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Abstract. We introduce a new type of randomized incremental algorithms. Con- 
trary to standard randomized incremental algorithms, these lazy randomized incre- 
mental algorithms are suited for computing structures that have a "nonlocal" 
definition. In order to analyze these algorithms we generalize some results on 
random sampling to such situations. We apply our techniques to obtain efficient 
algorithms for the computation of single cells in arrangements of segments in the 
plane, single cells in arrangements of triangles in space, and zones in arrangements 
of hyperplanes. 

1. Introduction 

Since randomizat ion first appeared  in the computat ional  geometry l i terature in the 
late eighties, it has had great  impact on the field. Currently the best-known 
algorithms for many problems are randomized.  Even when there are deterministic 
algorithms with the same or  a bet ter  asymptotic running time, the randomized 
algorithms are so much simpler and easier to implement  that they seem to be the 
method of choice in practice. 
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A popular type of randomized algorithms is randomized incremental algorithms. 
Here a geometric structure induced by a set S of certain geometric objects is 
computed by adding the objects in S in random order, meanwhile maintaining the 
structure induced by the current subset. Examples are algorithms for computing 
arrangements of line segments [9], [15], convex hulls [19], [8], Voronoi diagrams [11], 
[4], [13], and the union of fat triangles or pseudodisks [14]. 

Most of these algorithms are based on the theory by Mulmuley [15] and by 
Clarkson and Shor [9]. They have analyzed random sampling in an abstract setting 
that applies to a number of geometric problems. Although the settings by Mulmuley 
and by Clarkson and Shor are formulated in a different way, they both rely on the 
same basic framework. They consider a set of geometric objects (a set of line 
segments, say), and define some geometric structure on it (the planar arrangement 
defined by these segments). This structure is built up from simple elements of 
constant complexity called regions (trapezoids of the trapezoidal map defined by the 
segments). To analyze the behavior of the structure for a randomly drawn subset of 
the objects, they define for every regions a set of objects defining the region and a 
set of objects in conflict with the region. The assumption they need for their analysis 
is that a region is present in a geometric structure exactly if all of the defining 
objects are present, but none of the conflicting objects are. This assumption makes it 
possible to specify exactly the probability that a certain region appears in the 
structure induced by a random subset of the given set of objects; it lies at the basis 
of Mulmuley's as well as Clarkson and Shor's analysis. 

Unfortunately, there are geometric structures that do not fit into the framework 
of Mulmuley and of Clarkson and Shor. One of the most important such structures 
is a single face in an arrangement of segments in the plane or, in general, a single 
cell in an arrangement of (d - 1)-dimensional simplices in d-space. Single cells do 
not fit into their frameworks because the question of whether a trapezoid defined by 
some segments in the plane is part of the single cell cannot be answered locally: it 
depends on the complete configuration of the segments. Therefore it is impossible to 
define a set of conflicting objects properly. 

If we want to develop a randomized incremental algorithm for computing a 
structure with nonlocal definition--a single cell, for example--then we face two 
problems. First, the analysis of Mulmuley and of Clarkson and Shor does not apply. 
Second, because it cannot be decided locally whether a region is part of the 
structure, it is difficult to maintain the structure efficiently. 

Chazelle et al. [5] overcame these problems for the computation of a single face 
in an arrangement of line segments in the plane. They have extended part of 
Clarkson and Shor's analysis to that case (in fact, our more general analysis borrows 
several ideas from theirs). They also showed how to find the parts of the single cell 
that are cut off after the insertion of a new segment, using some auxiliary data 
structures. (See Section 3 for more details.) This, however, seems to be very difficult 
in higher dimensions. 

This was the motivation for our research: we wanted to devise a randomized 
incremental algorithm for the computation of a single cell in an arrangement of 
triangles in 3-space. Because we could not find a way to maintain the single cell 
efficiently after each insertion, we took the following lazy approach, which appears 
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to be new. When inserting a triangle we do not attempt to identify and discard the 
parts of the cell which are cut off; we simply keep everything around, including the 
parts that are no longer part of the single cell. This way we would, of course, end up 
constructing the full arrangement of triangles. Therefore we clean up the structure 
at certain stages (after inserting the 2Zth triangle, for i = 1 , . . . ,  log n, to be precise). 
To perform this clean up we just visit everything in the structure that we have 
constructed so far, discarding the parts outside the single cell. To analyze this 
algorithm we needed a generalization of Clarkson and Shor's results on random 
sampling to structures with a nonlocal definition. The result is a new framework and 
analysis for randomized algorithms, which allows for structures with a "nonlocal" 
definition. Our analysis shows that the bounds obtained by Mulmuley and by 
Clarkson and Shot remain valid in our more general framework. 1 In a nutshell, we 
relax the above-mentioned condition that a region is present in a geometric 
structure if and only if its defining set is present and none of its conflicting objects 
are. In our generalization, this is only a necessary and not a sufficient condition. 

Using this analysis we show that the lazy algorithm for computing single cells in 
3-space runs in expected time O(tb(n)log n), where ~b(n) is the maximum number of 
boxes in the vertical decomposition of a single cell in an arrangement of n triangles. 
Recently Tagansky [21] proved that ~b(n) = O(n z log 2 n). We thus achieve a running 
time of O(n 2 log 3 n). This improves on a result by Aronov and Sharir [1] who gave 
an algorithm for the single-cell problem with running time O(n 2+'), for any fixed 
e > 0. In the two-dimensional case our algorithm for computing a single face runs in 
time O(n a (n ) log  n). (Here and in the rest of the paper a ( n )  denotes the extremely 
slowly growing functional inverse of Ackermann's function.) Thus we achieve the 
same running time as Chazelle et al. [5], but with a simpler algorithm. 

Our technique extends to various other problems. We illustrate this by giving a 
simple algorithm for computing zones in arrangements of  hyperplanes in d-dimen- 
sional space. The algorithm computes the zone of a hyperplane in an arrangement of 
hyperplanes in d-dimensional space in O(n a- 1 + n log n) time. It can also compute 
zones of curves, surfaces, and so on. To our knowledge no efficient algorithms were 
known for these problems. 

2. Random Sampling with Nonlocal Definition 

We present our analysis of  random sampling with nonlocal definition in an abstract 
framework, following the spirit of Clarkson and Shor [9]. This permits us to apply it 
to different situations. 

Let S be a set of n objects. (To keep some life in the following presentation, the 
reader would be well advised to imagine a concrete example. Assume, for instance, 
that S is a set of n line segments in the plane.) For every subset R ~ S, define a 
collection of "regions" ~'(R). (The set of line segments R partitions the plane into 

IWe recently learned that Clarkson and Matougek independently from each other or us proved 
similar generalizations of Clarkson and Shor's random sampling results. 
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faces. Consider  the face containing the origin. We part i t ion this face into trapezoids 
by the usual vertical t rapezoidat ion s c h e m e - - s e e  Section 3 for the precise definition. 
The collection of t rapezoids thus obtained is ~ (R) . )  Elements of ~ ' (R)  are denoted 
by A. Let  ~r  be the set of all possible regions A, that is, all A that arise in ~ ( R )  for 
some subset R ___ S. 

To every A ~ 5 r we assign subsets ~ ( A )  and .~(A) of S. We call the set ~ ( A )  
the defining set of A and we call the set o~'(A) the killing set of A. The elements of 

~-(A) are said to be in conflict with A. Let  b(A) := I_~(A)I and to(A) := I~'(A)I. First, 
we require the following: 

(i) There is a constant b > 0 such that b(A) < b for all A ~ J .  

We  also require that  the following conditions hold for all A ~ ~.. 

(ii) If A ~ ~ ( R ) ,  then ~ ( A )  c_ R. 
(iii) If  A E ~ ( R ) ,  then ~,~(A) n R = O. 
(iv) If A ~ ~ ( R )  and R'  is a subset of R with .~ (A)  ___ R' c_ R, the A ~ ~ (R ' ) .  

