
Discrete Comput Geom 14:463-479 (1995)
Discrete & Computational Geometry

�9 1995 Springer-Verlag New York Inc.

Almost Optimal Set Covers in Finite VC-Dimension*

H. Br6nnimann I and M. T. Goodrich 2

i Department of Computer Science, Princeton University,
Princeton, NJ 08544, USA
hbr@cs.princeton.edu

2 Department of Computer Science, Johns Hopkins University,
Baltimore, MD 21218, USA_
goodrich@cs.jhu.edu

Abstract. We give a deterministic polynomial-time method for finding a set cover
in a set system (X, ~ ') of dual VC-dimension d such that the size of our cover is
at most a factor of O(d log(dc)) from the optimal size, c. For constant VC-
dimensional set systems, which are common in computational geometry, our
method gives an O(logc) approximation factor. This improves the previous
O(logl XI) bound of the greedy method and challenges recent complexity-theoretic
lower bounds for set covers (which do not make any assumptions about the
VC-dimension). We give several applications of our method to computa-
tional geometry, and we show that in some cases, such as those arising in three-
dimensional polytope approximation and two-dimensional disk covering, we can
quickly find O(c)-sized covers.

1. Introduct ion

A set system (X, ~q~) is a set X along with a collection ~q' of subsets of X, which are
sometimes called ranges [25]. Such entities have also been called hypergraphs and
range spaces in the computational geometry literature (e.g., see [5], [10]-[16], [20],
[24], [25], [34]-[36], and [38]-[41]), and they can be used to model a number of
interesting computational geometry problems.

* The first author was supported in part by NSF Grant CCR-90-02352 and Ecole Normale
Sup6rieure. The second author's research was supported by the NSF and DARPA under Grant
CCR-8908092, and by the NSF under Grants IRI-91t6843 and CCR-9300079.

464 H. Br/Snnimann and M. T. Goodrich

There are a host of NP-hard problems defined on set systems, with one of the
chief such problems being that of finding a set cover of minimum size (e.g., see [21]
and [23]), where a set cover is a subcollection C ___.9~ whose union is X and the size
of C is simply the number of sets in C. A related (in fact, dually equivalent) problem
is that of finding a hitting set of smallest size, where a hitting set is a subset H ___ X
such that H has a nonempty intersection with every set R in #L There are a
number of problems that can be reduced to these two problems, and many of these
problems are formulated as computational geometry problems. Thus, our interest is
in finding minimum set covers and smallest hitting sets as quickly as possible.

Unfortunately, the corresponding decision problems, SET COVER and HITrIN~
SET, as we call them, are both NP-complete [23], [29]. Moreover, even if each
element of X is contained in just two sets, the HrlVrlNG SET problem is still
NP-complete [29] (and is known as VERTEX COVER). ThUS, unless P = NP, if we
desire a polynomial-time algorithm, we must content ourselves with an approxima-
tion algorithm, which, if we let c denote the size of a minimum set cover, produces a
set cover of size a c for some (hopefully) small approximation factor tr. The only
known polynomial-time approximation algorithms for SET COVER with guaranteed
performance ratios are the greedy algorithm [17], [28], [32], which achieves an
approximation factor a = (1 + In A), where A denotes the size of the largest set in
~a~; randomized parallel versions, the best given in [44] being in RNC 4 , with a =
16(1 + In A); and an algorithm of Hochbaum [26], which achieves an approximation
factor a = maXx~ xld/'xl, where oq/'x denotes the set of all sets R of ~ containing x.
Note that in the former cases ct can be as large as (1 + lnlSl) and in the latter c~
can be as large as t~'1. Thus, as worst-case bounds, the greedy algorithm achieves the
best approximation factor, and Johnson [28] shows there are set systems where the
greedy algorithm does indeed produce a set cover with approximation factor a =
f~(lnlXI + 1). Interestingly, Lund and Yannakakis [33] have recently shown that,
unless NP __. DTIME[n p~176 n], no polynomial-time algorithm can approximate SET
COVER within a factor better than a = 6 ln[X[in the worst case, for any constant

< �88 and unless NP c_DTIME[n~176176 Bellare et al. [4] showed that no
polynomial-time deterministic algorithm can approximate SET COVER within a factor

1 better than a = 8 In [XI in the worst case, for any constant 3 < ~. Furthermore,
there is nothing special about determinism here, as the same bounds are true under
similar assumptions on the corresponding probabilistic classes (BPTIME instead of
DTIME).

Our Results. In this paper we give a (deterministic) polynomial-time algorithm that
finds a set cover of size within a factor a = O(d log(dc)) of the size c of the
minimum set cover, where d stands for the VC-exponent of the dual set system (see
Section 2 for definitions). Thus, for set systems with a bounded VC-exponent, we
challenge the complexity-theoretic lower bounds of [4] and [33] (which make no
assumptions about the VC-exponent). In Section 4 we indicate some examples on
which Hochbaum's method or the greedy method perform poorly, and show that our
method outperforms them on those instances.

Our algorithm, which is actually for the dual HITTING SET problem, is based upon
a deterministic analogue of a randomized natural selection technique used by

Almost Optimal Set Covers in Finite VC-Dimension 465

Clarkson [18], [19], Littlestone [31], and Welzl [48]. This technique can be viewed as
"algorithmic Darwinism," for we iteratively select, in polynomial time, a small-sized
subset N of X (known in the literature as an e-net [25]) that intersects all highly
weighted sets in ~9/', and, if N is not a hitting set, then we increase the weight of the
elements in a set R of ~ missed by N. By continuing this process over several
"generations" we guarantee that the "fittest" elements, which belong to the optimal
hitting set, are eventually included. Fortunately, the number of generational itera-
tions we must perform is at most O(c log(IX[/c)); hence, this approach yields a
(relatively simple) polynomial-time algorithm.

