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L. Symplectic Capacities

Consider the real vectorspace C" which we equip with the standard symplectic
form w defined by

w(&,m=Im(Z,n).

Here (&, n)= ) & 7. A map T: € —C" is called symplectic if it is R-linear
k=1
and preserves o, that is

T*o=w.

Symplectic maps in €" build a group which we denote by Sp(n). A smooth
map f: €' — @" is called a symplectic diffeomorphism if f is a diffeomorphism
and

[*o=aw.

We denote the symplectic difftomorphism group by 2(n). Denote by 2(C")
the power set of C".

Definition 1. A symplectic capacity on €" is a map c: 2(C") - [0, + o) U {+ o0}
having the following properties.

M) 1) o(S)<c(T)ifSST
2) c(f(S)=c(S)for feD(n)
3) c(xS)=0a2c(S) for aeR

(N) 1) e(B**(1)>0
2) e(BP(1)xC" " H< + o0
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Here B2" is the Euclidean 2n-ball in €". Axioms (M) 1) and 2) say that
¢ is a monotonic symplectic invariant. (M) 3) says that it has conformal behavior
with respect to conformal symplectic maps. Note that (M) would be satisfied
by the map

6 S — (outer measure (S))*/.

In order to exclude such invariants, which are more related to the volume
preserving character of symplectic maps rather than to their “symplectic charac-
ter”, we impose condition () (N =nontriviality). (N) 1) says that ¢ is locally
nontrivial and (N) 2) excludes the pathology (1) if n>2.

In an earlier paper [3] we proved the existence of a symplectic capacity
¢, satisfying in addition to (M) and (N) the normalisation property

@ e (B (1)=c,(B*(1)x C"71),

using Hamiltonian dynamics. The first such invariant was introduced by Gro-
mov in [8] using first order elliptic systems.

In this paper we shall do away with the requirement (2). In fact we shall
construct a sequence ¢, k=1, ..., of distinct symplectic capacities with

3) c1Sc,=50c,... .

Each of the ¢, has a remarkable representation property which can be described
as follows. Given a bounded domain U with smooth boundary éU of restricted
contact type the capacity ¢,(U) can be represented by a closed characteristic
on 0U. We refer the reader to [3] for background information. We just recall
that a compact smooth hypersurface 4 in €2 is said to be of restricted contact
type if there exists a 1-form 4 on C" such that dA=w and A(x, £)+0 for every
nonzero (x, ¢)eker(w|4), where

ker(w]d)=={(x, O TA|E5 T, 4},

A closed characteristic on A is a compact leaf of the foliation associated to
the distribution ker(w|4) - 4 on 4.

We shall compute ¢,(£2) in some simple cases and we shall prove an embed-
ding result.

Let us also note that the existence of a symplectic capacity ¢ satisfying
(M) and (N) already characterizes symplecticity in the following sense. Consider
the group G, of linear maps preserving Q:=w". Then G, Sp(n). Now assume
G, is the subgroup of G, consisting of all linear maps in G, which preserve
the capcity of linear ellipsoids. Here a linear ellipsoid is of the form

{xeC"|q(x)<1}
where ¢q: €* — R is a positive definite quadratic form.
Then, following the arguments in [3],

® G,=S8p(n)ifnis odd
® G.=Sp(n)up-Sp(n)if nis even.
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Here ¢: C"— C" is antisymplectic: o*w= —o.

Using the continuity properties of a symplectic capacity as derived from
the axioms in Proposition 3 of Chap. II one can derive again C°-stability results
as proved in [3]. This is one aspect of the importance of symplectic capacity.
Somewhat surprisingly, capacities can be seen as a consequence of an additional
structure in a variant of Floer-Homology for Hamiltonian systems as was shown
in [7]. Moreover, the capacities introduced here are interrelated by a product
property, [7]. There are also alternative definitions for capacities based on
Hamiltonian dynamics which can be defined for every symplectic manifold, [11].

IL. Construction of the c,

We start with the functional analytic framework which is the same as in [3].
We introduce the Hilbert space E consisting of all xe [*(IR/Z, €") such that
its Fourier series

5} x=) 2"y,  xeC"
keZ

satisfies

2 Ykl x> < oo,

The inner product in E is defined by

) (x, y)=<Cxq, o) + 21}, k| xp, i

where (-,*>: C"x C" - R is the real scalar product defined by (-, >=Re(-,*).
We denote by ||x| the norm corresponding to (3). E has a natural orthogonal
splitting:

E=E " @QE°@®E"*

E™ ={x€eE|x=0 for k>0}
E°={x€E|x=0 for k+0}=C"
E*={xeE|x=0 for k<0}.