These conditions are weaker than the conditions of Clarkson and Shot, which 
require that A E ~ ' ( R )  if and only if ~ ( A ) ~ R  and o~(A) A R = Q .  (In our 
example, a t rapezoid A ~ ~ ( R )  is defined by at most four segments: at most two 
segments bounding A from above and below, and at most two other segments 
defining the left and right edges of A. These four segments make up .~(A).  The 
killing set of A consists of  the segments that intersect A. The reader  can now easily 
check conditions (i)-(iv). I t  is not difficult to verify that there is no way to define 

~ ( A )  and ~ ' (A)  such that Clarkson and Shor 's  stronger condition holds.) 
Al though we want to make statements about random samples, it turns out to be 

useful to argue about random permutations.  When we need a random sample of S 
of size r, we use the first r elements in a random permutat ion of S. Thus, let 
S l , . . . , s  n be a random permutat ion of S. All the probabilit ies and expectancies 
studied in the following are with respect to this random permutation. Let  S r := 

{S 1 . . . . .  Sr} and ~r := ~(Sr)"  
Following Clarkson and Shor we define a function ~-(r) that describes the 

expected number  of regions for a sample of size at most r. 

r ( r )  := max E[ I~I ] .  
l<t<r 

What  we want to bound are the higher moments  E[EaE~e, to(A) d] for constant 
d > 0. We first prove two simple lemmas. We use the falling factorial notation 
n a := n .  (n - 1 ) . . . ( n  - a + 1), for integers a > 0. 

[ ,emma 1. Let  A ~ J r  and b <_ t <_ r <_ n. Then 

p [ A  ~ ~ I n ( A )  _ S r] < p [ A  E ~,  I ~ ( A )  __ St]. 

Proof. We define the sequence s], s~ . . . . .  s ' ._ .  by taking the sequence s a . . . . .  s.  
and removing the elements  of  ~ ( A ) .  We define S' r := {s], s~ . . . . .  s'r}. Let S ~a be the 
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family of all subsets of S that create A in connection with ~ (A) ,  that is, 

5 ~a ;= {R _ S \ _~ (A)  I A e ~' (R U.~(A))}.  

Note that property (iv) implies that any subset of a set in  ~ is also in 5 '~a. Since 
S't_, -c S'~_ a, this implies 

p [A E ~r I_~(A) __ &] = P[S'~_ a ~ a ]  < p[s~_a E ~ a ]  

= p[A ~ ~ I ~ ( b )  _ S,]. [] 

Let  A ~ For b < t < r <_ n we have p [A  ~ ~r] < (rb-/tb-)P[ A ~ ~]" 

P [ Y / ]  = P[Y / '  [ Xf f  ] . P[ X~]  = 
~(a) 

P I X y ] .  (1) 
n - - r  

Furthermore, from the definition of Y~a and property (iii) we derive 

y a __X~ N X,~+ 1. (2) 

Note that 

Lemma 2. 

Proof. Let  a := b(A). We have 

P[A ~ ~ 1  = P [ . ~ ( A )  g S~]. P[A ~ ~r I ~ ( A )  _ S~I 

r _a 

= 7~_p[A. _ (EF. ~ r  ] ~ ( A )  C_ S r ]  

r a 
_< ~_~p[A ~ c~, i ~ ( A )  c_ St] 

r -a t-a- 
= t- 7 �9 ~_~p[A ~ ~t I ~ ( A )  C St] (valid since a < b < t) 

r a 

= ~ p [ A  E ~,] 

r -b 
< ~ ( p [ A  E ~t]. [ ]  

Before we proceed we need a few definitions, motivated by Chazelle et al. [5]. We 
define the following events: 

x ~ : ~ < ,  

y ~ : ~ c g ~  and s ~ + 1 ~ ( ( 5 ) .  
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The inclusion can be proper ,  since there can be other reasons why A does not show 

up in ~r+ 1. 
We observe that the sum Eff=AP[YtA], for 1 _< A _< B <_ n, is bounded by the 

probabili ty that A appears  in at least one of the sets ~.4, ~'A +1 . . . . .  ~B- The latter 
event can be expressed as 

B 

x, u U 
t = A + l  

However, what is the probabili ty P[Xt~_I f3 Xt  ~] that A gets " inserted" in step t? By 
(iv), the only reason for some n ~ ~t not to be in ~ - 1  is that s t ~ .~ (A ) .  Hence, we 
have 

e [ s ? _  1 ~)X?] : P [ X ?  I (" IX? I X ? ]  "P[X?] 
b 

= P[s ,  ~ ( A ) ]  . P [ X ,  a] <_ - P [ X ~ ] .  (3) 
t 

Here we used a technique called backward analysis, introduced by Chew [6] and 
made popular  by Seidel [19], [20]. 

Putting everything together, we have 

B B b B 
E P [ Y t a ] < P [ X ~ I  + E P , n X  _<P[XAa]+~ -, l 

t=A t = A + l  = 
(4) 

We can now prove the main theorem of this section. 

Theorem 3. For 1 < r < n and constant d > 0 there is a constant C d > 0 such that 

Proof. For  r < 2b the theorem holds with C a = (2b)  a, so we assume that r > 2b. 
We proceed by induction on d. For  d = 0 the sum whose expected value we want to 
bound is just the complexity of ~'r; by the definition of  ~-(r) the claim holds with 

C O = 1. 
Now assume that the claim holds for powers less than d. We first prove by 

(a second level of) induction that for r / 2  < r o < r and 0 < j  < d a constant 
C~ > 0 exists such that 

r )  ~'(r). 
h ~ . ~  t=r o 

(5) 
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To do so, we define 

Fj := o~(A) j P . 
a eSr~ t = ro 1 

Clearly, F o _< E~=,or(/) __< rr(r).  Assume now that (5) holds for j - 1, and  consider  
Fj. We  have 

Fj = ~ A ) y E P[ Xa ] 
A E~r ~ t=r o ] 

_< co(A) j -1  (n  - t )P[Yt  a] 
A~,~t-~ t=r o 

<_ n ~o( a )J-1 p[ ya 
A ~ I~ t = r  o ] 

( } <_n Y'~ w ( A ) J - I p [ x ~ ]  + bn y ,  to(A)J_I ~ P[XtA] 
A ~,:7- r0 A~oqr~ t=r0+ 1 

n )  j-1 n 
- -  r(ro)  + b~oFj-1  < nCj -1 ro I 

(n) j n ,  [n'j-I 
< r~ ~o r ( r~  + b - ~ o C ; - l r ( r )  r ( r )  

(2J-XCj_ + 2bC'j 1)r(  - < 1 - r / j r ( r )  

_ q r (  n J 
r )  ~-(r) 

for a C~ = 2 J - 1 +  2bCj_p This proves claim (5).  W e  can now consider 

E [ E a e ~ ,  o)(A)d]. Let r o := Jr/21 + 1 and  note  that ro ->. b. 

<_ C -  F. = CTFd 
r A = 

for some C > 0 by L e m m a  2. Using (5), the theorem follows with C a = CC' a. [] 
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3. A Lazy Randomized Incremental Algorithm: Computing a 
Single Face in an Arrangement of Line Segments 

The computation of single cells in two- and higher-dimensional spaces is important 
for motion-planning problems: a single cell in the arrangement of constraint surfaces 
in configuration space corresponds to the reachable region for the robot in the 
workspace. The two-dimensional problem has already been solved quite satisfactorily 
by Chazelle et al. [5]. The algorithm that we present has the same running time as 
theirs and is slightly simpler. More importantly, it introduces a new technique called 
lazy randomized incremental construction, which can bc used to solve a variety of 
other problems see Section 5. 

