .  

Here k is an integer and 6 >0. Define the following complete metric space 
L=L(o,k,~,6, T) 

L={cp~X(k, 5, T); q~(0,x)=ef, O, go (0, x) = e.9, IIq~llx__<a). 

The metric in L is determined by Q(c#, ~0)= I1~o-~0 Itx" Given any ~o(t, x)e L, we 
define the map 

0 :,0--,0(~o) ~ x 
so that X(t, x)= ~b(q0 is solution to the Gauchy problem 

(OZt -A)zj=Fl(q), Vc#), j=I,. , . ,N, O<=t<=T, 
(Ozt-A+Mf.)zj=Fj(q~,Vq)), / = N + I  ..... K, O<-t<T, (5.1) 

X~=efj, OtXj=~gj for t=0 ,  j = l  ..... K. 

We shall show that q~=q~(a,k,e, 6, T) is a contraction map from L into itself 
provided 6 > 0, cr > 0, s > 0 are chosen sufficiently small and independent of T. 

First, we note that the assumptions concerning the non-linear functions 
Cj(~o, 17~o) guarantee that 

ItC:(q~, Vcp)(t)/Ik <__ (1 +t) -2 IIAq)(t)llkP(F, k, Iq~(t)ltk/21+~,-t), (5.2) 

where t_~ 0 and P(F, k, M) = O(IMI 2) near M =  0. Moreover the quadratic part 
Q(IZq0= Q(t, x, gq~) of the non-linear function F in (1.1) satisfies the estimate 

II Q(roe) (t)Ilk --< c o  + t) -' I1,~o (,)Ilk Iv (t)ltk/zj + ~, - , .  (5.3) 

Further, we combine Theorem 2.2 and Lemma2.4 and derive from (5.1) the 
inequality 

(" ) w~k,o(Z;~)<_-c e+__E, o} (o +~)ll~(~)ll,,-, +llr~(~)lt~,)a~ 

From (5.2), (5.3) and Lemma 2.1 we find 

W2k,oOC;t)<__C(~+ i ( l+s )  -1W2k,o(CO;s)P(Ek.,(~o;s))ds), (5.4) 

where P(z)= O([z D near z -  0. Applying the assumption ~o e L we get 

w2k, ~(x; t) <_- c(~ + o=/,~). (5.5) 

The application of I.emma 2.1 gives 
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[[Q(Vql)(t)Hzk_ 1 =<C(1 + t )  -2 t[,(t)]laklr 1.-1. 

The estimates of Theorem 2 and Theorem 2.5 together with (5.2) yield 

ek + t (Z; t) < C@ + W z k, ~ (tO ; t ) P ( E  k + 1 (r ; t)) (5.6) 

provided 6 < 1/2 and k + 1 + 5 < 2k, i.e. k > 6. From (5.4), (5.6) and the definition of 
the space L we deduce 

IlZllx<-_c'(~+~/~) 
with some constant C'  independent of T, e, a, ~5. Thus, choosing 

6 < 1/2, a<=6/(4C'), e<a / (4C ' ) ,  (5.7) 

we conclude that It ZHx -< a/2 and hence Z = ~b (cp) e L provided ~p ~ L. 
To show that ~b is a contraction map we take ~p, ~k e L. Then 

Z* = r - r  

is a solution to the Cauchy problem 

(d~--A)Z* =F~(c p, Vcp)-F~(6', V$), j = l  . . . . .  N ,  O < t < T ,  

(02t-A+M~)z*=F/(q~,Vq~)-Fj(~b,  Vff/), j = N + I  . . . . .  K ,  O<=t<T, 

)f*=O, Otz*=O for t=O,  j = l  . . . . .  K.  

To estimate the quadratic part Q of F we apply the relation 

Q(V~p, V~p)-Q(V~b, V~b )= Q(V~p - Vq/, V~p) + Q(V ~, V~p - V ~ ) 

and via Lemma 2.1 we get 

II (Q(V~o) - Q (Vff)) (t)l[k_ x 

<C(1 + t ) -  Z ll(~p-- O )(t)llk(kP(t)ltk/21+ l, _ x + l~'(t)ltk/Zj+ l, _O 

+C(1 + t)-2 I(~o -- ~P)(t)ltkn~+ t , -  l(ll~,(t)ll~ + I[r 
<(l + t)-~+'li~o-~,l]~e(F,k, ]l~ol[x+ ll~Ollx), ~>0 .  

