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I. Symplectic Capacities 

Consider the real vectorspace rE" which we equip with the standard symplectic 
form ~o defined by 

co(~, rt)= Im(~, r/). 

n 
Here (r ~/) = ~ ~k ~k" A map  T: lE" --* lE" is called symplectic if it is 1R-linear 

k=l 
and preserves ~o, that is 

T ' co=co .  

Symplectic maps in lE" build a group which we denote by Sp(n). A smooth 
map f :  IE ~ --* lEo is called a symplectic diffeomorphism if f is a diffeomorphism 
and 

/*co=o~. 

We denote the symplectic diffeomorphism group by ~(n). Denote by #(lE") 
the power set of lE". 

Definition 1. A symplectic capacity on lE" is a map  c: ~(lE") ~ [0, + oo)w { + 0o} 
having the following properties. 

(M) 1) c(S)<=c(T) i fSc_T 

2) c ( f  (S)) = c (S) for f e  @ (n) 

3) c(~S) = ct 2 c(S) for se1R 

(N) 1) c(B2"(1))>0 
2) c (B2 (1 ) •  +00 
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H e r e  n 2n is the Euclidean 2 n-ball in 112". Axioms (M) 1) and 2) say that 
c is a monotonic symplectic invariant. (M) 3) says that it has conformal behavior 
with respect to conformal symplectic maps. Note that (M) would be satisfied 
by the map 

(1) S --r (outer measure (S)) I/". 

In order to exclude such invariants, which are more related to the volume 
preserving character of symplectic maps rather than to their "symplectic charac- 
ter", we impose condition (N) (N=nontriviality). (N) 1) says that c is locally 
nontrivial and (N) 2) excludes the pathology (t) if n > 2. 

In an earlier paper [3] we proved the existence of a symplectic capacity 
ct satisfying in addition to (M) and (N) the normalisation property 

(2) cl (B 2" (1)) = ct (B 2 (1) • C" -  1), 

using Hamiltonian dynamics. The first such invariant was introduced by Gro- 
mov in [8] using first order elliptic systems. 

In this paper we shall do away with the requirement (2). In fact we shall 
construct a sequence CR, k = 1 . . . . .  of distinct symplectic capacities with 

(3) C 1 ~C26C 3 . . . .  

Each of the Ck has a remarkable representation property which can be described 
as follows. Given a bounded domain U with smooth boundary g U of restricted 
contact type the capacity Ck(U) can be represented by a closed characteristic 
on a U. We refer the reader to 1-3] for background information. We just recall 
that a compact smooth hypersurface A in •2 is said to be of restricted contact 
type if there exists a 1-form 2 on C" such that d2=~o and 2(x, 4):#0 for every 
nonzero (x, r [A), where 

ker (o9 [A),= {(x, 4) ~ TA [ ~ Tx A }. 

A closed characteristic on A is a compact leaf of the foliation associated to 
the distribution ker(~o IA) ~ A on A. 

We shall compute ck(f2) in some simple cases and we shall prove an embed- 
ding result. 

Let us also note that the existence of a symplectic capacity c satisfying 
(M) and (N) already characterizes symplecticity in the following sense. Consider 
the group G,a of linear maps preserving f2..=o9". Then G~ ~ S p(n). Now assume 
Gc is the subgroup of Go consisting of all linear maps in Go which preserve 
the capcity of linear ellipsoids. Here a linear ellipsoid is of the form 

{ x e ~ " l q ( x ) < l }  

where q: 117" -~ ~, is a positive definite quadratic form. 
Then, following the arguments in [3], 

�9 Gc=Sp(n)  ifn is odd 
�9 G~=Sp(n)uq~oSp(n)  i fn  is even. 
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Here ~0: tE n ~ 112" is antisymplectic: q~* co = - co. 
Using the continuity properties of a symplectic capacity as derived from 

the axioms in Proposition 3 of Chap. II one can derive again C~ results 
as proved in [3]. This is one aspect of the importance of symplectic capacity. 
Somewhat surprisingly, capacities can be seen as a consequence of an additional 
structure in a variant of Floer-Homology for Hamiltonian systems as was shown 
in [7]. Moreover, the capacities introduced here are interrelated by a product 
property, [7]. There are also alternative definitions for capacities based on 
Hamiltonian dynamics which can be defined for every symplectic manifold, [11]. 

