Mathematische

© Springer-Verlag 1990

Ivar Ekeland^{1,*} and Helmut Hofer^{2,**}

¹ Ceremade, Université Paris-9, Dauphine, F-75775 Paris, Cedex 16, France

² Ruhr-Universität Bochum, D-4630 Bochum 1, Federal Republic of Germany

I. Symplectic Capacities

Consider the real vectorspace \mathbb{C}^n which we equip with the standard symplectic form ω defined by

$$\omega(\xi,\eta) = \operatorname{Im}(\xi,\eta).$$

Here $(\xi, \eta) = \sum_{k=1}^{n} \xi_k \bar{\eta}_k$. A map $T: \mathbb{C}^n \to \mathbb{C}^n$ is called symplectic if it is \mathbb{R} -linear and preserves ω that is

and preserves ω , that is

$$T^*\omega = \omega.$$

Symplectic maps in \mathbb{C}^n build a group which we denote by Sp(n). A smooth map $f: \mathbb{C}^n \to \mathbb{C}^n$ is called a symplectic diffeomorphism if f is a diffeomorphism and

$$f^*\omega = \omega$$

We denote the symplectic diffeomorphism group by $\mathcal{D}(n)$. Denote by $\mathscr{P}(\mathbb{C}^n)$ the power set of \mathbb{C}^n .

Definition 1. A symplectic capacity on \mathbb{C}^n is a map $c: \mathscr{P}(\mathbb{C}^n) \to [0, +\infty) \cup \{+\infty\}$ having the following properties.

(M) 1)
$$c(S) \leq c(T)$$
 if $S \subseteq T$
2) $c(f(S)) = c(S)$ for $f \in \mathcal{D}(n)$
3) $c(\alpha S) = \alpha^2 c(S)$ for $\alpha \in \mathbb{R}$
(N) 1) $c(B^{2n}(1)) > 0$
2) $-(B^2(1) + S^{n-1}) + c + \infty$

2)
$$c(B^2(1) \times \mathbb{C}^{n-1}) < +\infty$$

^{*} Supported by U.S. Army contract DAJA 45-88-C-0009

^{**} Supported by the Alfred P. Sloan Foundation and NSF grant DMS 88-03496

Here B^{2n} is the Euclidean 2n-ball in \mathbb{C}^n . Axioms (M) 1) and 2) say that c is a monotonic symplectic invariant. (M) 3) says that it has conformal behavior with respect to conformal symplectic maps. Note that (M) would be satisfied by the map

(1)
$$S \rightarrow (\text{outer measure}(S))^{1/n}$$
.

In order to exclude such invariants, which are more related to the volume preserving character of symplectic maps rather than to their "symplectic character", we impose condition (N) (N = nontriviality). (N) 1) says that c is locally nontrivial and (N) 2) excludes the pathology (1) if $n \ge 2$.

In an earlier paper [3] we proved the existence of a symplectic capacity c_1 satisfying in addition to (M) and (N) the normalisation property

(2)
$$c_1(B^{2n}(1)) = c_1(B^2(1) \times \mathbb{C}^{n-1}),$$

using Hamiltonian dynamics. The first such invariant was introduced by Gromov in [8] using first order elliptic systems.

In this paper we shall do away with the requirement (2). In fact we shall construct a sequence $c_k, k=1, ...,$ of distinct symplectic capacities with

$$c_1 \leq c_2 \leq c_3 \dots$$

Each of the c_k has a remarkable representation property which can be described as follows. Given a bounded domain U with smooth boundary ∂U of restricted contact type the capacity $c_k(U)$ can be represented by a closed characteristic on ∂U . We refer the reader to [3] for background information. We just recall that a compact smooth hypersurface Δ in \mathbb{C}^2 is said to be of restricted contact type if there exists a 1-form λ on \mathbb{C}^n such that $d\lambda = \omega$ and $\lambda(x, \xi) \neq 0$ for every nonzero $(x, \xi) \in \ker(\omega | \Delta)$, where

$$\ker(\omega|\varDelta) := \{ (x, \xi) \in T\varDelta \mid \xi_{\omega}^{\perp} T_x \varDelta \}.$$

A closed characteristic on Δ is a compact leaf of the foliation associated to the distribution ker $(\omega | \Delta) \rightarrow \Delta$ on Δ .

We shall compute $c_k(\Omega)$ in some simple cases and we shall prove an embedding result.

Let us also note that the existence of a symplectic capacity c satisfying (M) and (N) already characterizes symplecticity in the following sense. Consider the group G_{Ω} of linear maps preserving $\Omega := \omega^n$. Then $G_{\Omega} \supset Sp(n)$. Now assume G_c is the subgroup of G_{Ω} consisting of all linear maps in G_{Ω} which preserve the capcity of linear ellipsoids. Here a linear ellipsoid is of the form

$$\{x \in \mathbb{C}^n | q(x) < 1\}$$

where $q: \mathbb{C}^n \to \mathbb{R}$ is a positive definite quadratic form.