We denote by P*, P° and P~ the corresponding orthogonal projection. We
introduce the action on E as the quadratic form defined by

@ A)=—4x" 12+ 1x" )2

where x* = P*x for xe{+, —, 0}. If xeE is smooth one easily sees that

5 A(x)=§_[1(—-i>2,x>dt.
0
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On E there is a natural S*-action by phase shift defined by
@xx)(t)=x(t+6)

for feS' =R/Z and xeE. Finally we need a specific set of homeomorphisms
of E which we will denote by I'. We say hel provided h: E— E is a homeo-
morphism and

h(x)=e"" P x* +x%+¢ " P x~ +K(x).

Here y* and y~: E—IR are required to be continuous, S*-invariant, mapping
bounded sets into bounded sets, while K: E — E is continuous, S!-equivariant,
mapping bounded sets into precompact sets. In addition there must be a p>0
such that A(x)<0 or |x||=p implies that y* (x)=7"(x)=0 and K(x)=0. It is
easily checked that I' is a group. I' is similar to the group I' introduced in
[3] where the S'-equivariance was not required. We construct now a pseudo-
index theory in the sense of Benci, [1], associated to the Fadell-Rabinowitz-
Index [57. We recall the relevant points of the F-R-Index. Given a paracompact
S'-space X we build a free S'-space X x S® by letting S* act through the diagonal
action. Here $* =|{ ) $2"7!, §?*"! = C". Taking the quotient with respect to the
S' —action we obtain a principal S'-bundle

X x8® (X xS$*)/5'.
The classifying map

fi (X xS8*)/S'>CP>
induces an homomorphism

f*: HCP®) - H((X x $°)/S")=: Hg (X)

in Alexander-Spanier-Cohomology with rational coefficients. Here Hy: is the
well-known Borel construction for an S'-equivariant cohomology theory. We
know that H({CP*)=Q[r], the generator ¢t being of degree 2. We define the
index of X denoted by a(X) to be the largest number k such that f*(t*~1)=0.
If f*(t=+0 for all k we define a(X):=+c0. If X=¢ we put a(X)=0. Next
we define the index of an S$*-equivariant subset ¢ of E by

ind(¢)=inf a(h(&) N S™)
hel’

where S* is the unit sphere in E*. We need the following:

Proposition 1. Let X be a finite dimensional S*-invariant subspace of E*. Then
ind(E-®E°®X)=4dim X.

We shall sketch the proof for the convenience of the reader although it
is given in principle (modulo notation) in [1] for a somewhat smaller group
of homeomorphisms.
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Proof. Taking h=1d we see that
ind(E"@®E@X)<a(XnST)=4dim X

by a result in [5]. Next pick hel such that with F=E~- ®@E°®X

6) a(h(F)nS*)=ind(F).

Arguing indirectly let us assume that ind (F) <4 dim(X). By the continuity prop-
erty of the a-index as proved in [5] we find an open neighborhood U of h(F)nS*
such that a(U)=ind(F). Denote by Q,: E - E,={x+ E|x;=0 for |j|>k}, the
orthogonal projection. We show first that for large k

(7 (Qeh(FNE)nSt=U.

If (7) does not hold we find a sequence (x,;) such that

®) xxeE,NF
Quh(x)esS*
Oxh(x)¢U.

Using the special form of h we can write the two last conditions in the equivalent
form

X0+ x7 +(e7?7 P+ P Q. K(x)=0
[@xh(x)ll=1, Quh(x)¢U.

By the properties of y~ and K the sequence (x{+x;) is precompact. Let us
show that (x;") remains bounded. Since x; €X this fact will imply that (x,)
is precompact. If (x;") is unbounded we may assume after taking a subsequence
that | x;" ||~ 4 co. Then by using the properties of h we see that h(x,)=x, for
k large enough. In particular we obtain the contradiction
+ oo =lim || x|

=lim | Oy x, |

=lim || Q; h(xy)l

=1,
Hence, summing up (x,) is precompact. So we may assume eventually taking
a subsequence that x;, - x,, as k » + co. Taking the limit in (8) gives

X €F
h(x,)eS™
h(x.)¢U,

contradicting that fact that U was a neighborhood of h(F)nS*. The map x
~ 0, h(x) is the identity in E, for || x| = p. Moreover this map is also the identity
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on E° E,=E°, which is the fixed point for the action since 4(x)<0 for xe E°.
By proposition 3.3 in [6] we have (for k large enough)

W@ hENEJN (ST NE)
23 dim X,

which completes the proof of the proposition, since by (7) this implies «(U)
=23dimX. O