We show the utility of our approximation algorithm by giving several applications
of our method to problems in computational geometry and learning theory, includ-
ing polytope approximation, geometric point-probe decision-tree construction, and
disk cover. Our methods improve the running times and/or the approximation
factors of previous methods. In fact, for three-dimensional polytope approximation
and two-dimensional disk covering we show how to adapt our method to achieve a
constant approximation factor. We also review an implementation of our approach.

The Models of Computation. It is customary in computational geometry to use the
real RAM model [43], [46], where each memory cell can hold a real number with
infinite precision (i.e., as high as needed). Polynomial-time algorithms in this model
are sometimes called strongly polynomial, or combinatorial, algorithms. Due to the
relevance of our results in the domain of NP-hardness, however, we have to be
careful to use a model that also limits the size of the numbers it can manipulate. The
model of computation we choose for our main theorem is the so-called log-RAM
model [46], where a memory cell holds O(log N) bits (where N is the total size of
the input) and the arithmetic operations performed on the numbers held in those
cells are executed in constant time. Note that the complexities of our algorithms are
multiplied by at most N ~ when measured in the more traditional bit model [46]
(where all the bit operations constituting an elementary arithmetic operation in the
log-RAM model are accounted for separately), and therefore the running times of
our algorithms are still polynomial in the size of the input in the bit model.

Nevertheless, when returning to the traditional computational geometry frame-
work in Section 5.1, we assume the real RAM model. Before we describe our
methods, however, we first review the relevant properties and definitions regarding
the notion of VC-dimension.

2. Set Systems of Finite VC-Dimension

In this section we recall the basic facts about set systems of finite VC-dimension. For
references, the reader is referred to the original papers by Vapnik and Cervonenkis
[47] (from whom have derived the initials VC) and Haussler and Welzl [25], or to the
survey by Assouad [2].

Let (X, ,9~) be a given set system. Given Y ___ X, all the subsets of Y obtained as
the intersection of Y and R ranging over ,9~, form a set system called the system
induced by ~ on Y, and denoted by ,~[y. Y is shattered by ~ if "~IY = 2Y" (X, ,gP) is

466 H. Br6nnimann and M. T. Goodrich

said to have VC-dimension d if d is the smallest integer such that no d + 1 point
subset Y _c X can be shattered. If Y is finite, it is well known [45], [47] that the
number of sets of ~'lY is less than

where d is the VC-dimension of (X, ~) . We call the VC-exponent 1 the infimum of
all numbers s such that [~ l r l = O(IYI s) for any finite subset Y of X. The aforemen-
t ioned result shows that s < d, but equality does not always occur, as there are
systems in which the VC-exponent is nonintegral [2]. However, the VC-dimension is
finite if and only if the VC-exponent is finite as well; s never takes values in the
open interval (0,1), and it is zero if and only if ~ ' is finite [2] (whereas d is zero if
and only if ~ consists of one set). In particular, the VC-exponent concept only
makes sense for an infinite set system, whereas the VC-dimension is more general.
Consider, for the sake of an example, a common set system often arising in
computat ional geometry app l ica t ions - - the half-space set system. In this system X is
taken as a set of half-spaces in ~d and ~ is taken to be all combinatorially distinct
ways of intersecting half-spaces in X by a simplex. I t is well known (e.g., see [2]) that
this system has a VC-dimension and a VC-exponent of d.

The dual set system (~92', X*) is defined by X* = {J~'x: x ~ X}, where ~q'x consists
of all the sets R of ~ that contain x. One way to look at dual systems is to consider
(X, ,9~') as a (possilJly infinite) boolean matrix M that has a column for each ele-
ment x of X and each row corresponds to an incidence relation for a set R of ,9~,
and view the dual as a transpose of this matrix. It is also well known (e.g,, see [2])
that the VC-dimension of the dual (~q', X*) is less than 2 d§ where d is the VC-
dimension of the primal (X, ,9~').

Let (X, ,gP) be a finite 2 set system. If a subset N c_ X intersects each set R of ~q'
of size bigger than s lXI, then we call N an s-net [25]. As has been observed by
Haussler and Welzl [25], set systems of VC-dimension d admit (1 / r) -ne t s of size
O(dr log(dr)). This bound has been improved by Blumer et al. [7] to O(dr log r) and
this has been proved tight by Koml6s et al. [30]. We can generalize this definition by
putt ing an additive 3 weight function w on 2 x. In this formulation an s-net is
required to intersect every set of weight at least s w (X) . To allow for efficient
computation, we need the set system to be described somewhat more efficiently than
by the list of its subsets.

Definition 2.1. We say that a set system (X, ,~') has a subsystem oracle o f degree D if
there is an algorithm which, given a finite subset Y c_ X , returns (Y, ~ l y) (e.g., as a
boolean matrix) in time O(IYID+I). It is a witness oracle if, for any set R of RIr, it
can provide a set R ' of ~ ' such that R = R' n Y in O(ISl) time.

1 This value has also gone by the names real density [2] and scaffold dimension [24].
2 We could also give definitions for an infinite set system, given a probability distribution on X.

The results of this paragraph would then still be valid.
3 The term additive refers to the fact that w(Y) = Ey ~ r w(y), with the usual abuse of notation

w(y) = w({y}).

Almost Optimal Set Covers in Finite VC-Dimension 467

If (X, ~9~) has a subsystem oracle of degree D, and VC-exponent d, it is clear that
d < D. Under this assumption, it has also been shown by Matou~ek and coworkers
[36], [10] that a (1/r)-net for (X,~a~) of size O(drlog(dr)) can be found in
O(d)3Or ~ log~ time, for both the uniform and weighted cases. The scrupu-
lous reader should verify that their algorithm also works in the log-RAM model with
identical running time.

3. The Main Algorithm

The goal of this section is to prove our main theorem. Let s be a nondecreasing
function, let n = IXl, and let m = [~a~L.

