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2-dimensional simple factors of Jo(N) 

Xiangdong Wang 

In this paper we investigate abelian variety `4! which is derived from a 
newform f 6 s2(r0(N))  an is Q-simple factors of Jac(Xo(g)). We will de- 
velop algorithms for computing the period matrix of A I and for determing 
when .,41 is principally polarized. If A! is 2-dimensional principally polar- 
ized, we give an algorithm for computing the associated hyperelliptic curve 
C with Jac(C) ~- ,4 t. 
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1 Introduct ion 

For a positive integer N, let S2(N) denote the space of cusp forms of weight 2 
for the group F0(N). Let f = ~,~176 1 a,q" 6 S2(N) be a newform and O! be the 
the ring generated over 7. by the complex numbers a~ for all n. Then Ol is an 
order in a totally real algebraic number field K/ of finite degree d, say. Shimura 
defined in [Shi] a simple abelian variety ,41 of dimension d, along with an action 
by Of, both defined over Q. ,4f is a simple factor of the Jacobian variety Jo(N) 
of the modular curve Xo(N), and is dual to a subvariety of Jo(N). This factor 
,4i is very important due to the generalized Shimura-Taniyama conjecture which 
asserts that  any abelian variety A with real multiplication, both defined over Q, 
is isogenous to a factor of Jo(N) for a suitable N. 

We investigate in this paper the explicit structure of .AI, develop an algorithm for 
computing the period matrix of `4I and for determining when ~ f  is principally 
polarized. If `4f is a two dimensional principally polarized abelian variety, we 
give also an algorithm to determine the associated hyperelliptic curve C with 

Jac(C) ~- ,41" 

We start our treatment in w by showing that ,41 can be obtained as a complex 
torus Ca/AI. Then we derive a formula for the the period matrix of .A! using 
certain intersection numbers ex, ..., ed. We will see that ,4I is principMly polarized 
if el . . . .  = ea. 
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In w we derive firstly an explicit formula for computing the intersection numbers 
on H:(Xo(N), Z). Then we show how to compute the period matr ix  of H I ex- 
plicitly. If Hj  is two dimensional principally polarized, we give also an algori thm 
for computing the invariants of H I and the associated hyperelliptic curve C with 
dac(C) = H/ .  Our algorithms generalize some results of [Cre2] on modular  ellip- 
tic curves. To i l lustrate the method we also give some examples and tables at the 
end of w 

I would like to thank Prof. G. Frey for drawing my at tention to the problem of 
this article and G. R/ick and Q.-V. Pham for useful discussions. 

2 The abelian variety .Af 

We summarize firstly some results of [Shi]. 

Let N > 2 be a integer, g be the genus of the modular  curve X0(N); we con- 
sider the structure of Xo(N) as a real 2-manifold whose first homology group 
HI(Xo(N),Z) has rank 2g. Let f (z )  be a cusp form of weight 2 for P0(N), and 
let w(f)  = 2r = f ( z ) ~  be the associated differential. Then w induces a 

holomorphic 1-form on X0(N),  which we will also call •, and the set of such w 
forms a C-vector space of dimension g. 

Let f = ~ a,q '~ E S2(F0(N)) be a newform, K!  be the subfield of C generated 
over Q by the complex numbers a~ for all n, If  be the set of all isomorphisms of K I 
into C, d := ~Ij, { i f ' ,  ..., f ,d}  (a~ E I i )  be the complete set of newforms conjugate 
to f over Q. Shimura showed in [Shi] that  there exist an abelian variety H I 
rat ional  over Q with the properties: H / i s  a simple factor of Jo(N), dire(AS) = d 
and the differential 1-forms ~ ( . A I )  ~ ~2~11 C ~ ( f ~  �9 

Set f = (ff,,,...,f,,d)t and ~o(f) = (w(f"'),...,w(ff'~)) t , then the image of 
HI(Xo(N), 7,) under the map 

HI(Xo(N),Z) ---+ C a 

is a free Z-module of rank 2d, in other words it is a lat t ice A! in C a. The map 

Z /o" P (  o(F' ), ..., ' 

is a morphism of Xo(N) into Ca/At, where 0 is a given point of Xo(N). Shimura 
showed that  HI is isomorphic to Ca /AI  and H I is dual to a subvariety of J0(N). 