Denote by o the set of all smooth Hamiltonians H: €"—(0, + o) such
that

9) ® H|U=0 forsome open subset U of C"
® H(x)=a|x|* for |x|large, where

a>mn, agINm.
We define now for ke N and H e 5 a number cy (0, + o) U {} by
(10) cy . =inf{sup @y ()| £ < E is S'-equivariant and ind (&) = k},
where @: E— R is defined by
1
Py(x)=A(x)— [ H(x(2))dt.
(o]
That cg >0 follows from the following observation. Let He# be flat at U
and pick x®eU. Arguing as in [3], find >0 small such that
(11) le0+ss+ gﬂ>0
for some positive §. The group I' gives enough freedom to find an kel such
that
h(S*)=x%+eS*
Hence if ind(£) = 1 we infer that
@) nsS*+0
or equivalently
12 P+ENRESH=EN(X"+eS™).
Comparing (11) and (12), we find that

cra=f>0.

On the other hand it is clear that cy .+, =cy, by the monotonicity of the
index. Further let us note that if the constant a occurring in the definition
of H satisfies ae(jn, (j + 1)n) (see (9)), then

sup 4 (E" ®E’®X )<
for X;={xeE"|x,=0 for k>j}.
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This shows that
O<B<cy1Zcy...Scpnj< + 0.

It was proved in [3] that the Palais-Smale condition holds for @5. A variant
of the proof of [3], Proposition 2 gives the following:
Lemma 1. If He# and U is an open S'-invariant neighborhood of the critical
set of @y on some level ¢ >0, then there exists ¢ >0 such that for some hel’
h(@4 \U) = &y *. O
Here ¢4 :=®5 ' ((— 0, d]).

As a consequence of Lemma 1 the numbers cy ; are critical levels provided
cy,j< + . Next we observe that for H,, H,e s with H, > H, we have

Cryj S Chy -

Given a bounded set S of €C" we denote by #(S) the subset of # consisting
of all He # such that

(13) H=0 onsome openneighborhood U  of cl(S).
Here cl denotes the closure. Finally we put

(14) CJ(S)':— lnf CH,j
He#(S)

For an unbounded set S we define
(15) ci(Sy=sup{c;(T)| T =S, T bounded}.
As in [3] one verifies easily that (M 1}(M3) hold and that a representation

result holds; namely
Proposition 2. Let 4 be a connected smooth compact hypersurface of restricted
contact type. Let B4 be the bounded component of C"\ 4. Then there exists for
given j a closed characteristic F, on A and a positive integer k; such that
¢(d)=c;(B)=k;|{ AP
wheredi=won C". [
As a Corollary we find that
Corollary 1. ¢;(B**(1)) 2.
Proof. The “smallest” closed characteristic on 2"~ (1) has |[AP|==n. [
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This proves (N 1). In order to obtain (N 2) take a smooth map ¢: R — [0, + o)
such that ¢(s)=0 for |s|<2 and ¢(s)=as| for |s| large where ae(jzn, (j+1)n)
for some positive integer j. Define ¢: E > R by

c(x)=J o(ln,x|?) dt
0

where ©;: €"— C is the projection onto the first factor. If now S is a bounded
subset of B2(1) x €~ ! we obtain

c,(S)< inf sup @,(¢)
ind(¢)2j
where @,(x)= A(x)— a(x).
Define Ec E by
E=E_@EO®XJ'
where X;={xeE*|x,=0for k>j and x,e C=C x {0}"" ' =" for 1 Lk <j}.
By Proposition 1
ind(&) 2j

¢;(S)<sup @,(Z)

Hence

It follows from the definition of ¢ that, for some constant y >0, we have
1

P, ()SAM)— [alm x[>+y
0

1
since jn<a<(j+ 1)n, we must have A(x)< | a|n, x|* on X;. So, for xe&,
[¢]

P, (x)S0+y=y< +c0.

This implies
c;(S)Sc<+
for every bounded subset Sc B2(1)xC"~ . [J
This proves
Corollary 2. ¢;,(B*(1) x € ') < o for every jeN.

Finally we note a nice continuity property of symplectic capacities. Consider
the space defined by

& ={B,| 4 is a smooth connected compact hypersurface of
restricted contact type in C"}.
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We introduce the Hausdorff metric on & by

d(By,, B4,)=sup {dist(x, 4,)+dist(4,, y)}.
xedy
yedy

Proposition 3. A symplectic capacity c induces a continuous map (<, d)— R.