Let S be a set of n line segments In the plane. We wish to compute the face 
~ (S)  in the arrangement of S which contains the origin. Actually, we compute the 
vertical decomposition of this face. This decomposition is obta!ned by extending 
vertical segments from any vertex of the single cell upward a n d / o r  downward, as 
illustrated in Fig. 1. The number of trapezoids in the vertical decomposition of a 
single cell in the plane is linear in the complexity of the cell. Hence, for a single cell 
defined by m segments it is O ( m a ( m ) ) .  

Our basic algorithm follows the general framework for randomized incremental 
algorithms described by Boissonnat et al. [2], which was also followed by Chazelle et 
al. These algorithms maintain a data structure, the so-called history graph. The 
history graph for an insertion sequence sl, s 2 , . . . , s  n of the segments of S is a 
rooted, directed, and acyclic graph, whose nodes correspond to trapezoids that have 
been created during the incremental construction. In the following we often do not 
distinguish between a node and its corresponding trapezoid. The trapezoids of the 
current single cell are leaf nodes in the history graph. The addition of a segment sr 
is done as follows. The trapezoids of the current face that are intersected by s r arc 
determined by searching in the history graph. The new trapezoids that arise because 
of the insertion of s~ are computed, and their corresponding nodes arc added to the 
history graph as leaves below the nodes (which are now no longer leaves) corre- 
sponding to the intersected trapezoids--see below for details. 

In a standard randomized incremental algorithm this is basically all that has to be 
done: update the history graph locally where regions are destroyed by the newly 

Fig. 1. The vertical decomposition of a single cell. 
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Fig. 2. A new segment cuts off part of the single face. 

inserted object. However,  since single cells are not defined locally, this is not 
sufficient here: those t rapezoids that are no longer in the single face should be 
determined,  because they lie in a part  that is cut off by s r. 

Figure 2 illustrates this. The dot in this figure indicates the origi,l. Trapezoids  in 
the lightly shaded region are cut off when s r is inserted. 

The leaves in the history graph corresponding to these trapezoids then have to be 
m a r k e d - - w e  say that they are colored r e d - - s o  that they will not be refined in future 
steps. This is the approach taken by Chazelle et al. In order  to identify the 
trapezoids that have been cut off they need some extra tricks: they maintain a 
union-find structure on the boundary components  of  the single face so that they can 
detect when sr cuts off part  of the single face, and they apply a tandem search on 
the adjacency graph of the t rapezoids in the current face to determine the parts that 
are cut off. Unfortunately,  this approach does not seem to work in 3-space, where it 
is difficult to detect  whether  a new triangle cuts off a por t ion of the single cell. 

We propose  a much simpler  strategy, which also works in 3-space: we simply skip 
this second step, that is, after an insertion we do not at tempt to identify the 
trapezoids that are no longer part  of the single cell. Of course, we would end up 
constructing the full a r rangement  of  line segments if we always keep all the 
trapezoids around. So we sometimes perform a "clean-up step" to el iminate the 
trapezoids that are not part  of the current  single cell, but we do this only a small 
number of times. In particular,  we perform a clean-up step after inserting the 2ith 
segment, for 1 < i < [log nJ. The rat ionale behind this is that we are now allowed to 
perform the clean-up in a brute-force way, by visiting all the leaves in the history 
graph. 

The global f ramework of a lazy randomized incremental  algorithm is thus as 
follows: 

Let s~, $2 , . . .  , s n be a random permuta t ion  of S. 
l a s t_c l eanup  := 1 
for r := l t o n  
do per form an update  step to insert object  st; 

if r = 2 �9 l a s t_c l eanup  

then perform a clean-up step; l a s t_c leanup  := r. 
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Fig. 3. Computing a single face lazily. 

Figure 3 illustrates the lazy approach fl~r the single-face algorithm. The shaded 
trapezoids are the ones corresponding to green leaves. Al ter  we have inserted the 
first four segments and we have done the clean-up step, the shaded trapezoids are 
exactly the ones in the single face defined by the origin (the small dot in the figure). 
After  inserting some more segments this is no longer true. t lowever, after inserting 
the eighth segment we do another clean-up, where we color the trapezoids outside 
the single face red. For readers who are not familiar with the algorithm of Chazelle 
et al. we give a more detailed description of the update step and the clean-up step 
for the computation of a single face in an arrangement of line segments. 

We maintain two data structures: the history graph and an adjacency graph .~'. 
The leaves of the history graph correspond to trapezoids. Leaves whose trapezoids 
need no further refinement because they are already known to be outside the 
current face are red; the other leaves are green. The nodes of the graph ~' 
correspond to trapezoids in the current structure that can still be in the single face. 
In other words, they correspond to green leaves of the history graph. There is an arc 
between two nodes in ~ if and only if the corresponding trapezoids share a vertical 
edge. This graph makes it possible to go from a trapezoid to its neighbors in the 
same face of the decomposition. We maintain cross-pointers between nodes in ~ 
and the corresponding green leaves in the history graph. We denote the trapezoid 
corresponding to a node u in the history graph or the adjacency graph by A(u). 

The Update Step. Starting at the root we propagate the segment s r that has to be 
inserted down the history graph: from a node u we proceed recursively to all 
children of u whose trapezoids are intersected by s r and that have not been visited 
before in this update step. This way we find all the leaves y in the history graph such 
that the trapezoid A(y)  is intersected by s r. The red leaves we have found need not 
be refined. For each green leaf y we have found we split A(T) with segment s r to 
obtain a number of new trapezoids. The number of new trapezoids is at most four; 
Chazelle et al. give a detailed description of the different cases that can occur when 
a trapezoid is split. Some (at most two) of these new trapezoids are not properly 
defined trapezoids yet. More precisely, each vertical edge which does not contain a 
vertex of the new arrangement  must be removed, and the two trapezoids that share 
this edge must be merged. In the history graph a green leaf is created for each new 
trapezoid, and there is an arc from a trapezoid A(T) that has been split to a new 
trapezoid A if the interiors of A(T) and A intersect. Note that a node y has at most 
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four out-going arcs. Finally, we update the adjacency graph ~ :  we remove the nodes 
corresponding to intersected trapezoids, and we add the newly created trapezoids 
with the appropriate  adjacency relations. 

The Clean-Up Step. Let eo be the node in gJ whose trapezoid contains the origin. 
(This trapezoid can either be maintained during the update steps, or we can simply 
check all nodes of ~ to find it.) Perform a graph traversal on ~ to identify the 
connected component  of .~" containing Vo, and delete the other components from .~. 
Color all the nodes of the history graph red that correspond to nodes of 9' which are 
not in the same component  as ~'o. 

In the next section we give a general analysis of lazy randomized algorithms. This 
analysis is then used to prove that the expected running time of the above 
single-face algorithm is O(nce(n)log n). Anticipating this result we state the follow- 
ing theorem. 

Theorem 4. Given a set of n line segments" in ~2, the face in the arrangement 
containing the origin can be computed in O(n a(n) log n) expected time using O(n a(n)) 
storage. 

Remarks. The algorithm of Chazelle et al. is "on-line" in the sense that at any point 
during the construction, they can use the current history graph to determine whether 
a query point lies in the current single cell. Our algorithm does not give us this 
possibility, since we have no way of knowing which trapezoids of the current 
subdivision are part of the single cell that we want to maintain. However, we can 
always report  the current single face by doing a graph traversal, as in a clean-up 
step. 

Our algorithm as well as the algorithm by Chazelle et al. also works for curves of 
bounded degree. The time bound becomes O(A,~ 2(n)log n). This bound is asymp- 
totically the same as for the worst-case size of a single cell times a logarithmic factor. 