Similarly, we have 

II(Q(V~)-Q(V~'))(t)l[~k< C( a + 0  -1 +~11~- oll~([l~llx+ I1*11~), 
Now we replace the estimation of the cubic term Cj given in (5.2) by the following 
inequality 

[l(cg~0, r e ) -  cj(r vr 

_-<0 § t) -= +~ I1~o- 0 ll,,e(F, k, ll~ll~ § 11, I1~), 

P(F, k, 2)= O(IJl[). Repeating the application of L ~~ and L ~ estimates for the wave 
and Klein-Gordon equation we get 
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with some constant C independent of  T, a, 6. Taking a < 6/(2 C) we conclude that 4) 
is a contraction map. 

The application of the contraction mapping principle yields the existence and 
uniqueness of solution to (1.1) in the complete metric space L(a, k, e, ~5, T) provided 
k > 6 and the positive numbers tr, e, 6 are chosen sufficiently small and independent 
of T. To show that the solution u~L to (1.1) is a smooth function we use the 
inclusion 

L(a, k, ~, 6, T) c C k+l ([0, T] x JR3; OK). 

From the inclusion L(a , k+ l , e , b ,T )cL (a , k , e , b ,T )  and L(a,k,e,b, T1) 
c_L(a, k, e, tS, T2), T 1 > T2, and the uniqueness of the solution in L we conclude that 
there exists a global smooth solution u supported in {]xl =< t + R }. 

Turning to the uniqueness of the solution, we see that it is sufficient to show that 
for any smooth solution tt(t, x) to (1.1) one can prove 

u e L(a, k, e, 6, T). (5.8) 

First, we note that the usual energy estimates and the Gronwall lemma show that if 
q~(t, x) is a smooth solution to the Cauchy problem 

([]+M)~p=F(t,x,q~,Vcp), for I x - x ~ 1 7 6  M>=O, 

~o(0, x)=a~tp(0, x ) = 0  for Ix-x~ ~ 

then ~p(t, x) = 0 for Ix -x~  < t o - t. This observation shows that the solution to (1.1) 
is supported into the cone {[xl<t+R}, To prove (5.8) it remains to check the 
inequality 

This follows from the estimates (5.4) and (5.6) applied with Z = tp. In fact, from (5.4) 
with Z = cp we derive 

W2k,o(Z;t)<C(e+i(l+s)-lW2,,o(X;s)P(Ek+l(~;s))ds ) �9 

Applying the Gronwall lemma we deduce 

W~k'~ t) < Ceexp (ln (2 + t) o<-~,sup P(Ek+ I (X; s)) ) 

so~ 
W2k, a(Z; t) < Ce sup (1 "~'S) -6+sup{P(EI§ �9 

O~_s<=t 

On the other hand from (5.6) and the Gronwall lemma we get with f ( t )  = E k + ~ (Z; t) 
the following estimates 

f ( t ) < C e ( l + h ( f ; t )  o~,sup (l+s)h(f~)-a), t>__O, f(O)<C~. (5.9) 

Here h (f ;  t) = sup {O (f(v));  0 ~ z ~ t }, g (u) is a nonnegative function satisfying the 
estimate 

g(u)<Clul for lul<l  (5.10) 
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and C is a constant independent of t, e, 6,f. 
To finish the proof it suffices to apply the following. 

Lemma 5.1. Suppose f (t) >_ 0 is a continuous function, g (u) is a bounded function and 
the estimate (5.10) is fulfilled. Then for any 6, 0 < ~ < C, one can find e = e( 6 ) > O, such 
that (5.9) implies f ( t )<2Ce ,  t>O. 

Proof. Let T= T(6, C , f )  be determined by 

T=sup  {t>O;f(~)<6/C, 0__<z<t}. 

If  C2~<6/2, then the estimates (5.9) yield f(O)<Ce<fi/(2C).  Hence, T > 0  is 
correctly defined. For 0 __< t < T we have f ( t )  __< 1, since 6 < C, so (5.10) implies with 
h (f; t) = sup {9 (/(z)); 0 < z =< t} 

(1 + t) h~s;') - ~ < (1 + t) c~/c- 6 = 1. 

Applying the first estimate in (5.9) together with (5.10) we obtain 

f ( t ) < C e ( l + C F ( t ) ) ,  0 < t < T ,  F( t )=sup{ f (~ ) ;O<$<t} .  

Hence, F(t) < C~(I + CF(t)) and choosing C% < 1/2 we find 

F(t)=sup{f(z);O<=z<t}<2Cr O < t < T .  (5.11) 

With 2 Ce < 6/(2 C) we have f ( t )  < 6/(2 C) and from the definition of T we conclude 
that T= oo. Thus, (5.11) completes the proof of the Lemma. [] 

The application of the above Lemma guarantees that IlZl!x is small and this 
completes the proof of (5.8). The application of the contraction mapping principle 
yields the uniqueness of the solution. 

This completes the proof of Theorem 1. [] 
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