IL Construction of the ck 

We start with the functional analytic framework which is the same as in [3]. 
We introduce the Hilbert space E consisting of all xeL2OR/E, IE") such that 
its Fourier series 

(1) x =  ~, e2~i~'xk, xkEff~ n 
kEZ 

satisfies 

(2) Zlk l lx~12<~ .  

The inner product in E is defined by 

(3) (x, y)..-- (x0, y0) + 2 r~ 21kl(xk, YD 

where ( - , - ) :  I13" x (12"--, N is the real scalar product defined by ( ' , . ) =  Re(.,.). 
We denote by Ilxll the norm corresponding to (3). E has a natural orthogonal 
splitting: 

E = E - O E ~  + 

E- -----{xeElxk=O for k>0} 

E~ for k4:0} =IE" 

E + ={xeEIx,=O for k<0}. 

We denote by P+, pO and P -  the corresponding orthogonal projection. We 
introduce the action on E as the quadratic form defined by 

(4) A(x)= - � 89  Ilx-II 2 +�89 + II 2 

where x* = P* x for �9 e { + ,  - ,  0}. If xeE is smooth one easily sees that 

1 
(5) A(x)=�89 I (--i2, x)dr. 

0 
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On E there is a natural SLaction by phase shift defined by 

(O*x) ( t )=x( t+O)  

for OeS ~ =R/~g and x e E .  Finally we need a specific set of homeomorphisms 
of E which we will denote by F. We say h e F  provided h: E ~ E  is a homeo- 
morphism and 

h(x) = e ~ + ~) x + + x ~ + e ~- (~) x -  + K(x).  

Here ~+ and 7-: E--*R are required to be continuous, Sl-invariant, mapping 
bounded sets into bounded sets, while K: E ~ E  is continuous, St-equivariant, 
mapping bounded sets into precompact sets. In addition there must be a p > 0 
such that A ( x ) < O  or IFxl] >p  implies that ?+(x)=7-(x)=0 and K(x)=0. It is 
easily checked that F is a group. F is similar to the group F introduced in 
[3] where the SLequivariance was not required. We construct now a pseudo- 
index theory in the sense of Benci, [1], associated to the Fadell-Rabinowitz- 
Index [5]. We recall the relevant points of the F-R-Index. Given a paracompact 
SLspace X we build a free SLspace X x S ~~ by letting S ~ act through the diagonal 
action. Here S~ U $2"-1, s2n-1 C [~n. Taking the quotient with respect to the 
S 1 -ac t ion  we obtain a principal SLbundle 

The classifying map 

X x S ~ --, (X  x S~ t. 

f:  (X  x S ~ ) / S t - - , C P  ~ 

induces an homomorphism 

f * : / ~  (I12 P ~ ) --*/~((X x S~)/St)=: tq s, (X)  

in Alexander-Spanier-Cohomology with rational coefficients. Here /7sl is the 
well-known Borel construction for an Sl-equivariant cohomology theory. We 
know that /-/(IEP~~ the generator t being of degree 2. We define the 
index of X denoted by c~(X) to be the largest number k such that f * ( t k - t ) + O .  
If f*(tk)=l=O for all k we define a(X)..=+oo. If X=~b we put co(X)=0. Next 
we define the index of an SLequivariant subset { of E by 

ind(~) = inf a(h(r n S +) 
heF 

where S + is the unit sphere in E +. We need the following: 

Proposition 1. Let  X be a f ini te  dimensional SLinvariant subspace o f  E +. Then 

ind(E- ( ~ E ~  = �89 dim X. 