Then, following the arguments in [3],

- $G_c = Sp(n)$ if n is odd
- $G_c = Sp(n) \cup \varphi \circ Sp(n)$ if n is even.

Here $\varphi \colon \mathbb{C}^n \to \mathbb{C}^n$ is antisymplectic: $\varphi^* \omega = -\omega$.

Using the continuity properties of a symplectic capacity as derived from the axioms in Proposition 3 of Chap. II one can derive again C^0 -stability results as proved in [3]. This is one aspect of the importance of symplectic capacity. Somewhat surprisingly, capacities can be seen as a consequence of an additional structure in a variant of Floer-Homology for Hamiltonian systems as was shown in [7]. Moreover, the capacities introduced here are interrelated by a product property, [7]. There are also alternative definitions for capacities based on Hamiltonian dynamics which can be defined for every symplectic manifold, [11].

II. Construction of the c_k

We start with the functional analytic framework which is the same as in [3]. We introduce the Hilbert space E consisting of all $x \in L^2(\mathbb{R}/\mathbb{Z}, \mathbb{C}^n)$ such that its Fourier series

(1)
$$x = \sum_{k \in \mathbb{Z}} e^{2\pi i k t} x_k, \quad x_k \in \mathbb{C}^n$$

satisfies

(2)
$$\sum |k| |x_k|^2 < \infty.$$

The inner product in E is defined by

(3)
$$(x, y) := \langle x_0, y_0 \rangle + 2\pi \sum |k| \langle x_k, y_k \rangle$$

where $\langle \cdot, \cdot \rangle \colon \mathbb{C}^n \times \mathbb{C}^n \to \mathbb{R}$ is the real scalar product defined by $\langle \cdot, \cdot \rangle = \operatorname{Re}(\cdot, \cdot)$. We denote by ||x|| the norm corresponding to (3). *E* has a natural orthogonal splitting:

$$E = E^{-} \oplus E^{0} \oplus E^{+}$$

$$E^{-} = \{x \in E \mid x_{k} = 0 \text{ for } k \ge 0\}$$

$$E^{0} = \{x \in E \mid x_{k} = 0 \text{ for } k \ne 0\} = \mathbb{C}^{n}$$

$$E^{+} = \{x \in E \mid x_{k} = 0 \text{ for } k \le 0\}.$$

We denote by P^+ , P^0 and P^- the corresponding orthogonal projection. We introduce the action on E as the quadratic form defined by

(4)
$$A(x) = -\frac{1}{2} \|x^{-}\|^{2} + \frac{1}{2} \|x^{+}\|^{2}$$

where $x^* = P^*x$ for $* \in \{+, -, 0\}$. If $x \in E$ is smooth one easily sees that

(5)
$$A(x) = \frac{1}{2} \int_{0}^{1} \langle -i\dot{x}, x \rangle dt.$$

On E there is a natural S^1 -action by phase shift defined by

$$(\theta * x)(t) = x(t + \theta)$$

for $\theta \in S^1 = \mathbb{R}/\mathbb{Z}$ and $x \in E$. Finally we need a specific set of homeomorphisms of E which we will denote by Γ . We say $h \in \Gamma$ provided $h: E \to E$ is a homeomorphism and

$$h(x) = e^{\gamma^{+}(x)} x^{+} + x^{0} + e^{\gamma^{-}(x)} x^{-} + K(x).$$

Here γ^+ and $\gamma^-: E \to \mathbb{R}$ are required to be continuous, S^1 -invariant, mapping bounded sets into bounded sets, while $K: E \to E$ is continuous, S^1 -equivariant, mapping bounded sets into precompact sets. In addition there must be a $\rho > 0$ such that $A(x) \leq 0$ or $||x|| \geq \rho$ implies that $\gamma^+(x) = \gamma^-(x) = 0$ and K(x) = 0. It is easily checked that Γ is a group. Γ is similar to the group Γ introduced in [3] where the S^1 -equivariance was not required. We construct now a pseudoindex theory in the sense of Benci, [1], associated to the Fadell-Rabinowitz-Index [5]. We recall the relevant points of the F-R-Index. Given a paracompact S^1 -space X we build a free S^1 -space $X \times S^\infty$ by letting S^1 act through the diagonal action. Here $S^\infty = \bigcup S^{2n-1}, S^{2n-1} \subset \mathbb{C}^n$. Taking the quotient with respect to the S^1 -action we obtain a principal S^1 -bundle

$$X \times S^{\infty} \to (X \times S^{\infty})/S^{1}.$$

The classifying map

$$f: (X \times S^{\infty})/S^1 \to \mathbb{C}P^{\infty}$$

induces an homomorphism

 $f^*: \overline{H}(\mathbb{C}P^\infty) \to \overline{H}((X \times S^\infty)/S^1) =: \overline{H}_{S^1}(X)$

in Alexander-Spanier-Cohomology with rational coefficients. Here \overline{H}_{S^1} is the well-known Borel construction for an S^1 -equivariant cohomology theory. We know that $\overline{H}(\mathbb{C}P^{\infty}) = \mathbb{Q}[t]$, the generator t being of degree 2. We define the index of X denoted by $\alpha(X)$ to be the largest number k such that $f^*(t^{k-1}) \neq 0$. If $f^*(t^k) \neq 0$ for all k we define $\alpha(X) := +\infty$. If $X = \phi$ we put $\alpha(X) = 0$. Next we define the index of an S^1 -equivariant subset ξ of E by

$$\operatorname{ind}(\xi) = \inf_{h \in \Gamma} \alpha(h(\xi) \cap S^+)$$

where S^+ is the unit sphere in E^+ . We need the following:

Proposition 1. Let X be a finite dimensional S^1 -invariant subspace of E^+ . Then

$$\operatorname{ind}(E^{-}\oplus E^{0}\oplus X) = \frac{1}{2}\dim X.$$

We shall sketch the proof for the convenience of the reader although it is given in principle (modulo notation) in [1] for a somewhat smaller group of homeomorphisms.

Proof. Taking h = Id we see that

$$\operatorname{ind}(E^- \oplus E^0 \oplus X) \leq \alpha(X \cap S^+) = \frac{1}{2} \dim X$$

by a result in [5]. Next pick $h \in \Gamma$ such that with $F = E^- \oplus E^0 \oplus X$

(6)
$$\alpha(h(F) \cap S^+) = \operatorname{ind}(F).$$

Arguing indirectly let us assume that $\operatorname{ind}(F) < \frac{1}{2} \operatorname{dim}(X)$. By the continuity property of the α -index as proved in [5] we find an open neighborhood U of $h(F) \cap S^+$ such that $\alpha(U) = \operatorname{ind}(F)$. Denote by $Q_k: E \to E_k = \{x + E | x_j = 0 \text{ for } |j| > k\}$, the orthogonal projection. We show first that for large k

(7)
$$(Q_k h(F \cap E_k)) \cap S^+ \subset U.$$

If (7) does not hold we find a sequence (x_k) such that

(8)
$$x_k \in E_k \cap F$$
$$Q_k h(x_k) \in S^+$$
$$Q_k h(x_k) \notin U.$$

Using the special form of h we can write the two last conditions in the equivalent form

$$\begin{aligned} x_{k}^{0} + x_{k}^{-} + (e^{-\gamma^{-}(x_{k})}P^{-} + P^{0})Q_{k}K(x_{k}) &= 0 \\ \|Q_{k}h(x_{k})\| &= 1, \qquad Q_{k}h(x_{k}) \notin U. \end{aligned}$$

By the properties of γ^- and K the sequence $(x_k^0 + x_k^-)$ is precompact. Let us show that (x_k^+) remains bounded. Since $x_k^+ \in X$ this fact will imply that (x_k) is precompact. If (x_k^+) is unbounded we may assume after taking a subsequence that $||x_k^+|| \to +\infty$. Then by using the properties of h we see that $h(x_k) = x_k$ for k large enough. In particular we obtain the contradiction

$$+\infty = \lim ||x_k^+||$$

= $\lim ||Q_k x_k||$
= $\lim ||Q_k h(x_k)||$
= 1.

Hence, summing up (x_k) is precompact. So we may assume eventually taking a subsequence that $x_k \rightarrow x_\infty$ as $k \rightarrow +\infty$. Taking the limit in (8) gives

$$x_{\infty} \in F$$

 $h(x_{\infty}) \in S^+$
 $h(x_{\infty}) \notin U,$

contradicting that fact that U was a neighborhood of $h(F) \cap S^+$. The map $x \to Q_k h(x)$ is the identity in E_k for $||x|| \ge \rho$. Moreover this map is also the identity

on $E^0 \cap E_k = E^0$, which is the fixed point for the action since $A(x) \leq 0$ for $x \in E^0$. By proposition 3.3 in [6] we have (for k large enough)

$$\alpha(Q_k h(F \cap E_k) \cap (S^+ \cap E_k)) \ge \frac{1}{2} \dim X,$$

which completes the proof of the proposition, since by (7) this implies $\alpha(U) \ge \frac{1}{2} \dim X$. \Box

Denote by \mathscr{H} the set of all smooth Hamiltonians $H: \mathbb{C}^n \to (0, +\infty)$ such that

(9)
•
$$H|U \equiv 0$$
 for some open subset U of \mathbb{C}^n
• $H(x) = a |x|^2$ for $|x|$ large, where
 $a > \pi, a \notin \mathbb{N} \pi$.