Finally, note that our algorithm departs from previous work on randomized 
incremental algorithms as the structure maintained at time r is not independent  of 
the order  in which the segments have been inserted. More precisely, it depends on 
which of the objects were inserted before the most recent clean-up step and which 
objects were inserted after the most recent clean-up step. 

4. The Analysis of Lazy Randomized Incremental Algorithms 

Below we give a general analysis of lazy randomized incremental algorithms. We 
then use this general result to analyze the example algorithm that we gave in the 
previous section, namely the computat ion of a face in an arrangement of line 
segments. 
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4.1. A General Analysis 

As in Section 2, we formulate the analysis in an abstract framework. This allows us 
to apply it to several different cases. Again we advise the reader to keep a concrete 
example in mind, such as the computation of a face in an arrangement of line 
segments. 

Let S be a set of n objects (a set of line segments, say), and let j r  be a set of 
regions (trapezoids defined by at most four of the segments). For every region A ~ ~,, 
we assign subsets ~ ( A )  and J~(A) of S, called the defining set and the killing set. 
Furthermore, for every R _  S we define two subsets 3 ( R ) c ~ r  and r 
Finally, for R' c R c S we define ~ (R ,  R ' )  := J ( R )  A.~'(R'). The idea is that the 
set ~ ( R ,  R')  corresponds to the structure maintained by the lazy algorithm: in our 
analysis R is the current subset and R' is the subset for which the last clean-up was 
performed. 

To illustrate these definitions, we apply them to our line-segments example. Here 
J ( R )  is the set of all trapezoids in the full arrangement sO(R), while atV(R) is the set 
of trapezoids in 9-  that are contained in the face of ~ ( R )  which contains the origin 
- - n o t e  that a region A ~.~r does not have to be defined by segments in R, so 

.~V(R) is not a subset of ~(R) .  The set ~ ( R ,  R), however, corresponds exactly to the 
trapezoidation of the face containing the origin. 

As in Section 2, we let b(A) := I_~(A)I and to(A) := I~q~(A)I. We require that: 

(i') There is a constant b > 0 such that b(A) < b for all A ~ g .  
(ii') A region A ~ ~r is in .Y(R) if and only if ~ ( A )  c_ R and o,~A) N R = 0 .  

(iii') For R' ~ R ~ S we have / ( R )  c_ atV(R'). 

Note that conditions (i') and (ii') are exactly Clarkson's condition for the set J ( R ) .  
Let s 1 . . . . .  s n be a random permutation of S, and let S r := {s 1 . . . . .  st}. Define 

~r := ~(S~, Sp), where p is the largest power of  two that is less than r. Furthermore, 
for 1 < q < r < n, we define the function 

z ( r , q )  := max g [ l ~ ( S t , S q ) l  ]. (6) 
q < t ~ r  

Theorem 5. Let 3 < r < n and let p be the largest power of  two that is less than r. The 
expected size of  ~r is at most T(r, p). The expected number of  regions in ~r \ ~r- 1 is 
bounded by O((1/r)r(r ,  p/2)) .  The expected total conflict size of  these regions is 
bounded as 

E ~ _ n 

Proof. The first claim follows immediately from the definition of ~-(r, p). The other 
two results follow from the following bound, which holds for constant d > 0: 

,7, 

To prove (7), let q := p / 2 ,  and fix a set S* c S of  size q. We first restrict ourselves 
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to those random permutations s 1 . . . . .  s n of S with Sq = S*. We denote by P*[X]  
the probability of an event X with respect to this restricted sample space. 

E [  E -  ~ oJ(A) d Sq  = S'l] = Y'~ t o ( A ) d p * [ A  ~ ~ ' , A A  ~ ~ , - l ]  

( i i i ' )  
< ~. r e g ( S , , S p )  A A ~ J ( $ , _ , ) ]  

a e S r  

(iii') 
< Y'~ w(A)dp*[A  ~ ~(Sr ,gq)  A A ~ ( S r _ l )  ] 

A e . ~  

= ~ w(A)dp*[A ~,.~r(Sr) A A E i ~ ( S r _ l ) ]  

A ~d"( S * ) 

(ii') 
_ Y" oj(• ~ J ( S  r) /x s, ~_~(A)] 

A ~ t ' ( S * )  

(i') b 
< - -  ~ ~o(A)ap*[ A ~ 9"(Sr) ] 

r - q A ~_aV(S*) 

r [ A~(S,,Sq) 

TO bound the expected value in the last expression, we apply Theorem 3 to the 
restricted sample space where Sq = S*. Let S := S \ S*. For R c S, we define a set 
of regions as 

~ ( R )  := ~'(K u S*,S*) =~ ' (S*)  n ~(S* u K). 

The defining and killing sets of a region A are given as ~ ( A ) : = ~ ( A ) \ S *  and 
~ ( A ) : = ~ ( A ) \  S*. It is not difficult to check that conditions (i)-(iv) of Section 2 
hold for the space defined in this way: condition (i) follows from our condition (i') 
and, since S* is fixed, conditions (ii), (iii), and (iv) follow from (ii'). We can thus use 
Theorem 3 to conclude that there is a constant C d > 0 such that 

A E ~ ' ( ~ u  S*, $*) 

< C d  t[n-qler-q ] a<t~r-qmaX E [ I ~ ( R U S * , $ * ) I  R c _ S ,  I R I = t ]  

n - q  �9 
= C d - -  max  E [ [ ~ ( R , S  )[ [ S* c_R c_ S, IRI = t]. 

r - q ] q<t~r 
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The expectancy on the left-hand side is still with respect to all random permutations 
of S with Sq = S*. Taking the average over all possible choices of S* c S proves 
inequality (7). [ ]  

Note that we did not actually need the full generality of Theorem 3 to prove this 
result. In fact, we could have referred to Clarkson and Shor's results [9] as well. To 
keep this paper self-contained, however, we have chosen to apply our more general 
Theorem 3. 

4.2. The Analysis of the Single-Face Algorithm 

We apply the abstract analysis given above to bound the expected running time of 
the lazy randomized incremental algorithm for computing a single face that we 
presented in the previous section. 

Here S is the given set of  n line segments and 5 r is the set of trapezoids that can 
be defined by any four of them. Thus condition (i') holds with b = 4. As mentioned 
above, we define ~Y(R), for R _c S, to be the set of all trapezoids in the vertical 
decomposition of the full arrangement ~'(R). Clearly, condition (ii') holds for g (R) .  
Our clean-up steps are modeled using the set ~,'(R), which we define to contain 
all trapezoids that lie in the single face of ~r containing the origin. Then ~r = 
J ( S  r) nJg(Sp), where p is the largest power of two smaller than r, is exactly the set 
of trapezoids present after the insertion of s r (but before doing any clean-up step). 
Notice that the single face shrinks when extra segments are added, so condition (iii') 
is satisfied. 

We first bound the function r(r ,  q), for 1 < q < n and q < r < 4q. Thus we have 
to bound the expected number of trapezoids in the trapezoidation 3(S  t) that lie in 
the single face of ~r containing the origin, for q < t _< r < 4q. For this it is 
sufficient to bound the expected number of vertices of s~(S t) that lie in the face or 
on its boundary. Recall that ~(Sq, Sq) denotes the trapezoids of the trapezoidation 
of the single face of sg(Sq), and let to(A) be the number of segments in S t 
intersecting trapezoid A. Then it is easy to see that the number of vertices we have 
to consider is bounded by 

O(  ~ (1 + ~o(A) + o~(A)2)). 
A E ~(Sq, Sq) 

(8) 

To bound the expected value of  this sum we note that the complexity of the single 
face is O(qa(q)) [12], [17], and we use that Sq is a random sample of  S t of size q 
with q > t/4.  We have seen in Section 2 that the set ~(Sq, Sq) fulfills conditions 
(i)-(iv). Hence, Theorem 3 tells us that 

[ ](( '  E ~ (1 + ~o(A)+ w(A) 2) = 0  1 + -- + 
a E Wfsq, Sq) q 
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It follows that the expected size of ~ ( S t ,  Sq) is  O(ta( t ) ) .  Hence, r(r ,  q)  = O ( r a ( r ) )  
for q < r < 4q. By Theorem 5, this implies that the expected size of ~'r is O(ra(r ) ) ,  
so the structure we are maintaining is asymptotically not larger than the face we 
actually want to maintain. 