We shall sketch the proof for the convenience of the reader although it 
is given in principle (modulo notation) in El] for a somewhat smaller group 
of homeomorphisms. 
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Proof. Taking h = Id we see that 

ind (E- ~ E  ~ @ X) < c~(X n S +) = �89 dim X 

by a result in [5]. Next pick bEE such that with F = E - ~ E ~  

(6) a (h (F) n S +) = ind (F). 

Arguing indirectly let us assume that ind(F)< �89 dim(X). By the continuity prop- 
erty of the a-index as proved in I-5] we find an open neighborhood U of h (F) n S § 
such that ~(U)=ind(F).  Denote by Qk: E ~ E k = { x + E [ x j = O  for Ij]>k}, the 
orthogonal projection. We show first that for large k 

(7) (Q~h(F n E k ) ) n S  + c U. 

If (7) does not hold we find a sequence (Xk) such that 

(8) xk ~ EL n F 

Qk h(xk)eS + 

Qk h ( xk) ~ U. 

Using the special form of h we can write the two last conditions in the equivalent 
form 

x ~ + x [  + (e - ~- c~l p -  + po) Qk K (Xk) = 0 

II(?k h(xOII = 1, Ok h(xk)r U. 

By the properties of 7- and K the sequence (x ~ is precompact. Let us 
show that (x~) remains bounded. Since x ~ e X  this fact will imply that (Xk) 
is precompact. If (x~-) is unbounded we may assume after taking a subsequence 
that ~ + ~lXk II ~ + 00. Then by using the properties of h we see that h(Xk)=Xk for 
k large enough. In particular we obtain the contradiction 

+ oo = lim l] x~- II 

= l im IIQ~xkll 

= lim II Qk h(xk)ll 

=1 .  

Hence, summing up (xk) is precompact. So we may assume eventually taking 
a subsequence that xk ~ x~ as k --, + oo. Taking the limit in (8) gives 

x ~ E F  

h(xoo)~S + 

h(x~)r 

contradicting that fact that U was a neighborhood of h(F)nS  § The map x 
Qk h(x) is the identity in Ek for Ilxll >----P. Moreover this map is also the identity 



558 I. Ekeland and H. Hofer 

on E~ ~ which is the fixed point for the action since A(x)<O for xeE  ~ 
By proposition 3.3 in [-6] we have (for k large enough) 

c*(Qk h ( f  n Ek) n (S + n Ek)) 

> �89  

which completes the proof of the proposition, since by (7) this implies e(U) 
>�89 dimX. [] 

Denote by oaf' the set of all smooth Hamiltonians H: 112" ~ (0, + oo) such 
that 

(9) �9 H [ U -  0 for some open subset U of (E" 

�9 H(x)=a Ix[ 2 for Ixl large, where 

a>n, a r  

We define now for kMN and H ~ , ~  a number cn,k~(0, + ~ ) u  {~} by 

(10) cn,k = inf {sup ~n (4) 1 ~ c E is S 1-equivariant and ind (3) > k}, 

where qbn: E ~ ~ is defined by 
1 

eI)n(x ) = A(x) -- I H(x(t)) dt. 
0 

That cu,~>0 follows from the following observation. Let H e ~  be fiat at U 
and pick x~ U. Arguing as in [3], find ~ > 0 small such that 

(11) ~],0+~s§ > f l > 0  

for some positive ft. The group F gives enough freedom to find an ~ e F  such 
that 

~(S+)=x~ +~S + 

Hence if ind(~)> 1 we infer that 

~-l(OnS+,0 
or equivalently 

(12) 04: r n ~(S+) = ~ n(x  ~ +eS+). 

Comparing (1 I) and (12), we find that 

c,.k > fl>O. 