We define now for $k \in \mathbb{N}$ and $H \in \mathscr{H}$ a number $c_{H,k} \in (0, +\infty) \cup \{\infty\}$ by

(10)
$$c_{H,k} = \inf \{ \sup \Phi_H(\xi) | \xi \subset E \text{ is } S^1 \text{-equivariant and } \operatorname{ind}(\xi) \geq k \},$$

where $\Phi_H: E \to \mathbb{R}$ is defined by

$$\Phi_H(x) = A(x) - \int_0^1 H(x(t)) dt.$$

That $c_{H,k} > 0$ follows from the following observation. Let $H \in \mathcal{H}$ be flat at U and pick $x^0 \in U$. Arguing as in [3], find $\varepsilon > 0$ small such that

(11)
$$\Phi|_{x^0+\epsilon S^+} \ge \beta > 0$$

for some positive β . The group Γ gives enough freedom to find an $\tilde{h} \in \Gamma$ such that

 $\tilde{h}(S^+) = x^0 + \varepsilon S^+$

Hence if $ind(\xi) \ge 1$ we infer that

$$\tilde{h}^{-1}(\xi) \cap S^+ \neq \emptyset$$

or equivalently

(12)
$$\emptyset \neq \xi \cap \tilde{h}(S^+) = \xi \cap (x^0 + \varepsilon S^+).$$

Comparing (11) and (12), we find that

$$c_{H,k} \geq \beta > 0.$$

On the other hand it is clear that $c_{H,k+1} \ge c_{H,k}$ by the monotonicity of the index. Further let us note that if the constant *a* occurring in the definition of *H* satisfies $a \in (j\pi, (j+1)\pi)$ (see (9)), then

$$\sup \Phi_H(E^- \oplus E^0 \oplus X_i) < \infty$$

for $X_j = \{x \in E^+ | x_k = 0 \text{ for } k > j\}.$

This shows that

$$0 < \beta \leq c_{H,1} \leq c_{H,2} \dots \leq c_{H,nj} < +\infty.$$

It was proved in [3] that the Palais-Smale condition holds for Φ_H . A variant of the proof of [3], Proposition 2 gives the following:

Lemma 1. If $H \in \mathcal{H}$ and U is an open S^1 -invariant neighborhood of the critical set of Φ_H on some level c > 0, then there exists $\varepsilon > 0$ such that for some $h \in \Gamma$

$$h(\Phi_H^{c+\iota} \setminus U) \subset \Phi_H^{c-\iota}.$$

Here $\Phi_{H}^{d} := \Phi_{H}^{-1}((-\infty, d]).$

As a consequence of Lemma 1 the numbers $c_{H,j}$ are critical levels provided $c_{H,j} < +\infty$. Next we observe that for $H_1, H_2 \in \mathscr{H}$ with $H_1 \ge H_2$ we have

$$c_{H_2,j} \leq c_{H_1,j}.$$

Given a bounded set S of \mathbb{C}^n we denote by $\mathscr{H}(S)$ the subset of \mathscr{H} consisting of all $H \in \mathscr{H}$ such that

(13) $H \equiv 0$ on some open neighborhood U of cl(S).

Here cl denotes the closure. Finally we put

(14)
$$c_j(S) = \inf_{H \in \mathscr{H}(S)} c_{H,j}$$

For an unbounded set S we define

(15)
$$c_i(S) = \sup \{c_i(T) | T \subset S, T \text{ bounded}\}.$$

As in [3] one verifies easily that (M1)-(M3) hold and that a representation result holds; namely

Proposition 2. Let Δ be a connected smooth compact hypersurface of restricted contact type. Let B_{Δ} be the bounded component of $\mathbb{C}^n \setminus \Delta$. Then there exists for given j a closed characteristic P_j on Δ and a positive integer k_j such that

$$c_j(\Delta) = c_j(B_{\Delta}) = k_j |\int \lambda P_j|$$

where $d\lambda = \omega$ on \mathbb{C}^n . \Box

As a Corollary we find that

Corollary 1. $c_i(B^{2n}(1)) \ge \pi$.

Proof. The "smallest" closed characteristic on $S^{2n-1}(1)$ has $|\int \lambda P| = \pi$.

This proves (N 1). In order to obtain (N 2) take a smooth map $\varphi : \mathbb{R} \to [0, +\infty)$ such that $\varphi(s)=0$ for $|s| \leq 2$ and $\varphi(s)=a |s|$ for |s| large where $a \in (j\pi, (j+1)\pi)$ for some positive integer j. Define $\sigma : E \to \mathbb{R}$ by

$$\sigma(x) = \int_{0}^{1} \varphi(|\pi_{1}x|^{2}) dt$$

where $\pi_1: \mathbb{C}^n \to \mathbb{C}$ is the projection onto the first factor. If now S is a bounded subset of $B^2(1) \times \mathbb{C}^{n-1}$ we obtain

$$c_j(S) \leq \inf_{\mathrm{ind}(\xi) \geq j} \sup \Phi_{\sigma}(\xi)$$

where $\Phi_{\sigma}(x) = A(x) - \sigma(x)$. Define $\xi \subset E$ by

$$\tilde{\xi} = E^- \oplus E^0 \oplus \hat{X}_j$$

where $\hat{X}_j = \{x \in E^+ | x_k = 0 \text{ for } k > j \text{ and } x_k \in \mathbb{C} = \mathbb{C} \times \{0\}^{n-1} \subset \mathbb{C}^n \text{ for } 1 \leq k \leq j\}$. By Proposition 1