The history graph constructed by the algorithm contains a node for every created 
trapezoid. The number of out-going edges for every node is at most four, so it 
suffices to bound the total number of trapezoids created by the algorithm to bound 
the expected size of the history graph. By Theorem 5, this is 

E[l~r \ ~r-  11] = O - 
r = l  r = l  r 

r aO( ) 
= O ( n a ( n ) ) .  

This bounds the expected amount of storage used by the algorithm. We can turn this 
into a worst-case bound by changing the algorithm slightly: as soon as we use too 
much storage we stop the algorithm and start with a new random permutation. We 
expect to succeed in a constant number of trials. 

To bound the running time, we have to consider two different steps. First, 
consider the update steps. During update step r we spend time to find the trapezoids 
of ~ r - i  that are intersected by s r, and we spend time to split certain trapezoids, 
update the history graph, and update the graph ft. More precisely, we spend 
constant time for each node of the history graph that we visit. (Here we use that a 
node in the history graph has constant degree, so that we can check all its children 
to see which ones to visit.) Observe that we visit a node v of the history graph only if 
s r intersects the trapezoid A(v). It follows that we can bound the time necessary for 
all history searches by 

y '  to(A)p[A is created by the algorithm]. 

This we can rewrite and bound using Theorem 5: 

1 ( n ~ E [  ~] to(A) ~-'~O ( r , ~  
r = l  tA~'r\~'r I = r = l  ~ ' ~ T  

n n 

= O ( n a ( n ) l o g  n) .  

It  remains to bound the time needed for the clean-up steps. A clean-up in step 
p = 2 i takes time proportional to the number of trapezoids in ~'p. By the above, the 
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expected number of trapezoids in Wp is O(pa(p))  and, hence, the total expected 
work for the clean-up steps is 

[log n.I 
0(2/a(2i))  = O(na(n) ) .  

i=1 

This finishes the proof of Theorem 4. 

5. More Lazy Randomized Algorithms: Computing Single Cells and Zones 

We now apply our technique to solve the problem that initiated our research: the 
computation of a single cell in an arrangement of triangles in 3-space. We also 
describe an algorithm for computing zones in arrangements of lines in the plane and 
arrangements of hyperplanes in d-dimensional space. 

5.1. Vertical Decompositions in 3-Space 

To be able to use a randomized incremental algorithm for computing single cells in 
3-space we need a decomposition scheme for arrangements of triangles. Therefore 
we first recall the notion of vertical decompositions in 3-space introduced by 
Clarkson et al. [7], before we present our algorithm and its analysis. 

Let S = {s I . . . . .  s n} be a set of n possibly intersecting triangles in 3 space. The 
vertical decomposition of the arrangement sr decomposes each cell of 5~'(S) into 
subcells, the boxes, and is defined as follows: from every point on an edge of 

zC(S)--this can be a part of a triangle edge or of the intersection of two triangles--we 
extend a vertical ray in positive and negative x3-direction to the first triangle above 
and the first triangle below this point. This way we create for every edge a vertical 
wall, which we call a primary wall. We obtain a cylindrical decomposition of ~r 
into cells, the cylinders, with a unique bottom and top face; the vertical projections 
of both faces are exactly the same. However, the number of vertical walls of a 
cylinder need not be constant and the cylinder may not be simply connected. So we 
decompose the vertical projection of its bottom face into trapezoids as in the planar 
case, that is, we draw segments parallel to the x2-axis from the vertices of the face. 
These segments are extended vertically upward until they meet the top face; the 
walls thus erected are the secondary walls. Each cell of the vertical decomposition is 
now a box with a trapezoidal base and top--which may degenerate to a triangle--that 
are connected by vertical walls. Tagansky [21] proved the following bound on the 
complexity of vertical decompositions. 

Theorem 6 [21]. The maximum combinatorial complexity ~(n) of the vertical decom- 
position of a single cell in an arrangement of n triangles is lower bounded by fl(n2a 2(n)) 
and upper bounded by O(n 2 log 2 n). 
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5.2. Computing Single Cells in Arrangements of Triangles 

Our algorithm for the computation of the vertical decomposition of a single cell in 
an arrangement of n triangles in 3-space follows the lazy approach described in 
Section 3. When adding a triangle we do not seek to discard the boxes which are no 
longer in the cell; instead we keep even boxes that are no longer part of  the single 
cell, and clean up the decomposition only after inserting the 2ith triangle, for 
i = 1 . . . . .  flog nJ. 

The algorithm we describe is a natural generalization of the algorithm of Sec- 
tion 3 to three dimensions. Thus it maintains a history graph and an adjacency 
graph. The red leaves of the history graph correspond to boxes that need no further 
refinement because they are already known to be outside the current cell; the other 
leaves are green. The boxes of the current decomposition are the green leaves of the 
history graph. The nodes of the adjacency graph ~" correspond to these boxes. There 
is an arc between two nodes in ~" if the corresponding boxes share a vertical 
secondary wall. These arcs make it possible to go from a box to its neighbors in the 
same cylinder of the cylindrical decomposition. A box has at most four such 
neighbors. In addition, we have to store adjacencies between boxes that share a 
vertical primary wall. If we stored the adjacencies between all these boxes, then the 
number of neighbors might not be constant. Therefore, we only store the adjacencies 
between two nodes if the associated boxes share a portion of a vertical primary wall 
and have either a vertex of the three-dimensional arrangement of triangles or a 
vertical edge which is the intersection of two primary walls in common. A box has at 
most two such neighbors. These adjacencies allow us to visit all cylinders in the same 
cell of the decomposition. Thus, the degree of every node in the graph ~" is constant, 
and it is possible to go from a box to its neighbors in the same cell of the 
decomposition. We maintain cross-pointers between nodes in ff and the correspond- 
ing green leaves in the history graph. Next we describe the actions we have to take 
when adding a new triangle s r. We start with the description of the update step, and 
then we describe the clean-up step. 

The Update Step. We propagate the segment s r down the history graph to deter- 
mine the leaves whose corresponding boxes intersect s r, as in Section 3. The red 
leaves we find need not be refined. For all green leaves 3' that we find we decompose 
the box A(3,) into a constant number of new boxes (at most 19, to be precise). 
A green leaf of the history graph is created for each new box and linked to 3'. 
The adjacency relations are updated at the same time. 

As in the planar case, the new set of boxes need not be a proper (vertical) 
decomposition. So our next step should be to merge the boxes which are separated 
by wall portions that must be removed. In the planar case the merging was a 
straightforward operation, but now it imposes a technical difficulty that requires 
some care. 

Recall that there are two types of  walls in the vertical decomposition: primary 
walls and secondary walls. Primary walls are erected from edges of the arrangement. 
Secondary walls are obtained as follows. After adding the primary walls, the bottom 
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(i) 

Fig. 4. 