On the other hand it is clear that cn.~+~>cn,k by the monotonicity of the 
index. Further let us note that if the constant a occurring in the definition 
of  H satisfies ae(jn, (j+ 1)n) (see (9)), then 

sup On(E- ~E~ < 

for X j =  {x~E + Ixk=0 for k>j}. 
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This shows that 

O<~<cn,1 <c~,2... <Cn.n~< + 00. 

It was proved in [3] that the Palais-Smale condition holds for OH. A variant 
of the proof of [3], Proposition 2 gives the following: 

Lemma 1. I f  H~gcf and U is an open Sl-invariant neighborhood of the critical 
set of On on some level c>0, then there exists e>0 such that for some hEF 

h(O~ + ~\ U) ~ 0~-'. [] 

Here 45~..=O~ 1((_ m, d]). 

As a consequence of Lemma 1 the numbers cn,j are critical levels provided 
cn,~< + 00. Next we observe that for H1, H2eg~ with H1 >H2 we have 

CH2,j ~ Clt1,2. 

Given a bounded set S of C n we denote by ~(S)  the subset of ~ consisting 
of all H~3Cf such that 

(13) H = 0  on some open neighborhood U of cl(S). 

Here cl denotes the closure. Finally we put 

(14) cj(S)= inf cn,j 
He~(S) 

For an unbounded set S we define 

(15) cj(S) = sup {cj(T) IT c S, T bounded}. 

As in [3] one verifies easily that (M 1)-(M3) hold and that a representation 
result holds; namely 

Proposition 2. Let A be a connected smooth compact hypersurface of restricted 
contact type. Let Ba be the bounded component of ~ n \ d .  Then there exists for 
given j a closed characteristic Pj on d and a positive integer kj such that 

cj(A) = cj(BA = kjl ~ ;t P~h 

where d 2 = 09 on ~ .  [] 

As a Corollary we find that 

Corollary 1. cj(B2n(l)) => n. 

Proof. The "smallest" dosed characteristic on S 2~- 1 (1) has [~ 2 P I-- r~. [] 
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This proves (N 1). In order to obtain (N2) take a smooth map q~: R ~ [0, + oo) 
such that ~0(s)=0 for Isl_<_2 and ~0(s)=a Isl for Isl large where a~(jn, ( j+  1)n) 
for some positive integerj. Define a: E ~IR by 

1 

or(x)= j ~o(Irclxl2)dt 
0 

where ~1 : lilt1 ---3. {~ is the projection onto the first factor. If now S is a bounded 
subset of B2(I) • ~ " -  a we obtain 

where r  A ( x ) -  ~r(x). 
Define ~ c  E by 

cj(S)< inf sup~(~)  
ind(~)_->j 

~ = E - ~ E ~ 1 7 4  

where Xj  = {x ~ E +[Xk = 0 for k > j  and Xk ~IE = IE x {0}"-1 c r  for 1 < k </}. 
By Proposition 1 

ind(~) > j  
Hence 

cj(S) < sup ~ (~') 

It follows from the definition of q~ that, for some constant 7 > 0, we have 

1 

�9 ~ l x ) ~ A ( x ) -  ff a I ~ x l  = +~ 
0 

1 

since jTt<a < ( j +  1)n, we must have A(x)< j a [rq x 12 on X:.  So, for x ~ ,  
0 

�9 , ( x )<O+7  = 7 <  + ~ .  

This implies 

cj(S) < c < + oo 

for every bounded subset S c  B2(1) x ~ -  1. [] 

This proves 

Corollary 2. c~(B2(1) x C"-  1) < oo for every j~N.  

Finally we note a nice continuity property of symplectic capacities. Consider 
the space defined by 

6r = {BaIA is a smooth connected compact hypersurface of 
restricted contact type in IE"}. 
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We introduce the Hausdorff metric on 5 a by 

d(Bal, Ba2) = sup {dist(x, A2) + dist(A 1, Y)}" 
x e d l  
y~d2 

Proposition 3. A symplectic capacity c induces a continuous map (50, d) --+ R. 