Proof. Let B,e%. We take a l-form A such that 1 is nondegenerate on
ker(w|4)—4 and dA=w on C" as used in the definition of restricted contact
type. We may of course assume that

=% Z (Pedai—aqi dpo)

k=1

for z=q+ip large. We define a vectorfield # with linear growth by

i=i,w=w(n,")
Then
Lyo=di, +i,dw
=dA
=,

Now assume B, — B, in . We use the vectorfield # to obtain a flow C"
xR - C" (z,t)—>z-t. We observe that # is transversal to 4. Hence for ¢>0
given and k large enough we have

B, (—¢€)< By, =By (e).

Now, since the maps .%: z —z-t are conformally symplectic, in fact L*w=¢€'w,
we obtain using axiom (M)

e "c(B)Sc(By)Sec(By)
Consequently,
¢(By,) = c(By): O

III. Some Examples

LetO<r,Er, ... 21, < + o0 and write r=(ry, ..., r,). Consider the ellipsoid
z; |2
2 o<1,

zlril }

We associate to r=(r,, ..., r,) a sequence (d;) as follows. Consider all numbers
of the form knr? with ke{l,2,...} and je{l,...,n}. If the same number is
obtained for different choices of k and j we call the number of different choices
the multiplicity of the number. Order those numbers and repeat them according

E(r)={ze(E"
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to their multiplicity to obtain the sequence (d;), d;=d;(r). For example, if r
=(1, 15 saey 1) we haVC

di=..=d=n
d,,+1=...=d2,,=27t
d2n+1=...=d3"=37'[

Proposition 4. c;(E(r))=d;(r) for every j.

Proof. Let us first assume that the numbers r} are linearly independent over
n 2

Z. Then the sequence d;(r) is strictly monotonic. Define H(x):=} |—| and
i=1178
denote by & the class of all ¢ [0, +o0)— [0, + o), f monotonic, such that
foHeH (E(r)).
Clearly,

Consider @,y defined by

Pru(x)=A(X)— | foH(x)dt.

The critical points of @,y are the solutions x of the problem
x=f"(H(x))iH'(x)
x{0)=x(1).
This implies immediately that y(t):=x(t/f'(H (x(0)))) is a solution of
y=iH'(y)
y(0)=y(T),
with T= f'(H (x(0))). Hence, with H(x(0))=:t
Psn(x)=f"()t—f(7)
f'(=2mpr}

for some integer p=0. Now consider the ¢;(fo H). They are all distinct because
otherwise ®,.; would have uncountably many S'-orbits on the level ¢;=c;.,,
say. (In fact, as in [1], formula 4.2, one shows that if ¢;=c;,, for some j, then
the critical set on level c¢; has Fadell-Rabinowitz index at least 2.) This would
imply uncountably many solutions of x=iH'(x) on JE(r), which contradicts
the nonresonance assumption on the r;. So

(1) CfaH,j_?.:'lfaH,j
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where Ay, ;is the j-th critical value of @ .y (starting from the bottom, 1, =min).
Let X;cE* be spanned by the eigenvectors belonging to the first j positive
eigenvalues of

—ih=AH'(h)

h(0)=h(1).
Then, since the eigenspaces are S'-invariant,

E"®E°®X;
has index j by Proposition 1. Moreover,

Sup ¢qu((E— @E()@Xj) =},qu’1.
Hence,

@) Crom jShrm,

which proves Proposition 3 in the case that the {nr?} are independent over
Z. If r is arbitrary the result follows from the continuity property established
in Proposition 3 observing that E(r)e.. [

Now define for r=(ry, ..., 7,), 0<r; £ry...Er,< + 0
D(r)==B?*(r,) X ... x B*(r,).

Proposition 5. ¢;(D(r))=njr}.
Corollary 3. If there exists a symplectic embedding ¥: D(r) <> B*"(r'), then

er <r.

Proof of Corollary 3. Upon replacing D(r) by D(dr) for a given 6¢(0, 1), in
order to avoid problems on the boundary, we can extend ¥|D(ér) to a symplec-
tomorphism ¥ defined on all of C" (cf. [ B]) such that

P(D(S5r)=¥D(S7)).
Hence
'T’(D ©0nNc B?" (r).

Taking the n-capacity we obtain
nnd*ri=c,(D(6r))
=c,(F(D(én))
Zc,(B*(r))

=n(r')>.
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This is true for every de(0, 1). Hence, taking the square root
1/’; rsr

Remark. Note that for r=(r, ..., r;) this result is optimal since we have the

obvious embedding D(r)~ B“(]/ﬁ ry). If r,<r,, say, one might suspect that
there are better symplectic invariants, which however have not been found yet.

as claimed. [

Proof of Proposition 5. The proof of Proposition 5 consists of two parts. First
we derive the estimate (assuming r=(1, 75, ..., 1)

&P,

Then we show that c;(D(r))eZn. Studying the a-index of the set of trajectories
representing c; we derive that ¢;<c;,,, implying the desired result. Without
loss of generality assume r, =1.