Hence

 $c_i(S) \leq \sup \Phi_{\sigma}(\tilde{\xi})$

 $\operatorname{ind}(\xi) \geq i$

It follows from the definition of φ that, for some constant $\gamma > 0$, we have

$$\Phi_{\sigma}(x) \leq A(x) - \int_{0}^{1} a |\pi_{1}x|^{2} + \gamma$$

since $j\pi < a < (j+1)\pi$, we must have $A(x) \leq \int_{0}^{1} a |\pi_1 x|^2$ on \hat{X}_j . So, for $x \in \xi$,

$$\Phi_{\sigma}(x) \leq 0 + \gamma = \gamma < +\infty.$$

This implies

$$c_j(S) \leq c < +\infty$$

for every bounded subset $S \subset B^2(1) \times \mathbb{C}^{n-1}$.

This proves

Corollary 2. $c_i(B^2(1) \times \mathbb{C}^{n-1}) < \infty$ for every $j \in \mathbb{N}$.

Finally we note a nice continuity property of symplectic capacities. Consider the space defined by

$$\mathscr{G} = \{B_{\mathcal{A}} | \Delta \text{ is a smooth connected compact hypersurface of restricted contact type in } \mathbb{C}^n \}.$$

We introduce the Hausdorff metric on \mathcal{S} by

$$d(B_{\Delta_1}, B_{\Delta_2}) = \sup_{\substack{x \in \Delta_1 \\ y \in \Delta_2}} \{ \operatorname{dist}(x, \Delta_2) + \operatorname{dist}(\Delta_1, y) \}.$$

Proposition 3. A symplectic capacity c induces a continuous map $(\mathcal{S}, d) \rightarrow \mathbb{R}$.

Proof. Let $B_{\Delta} \in \mathscr{S}$. We take a 1-form λ such that λ is nondegenerate on $\ker(\omega|\Delta) \to \Delta$ and $d\lambda = \omega$ on \mathbb{C}^n as used in the definition of restricted contact type. We may of course assume that

$$\lambda = \frac{1}{2} \sum_{k=1}^{n} (p_k \, d \, q_k - q_k \, d \, p_k)$$

for z = q + ip large. We define a vectorfield η with linear growth by

Then

$$L_{\eta}\omega = d i_{\eta} + i_{\eta} d \omega$$
$$= d \lambda$$
$$= \omega.$$

 $\lambda = i_n \omega = \omega(\eta, \cdot).$

Now assume $B_{\Delta_k} \to B_{\Delta}$ in \mathscr{S} . We use the vectorfield η to obtain a flow $\mathbb{C}^n \times \mathbb{R} \to \mathbb{C}^n$, $(z, t) \to z \cdot t$. We observe that η is transversal to Δ . Hence for $\varepsilon > 0$ given and k large enough we have

$$B_{\mathcal{A}} \cdot (-\varepsilon) \subset B_{\mathcal{A}_{\mathbf{k}}} \subset B_{\mathcal{A}} \cdot (\varepsilon).$$

Now, since the maps $\mathscr{L}_t: z \to z \cdot t$ are conformally symplectic, in fact $\mathscr{L}_t^* \omega = e^t \omega$, we obtain using axiom (M)

$$e^{-\varepsilon}c(B_A) \leq c(B_{A\nu}) \leq e^{\varepsilon}c(B_A)$$

Consequently,

 $c(B_{A_{k}}) \rightarrow c(B_{A}).$

III. Some Examples

Let $0 < r_1 \le r_2 \le \dots \le r_n < +\infty$ and write $r = (r_1, \dots, r_n)$. Consider the ellipsoid

$$E(r) = \left\{ z \in \mathbb{C}^n \left| \sum \left| \frac{z_i}{r_i} \right|^2 < 1 \right\}.$$

We associate to $r = (r_1, ..., r_n)$ a sequence (d_i) as follows. Consider all numbers of the form $k\pi r_j^2$ with $k \in \{1, 2, ...\}$ and $j \in \{1, ..., n\}$. If the same number is obtained for different choices of k and j we call the number of different choices the multiplicity of the number. Order those numbers and repeat them according

to their multiplicity to obtain the sequence (d_i) , $d_i = d_i(r)$. For example, if r = (1, 1, ..., 1) we have

$$d_1 = \dots = d_n = \pi$$
$$d_{n+1} = \dots = d_{2n} = 2\pi$$
$$d_{2n+1} = \dots = d_{3n} = 3\pi$$
$$\vdots$$

Proposition 4. $c_j(E(r)) = d_j(r)$ for every *j*.