Proof  Let Ba~5 a. We take a 1-form 2 such that 2 is nondegenerate on 
ke r (~ lA)~A and d2=~o on ~" as used in the definition of restricted contact 
type. We may of course assume that 

)~=�89 ~ (Pk dqk--qk dpk) 
k = l  

for z = q + ip large. We define a vectorfield ~/with linear growth by 

2 =  i,~o = co(r/, .). 
Then 

L ~ o = d i ~  + i ,  do9 

= d 2  

~---(,0. 

Now assume B A k ~ B  A in 5 a. We use the vectorfield r/ to obtain a flow ~"  
• F , ~  C", (z, t ) ~ z . t .  We observe that 11 is transversal to A. Hence for e > 0  

given and k large enough we have 

Ba. ( -  e) = B~k = Bd" (e). 

Now, since the maps 5~t: z--+ z. t are conformally symplectic, in fact ~ * o = e t c o ,  
we obtain using axiom (M) 

e-~ c (BA) < c (BA~) < e ~ c (BA). 

Consequently, 

c(B d~ ) ~ c(B,~). [] 

IIL Some Examples 

Let 0 < rt < r 2 ~. . .  <= r n < -+- 0(3 and write r = (rl . . . .  , r,). Consider the ellipsoid 

We associate to r = ( r l  . . . . .  r,) a sequence (di) as follows. Consider all numbers 
of the form krcr~ with ke{1, 2, ...} and je{1,  ..., n}. If the same number is 
obtained for different choices of k and j we call the number of different choices 
the multiplicity of the number. Order those numbers and repeat them according 
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to their multiplicity to obtain the sequence (di), di=d~(r). For example, if r 
=(1, i . . . . .  1) we have 

dl=. . .=d~=n 

d,+l = . . . = d 2 , = 2 n  

d:.+~ . . . . .  d 3 . = 3 n  

Proposition 4. cj (E(r)) = dj(r) for every j. 
2 Proof. Let us first assume that the numbers r i are linearly independent over 

71. Then the sequence dr(r ) is strictly monotonic. Define H(x),= s z~ and 
2 

i= 1 ri 

denote by ~- the class of all f :  [0, + oo )~  [0, + oo), f monotonic, such that 
f o H ~ Y ( E ( r ) ) .  

Clearly, 

cj(E(r))=inf{Csou,j] fe .~} .  

Consider ~:oH defined by 
1 

q~lo~iX) =A(x)- -  S foi l (x)  dt. 
0 

The critical points of q~r are the solutions x of the problem 

i:= f ' (H  (x))i U'(x) 

x (o) = x(1). 

This implies immediately that y(t):=x(t/f'(H(x(O)))) is a solution of 

~=iH'(y) 

y(O)=y(T), 

with T=f'(H(x(O))). Hence, with H(x(0))=  z 

~ r f '  ( z ) z -  f (z) 

f '(~)= 2~z pr 2 

for some integer p__>0. Now consider the cj(fo H). They are all distinct because 
otherwise ~Ion would have unr many SX-orbits on the level cj=cj+l, 
say. (In fact, as in [1], formula 4.2, one shows that if c j= cj+ 1 for some j, then 
the critical set on level cj has Fadell-Rabinowitz index at least 2.) This would 
imply uncountably many solutions of ~=iH'(x) on aE(r), which contradicts 
the nonresonance assumption on the r~. So 

(1) Clou,~>- 2IoU, j 
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where 2fot~, j is the j-th critical value of ~yoH (starting from the bottom, ~1 = min). 
Let X j = E  + be spanned by the eigenvectors belonging to the first j positive 
eigenvalues of 

- i l~=2H' (h )  

h(O) = h(1). 