We recall now some results of [Hid]. 
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Let H be the upper half plane. Denote by H* = H O Q O {c~} the extended upper 
half plane, obtained by including the Q-rational cusps Q u {oo}. The quotient 
space Xo(N)(C) = F0(N) \ H* may be given the structure of a compact Riemann 
surface. By utilizing the well-known identity for the smooth compactification 
Xo(N) of F0(N)\  H and Poincar6 duality we obtain a non-canonical isomorphism 

H , ( X o ( N ) , Z )  ~- H I ( X o ( N ) , Z )  ~- H~(F0(N)\ H,Z) ~ H~(F0(N), Z) 

where H~(r0(Y), z) is the cuspidal cohomology of r0(N). Hida defined in [Hid] 
a pairing {., ')N on Hr Z) which comes from the cup product on the coho- 
mology. This pairing corresponds to the intersection numbers on HI(Xo(N), Z) 
which is a non-singular skew-symmetric bilinear form on HI(Xo(N), Z). 

Define a subspace S(f) of S2(ro(g)) by 

S(f)  := ~ Cf f  C S~(ro(g)) 
trEll 

and let Wf(R) be the isomorphic image of S(f) in H~(F0(N),I~) under the 
Eichler-Shimura isomorphism, dimR(Wl(R)) = 2d. Put L := H~(F0(N),Z) and 
L] := WI(R ) N L. Then Lf is a lattice in WI(R ) of rank 2d and the Q-linear span 
Wf(Q) of L t coincides with WI(R)GH~(Fo(N), Q). The binear form (., "IN is non- 
degenerate on W/(Q) and (L f, Lf)N C Z if N > 2. Due to a well-known result 
in linear algebra we can obtain a symplectic base {hi, bl} -- {a~, ..., a~, b~, ..., bd} 
of Lf with 

( O A f )  
((al,b,,), (a.t,bl))N = - A . t  0 

with Af = ".. , where elle2l... [ed are positive integers. 

ed 

Remark"  The number o e 2 - "  ee is the so-called cohomologic congrunce number 
which coincides with a product of special values of Theta functions of a newform 
f (cf. [Hid]). 

Let Y be the orthogonal complement of WI(Q) in H~(Fo(N),Q) under (., ")N. 
We obtain 

L C H~(F0(N),Q) = Wf(Q) @ Y (1) 

Let M! be the projection of L to the first direct summand of (1). Then M 1 is 
also a lattice of WI(R ) and Lf C Mf C Wy(Q). By the definition L I and M! are 
stable under the Hecke operators. Let L} be the dual lattice of L1 under (-, "}g 
over Z, namely 

L~ := {x G W.t(Q)[ (x, Y)Y e Z, Vy G LI}. 
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It can be verified easily that L} = M 1. Set (a}, b}) := (as, bs) A ;  

Since((a~,b~),(a,,by))N= (10 O1), it follows that {a~,b~} is a base of L~ = 

M! dual to {as, bs) .  

We have seen that ,41 = C~/As with A s = {fcw(f) lc �9 L}. Because n C 
Ws(Q) @ Y, we can write c = x + y with z �9 Mr, y �9 Y. Since Ws(Q ) i Y, we 
have fu w(f) = 0 and f~ w(f) = fx w(f). This implies that 

As = { L ~ ( f )  I x  �9 MS). 

Since {a~,b~) is a base of MS, the lattice A s is spanned by the matrix PS := 
(f~; w(f), fb; w(f)). Define two d • d matrices 

AS := (L w(f)) = 
! 

f:, w(f" '  ) 

f<,, w(f")  

s ~(f~' ) 

�9 . .  f= ~ ( f ~  

1 

�9 . .  A ~ ( f ' ~ )  

' h , ~ ( f : ' )  

�9 . .  h ~ ( f : , )  

S i n c e ( a ~ , b ~ ) = ( a / , b / ) ( A s l  0 ) 0 A~_ 1 , we obtain 

P] = (As, Bs) ( A~' 0 ) = (AsA~I,BsA~I). 
0 A~ 1 

L e m m a  1 

1. A1 is invertible. 

2. fll := A~IBIA~ 1 is symmetric and its imaginary part is positive definite, i.e., 
fll E Ha, the d-dimensional Siegel half space. 