Proof. Let us first assume that the numbers r_j^2 are linearly independent over **Z**. Then the sequence $d_j(r)$ is strictly monotonic. Define $H(x) := \sum_{i=1}^n \left| \frac{z_i}{r_i} \right|^2$ and denote by \mathscr{F} the class of all $f: [0, +\infty) \to [0, +\infty)$, f monotonic, such that $f \circ H \in \mathscr{H}(E(r))$. Clearly,

 $c_i(E(\mathbf{r})) = \inf \{ c_{f \circ \mathbf{H}, i} | f \in \mathscr{F} \}.$

Consider $\Phi_{f \circ H}$ defined by

$$\Phi_{f\circ H}(x) = A(x) - \int_0^1 f \circ H(x) \, dt.$$

The critical points of $\Phi_{f \circ H}$ are the solutions x of the problem

$$\dot{x} = f'(H(x))iH'(x)$$

 $x(0) = x(1).$

This implies immediately that y(t) := x(t/f'(H(x(0)))) is a solution of

$$\dot{y} = i H'(y)$$
$$y(0) = y(T),$$

with T = f'(H(x(0))). Hence, with $H(x(0)) =: \tau$

$$\Phi_{f \circ H}(x) = f'(\tau)\tau - f(\tau)$$
$$f'(\tau) = 2\pi p r_i^2$$

for some integer $p \ge 0$. Now consider the $c_j(f \circ H)$. They are all distinct because otherwise $\Phi_{f \circ H}$ would have uncountably many S^1 -orbits on the level $c_j = c_{j+1}$, say. (In fact, as in [1], formula 4.2, one shows that if $c_j = c_{j+1}$ for some *j*, then the critical set on level c_j has Fadell-Rabinowitz index at least 2.) This would imply uncountably many solutions of $\dot{x} = iH'(x)$ on $\partial E(r)$, which contradicts the nonresonance assumption on the r_i . So

$$(1) c_{f \circ H, j} \geqq \lambda_{f \circ H, j}$$

where $\lambda_{f \circ H, j}$ is the *j*-th critical value of $\Phi_{f \circ H}$ (starting from the bottom, $\lambda_1 = \min$). Let $X_j \subset E^+$ be spanned by the eigenvectors belonging to the first *j* positive eigenvalues of

$$-i\dot{h} = \lambda H'(h)$$
$$h(0) = h(1).$$

Then, since the eigenspaces are S^1 -invariant,

 $E^- \oplus E^0 \oplus X_i$

has index j by Proposition 1. Moreover,

$$\sup \Phi_{f \circ H}((E^{-} \oplus E^{0} \oplus X_{j}) = \lambda_{f \circ H, j}.$$

Hence,

(2) $c_{f \circ H, j} \leq \lambda_{f \circ H, j}$

which proves Proposition 3 in the case that the $\{\pi r_i^2\}$ are independent over \mathbb{Z} . If r is arbitrary the result follows from the continuity property established in Proposition 3 observing that $E(r) \in \mathscr{S}$. \Box

Now define for $r = (r_1, \ldots, r_n), 0 < r_1 \leq r_2 \ldots \leq r_n < +\infty$

$$D(r):=B^2(r_1)\times\ldots\times B^2(r_n).$$

Proposition 5. $c_i(D(r)) = \pi j r_1^2$.

Corollary 3. If there exists a symplectic embedding $\Psi: D(r) \hookrightarrow B^{2n}(r')$, then

$$\sqrt{n}r_1 \leq r'.$$

Proof of Corollary 3. Upon replacing D(r) by $D(\delta r)$ for a given $\delta \in (0, 1)$, in order to avoid problems on the boundary, we can extend $\Psi | D(\delta r)$ to a symplectomorphism $\tilde{\Psi}$ defined on all of \mathbb{C}^n (cf. [B]) such that

 $\widetilde{\Psi}(D(\delta r)) = \Psi(D(\delta r)).$

Hence

$$\widetilde{\Psi}(D(\delta r)) \subset B^{2n}(r').$$

Taking the n-capacity we obtain

$$n \pi \,\delta^2 \,r_1^2 = c_n(D(\delta r))$$
$$= c_n(\tilde{\Psi}(D(\delta r)))$$
$$\leq c_n(B^{2n}(r'))$$
$$= \pi(r')^2.$$

This is true for every $\delta \in (0, 1)$. Hence, taking the square root

$$\sqrt{nr_1} \leq r'$$

as claimed.

Remark. Note that for $r = (r_1, ..., r_1)$ this result is optimal since we have the obvious embedding $D(r) \hookrightarrow B^{2n}(|\sqrt{nr_1})$. If $r_1 < r_2$, say, one might suspect that there are better symplectic invariants, which however have not been found yet.

Proof of Proposition 5. The proof of Proposition 5 consists of two parts. First we derive the estimate (assuming $r = (1, r_2, ..., r_n)$

$$c_j(D(\mathbf{r})) \leq \pi j.$$

Then we show that $c_j(D(r)) \in \mathbb{Z}\pi$. Studying the α -index of the set of trajectories representing c_j we derive that $c_j < c_{j+1}$, implying the desired result. Without loss of generality assume $r_1 = 1$.