Then, since the eigenspaces are Sl-invariant, 

E -  | 1 7 6  

has index j by Proposition 1. Moreover, 

sup Cb ron((E- O E  ~ O X  j) = 2yon, ~. 
Hence, 

( 2 )  CfoH,j<<_~foH, j 

which proves Proposition 3 in the case that the {nr 2} are independent over 
�9 . If r is arbitrary the result follows from the continuity property established 
in Proposition 3 observing that E(r)~5 ~. [] 

Now define for r = ( q ,  . . . ,  r,), O<r 1 <=r2... <=rn< + cx3 

D (r):= B2 (r O x . . . x B2 (r.). 

Proposition 5. c j( D (r)) = rc j r~ . 

Corollary 3. I f  there exists a symplectic embedding ~:  D(r)'-+B2"(r'), then 

] /~r t  <r'. 

Proof of  Corollary 3. Upon replacing D(r) by O(fr)  for a given 6~(0, 1), in 
order to avoid problems on the boundary, we can extend ~[D (6 r) to a symplec- 
tomorphism ~ defined on all of C" (cf. [B]) such that 

~(D (6 r)) = ~(D (6 r)). 
Hence 

~(D(6r)) c BZ"(r'). 

Taking the n-capacity we obtain 

n x 6 2 rE = c . ( D  (6 r)) 

= c. (~(D (a r))) 

<c.(BZ"(r')) 

= r c ( r ' )  ~ . 
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This is true for every fie(O, 1). Hence, taking the square root 

/ /n  r I ~ r I 

as claimed. []  

Remark. Note that for r=(r~ .. . . .  r~) this result is optimal since we have the 

obvious embedding D(r)c*B2~(l/nrl). If rl <r2,  say, one might suspect that 
there are better symplectic invariants, which however have not been found yet. 

Proof of Proposition 5. The proof  of Proposit ion 5 consists of two parts. First 
we derive the estimate (assuming r = (1, r 2 . . . .  , r~) 

cj (D (r)) <= nj. 

Then we show that cj(D(r))eZn. Studying the e-index of the set of  trajectories 
representing cj we derive that cj<cj+l, implying the desired result. Without 
loss of generality assume r~ = 1. 

Take for e > 0 a smooth map f:  R ~ R such that 

(4) 

Define or: E ~ F - ,  by 

�9 f ( s ) = 0  s_-<l+e 

�9 f"(s)> 0 s > l + g  

�9 f(s)=(j+�89 Isl 2 s large 

�9 f '  (So) = 2j  rc So for So > 1 + e 

implies f(so)<e and s o < l + 2 e .  

i 

G(x)= I f ( fn lx l )d t  
o 

where nt:  I E ~ t E  is the projection onto the first factor. We define ~o(x)=A(x) 
-~r(x). F rom the definition of cj(D(r)) it follows immediately that for 1 _-<r2 
<r3...<r n 

where 

and 

c j ( D ( 1 ,  r 2 ,  r 3 . . . . .  r.)__< sup ~o(~j) 

~ = E -  @E~ 

Xj = {xeE  + [ xk e112 = 112 x {0} " -  1 c IE" for 1 < k < j  and xk = 0 for k >j}. 

sup q~,,(~j) is attained at some point xeXj  satisfying 

~1 X 
-iYc = f'(llrl xl) [nix] 

x(O) = x(1). 
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Hence with z = I(zq x)(0)l 

sup r = �89 f ' (z) z - f ( z )  

< � 8 9  

< j  7t(1 +2e) 2. 

Since e > 0 was arbitrary we infer 

cj(D(1, rE, r3 . . . .  r,)) < xj. 

In particular, 

(5) cs(B 2 (1) x iE ~ 1) < xj. 

The other direction is more delicate. Using monotonicity it is enough to study 
D..=D(1, 1, 1 . . . . .  1). 