In order to prove this lemma, we need Poincar6 Duality: 
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L e m m a  2 For each cycle ~ E HI(Xo(N),Z) there exists a holomorphic differ- 
ential 4) E al(Xo( N) ) such that 

r = lI(a,r), Yr E H,(Xo(N),Z)  

where ](a,v)  denotes the intersection number of er and r: Moreover, if !b E 
fl'( Xo( N) ) corresponds to r, then 

o(N) 

See [GH] p59 for the proof. The following corallary can also be verified easily. 

C o r o l l a r y  1 Let {ul,...,u2g} C H,(Xo(N),Z) be a base of Hl(Xo(g) ,Q) ,  A = 
(a~i) be a 2g x 2g matrix with aij := ~(ui,uj). Then 

Proof of Lemma 1: Let uy C Y M L be a Q-base of Y. Then {al, b l , u y }  is a 
Q-base of L. Since ( a l , b l )  _[_ Uy, we can write (0 

((a/,  b l ,  uv),  (a S, b f, uv)}~  = - A !  0 0 . 
o o Ur 

By using the above corollary we obtain 

I r e  or r is a linear combination of w(f~'),..., oa(f'~), then fur r = 0 or fur ~b = 0. 
Therefore we obtain 

Let c = (ct, ...,ca) E C a be such that 

= Y ~ c i [  w( f  ~') = O. eAr 
1 
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Consider the holomorphic differential form w = E ciw(f ~') E fP(X0(N)) ,  we have 
fa I w = 0. This implies also that  fal ~5 = 0 and due to the formula (2) we obtain 

f x  co AffJ = O. 
o(N) 

Therefore w = 0 and cl . . . . .  ca = 0. This proves the assertion 1. 

Moreover, since a~(Xo(N))  = 0, we have w ( f ~ ' ) A ~ ( f ~ ' )  = 0 for 1 < i, j < d and 
the matr ix  

(0) = (fxo(N) w(ff" ) A w(f" ,  ) ) 

= (f~, w(f ) )A}l ( fb ,  w(f))t - (fb, w(f))All(f., w(f)) t 

= A f ~ y l B }  - BfA;1A~. 

This implies that  ~ l  := A71BIA71 is symmetric. 

We apply again the formula (2) to r = ~ ciw(f ~') = cw(f) and r = r with c ~ 0: 

i Since g fXo(N) r A r > O, /m(f~l) is positive definite. 

We have seen that  Af is spanned by the matr ix  

PI = (A fA?  1, B f A ]  1) = AI(AT' ,  fh)  = edlAl(edAl  1, edfll). 

Set ( e~/el ) 
~ /  := edfll, Df := edA] 1 = ".. . 

1 

T h e o r e m  1 There exists a base (vl,...,vd) of C d (as a complez vector space) 
and a base (A1,...,A2d) o l A f  such that the matrix of (A1,...,A2d) with respect to 
(vl, ..., vd) takes the form (Dr, ~ f  ) where ~1 is symmetric and Im(f~f ) is positive 
definite. The matrix f~f is called the p e r i o d  m a t r i x  of the abelian variety .A s. 

C o r o l l a r y  2 If el = e2 . . . . .  e~, then .Af is principally polarized. (1) 
In tha t  case D I = ".. and f~! = A7IBI.  In next paragraph we will 

1 
show how to compute the numbers el , . . . ,  ed and the period matr ix  of.A t explicitly. 
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3 Algorithms for computing intersection num- 
bers, period matrix and invariants of ,Af 

3.1 In tersec t ion  numbers  

We discuss firstly how to compute the intersection numbers. 

Let P = SL2(Z), EN = {(c, d) C Z lgcd(c, d, N) = 1} the set of all elements of 
order N in Z/NZ • Z/NZ and ~ the relation 

(2c, Ad) ~ (c, d), A e (Z/NZ)*. 

Put Px(Z/NZ) := EN/ ~. It is obvious that the map 

(a c bd)' ,(c,d) 

induces an identification between F0(N) \ F and PI(Z/NZ). 

Let W be the co-induced module of Z on F: 

W := Coindro(N)(Z) ~- Z | P ~ Z | (P0(N) \ r )  ~ Z[PI(Z/NZ)] ~ Z u 

where # = [F: r0(N)]. The operation of F on/PI(Z/NZ) (resp. W) is given by 

(U,V).(: bd) :=(ua+vc, ub+vd ). 

By the Shapiro lemma there is a canonical isomorphism 

g ' (P ,  W ) ~  gl(p0(N), Z). 