Definition 3.1. A netfinder of size s for (X, a~) is an algorithm A that, given r and a
weight function w on X, returns a (1/r)-net of size s(r) for (X, ,~) with weight w.
Also, a verifier is an algorithm B that, given a subset H _ X, either states (correctly)
that H is a hitting set, or returns a nonempty set R of ,9~ such that R ~ H = ~ .

We say that A (resp. B) runs in T A (resp. T B) time. That is, A run on input
(X, ~/'), w and r returns a net in Tz(n, m, r) time, while B run on input (X, ~) and
H replies in TB(n, m) time. We suppose that both T A and T B are (nonconstant)
polynomials, so that T(O(x)) = O(T(x)) and E~ ~ x T(2k) = O(T(2X)) for any func-
tion T of the form TA(', m, r), TA(n,., r), TA(n, m,.), TB(', m), and TB(n,.). We can
now state our main result:

Theorem 3.2 (Main). Let (X, ~) be a set system that admits both a net finder A of
size s and a verifier B. Then there is an algorithm sO(A, B) that computes a hitting set
of size at most s(4c), where c stands for the size of an optimal hitting set, in
O(c log(n /c))(TA(n, m, c) + Ts(n, m)) time in the log-RAM model.

If X has finite VC-dimension, then we may implement the net finder using the
greedy method [14], and the verifier by inspecting all of (X, ~a~), both in polynomial
time (in either the real RAM or log-RAM models). However, under standard
computational assumptions, there are better implementations of the net finder and
verifier.

Corollary 3.3. Let (X, ~) be a set system given by a witness subsystem oracle of
degree D, which admits a hitting set of size c. Let d stand for the VC-exponent of
(X, ~9~), and assume that 0 is not in ~9~. Then a hitting set for (X, ~) of size
O(dc log(dc)) can be found in O(nc~ logO(dc)log(n/c)) time in the log-RAM
model.

Proof. It suffices to show how to implement the net finder and the verifier and
show their complexity bound. However, a (1/r)-net for (X, ,92') of size O(dr log(dr))
can be found in O(d)3Dr D logD(rd)lXI time, for both the uniform and weighted
cases, using the algorithm of [10]. Here we assume, but it is verified in Section 3.3,

468 H. Br6nnimann and M. T. Goodrich

that the weights can be encoded using no more than O(log n) bits. As for the
verifier, the witness subsystem oracle is simply run on H. If the oracle fails to list O
as being in ~9~IH, we may conclude that H is a hitting set. Otherwise, we ask for a
witness R in ~ of the fact that O is in .9~IH. Thus R N H = O, and R is nonempty
as O is not in ~ . The time spent by the verifier is O (I H f +1 + ISl) = O(IHIDIXI).
Plugging these bounds into Theorem 3.2 yields the corollary. []

Remarks. (1) Even if the input (X, ~a~) is given in the form of a boolean matrix, we
can construct a witness subsystem oracle in the trivial way (simply select the
subsystem on the given columns and eliminate the redundant rows); this oracle does
not have a running time indicated as in Definition 2.1 above, however, and the
running time of the net finder of [10] deter iorates--but still remains polynomial.
Therefore, it can be concluded from the Main Theorem that there is an algorithm
that, given a set system (X, ~9~) by the list of its subsets, returns a hitting set of size
O(dc log(dc)) in time polynomial in the size of the input.

(2) If we change the definition of the VC-exponent to fit the VC-dimension
concept better, by requiring that for all finite Y ___ X we have

which is also O(IYl/d + 1) d, then we can reduce the size of the hitting set to
O(dc log c), as observed by Chazelle and Matou~ek [15].

(3) For a particular c, the algorithm will either say that there is no hitting set of
size c, or it will output a hitting set of size O(dc log(dc)), which, of course, is
different to saying that there/s a hitting set of size c.

(4) The corollary can be stated with d as the dual VC-exponent, with an oracle
for the dual set system, so as to yield a set cover of size O(dc log(dc)).

(5) The running time of Corollary 3.3 compares favorably with that of the greedy
method, which is O(n a§ 1), when c is smaller than n 1- 8 for some small $ > 0 (on
the order of I /D).

We now turn to the proof of our main theorem.

3.1. The Algorithm

We assume, for the time being, that we know the size c of a smallest hitting set (we
show later why this is a reasonable assumption).

Our strategy can be thought of in terms of evolutionary biology, in that it is based
upon a notion of "survival of the fittest." Intuitively, we want to simulate the growth
of a population where some elements are advantaged because they hit more sets
than others. The idea is to put weights on the elements (initially uniformly) and use
the net finder A to select a (1 /2c) -ne t of size s(2c). If it does not hit a particular set
R of ~ , as returned by the verifier B on the net, we double the weights of the points

Almost Optimal Set Covers in Finite VC-Dimension 469

in R. Because of the definition of a hitting set, at least one point in an optimal
hitting set falls in R, and has its weight doubled. Nevertheless, the property of a
(1 /2c) -ne t implies that the weight of R is at most a fraction 1 / 2 c of the total
weight, hence the total weight does not increase too much. Therefore, we soon
expect an optimal hitting set to be included in the chosen set. The next lemma shows
that this is indeed the case.

Lemma 3.4. I f there is a hitting set o f size c, the doubling process cannot iterate more
than 4c log (n /c) times, and the total weight will not exceed n4 /c 3 .

Proof. Our proof follows arguments of Clarkson [18], [19], Littlestone [31], and
Welzl [48]. Let H be a hitting set of size c. Because the set R returned by B at each
iteration satisfies w(R) < w (X) / 2 c , the weight of X is not multiplied by more than
a factor 1 + 1 / 2 c in any iteration. Nevertheless, H C3 R is not empty, by the
definition of H. Therefore, after k iterations, if each h ~ H has been doubled z h
times, we have

w (X) < n 1 + < ne k/2c

and

w (H) = Y'. 2 zh, where ~. z h > k.
h E H h ~ H

Using the convexity of the exponential function, we conclude that w (H) > c2 k/c.
Since w (H) < w (X) , we finally have

c2~/c < nek/2c < n23k/4c,

from which k <_ 4c log(n /c) follows. The bound of n4/c 3 o n w (X) is an immediate
consequence. []

If the process exceeds this guaranteed number of iterations, that implies that
there is no cover of size c. Thus, we can use this procedure to determine an
approximate bound for c. To start, we conjecture a value c ' of c, which initially can
be set to one. In general, if our routine fails to find a hitting set, then there is no
hitting set of size c ' , so we increase c ' by a factor of two. At the stage when we find
a hitting set, we have c ' < 2c, so the hitting set returned by the algorithm is of size
at most s(4c). This concludes the description of the algorithm.