(ii) 

N " 
~ : ;  l)rol('CtlOll 

another triangle 

The lightly shaded wall portions have to be removed because of the new triangle s r. 

faces of the cylinders in the cylindrical decomposi t ion are decomposed into t rape-  
zoids; the segments added in the t rapezoidat ion are extended vertically upward until 
they meet  the top face to obtain the secondary walls. Observe that any secondary 
wall must contain either a vertex of the three-dimensional  ar rangement  of triangles 
or a vertical edge which is the intersection of two primary walls. Consider  a wall 
intersected by s r. The wall is cut into at most four pieces by s~ and the primary walls 
from its edges: a portion below s,., a port ion above s,., and two other  portions, one on 
either side of s,.. If the wall is a primary wall erected from an edge e of the 
arrangement ,  we have to remove the port ion of the wall lying on the opposi te  side of 
s r (as seen from e). Figure 4(i) illustrates this. The lightly shaded part  of the wall 
erected for edge e must be removed when s r is inserted. If the wall is a secondary 
wall, as in Fig. 4(ii), then the only port ion that remains is the port ion containing 
either a vertex of the new arrangement  or a vertical edge which is the intersection of 
two new primary walls. Note that a secondary wall may even disappear  completely. 
Now that we have seen which walls to remove, we examine the merging in more 
detail. 

We distinguish two types of boxes in the merging step: the boxes that  have 
neither  a bot tom nor a top face contained in s~, and the boxes that do have their top 
or bot tom face contained in s r. Notice that two boxes of a different type never have 
to be merged,  since any box has its top and bot tom face contained in a single 
triangle. 

It is not difficult to see that the merging of the boxes of the first type only 
involves the removal of port ions of secondary walls. This makes the merging easy. 
We simply check which port ions contain ei ther a vertex of the new arrangement  or a 
vertical edge which is the intersection of two new primary walls (this information is 
easy to maintain). All  other  wall port ions are removed, that is, we merge the 
corresponding boxes and we update the links in the history graph and the adjacency 
graph accordingly. Note that the boxes only grow, so the out-degree  of the nodes in 
the history graph does not increase. 

Next, we consider the boxes of the second type, whose bot tom or top face is 
contained in s r. Here  we have to remove port ions of primary walls as well as 
port ions of secondary walls. The removal of port ions of pr imary walls is problematic:  
it may happen that some of the secondary walls were "s topped"  by the port ions of 
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primary walls that we are going to remove. This means that these secondary walls 
now have to be extended. However, then an old box can be cut into many pieces by 
the extended secondary walls, increasing the out-degree of the corresponding node 
in the history graph. In other words, we are not allowed to link an old box to all the 
boxes in the new vertical decomposition that it intersects. Fortunately, this problem 
can be solved using a trick proposed by Boissonnat and Dobrindt [3]. The idea is to 
"encode" the links from an old box to all the new boxes it intersects in a rooted 
graph- - the  secondary  his tory  graph.  The leaves of the secondary history graph 
correspond to the new boxes. Instead of having links to all the new boxes the 
out-degree of the nodes is kept constant. Next we describe the construction of this 
secondary history graph in more detail. 

L e t  B b ( B  t) denote the set of boxes whose bottom (top) face is contained in s r, 

after we have split the boxes with Sr, but before we have started the merging 
process. We construct two secondary history graphs, one for the boxes in B b and one 
for the boxes in B t. We describe how to construct the secondary history graph for 
Bh; the construction for B t is similar. 

The union of the bottom faces of the boxes in B b is the part of the top side of s r 
that is inside the current single cell (that is, the single cell of the latest clean-up 
step). Notice that this union is not necessarily connected, and that its components 
are not necessarily simply connected. Consider all faces of the boxes in B b which are 
contained in a still existing primary wall, 2 and let S b be the set of bottom edges of 
these faces. Such a bottom edge is the intersection of the face with the triangle st, 
since the boxes have s r as their bottom face. We merge collinear segments of S b if 
they share an endpoint and there is no third segment with this endpoint. Observe 
that the segments in S b have disjoint interiors. Also observe that the cells of the 
arrangement ~ ' ( S  b) on s r defined by S b are exactly the bottom faces of the cylinders 
of the cylindrical decomposition of the current arrangement that are contained in s r. 
Now, in order to obtain a correct vertical decomposition we have to compute a 
(two-dimensional) trapezoidation of ~'(Sb), and extend the extra segments thus 
created vertically upward to obtain the new secondary walls. This trapezoidation is 
computed using a two-dimensional randomized incremental algorithm by Boissonnat 
et al. [2]. The history graph that results from this construction is our secondary 
history graph for the set B b. We also store the adjacency graph for the trapezoidal 
decomposition of d ( S b ) .  The leaves of the secondary history graph correspond to 
trapezoids in the trapezoidation of sd(Sb) ,  which, in turn, correspond to the new 
boxes in the three-dimensional vertical decomposition. In general, the union of the 
bottom faces of the boxes in B b will not be the entire triangle s~, since parts of  s~ 
can lie outside the current single cell. The leaves that correspond to trapezoids lying 
outside this union are of no interest to us, so we color them red. Finally, we link all 
the boxes in B b to the root of the secondary history graph. Note that the number of 
out-going arcs for every node is bounded by a constant. 

2Some faces of the boxes in B b can be contained in a portion of a primary wall that we must 
remove. 
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Now consider a later step in our algorithm, where we insert a triangle s j, j > r. 
We have to determine the boxes in the current decomposition which are intersected 
by sj. This we can still do by traversing the history graph, as follows. 

The search in the history graph proceeds in the normal way as long as we do not 
encounter any secondary history graphs. Now suppose that we reach a node v in the 
primary history graph that has an out-going arc to the root of a secondary history 
graph. Assume that this secondary history graph was constructed when we inserted 
triangle st, and assume that A(v) is a box in B b. (The set  B b is defined with respect 
to the triangle st, as above.) We compute a point q E s i A A(v), project this point 
onto s~, and continue the search in the secondary history graph with the projected 
point ~/. This way to find in O(log n) time the trapezoid in the trapezoidation of 
.ar b) that contains ~/. We now switch to the adjacency graph of the trapezoidation 
of ~r Using a graph traversal we determine all the trapezoids that are in the 
single cell of sr b) defined by ~/ and whose corresponding boxes are intersected 
by sj. These boxes correspond to nodes in the primary history graph from which 
we continue our search. 

Observe that sj can intersect several of the boxes in B b. For each of these boxes 
we compute a point to search with in the secondary history graph. Hence, we may 
visit trapezoids in ~ ( S  b) more than once. To avoid traversing the. same part of the 
adjacency graph too often, we mark every trapezoid when we visit it. When we reach 
this trapezoid again while handling sj, we know that we already visited it and we do 
not start a graph traversal. 

This finishes the description of the search in the secondary history graph. 
However, what about the correctness of the search, and what about the extra time 
we spend? 

Lemma 7. The searches in the secondary history graph for s~(S b) give us exactly those 
trapezoids whose corresponding box is intersected by sj. 

Proof. We explicitly test boxes for intersection when we traverse the adjacency 
graph, so it remains to prove that we find all intersected boxes. Let A 1 be an 
intersected box corresponding to a trapezoid in aC(Sb), and let ql be a point in 
A 1 n sj. Let A 2 be the box in B b that contains ql. The box A 2 intersects sj, so we 
have generated some point q2 ~ A2 n s i to search in the history graph�9 It is not 
necessarily true that q2 and ql are in the same trapezoid of ~r some new 
secondary walls that arose when we constructed the trapezoidation for ~ (S  b) may 
prevent this. However, we claim that the two trapezoids containing ~ and q2 are 
connected in the adjacency graph of aC(Sb). To see this, note that qlq2, the line 
segment connecting ql and q2, is contained in A 2 and does not intersect any 
primary walls�9 When constructing the secondary history graph for ar b) we only add 
secondary walls. Hence, the segment qlq2 does not intersect primary walls either, 
and the trapezoids containing ~ and q22 are connected in the adjacency graph. 
Moreover, the box corresponding to a trapezoid intersected by qlq2 is intersected by 
qlq2 and, hence, by s i. We conclude that we will report the box A 1 during a traversal 
of the adjacency graph. [] 
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The time it takes to go down the secondary history graph with some point q is 
bounded by the depth of the secondary history graph, which is expected to be 
O(log n). We charge this extra time to the node v of the primary history graph that 
generated the point q. The time for traversing the adjacency graph is linear in the 
number of nodes in the primary history graph that we discover; we charge the time 
to these nodes. In total, every node in the primary history graph gets charged an 
extra O(log n) each time it is visited. 