Taking the right sequence of Hamiltonians in ~ ( D )  it is quite easy to show 
that cj(D) can be represented by a linear combination of loops on S l x ... x S 1 
as follows. Given a sequence x k of critical points of #nk on level cn~.j there 
exist numbers ~eelE andjee{1, 2 . . . .  } for Ee{1, 2 . . . . .  n} such that 

~je=:j '>O 

lfe[--1 or be=O 

and a subsequence of (x k) converges to 

(81 e 2~isl t ..., ~. e2.~s.t) 

Take a sequence (fk) of smooth maps satisfying 

�9 fk: R--+ R 
1 

�9 fk(S) =0  S< 1+~- 

1 
�9 fk'(S) > 0 s >  1+~- 

2 
�9 fk(s)=(k+�89 2 s> 1+~- 

1 
�9 f;(so)=2kr~so for s o > t + ~ -  

implies fk(So) < 1 .  
K 

It is clear that the Hamiltonians H k ~ ' ( D  ) defined by 

Hl,(x)= ~ fk(Ixil), 
i=1 

x = ( x . ,  . . . ,  x , ) e l E  ~ 
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ind (#~n: 'g+~ +') >_j + 1 

we obtain as a consequence of a (U)=  1 and the subadditivity of the a-index, 
see [5], that 

ind ( r  ~'~+1 +*\U)>j. 
Since 

ind (h ( ~  ~'j+l +~\U)) 

> ind (r +1+'-~ ) 

>_-j, 

we obtain from (7) 

(8) 

(7) 

Since by definition 

cj(D)~{n, 2u, 3 ~, ...}. Consider the firstje{1, 2, ...} such that 

cj(D) = cg+ 1 (D). 

If no such j exists we have cy(D)= nj by formula (5) and we are done. Hence 
we must have c:(D)= zcj and c :+i(D)= nj. Our functionals #ok decompose into 

a sum of functionals on the loop spaces of (E. In fact, #,~k(x)= ~ ~fk(i.l)(Xl). 

The positive critical set of (P;~ is of the form ~= 1 

(6) 7~<__c~ <c~ <... with lim(c~+l-c~)=n. 
k 

Now consider the set ~ defined by 

Z = { ( f z e 2 ~ U ' t  . . . .  ,6ne2"iJ"t)[[5r or be=0  

jt~{1, 2 . . . .  }, Zj~=j). 

We note that ~(~,) = 1. Hence we find an open neighborhood U of ~ with 

~ ( u )  = ~ (~ )  = 1. 

By our previous arguments we find that for k large enough the critical sets 
of enk on levels cn~,i and cH~,:+l are subsets of U. Since en~ has the direct 
sum form, its gradient flow will have a product form. Since the critical values 
of en~ are sums of critical values of the  ~fkwe see that if k is large enough 
in view of (5), that for given ~> 0  and 6~(0, 7:) for a suitable hEF 

h (t~.///k k ' j + l  + ' \ O )  = r 'y+ 1 +e-'~ 

i n d ( ~ ,  j +, +,-6) ~j.  

cn~.j~cj(D) as k - ~ .  

Our aim is of course to show that j'--j. So we know so far that 



Symplectic Topology and Hamiltonian Dynamics II 567 

Th i s  is t rue  for  every large k for a g iven  e > 0  a n d  r e ( 0 ,  re). So we o b t a i n  f rom 
(8) a n d  the de f in i t ion  of  c~(D) 

zcj=cj(D)<=CH~,j+ t + e--~ 

for every  ~ > 0  a n d  bE(O, re) a n d  all large k. Th i s  impl ies  

7t j < rt j -  rt, 

giv ing  a c o n t r a d i c t i o n .  C o n s e q u e n t l y  cj(D) is s t r ic t ly  inc reas ing .  Th i s  impl ies  
wi th  o u r  p r ev ious  d i s cus s ion  

cj(D(1,  1 . . . .  , 1 ) ) - -  x j .  

U s i n g  (M) we o b t a i n  therefore  

cj(D (r)) = rcj 

as requi red .  [ ]  
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