3.2. 8-Nets With or Without Weights?

Typically, e-net algorithms are designed for the uniform case and not the weighted
case. Here we mention a simple method for reducing the weighted case to an

470 H. Br6nnimann and M. T. Goodrich

unweighted one, as outl ined by Matou~ek [36]. First scale the weights such that
w(X) = n. Then make [w(x) + 1] copies of each element x E X. Note that the
multiset X ' thus obtained contains all the elements of X and has a cardinality of at
most 2n. Then take an e-net for the set X ' : it is also an e-net for the original set X
with weights w. Since this does only involve elementary operat ions on words of
O(log n) length, by our choice of the log-RAM model~ the reduction takes O(n)
time.

3.3. Running-Time Analysis

For a given c ' , it is clear that there can be at most 4c ' log(n/c') iterations, each of
which takes time TA(n, m, 2c ') + TB(n, m). However, the total weight can never
exceed n 4 / c 3, which is between n and n 4. This proves that the length of any weight
is at most 4[logn], which fits in the log-RAM model. When c ' increases geometri-
cally, by our choice of polynomial functions for T A and T a, the sum of all running
times is dominated by its last term, for which we have c < c ' < 2c. This concludes
the proof of Theorem 3.2.

4. Lower Bounds for Other Methods

In this section we give some specific cases where our method improves the previous
methods. We begin with the greedy method.

4.1. The Greedy Method

The following example has been communicated to us by J i~ Matou~ek (private
communication). Let S = {pi, j: i = 1, 2, j = 1 -.- 2 p+ 1 _ 1} be a set of n = 2 p§ - 2
distinct points, and let its collection of subsets consist of Sj = {Pi.k: i = 1,2,
k = 2 j " " 2 j§ - 1}, for i ~ {1,2}, j ~ {0.-. p}, as well as the two particular sets
Ti = {Pi, j: J = 1 " "2 p+I -- 1}, i ~ {1,2} (see Fig. 1). The greedy method picks the
cove r (Sj)jffil_p, which is of size p = log(n + 2) - 2. The optimal cover is (T/) i=I , 2
and is of size two. The dual VC-dimension of our example is two, as every point
point is covered by exactly two subsets, and our algorithm (in a dual setting to obtain
a set cover) picks the optimal cover for a value of c = 2.

So & s3 SO

Fig. 1. A greedy method's worst case that has finite VC-dimension.

Almost Optimal Set Covers in Finite VC-Dimension 471

4.2. Hochbaum's Method

In Hochbaum's method the set system of m sets over n elements is denoted as a 0-1
(n, m)-matrix A, each column Ay of which is the incidence vector of one of the sets.

subject to yT The algorithm then solves the linear program max e~ .y .A <_ era,
y >_>_ (0 0), where e k is a k-vector whose components are all ones. Let J denote
the sets of tight constraints at the optimum y* (in mathematical notation, j is in J if
and only if (y ,) r "A) = 1). Then J is a set cover within f times the optimum, where
f is the maximum sum of a row of A.

Take k to be any constant. We put

o=(:)
and take for A the (n, m)-matrix whose rows are made up of all possible vectors with
m - k ones and k zeros (in no particular order). The corresponding set system has
n elements and m sets. By symmetry, the method will pick all the sets in the cover,
which gives a cover of size m, guaranteed with m - k from the optimum. Any k + 1
elements will constitute an optimal cover.

This example has both dual VC-exponent and dual VC-dimension k, so our
algorithm will return a cover of size O(k 2 log k).

Remark. Interestingly enough, the bad example for the greedy (resp. Hochbaum's)
method can be solved efficiently with our as well as Hochbaum's (resp. the greedy)
method. We do not know of an example for which our method outperforms both of
them.

5. Applications

In this section we cover mainly computational geometry applications, therefore it is
customary to assume the real RAM model where all the integers and their elemen-
tary arithmetic operations have unit complexity.

5.1. Separating Polyhedra

Let Q ___ P be two convex polytopes in R a. The problem of finding a convex polytope
between P and Q (which from now on we call a separator) with as few facets as
possible is believed to be NP-hard, even in the three-dimensional case [22], but good
approximations can be found for it. Mitchell and Suri cast the problem as a
hitting-set problem [42]: Let 7r denote the set of hyperplanes supporting a
facet of Q; let the cover set system be (~, {Trip: p ~ OP}), where OP denotes the
boundary of P and, for any point p, ,~p consists of those hyperplanes in ~ for which
p and Q lie on opposite sides. (For definiteness, we agree that if p is on h, then h is
not in ~p.) They show that a hitting set for the cover set system gives a subset of

472 H. Brrnnimann and M. T. Goodrich

facets of Q whose bounding half-spaces define a convex polytope between Q and P.
A convex polytope Q ' such that each facet of Q ' contains a facet of Q is called
canonical. The smallest (with respect to the number of facets) canonical separator
can be obtained from a minimal hitting set of this set system and is within d times
the optimal separator (in number of faces). Therefore the greedy strategy returns a
separator of size within O(d 2 loglQI) of the optimal. In a recent twist, Clarkson [19]
applies ideas he used for small-dimensional linear programming to give a polyno-
mial-time randomized method that produces an approximation within O(d 2 log(dc))
of the optimal c. In fact, the algorithm of this paper is a deterministic analogue of
Clarkson's method in our more general framework. 4 Interestingly, however, for the
important case of d = 3, we are able to improve on Clarkson's result to achieve an
approximation factor that is O(1).