Take for $\varepsilon > 0$ a smooth map $f: \mathbb{R} \to \mathbb{R}$ such that

(4)	• $f(s) = 0$	$s \leq 1 + \varepsilon$
	• $f''(s) > 0$	$s > 1 + \varepsilon$
	• $f(s) = (j + \frac{1}{2})\pi s ^2$	s large
	• $f'(s_0) = 2j\pi s_0$ for	$s_0 > 1 + \varepsilon$
	implies $f(s_0) \leq \varepsilon$ and	$s_0 \leq 1 + 2\varepsilon.$
T > C		

Define $\sigma: E \to \mathbb{R}$ by

$$\sigma(x) = \int_0^1 f(|\pi_1 x|) dt$$

where $\pi_1: \mathbb{C}^n \to \mathbb{C}$ is the projection onto the first factor. We define $\Phi_0(x) = A(x) - \sigma(x)$. From the definition of $c_j(D(r))$ it follows immediately that for $1 \le r_2 \le r_3 \dots \le r_n$

 $c_i(D(1, r_2, r_3, \ldots, r_n) \leq \sup \Phi_{\sigma}(\xi_i)$

where

$$\xi_i = E^- \oplus E^0 \oplus X_i$$

and

$$X_j = \{x \in E^+ | x_k \in \mathbb{C} = \mathbb{C} x \{0\}^{n-1} \subset \mathbb{C}^n \text{ for } 1 \leq k \leq j \text{ and } x_k = 0 \text{ for } k > j\}.$$

sup $\Phi_{\sigma}(\xi_i)$ is attained at some point $x \in X_i$ satisfying

$$-i\dot{x} = f'(|\pi_1 x|) \frac{\pi_1 x}{|\pi_1 x|}$$

x(0) = x(1).

Hence with $\tau = |(\pi_1 x)(0)|$

$$\sup \Phi_{\sigma}(x) = \frac{1}{2} f'(\tau) \tau - f(\tau)$$
$$\leq \frac{1}{2} 2j \pi |\tau|^2 - f(\tau)$$
$$\leq j \pi (1 + 2\varepsilon)^2.$$

Since $\varepsilon > 0$ was arbitrary we infer

$$c_j(D(1,r_2,r_3,\ldots,r_n)) \leq \pi j.$$

In particular,

(5)
$$c_j(B^2(1) \times \mathbb{C}^{n-1}) \leq \pi j.$$

The other direction is more delicate. Using monotonicity it is enough to study D := D(1, 1, 1, ..., 1).

Taking the right sequence of Hamiltonians in $\mathscr{H}(D)$ it is quite easy to show that $c_j(D)$ can be represented by a linear combination of loops on $S^1 \times \ldots \times S^1$ as follows. Given a sequence x^k of critical points of Φ_{H_k} on level $c_{H_{k,j}}$ there exist numbers $\delta_{\ell} \in \mathbb{C}$ and $j_{\ell} \in \{1, 2, \ldots\}$ for $\ell \in \{1, 2, \ldots, n\}$ such that

$$\sum_{\substack{j_{\ell}=:j'>0\\|\delta_{\ell}|=1 \text{ or } \delta_{\ell}=0}$$

and a subsequence of (x^k) converges to

$$(\delta_1 e^{2\pi i j_1 t}, \dots, \delta_n e^{2\pi i j_n t})$$

Take a sequence (f_k) of smooth maps satisfying

•
$$f_k: \mathbb{R} \to \mathbb{R}$$

• $f_k(s) = 0$ $s \le 1 + \frac{1}{k}$
• $f_k''(s) > 0$ $s > 1 + \frac{1}{k}$
• $f_k(s) = (k + \frac{1}{2})\pi |s|^2$ $s > 1 + \frac{2}{k}$
• $f_k'(s_0) = 2k\pi s_0$ for $s_0 > 1 + \frac{1}{k}$
implies $f_k(s_0) \le \frac{1}{k}$.

It is clear that the Hamiltonians $H_k \in \mathscr{H}(D)$ defined by

$$H_{k}(x) = \sum_{i=1}^{n} f_{k}(|x_{i}|), \quad x = (x_{n}, \dots, x_{n}) \in \mathbb{C}^{n}$$

I. Ekeland and H. Hofer

have the property

$$c_{H_k,j} \to c_j(D)$$
 as $k \to \infty$.

Our aim is of course to show that j'=j. So we know so far that $c_j(D) \in \{\pi, 2\pi, 3\pi, ...\}$. Consider the first $j \in \{1, 2, ...\}$ such that

$$c_j(D) = c_{j+1}(D).$$

If no such j exists we have $c_j(D) = \pi j$ by formula (5) and we are done. Hence we must have $c_j(D) = \pi j$ and $c_{j+1}(D) = \pi j$. Our functionals Φ_{H_k} decompose into

a sum of functionals on the loop spaces of \mathbb{C} . In fact, $\Phi_{H_k}(x) = \sum_{i=1}^{n} \tilde{\Phi}_{f_k(|\cdot|)}(x_i)$. The positive critical set of $\tilde{\Phi}_{f_k}$ is of the form