Take for ¢ >0 a smooth map f: R — IR such that

@) ® /(5)=0 s<1+e
® f'(s)>0 s>1+e¢
® f(s)=(+n|s|? s large

® f'(so)=2jmns, for so>1+¢
implies f(sg)<e and so=1+2e.
Define o: E—~R by

1
a(x)={ flmx|)dt
0

where n,: €"— € is the projection onto the first factor. We define @,(x)=A(x)
—o(x). From the definition of c;(D(r)) it follows immediately that for 1<r,
£r3..8n,
Cj(D(l, ra,73,..., rn)ésup ¢a(zj)
where
({=E ®E'®X;
and

X;={xeE*|x,eC=Cx{0}" <" for 1<k<j and x;=0 for k>j}.
sup @,(&;) is attained at some point xe X ; satisfying

[my x|

—ix=f'(Im; x[)

x(0)=x(1).
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Hence with t=|(x; x)(0)|

sup @,(x)=1% f' (1)1 —f(7)
<$2jmit*~f(0)
<jn(1+2¢)%

Since £ >0 was arbitrary we infer
cj(D(la Fa, T3, ~--rn))§nj'

In particular,
) ¢;(B*(1)x T~ H<Zmj.

The other direction is more delicate. Using monotonicity it is enough to study
D:=D({1,1,1,...,1).

Taking the right sequence of Hamiltonians in s# (D) it is quite easy to show
that c;(D) can be represented by a linear combination of loops on Stx..x§
as follows. Given a sequence x* of critical points of @y, on level cy, , there
exist numbers §,eC and j,e{1, 2, ...} for £e{1, 2, ..., n} such that

Yie=:j'>0
|5l| = 1 or 5( = 0
and a subsequence of (x*) converges to
((51 eZnij‘ t’ ey 5,,62"”"')

Take a sequence (f,) of smooth maps satisfying

e i R-R
1
® f.(s)=0 S‘S‘H_E
1
® f,'(5)>0 s>1+—l€

® fils)=(k+Hn|s| s>1+~i—

1

® fi(so)=2kms, for S°>1+E
. 1
implies fk(so)éﬁ.

It is clear that the Hamiltonians H,e 2 (D) defined by

Hi(¥)=Y fillx]),  x=(xy; ..., x,)€C"
i=1
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have the property
cn,,j—cj(D) as k—oo.

Our aim is of course to show that j'=j So we know so far that
¢;(D)e{m, 2m, 3=, ...}. Consider the first je {1, 2, ...} such that

ci(D)=c;+ (D).

If no such j exists we have c;(D)=nj by formula (5) and we are done. Hence
we must have ¢;(D)=nj and c;, (D)=nj. Our functionals @5, decompose into

a sum of functionals on the loop spaces of €. In fact, @y (x)= Y &, .;,(x).

The positive critical set of &, is of the form =1

(6) nSck<dy<... with lim(ck,; —cH)=m
k

Now consider the set Y defined by
Y ={(B,e*, ..., 8,2 ] |6,|=1 or §,=0
jee{,2, .., Y j=j}.
We note that () )=1. Hence we find an open neighborhood U of )’ with

w(U)=ad)=1.

By our previous arguments we find that for k large enough the critical sets
of @y, on levels ¢y, ; and cg, ;+, are subsets of U. Since @5, has the direct
sum form, its gradient flow will have a product form. Since the critical values
of &g, are sums of critical values of the & r.we see that if k is large enough
in view of (5), that for given ¢>0 and de(0, =) for a suitable hel”

) h(Bf= T+ 1T\ U)o il 1770
Since by definition
ind (@It 17 2j+ 1

we obtain as a consequence of a(U)=1 and the subadditivity of the a-index,
see [5], that

ind(@if /1 T\ U) 2j.
Since
ind(h(D T+ 17\ D)
> ind (@l 17077
zj,
we obtain from (7)
8) ind (B3t 2,
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This is true for every large k for a given ¢>0 and d€(0, 7). So we obtain from
(8) and the definition of ¢;(D)

nj=cj(D)<cy,, j+1+€—0
for every ¢ >0 and d€(0, n) and all large k. This implies
njé 7'Cj‘ 7,

giving a contradiction. Consequently c;(D) is strictly increasing. This implies
with our previous discussion

(D, 1, ..., 1)=mj.

Using (M) we obtain therefore

cj(D(r)=mnj
as required. []
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