However, we first describe our method for general d > 4. We need to exhibit an
appropriate net finder and a verifier. Note that since P contains Q, O is not in the
cover set system. The basic observation is that the cover set system is a subsystem of
the half-space set system, and therefore has VC-dimension and VC-exponent d
(since d + 1 hyperplane define at most 2 d+] - 1 regions of the space, and the
complexity of an arrangement of m half-spaces is O(md)). Therefore our hope is to
find a net finder of size s, where s(x) = O(dr log(dr)).

To find a (1/r)-net for the weighted cover set system, we simply use the algorithm
of [10], which computes a weighted (1/r)-net in O(nr d logd(dr)) time, using the
reduction of Section 3.2 to take care of the weighted case. This provides a (1/r)-net
for the more general set system consisting of all half-spaces, but this is afortiori a
(1/ r) -net for the cover set system, and the bound on its size is still O(dr log(dr)).

As for the verifier, let Y n denote the canonical polytope with k faces associated
with the hyperplanes of some Y ___ ge'of size k. In particular, ,,Tr(Q) n = Q. All we are
asking for is whether Y n is entirely contained in P, or else to give a point of 0P
which is in Y n. We can simply compute the intersection of all the half-spaces
defined by the hyperplanes of Y W ge~(P) and test whether there is a facet that
belongs to P. If so, we can return ,gp where p is, e.g., the centroid of this face.
Otherwise, Y n is certainly contained in P.

We can find a (1/r)-net in O(r d logd(dr)lQI) time and verify k half-spaces in
O(k + IPD ta/2j time (if d > 4)[11] or in O((k + IPI)log(k + Iel))t ime (for d = 2, 3)
[43]. Plugging those bounds into our main theorem, we get:

Theorem 5.1. Let Q c_ P be two convex nested po~ytopes in R a (d >_ 4) with a total
of n facets. It is possible to find a separator of size within O(d: log c) of the optimum
c, in a deterministic time of O(n ta/:j + ncd logd(dc))c log(n/c), which is always
O(n a+: log d n).

Note that the case where c = f l (n ~) for some small 8 > 0 is of little interest
because, in this instance, our algorithm offers no better a performance ratio than
the greedy method (at least asymptotically). Thus we could make the algorithm

4 Clarkson's exposition is restricted to polytopal problems.

Almost Optimal Set Covers in Finite VC-Dimension 473

faster (for the same guaranteed ratio) by switching to the greedy method when c
becomes too large.

However, in three dimensions, we can actually do much better. In particular, we
recall from Matou~ek and coworkers [37], [40] that the three-dimensional half-space
set system admits (1/c)-nets of size O(c), and, as indicated in Section 3.2, their
algorithm can be extended to the weighted case as well. The cost of computing a
(1/c)-net of size O(c) is O(nc), if c < n ~ [37], and the cost of verifying that it is a
hitting set is O(n log n) as argued above. Therefore we obtain the following
strengthening of our previous theorem:

Theorem 5.2. Let Q c P be two nested polyhedra in R 3 with a total o f n facets, one of
them being convex. It is deterministically possible to find a separator of size within 0(1)
from the size c of an optimum separator, in O(nc(c + log n) log(n /c)) time if c < n 8
for some ~ > O.

The algorithm of Theorem 5.2 has been animated into a video [8]. In particular, it
should be noted that the running time is always O(n I + 28 log n), which improves on
the O(n 4) time bound of Mitchell and Suri's method [42] for the general case.
Unfortunately, for large c _> n ~, we have to switch to an O(n a) method to find the
net [40], yielding O(nac log(n/c)) time. Note that this is still O(n 4 log n), whereas
the time consumed by the greedy method is O(n 4) (though Mitchell and Suri reduce
it to O(n 3) when both polyhedra are convex).

5.2. Decision Trees

Arkin et al. [1] describe how to construct a point-probe decision tree for a set of
nondegenerate polygons in the plane whose height is s - 1 + [log(k/(s - 1))], when
given a hitting set of size s. For some applications, the result serves to decide the
position of a polygon in a scene [1]. While their approach is more general, the next
result shows that we can get a better performance ratio in the height of a decision
tree for nondegenerate (i.e., general position) inputs. We define the point set system
of a family S of plane objects by all subsets Sp of S for all points p, where Sp
consists of all objects in S containing p.

Lemma 5.3. Let P be a polygon in the plane, let S be a family of congruent copies o f P,
and let (S, ~) be the point set system of S. Then (S, ~) has VC-exponent at most two
(the constant two cannot be improved in general), and admits a witness subsystem oracle
o f degree two. The exponent is still two i f P is convex.

Proof. Clearly, the number of sets of (S, ~a~) is at most the number of cells is the
arrangement of S. If all m polygons in S have k vertices each, their arrangement
has complexity O(k2m2), which corresponds to the complexity of the arrangement of
their supporting lines. The complexity drops to O(km 2) if the polygons are convex,
which provides somewhat better constants for the shatter function. Nevertheless, it is
easy to come up with examples for which those bounds are tight and also reflect the

474 H. Br6nnimann and M. T. Goodrich

number of different subsets in the point set cover. This also provides the construc-
tion of the witness oracle: The oracle constructs the arrangement and simply picks a
point in each of the cells. If asked to provide a witness, the point is tested against all
the polygons, in O(m log k) time. (Here, we treat k as a constant, and we are only
interested tl~e number of elements of S.) []

Our algorithm, combined with the above observation, and the result of Arkin et
al. [1] gives us a decision tree of smaller approximation factor than the greedy
method for the nondegenerate arrangement of Arkin et al. (For degenerate arrange-
ments they design a new greedy strategy, which seems not to be describable as a
set-cover strategy.) Moreover, our method can also be used to derive point-probe
decision trees of better approximation factor for any set of k-gons in general
position in the plane, for constant k, since this point set system also has bounded
VC-dimension (as the proof above shows as well).