(6)
$$\pi \leq c_1^k < c_2^k < \dots$$
 with $\lim_k (c_{j+1}^k - c_j^k) = \pi.$

Now consider the set \sum defined by

$$\sum_{i \neq j} = \{ (\delta_2 e^{2\pi i j_1 t}, \dots, \delta_n e^{2\pi i j_n t}) | |\delta_\ell| = 1 \quad \text{or} \quad \delta_\ell = 0$$
$$j_\ell \in \{1, 2, \dots\}, \sum j_\ell = j \}.$$

We note that $\alpha(\sum) = 1$. Hence we find an open neighborhood U of \sum with

$$\alpha(U) = \alpha(\sum) = 1.$$

By our previous arguments we find that for k large enough the critical sets of Φ_{H_k} on levels $c_{H_k,j}$ and $c_{H_k,j+1}$ are subsets of U. Since Φ_{H_k} has the direct sum form, its gradient flow will have a product form. Since the critical values of Φ_{H_k} are sums of critical values of the $\tilde{\Phi}_{f_k}$ we see that if k is large enough in view of (5), that for given $\varepsilon > 0$ and $\delta \in (0, \pi)$ for a suitable $h \in \Gamma$

(7)
$$h(\Phi_{H_k}^{cH_k, j+1+\epsilon} \setminus U) \subset \Phi_{H_k}^{cH_k, j+1+\epsilon-\delta}.$$

Since by definition

$$\operatorname{ind}(\Phi_{H_k}^{c_{H_k}, j+1}) \geq j+1$$

we obtain as a consequence of $\alpha(U)=1$ and the subadditivity of the α -index, see [5], that

$$\operatorname{ind}(\Phi_{H_k}^{c_{H_k},j+1}, v) \geq j.$$

$$\operatorname{ind}(h(\Phi_{H_k}^{c_{H_k},j+1}, v)) \geq \operatorname{ind}(h(\Phi_{H_k}^{c_{H_k},j+1}, v))$$

$$\geq \operatorname{ind}(\Phi_{H_k}^{c_{H_k},j+1}, v)$$

$$\geq j,$$

we obtain from (7)

(8)

Since

$$\operatorname{ind}(\Phi_{H_k}^{c_{H_k},j+1+\varepsilon-\delta}) \geq j$$

This is true for every large k for a given $\varepsilon > 0$ and $\delta \in (0, \pi)$. So we obtain from (8) and the definition of $c_i(D)$

$$\pi j = c_i(D) \leq c_{H_k, i+1} + \varepsilon - \delta$$

for every $\varepsilon > 0$ and $\delta \in (0, \pi)$ and all large k. This implies

$$\pi j \leq \pi j - \pi$$
,

giving a contradiction. Consequently $c_j(D)$ is strictly increasing. This implies with our previous discussion

$$c_j(D(1,1,\ldots,1))=\pi j.$$

Using (M) we obtain therefore

$$c_j(D(r)) = \pi j$$

as required.

References

- 1. Benci, V.: On the critical point theory for indefinite functionals in the presence of symmetries. Trans. Am. Math. Soc. 274, 533-572 (1982)
- 2. Benci, V., Rabinowitz, P.H.: Critical point theory for indefinite functionals. Invent. Math. 52, 336-353 (1979)
- 3. Ekeland, I., Hofer, H.: Symplectic topology and Hamiltonian dynamics I. Math. Z. 200, 355-378 see also: C.R. Acad Sci., Paris, Ser. I, 307, 37-40 (1988)
- Ekeland, I., Hofer, H.: Convex Hamiltonian energy surfaces and their periodic trajectories. Commun. Math. Phys. 113, 419–469 (1987)
- Fadell, E., Rabinowitz, P.H.: Generalized cohomological index theories for Lie group actions with an application to bifurcation questions for Hamiltonian systems. Invent. Math. 45, 139–173 (1978)
- 6. Fadell, E., Husseini, S., Rabinowitz, P.: Borsuk Ulam Theorems for arbitrary S¹-actions and applications. Trans. Am. Math. Soc. 274, 345–360 (1982)
- 7. Floer, A., Hofer, H.: in preparation
- 8. Gromov, M.: Pseudo-holomorphic curves in symplectic manifolds. Invent. Math. 82, 307-347 (1985)
- 9. Hofer, H.: On strongly indefinite functionals and application. Trans. Am. Math. Soc. 275, 185-214 (1983)
- Hofer, H., Zehnder, E.: Periodic solutions on hypersurfaces and a result by C. Viterbo, Invent. Math. 90, 1-7 (1987)
- 11. Hofer, H., Zehnder, E.: A new capacity for symplectic manifolds. Proceedings of a Conference on the occasion of J. Moser's 60th Birthday. (to appear)
- Viterbo, C.: A proof of the Weinstein Conjecture in R²ⁿ. Ann. Inst. Henri Poincaré, Anal. Non Linéaire, 4, 337-356 (1987)

Received March 14, 1989; in final form July 4, 1989