The Clean-Up Step. We identify the connected component of ~" containing the 
node whose trapezoid contains the origin by a graph traversal. The nodes of ~" 
which are not in this component are deleted from ff and the corresponding leaves of 
the history graph are colored red. 

5.3. Analysis of the Single-Cell Algorithm 

The analysis combines the analysis of Boissonnat and Dobrindt [3] with the results of 
Section 4.1. We distinguish principal nodes of the history graph, corresponding to 
boxes that have been created during the incremental construction, and secondary 
nodes, which are inner nodes of the secondary history graphs. We express the main 
results using the function ~0(n), which denotes the maximum number of boxes in the 
vertical decomposition of a single cell in an arrangement of n triangles. We proceed 
as in Section 4.2. S is the given set of triangles, 9 r is the set of all boxes (each 
defined by at most six triangles), J ( R )  is the set of boxes in the vertical decomposi- 
tion of a subset R ___ S, and ~r(R) is the set of boxes in ~r contained in the single 
cell of eat(R) containing the origin. It follows that ~'r = 9"(St) n.Z,'(Sp), where p is 
the largest power of two that is less than r, is exactly the set of boxes present at 
stage r of our algorithm. 

As in Section 4.2, we use Theorem 6 to bound the expected size of the structure 
we maintain. We prove that 

E[I~(St, Sa)[ ] = O(~b(t)), (9) 

for q < t < r < 4q, which implies that r(r, q) = O(qJ(r)) for q _< r < 4q. 
In Section 4.2 we used the number of vertices of the planar arrangement .~r t) 

lying in a single face of sC(Sq) as an asymptotic bound on the complexity of the 
structure that we maintained. The number of such vertices was then bounded using 
(8). The complexity of the structure that we maintain in the three-dimensional 
setting can be analyzed in a similar way. In particular, to prove (9) it is sufficient to 
bound the expected number of vertices of .~g(S t) that lie in that cell or on its 
boundary plus the expected number of intersections between two primary walls 
erected from edges of sr t) that lie in that cell or on its boundary. To bound the 
first number we have to add a term to(A) 3 in (8). To bound the second number we 
note that the expected number of edges in a box A ~ ~'(Sq, Sq) is to(A)2; hence, the 
expected number of intersections between two primary walls erected from them adds 
a term to(A) 4 in (8). By Theorem 5, this implies that the expected complexity of 
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is only O(qs(r)). Again, the structure we are maintaining is asymptotically not larger 
than the single cell itself. 

We now bound the expected size of the history graph constructed by the 
algorithm. The expected number of principal nodes can be bounded as 

~-'~ E[l~r \ ~r_ ill = ~o(l~b(r))=O(~b(n)), 
r = l  r = l  

since ~(n)  is at least linear. Next we bound the number of secondary nodes created 
by the algorithm. Recall that the secondary history graphs are constructed on a set 
of nonintersecting line segments. This implies that the total number of trapezoids 
that are created for the secondary history graphs is linear in the number of line 
segments [2]. It remains to observe that this number is linear in the number of boxes 
of the vertical decomposition that are destroyed. Since a destroyed box has to be 
created first, the total number of secondary nodes is bounded by O(~(n)). 

As for the running time, we observe that the history search for a new triangle s r 
visits only principal nodes v Of the current history graph with s r ~o,T(A(~,)). It 
follows that the expected number of principal nodes visited during all history 
searches can be bounded by 

n[ inn ~ 1 E  ~ oJ(A) = )--'. O ( - ~ b ( r )  I =O(~b(n)) ,  
~. A ~ r \ ~ r _  1 r= 1 ~ r / 

since ~b(n) = ~~(n l+e)  for a constant e > 0. As argued above, the searches in the 
secondary history graphs can be charged to principal nodes in such a way that eve,y 
principal node gets charged an extra O(log n) factor each time it is visited. 

After we have identified the boxes of the current decomposition that are inter- 
sected by the new triangle, we perform the merging step as described before. 
Creating the secondary history graph takes O(m log m) time, where m is the 
number of boxes that are destroyed in this step. By the bound on the total number 
of boxes created by the algorithm, this results in an expected total update time of 
O(~(n) log n). 

Finally, the total expected work for the clean-up steps is bounded by 

[log n] 
~ ( 2  i) = O ( t ~ ( n ) ) .  

i=1 

This completes the analysis of the algorithm and yields the following theorem. 

Theorem 8. Given a set of n triangles in 3 space, the cell in the arrangement 
containing the origin can be computed in O(~b(n)log n) expected time using O( ql(n)) 
storage, where ~b(m) denotes the maximum number of boxes in the vertical decomposi- 
tion of a single cell in an arrangement of m triangles. 

By Theorem 6 we obtain the following corollary. 
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Corollary 9. Given a set S o f  n triangles in 3 space, the cell in the arrangement 
containing the origin can be computed in O( n 2 log 3 n) expected time using O(n 2 log 2 n) 
storage. 

5.4. Computing Zones in Arrangements o f  Hyperplanes 

Given a set S of n hyperplanes in d-dimensional space and a surface 3', the zone of  
3" with respect to S is the set of cells of ~ ( S )  intersected by 3'. We assume that 3' has 
constant description complexity. 

Our algorithm follows the lazy incremental construction paradigm outlined in 
Section 3. Thus we add the hyperplanes of the set S in random order, meanwhile, 
maintaining the bottom-vertex decomposition of the arrangement ~r (see for 
instance Mulmuley's book [16, Chapter 6.3] for a definition of the bottom-vertex 
triangulation). After inserting the hyperplane number 2 i, for i = 1 . . . . .  [log nJ, we do 
a clean-up step and we discard all cells that are no longer in the zone. We depart 
from our previous scheme and describe this algorithm using a conflict graph instead 
of a history graph. Using conflict graphs turns out to be slightly simpler for this 
problem; if necessary, the algorithm can be modified to use a history graph. It also 
shows that the lazy paradigm is independent of the nature of the conflict search. 
So, for every simplex A of the bottom-vertex decomposition of ~r we main- 
tain the conflict list J~'(A). For every sj not yet added we maintain reverse pointers 
to all A with sj ~ " ( A ) .  The update step and the clean-up step are performed as 
follows. 

The Update Step. Using the reverse pointers to the conflict lists, we first collect the 
simplices in the current arrangement intersected by the new hyperplane s r. This tells 
us which cells of the current arrangement have to be split and retriangulated. This 
can be done in time proportional to the total number of simplices intersected, since 
we are allowed to spend time proportional to the size of the subcell that does not 
contain the bottom-vertex of the cell. See again Mulmuley's book for details. 

It remains to create the conflict lists for the newly created simplices. To this end 
we collect the hyperplanes in all conflict lists of all destroyed simplices of a given 
cell. For every such hyperplane sj, j > r, we then determine the new simplices A 
intersected by sj. For the simplices in each of the two new cells this can be done in 
the following way. First, we find one vertex of the cell that is on the opposite side of 
s r than the bottom vertex of  the cell. From that vertex we perform a graph search on 
the boundary of the cell. It is not difficult to show that the total time for this 
operation is proportional to the total length of the conflict lists of all destroyed and 
created simplices. Details can be found in [18]. 