Remark. Clearly, the VC-dimension depends on the number of sides of P. If S
consists of congruent copies of a single convex set, even a convex polygon with
infinitely many sides, then its point set system (S, oq') need not have a finite
VC-exponent (resp. VC-dimension), as illustrated in the following example, slightly
modified from Jfinos Pach (private communication). For every subset I c ~d, let

0 (I) = ~ 2 - 2 ' ~ [0 , 1) .
i ~ l

To each I, we associate the point on the circle Pl = e2rriO(I)" Obviously, all these
points are distinct. We construct a family S = (Cg)/~ N of convex sets as follows. Let
rji be the rotation around the origin that takes p{;} to Pu}" (Note that rj~ composed
with rkj yields rki.) Let D i be the convex hull of all points Pl such that i ~ I.
Finally, let C i be the convex hull of all the rik(Dk)'S, for all integers k. It remains to
see that all the Cg's are congruent, but this is immediate, as C i = rij(Cj). Last but
not least, Pl belongs exactly to those C~'s for which i ~ I. This is implied by the fact
that the p t ' s a r e in general position (no three 0(I) 's form an arithmetic progression).
Therefore S itself is shattered by its point set system.

5.3. Disk Cover

Let S be a set of n points in the plane and let ~ be a family of disks. The disk-cover
problem is to find a minimum number of disks in ~ that cover the points in S [27].
This problem is motivated by VLSI design criteria as well as viewing problems in
astronomy. Matou~ek et al. [40] show that this set system admits an O(r)-sized
(1/r)-net and, as indicated in Section 3.2, their algorithm can be extended to
weighted point sets. The resulting algorithm runs in O(nr log n) time, and implies
the following:

Theorem 5.4. Let S be a set o f points in the plane, and ~ be a set of disks whose
union contains S. It is possible to f ind a disk cover o f S from ~ (a subset o f ~ whose

Almost Optimal Set Covers in Finite VC-Dimension 475

union still contains P) whose size is no more than O(1) times the optimal size c o f such a
cover in O(c2n logn log(n/c)) time.

Note that our method never takes more than O(n 3 log n) time. This bound
contrasts a bound of Hochbaum and Maas [27] for finding a constant-factor approxi-
mation to a disk cover, as their method requires all the disks in .~ to have the same
radius and, even when all the parameters in their method are optimized for the
running time, their method takes O(n 5) time.

5.4. Learning a Union of Half-Spaces in Fixed Dimension

Let H be a set of s half-spaces in R a, and write H + for their union, and H - for its
complement. Let D be an (unknown) probabilistic distribution on Rd. A learning
algorithm A for H § ,given m examples drawn randomly with a distribution D,
outputs another set of half-spaces, G, called the hypothesis, such that with confi-
dence 1 - 8 (on the examples fed to the algorithm), G verifies D (H + A G § < 6.
(A denotes the symmetric difference.) An example is labeled positive if it falls in
H § negative otherwise. In a learning situation, H § is unknown as a polytope, and
can only be known through the examples' labels. The purpose of the hypothesis is to
provide a model for H +, and the property of the learning algorithm says that with
probability at least 1 - 6, for subsequent queries, the label as computed with G §
will be correct (according to H +) with probability at least 1 - 6.

Blum and Rivest [6] prove that this problem admits no proper learning algorithm
(for which the hypothesis also consists of s half-spaces) whose running time is
polynomial in d, s, 6-1, 6-1, even if s = 2 (unless P = NP). Baum [3] argues that
this only shows that we should look for hypotheses with more half-spaces. Indeed,
Blumer et al. [7] and Baum [3] have proposed algorithms that output a hypothesis of
size O(s log m). These algorithms run in polynomial time in fixed dimension (though
the dependence in the dimension is exponential). Unfortunately, with the purpose of
training a neural net in mind, we see that each half-space of the hypothesis
corresponds to a gate of the neural net, and therefore the size of the neural net
increases with precision.

The algorithm of Blumer et al. proceeds by first labeling the examples, then
forming a set system of the half-spaces containing only positive examples, and finally
returning a small set of half-spaces covering all the positive examples. For this last
step we can use our method: The hypothesis is guaranteed to have size O(ds log(ds)),
independent of the number of examples. Moreover, we can improve on the results in
two and three dimensions. This proves:

Theorem 5.5. For any fixed d > 1, given s half-spaces H in R a, and any distribution
on points in R d, there is a neural net o f size O(ds log(ds)) which can be trained, in time
polynomial in s, 6, 8 and with confidence 1 - 8, to recognize whether a point belongs to
the union of H with a probability o f error less than 8. The size o f the neural net can be
brought down to O(s) i f d = 2, 3.

476 H. Brrnnimann and M. T. Goodrich

The result, of course, is also valid for learning the union of concepts taken from a
concept class that has finite VC-dimension.

6. Experimental Results

Our algorithm has been implemented and the results are described in [9]. In general,
there are many possible choices for the implementation, as we have many ways to
compute an e-net in practice, and they result in different performances.

The first consists in choosing a random sample of size O(dc log c). It turns out
that this performs badly against the greedy method, as the values of n we consider
are never big enough to justify the use of our method with the random sampling
against the greedy method.

The second possible choice is to use a computed e-net, with the algorithm of [10],
and this seems to yield results comparable (as for the performance ratio) with the
greedy method. However, the lack of an efficient subsystem oracle for the random
set systems considered in their experimentation made this implementation much
slower.

The third method of choice is to compute the net using the greedy method [14].
Even though this does not guarantee the same performance as the second choice, it
performs well in practice, and never returns anything bigger than that returned by
the greedy set-cover method. Moreover, the lower bound as returned by our method
is substantially higher than that returned by the greedy method. Therefore, if it does
not produce better hitting sets, at least it is able to give better lower bounds in
practice. However, instead of using the greedy method once, we use it many times in
computing the nets (although on smaller set systems), thereby making this imple-
mentation run rather slowly.

For all three choices, the fear that weights might increase beyond the finite
precision of the machine and therefore require a multiprecision treatment is
dispelled by empirical observation [9]. In the largest example tried (of size about
106), after some 700 iterations, the maximum weight was a bare 16,384--as opposed
to a possible 1012 which would still have required only 42 bits. This strongly suggests
that the normal precision (of 32 bits) will suffice in all reasonable instances of the
problem. This is due, of course, to the fact that only small weights tend to be
doubled through the algorithm.

One last issue concerns the generation of "random" set systems of finite VC-
dimension. This seems to be a hard problem; the 'set systems tried in [9] include
random subsystems of known finite VC-dimension as well more natural set systems,
such as the cover-set system of two polyhedra.

7. Conclusions

We have shown an approximation algorithm for the hitting-set and set-cover
problems, and proved that it performs well if the VC-dimension of the set system is
bounded. If the set system is described by a subsystem oracle, our algorithm is faster
than other existing methods which demand a full description of the set system. For

Almost Optimal Set Covers in Finite VC-Dimension 477

example, if there is a constant-sized hitting set, the algorithm runs in linear time.
Furthermore, our algorithm seems to defeat known complexity-theoretic lower
bounds [4], [33] (which make no assumptions about the VC-exponent), by being
adaptive: the competitive ratio depends on the size of the optimal solution. However,
the proof methods of [4] and [33] require (to the best of our understanding) that the
optimal hitting set is large. It is thus not clear what the applicability of their results
to ours is.

We have exhibited a variety of computational geometry problems that reduce to
or use hitting sets, and for which the set systems have bounded VC-dimension.
Interestingly enough, the algorithm was prompted by one of these problems for
which Clarkson gave a randomized algorithm [19] (which is essentially the same as
ours when specialized to the polytope separation problem, except that the net there
is picked as a random sample).

Our algorithm has been implemented, and the practical results are encouraging.
Practically, the method of choice seems to be a "hybrid" algorithm, which starts by
calling our method but switches to the greedy method when the performance ratio
offered by Theorem3.2 exceeds the factor a = (1 + In A) guaranteed by the greedy
method.

The main open question pertaining to this research is whether our algorithm can
be made to run in parallel in polylogarithmic time and polynomial number of
processors. It seems that the main problem lies in the iteration process: if we are to
double the weights of many sets at once, we are unable to enforce that the weights
of many points in an optimal hitting set double at each stage. There are, of course,
other open problems as well.

An 6-net is a hitting set for the heavy subsets. The algorithm can be thus adapted
to find an almost minimum-sized 8-net. A related problem that would be of some
interest is to find a similar algorithm for ~-approximations. It is not even known if
finding a minimum-sized approximation is NP-complete, much less if there is any
algorithm that returns an almost optimal 6-approximation.

The greedy method is shown to attain an O(log n) approximation ratio in the
polytope separation, but it might be possible to use the geometry to show that it in
fact yields a constant ratio. To the best of our knowledge, such a claim has neither
been proved nor disproved.

Finally, in the decision-tree problem, we were unable to find a strategy that would
work for degenerate arrangements. Is such an adaptation possible?

Acknowledgments

We would like to thank Dan Boneh, Bernard Chazelle, S. Rao Kosaraju, Jill
Matou~ek, Joseph Mitchell, J~inos Pach, and Neal Young for helpful discussions
concerning the topics of this paper.

References

1. E. M. Arkin, H. Meijer, J. S. B. Mitchell, D. Rappaport, and S. S. Skiena. Decision trees for
geometric models. Proc. 9th Ann. ACM Syrup. on Computational Geometry, pp. 369-378, 1993.

478 H. Br6nnimann and M. T. Goodrich

2. P. Assouad. Densit6 et dimension. Ann. Institut Fourier (Grenoble), 3:232-282, 1983.
3. E. Baum. On learning the union of halfspaces. J. Complexity, 6:67-101, 1990.
4. M. Bellare, S. Goldwasser, C. Lund, and A. Russel. Efficient probabilistically checkable proofs

and applications to approximation. Proc. 25th Ann. ACM Syrup. on Theory of Computing,
pp. 294-304, 1993.

5. B. Berger, J. Rompel, and P. W. Shor. Efficient NC algorithms for set cover with applications to
learning and geometry. Proc. 30th Ann. IEEE Syrup. on Foundations of Computer Science,
pp. 54-59, 1989.

6. A. Blum and R. Rivest. Training a 3-node neural network is NP-complete. Proc. 1st Workshop on
Computer Learning Theory, pp. 9-18, 1988.

7. A. Blumer, A. Ehrenfeucht, D. Haussler, and M. Warmuth. Classifying learnable geometric
concepts with the Vapnik-Chervonenkis dimension. J. Assoc. Comput. Mach., 36:929-965, 1989.

8. H. Br6nnimann. Almost optimal polyhedral separators. Proc. lOth Ann. ACM Syrup. on Computa-
tional Geometry, pp. 393-394, 1994. Accompanying video.

9. H. Br6nnimann. An implementation of MIN HITI'ING SET heuristics. Manuscript, 1994.
10. H. Br6nnimann, B. Chazelle, and J. Matougek. Product range spaces, sensitive sampling, and

derandomization. Proc. 34th Ann. IEEE Symp. on Foundations of Computer Science (FOCS 93),
pp. 400-409, 1993.

11. B. Chazelle. An optimal convex hull algorithm and new results on cuttings. Discrete Comput.
Geom., 10:377-409, 1993.

12. B. Chazelle. Cutting hyperplanes for divide-and-conquer. Discrete Comput. Geom., 9(2):145-158,
1993.

13. B. Chazelle, H. Edelsbrunner, M. Grigni, L. Guibas, and M. Sharir. Improved bounds on weak
6-nets for convex sets. Proc. 25th Ann. ACM Syrup. on Theory of Computing (STOC 93),
pp. 495-504, 1993.