The Clean-Up Step. First, we test every simplex of the current arrangement to find 
those intersected by the surface 3'. Then we traverse the triangulation, starting from 
these simplices, to identify the cells in the zone of 3'. All simplices not in the zone of 
3' are simply discarded. 
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5.5. Analysis of the Zone Algorithm 

Let ~'v(n, d) denote the maximum complexity of the zone of y in an arrangement of 
n hyperplanes in d-dimensional space. We want to bound the running time of our 
algorithm in terms of ~v(n, d). 

We employ our tools from Section 4.1 and define J as the set of all simplices 
defined by hyperplanes in S. For a box A ~ ~ ,  ~ A )  is the set of hyperplanes 
intersecting A. For R c S, we define J ( R )  as the set of simplices in the bottom-vertex 
triangulation of at(R), and .~'(R) as the set of all simplices in ~r that are contained 
in the zone of y with respect to R. Then ~ as defined in Section 4.1 is the set of 
simplices present in our structure after inserting hyperplane s r, but before any 
clean-up step. 

We first want to bound the expected size of ~(St, Sq), for q < t < r < 4q. It 
suffices to bound the number of vertices of  J ( S  t) within the zone of y with respect 
to Sq. We can bound this using Theorem 3 as 

E[IW(S t, Sq)l] = O( ~'~(t, d)) .  

This implies that ~'(r, q) = O(~'v(r, d)), for q > r/4. 
As observed before, the running time in step r is dominated by the total size of 

the conflict lists of all simplices that are created or destroyed. It follows that the 
total expected running time is bounded by 

n ] n n 
E[ ~ co(A) = ~ O ( 7 ~ v ( r , d ) ] .  

r=l /a~,\~'r_, ] ,=I ~r : 

To bound the storage requirement of the algorithm, we have to bound the expected 
total size of  all conflict lists at time r, which is 

The same proof technique used in Theorem 5 can be applied to show that this sum is 
bounded by O((n/r)~(r ,  d)). This is always bounded by O(n + ~v(n, d)). Thus, we 
obtain the following theorem. 

Theorem I0. Let ~'~(n, d) denote the maximum complexity of the zone of a surface 3' 
in an arrangement of n hyperplanes in d-dimensional space. Then the zone of y with 
respect to an arrangement s4r of n hyperplanes in d-dimensional space can be 
computed in expected time 

n n 

r= l  \/" l 

and storage O(n + ~(n,  d)). 
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When 3' is a hyperplane, then tight bounds are known on the maximum zone 
complexity: the famous Zone Theorem [10] states that in d-dimensional space the 
complexity is O(n a- 1). In this case we obtain an optimal algorithm. 

Corollary 11. The zone o f  a hyperplane in an arrangement o f  n hyperplanes in 
d-dimensional space can be computed in O(n a-1 + n l o g n )  time using O(n a - l )  
storage. 

6. Conclusion 

We introduced a new type of randomized incremental algorithms, which is suited for 
computing structures that have a "nonlocal" definition. In order to analyze these 
lazy randomized algorithms we generalized the results of Clarkson and Shor on 
random sampling to such situations. Our technique yields efficient algorithms for 
computing single cells in arrangements of segments in the plane and in arrange- 
ments of triangles in 3-space, and for computing zones. 

We believe that our technique can be useful for a number of other problems as 
well. For example, the best-known algorithm for computing all nonconvex cells in an 
arrangement of triangles in 3-space runs in O(n 8/3 log 14/3 n) time [1], although the 
total complexity of these cells is known to be O(n 7/3 log n). If the maximum 
complexity of the vertical decomposition of m cells in an arrangement of n triangles 
is close to the maximum complexity of the cells themselves, which is O(n z log 2 n + 
nm 2/3 log n), then we immediately obtain an algorithm with a running time close to 
0(n7/3). 

References 

1. B. Aronov and M. Sharir. Triangles in space or building (and analyzing) castles in the air. 
Combinatorica, 10(2):137-173, 1990. 

2. J.-D. Boissonnat, O. Devillers, R. Schott, M. Teilland, and M. Yvinec. Applications of random 
sampling to on-line algorithms in computational geometry. Discrete Comput. Geom., 8:51-71, 
1992. 

3. J. D. Boissonnat and K. Dobrindt. Randomized construction of the upper envelope of triangles 
in R 3. Proc. 4th Canad. Conf. on Computational Geometry, pp. 311-315, 1992. 

4. J.-D. Boissonnat and M. Teillaud. On the randomized construction of the Delaunay tree. 
Theoret. Comput. Sci., 112:339-354, 1993. 

5. B. Chazelle, H. Edelsbrunner, L. Guibas, M. Sharir and J. Snoeyink. Computing a face in an 
arrangement of line segments. Proc. 2ndACM-SIAM Symp. on Discrete Algorithms, pp. 441-448, 
1991. 

6. L. P. Chew. Building Voronoi Diagrams for Convex Polygons in Linear Expected Time. 
Technical Report PCS-TR90-147, Department of Mathematics and Computer Science, Dart- 
mouth College, Hanover, NH, 1986. 

7. K. Clarkson, H. Edelsbrurmer, L. Guibas, M. Sharir, and E. Welzl. Combinatorial complexity 
bounds for arrangements of curves and spheres. Discrete Comput. Geom., 5:99-160, 1990. 

8. K. L. Clarkson, K. Mehlhorn, and R. Seidel. Four results on randomized incremental construc- 
tions. Comput. Geom. Theory Appl., 3(4):185-212, 1993. 



286 M. de Berg, K. Dobfindt, and O. Schwarzkopf 

9. K. L. Clarkson and P. W. Shor. Applications of random sampling in computational geometry, II. 
Discrete Comput. Geom., 4:387-421, 1989. 

10. H. Edelsbrunner, R. Seidel, and M. Sharir. On the zone theorem for hyperplane arrangements. 
SlAM J. Comput., 22(2):418-429, 1993. 

11. L. J. Guibas, D. E. Knuth, and M. Sharir. Randomized incremental construction of Delaunay 
and Voronoi diagrams. Algorithmica, 7:381-413, 1992. 

12. L. J. Guibas, M. Sharir, and S. Sifrony. On the general motion planning problem with two 
degrees of freedom. Discrete Comput. Geom., 4:491-521, 1989. 

13. K. Mehlhorn, S. Meiser, and C. O'Dfinlaing. On the construction of abstract Voronoi diagrams. 
Discrete Comput. Geom., 6:211-224, 1991. 

14. N. Miller and M. Sharir. Efficient randomized algorithm for constructing the union of fat 
triangles and of pseudodisks. Manuscript, 1991. 

15. K. Mulmuley. A fast planar partition algorithm, I. Proc. 29th IEEE Syrup. on Foundations of 
Computer Science, pp. 580-589, 1988. 

16. K. Mulmuley. Computational Geometry: An Introduction Through Randomized Algorithms. 
Prentice-Hall, Englewood Cliffs, NJ, 1993. 

17. R. Pollack, M. Sharir, and S. Sifrony. Separating two simple polygons by a sequence of 
translations. Discrete Comput. Geom., 3:123-136, 1987. 

18. O. Schwarzkopf. Dynamic Maintenance of Convex Polytopes and Related Structures. Ph.D. 
thesis, Fachbereich Mathematik, Freie Universit/it Berlin, Berlin, June 1992. 

19. R. Seidel. Small-dimensional linear programming and convex hulls made easy. Discrete Comput. 
Geom., 6:423-434, 1991. 

20. R. Seidel. Backwards analysis of randomized geometric algorithms. In J. Pach, editor, New 
Trends in Discrete and Computational Geometry, vol. 10 of Algorithms and Combinatorics, 
pp. 37-68. Springer-Verlag, New York, 1993. 

21. B. Tagansky. A new technique for analyzing substructures in arrangements. Proc. 11th Annual 
ACM Symp. on Computational Geometry, pp. 200-209, 1995. 

Received March 10, 1994, and in revised form December 13, 1994. 