14. B. Chazelle and J. Friedman. A deterministic view of random sampling and its use in geometry.
Combinatorica, 10(3):229-249, 1990.

15. B. Chazelle and J. Matougek. On linear-time deterministic algorithms for optimization problems
in fixed dimension. Proc. 4th ACM-SIAM Syrup. on Discrete Algorithms, pp. 281-290, 1993.

16. B. Chazelle and E. Welzl. Quasi-optimal range searching in spaces of finite VC-dimension.
Discrete Comput. Geom., 4:467-489, 1989.

17. V. Chv~ital. A greedy heuristic for the set-covering problem. Math. Oper. Res., 4:233-235, 1979.
18. K. L. Clarkson. A L a s Vegas algorithm for linear programming when the dimension is small.

Proc. 29th Ann. IEEE Symp. on Foundations of Computer Science, pp. 452-456, 1988.
19. K. L. Clarkson. Algorithms for polytope covering and approximation. Proc. 3rd Workshop on

Algorithms and Data Structures, pp. 246-252. Lecture Notes in Computer Science, vol. 709.
Springer-Verlag, Berlin, 1993.

20. K. L. Clarkson and P. W. Shor. Applications of random sampling in computational geometry, II.
Discrete Comput. Geom., 4:387-421, 1989.

21. T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms. MIT Press,
Cambridge, MA, 1990.

22. G. Das. Approximation schemes in computational geometry. Ph.D. thesis, University of Wiscon-
sin, 1990.

23. M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of
NP-Completeness. Freeman, New York, 1979.

24. M. T. Goodrich. Geometric partitioning made easier, even in parallel. Proc. 9th Ann. ACM
Symp. on Computational Geometry, pp. 73-82, 1993.

25. D. Haussler and E. Welzl. Epsilon-nets and simplex range queries. Discrete Comput. Geom.,
2:127-151, 1987.

26. D. Hochbaum. Approximation algorithms for the set covering and vertex cover problems. S/AM
Z Comput., 11(3):555-556, 1982.

27. D. S. Hochbaum and W. Maas. Approximation schemes for covering and packing problems in
image processing and VLSI. Z Assoc. Comput. Mach., 32:130-136, 1985.

28. D. S. Johnson. Approximation algorithms for combinatorial problems. J. Comput. System Sci.,
9:256-278, 1974.

Almost Optimal Set Covers in Finite VC-Dimension 479

29. R. M. Karp, Reducibility among combinatorial problems. In R. E. Miller and J. W. Thatcher,
editors, Complexity of Computer Computations, pp. 85-103. Plenum, New York, 1972.

30. J. Koml6s, J. Pach, and G. Woeginger. Almost tight bounds for e-nets. Discrete Comput. Geom.,
7:163-173, 1992.

31. N. Littlestone. Learning quickly when irrelevant attributes abound: a new linear-threshold
algorithms. Proc. 28th IEEE Syrup. on Foundations of Computer Science, pp. 68-77, 1987.

32. L. Lov~sz. On the ratio of optimal integral and fractional covers. Discrete Math., 13:383-390,
1975.

33. C. Lund and M. Yannakakis. On the hardness of approximating minimization problems. Proc.
25th Ann. ACM Syrup. on Theory of Computing, pp. 286-293, 1993.

34. J. Matou~ek. Construction of e-nets. Discrete Comput. Geom., 5:427-448, 1990.
35. J. Matou~ek. Approximations and optimal geometric divide-and-conquer. Proc. 23rdAnn. ACM

Symp. on Theory of Computing, pp. 505-511, 1991. Also to appear in J. Comput. System Sci.
36. J. Matou~ek. Cutting hyperplane arrangements. Discrete Comput. Geom., 6:385-406, 1991.
37. J. Matou~ek. Reporting points in halfspaces. Comput. Geom. TheoryAppl., 2(3):169-186, 1992.
38. J. Matou~ek. Efficient partition trees. Discrete Comput. Geom., 8:315-334, 1992.
39. J. Matou~ek. Range searching with efficient hierarchical cuttings. Discrete Comput. Geom.,

10(2):157-182, 1993.
40. J. Matou~ek, R. Seidel, and E. Welzl. How to net a lot with little: small e-nets for disks and

halfspaces. Proc. 6th Ann. ACM Syrup. on Computational Geometry, pp. 16-22, 1990.
41. J. Matou~ek, E. Welzl, and L. Wernisch. Discrepancy and e-approximations for bounded

VC-dimension. Proc. 32nd Ann. IEEE Syrup. on Foundations of Computer Science, pp. 424-430;
1991.

42. J. S. B. Mitchell and S. Suri. Separation and approximation of polyhedral surfaces. Proc. 3rd
ACM-SIAM Syrup. on Discrete Algorithms, pp. 296-306, 1992.

43. F. P. Preparata and M. I. Shamos. Computational Geometry: an Introduction. Springer-Verlag,
New York, 1985.

44. S. Rajagopalan and V. Vazirani. Primal-dual RNC approximation algorithms for (multi)-set
(multi)-cover and covering integer programs. Proc. 34th IEEE Ann. Syrup. on Foundations of
Computer Science, pp. 322-331, 1993.

45. N. Sauer. On the densities of families of sets. J. Combin. Theory, 13:145-147, 1972.
46. R. E. Tarjan. Data Structures and Network Algorithms. Society for Industrial and Applied

Mathematics, Philadelphia, PA, 1987.
47. V. N. Vapnik and A. Ya. Cervonenkis. On the uniform convergence of relative frequencies of

events to their probabilities. Theory Probab. Appl., 16:264-280, 1971.
48. E. Welzl. Partition trees for triangle counting and other range searching problems. Proc. 4th

Ann. ACM Symp. on Computational Geometry, pp. 23-33, 1988.

Received June 1994, and in revised form January 1995.