Let Hi(F , W) be the cohomology of P with compact support, and Foo =< T > 

1 1) We have then a long exact sequence: whereT:=  0 1 ' 

i* 
�9 -. > H i ( r ,  W) - - ~  H i ( r ,  W) > n ~ ( r o o , W )  ) . . .  

The cohomology group H~(P, W) can be described as the group of cocycles which 
are trivial on F~o: 

HX~(r,W)= {r r > Wlr162162 r;r 

P u t S =  (01 O 1 ) , R  = T S =  (11 O1). It is well-known that S, R generate the 

groupF. S i n c e S , = R 3 =  ( O  1 0 ) -1  ,we have for r E Hi(P, W), r = 
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0 and r  R 2) = 0. Moveover, 0 = r  = r  i.e., 
r = - r  = r Therefore 

HJ ( r ,  w) ~- Ker(1 + S) Cl Ker(1 + R + R2). 

We define now a bilinear form on W: 

( ' , ' )w : W |  ~ Z 

(u, v)w := E ~,,v, 
i=l 

for u = (ul,. . . ,  u ,) ,  v = (vl, ..., v,) 6 W ~ Z". This bilinear form has the following 
properties: 

1. (., ')w is well-defined and non-degenerate. 

2. (., ")w is symmetric. 

a. (u.r, v . r )~  = (u, v )~ ,  w e r. 

The composition of the cup product and the pairing (., ")w gives us a bilinear 
form on Hi (F  , W): 

(','>N : H•(F,W) • H~'(r,w) --% gf f (F,W|  ( "~  H~(F,Z) ~) Z 

where the cup product of two 1-cocycles r r is defined as a 2-cocycle 

(r U r b) := r | r 

The isomorphism e is given by (cf. [Hab] p278) 

c(p) = p(R, S) - ~p(S, S) - (p(R, R) + p(R 2, R)), Vp e Hi( r ,  Z). 

Recall that r = r for r 6 Hi(F,  W), we get an explicit formula of (., ")g 
on H~(r,  W): 

L e m m a  3 

(r r = I ((r162 - (r r 

This is a generalization to arbitrary level N of a formula of [Hab] p278, which 
applies only to level N = 1. 

The cuspidal cohomology H~(F,W) is defined as the image of H I ( F , W  ) in 
H ' (F ,  W). For classes r r 6 H~(F,W) there exist r r  6 Hi(F,  W) with 
i*(r = r i*(~b') = r Then the pairing on H~(F, W) which we denote as (., ")g 
again is defined by 

(r I/))N := (r ~/>N" 
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3 .2  T h e  p e r i o d  m a t r i x  of .Ay 

We have shown that the period matrix of .A I is f~! = edAT1BIA71. In order 
to determine the matrices A:, B:, we have to calculate the period integrals 
f~ w(f~'), fbw(ff"). 

L e m m a  4 Let g = ( a ~ ) Nc C Fo(N) with c > O. Set yo = -~, xl = -dyo, x ,  = 

ayo, and let f = ~-']~anq n G S2(Fo(N)), '7 = {0,90} E HI(Xo(N) ,Z) .  Then 

n=l  n 

See [Cre2] p25 for proof. 

Because of the complicated structure of a / ,b / ,  it is very time consuming to 
compute the period integrals directly. To speed up the computations, we consider 
the modular symbol 79 := {0,90} C Hz(Xo(N) ,Z)  C WI(Q) ~ Y where g E 
F0(N). We can write '79 = (a/, bl)% + yg. Since Wf(Q) _1_ Y, the coefficient % 
can be determined by the following equation 

( 0 A / )  
((a:, b/), %)N = ((al, b/), (a/, bl))NC, = _A I 0 Ca" 

Moreover we have 

f~w(f) = f co(f)% + f~ w(f)= (AI, B:)%. J(al,bl) 

Since the modular symbols {O, gO} (g E Fo(g)) generate the homology 
HI ( Xo( N) ,  Z), we can find gl, ...,g2a E Fo(N) such that the matrix 

( ~ ) <(a,, b,), (%,, ,'7..)>N C := (e~,,...,c,~d) = A~ 0 

is invertible. We obtain 

f'v w(f)C-l" (AI, BI) = ,~ ,.--.~,~2 

The matrix f(wg~,...,~,~) w(f) can be computed using the formula of Lemma 4. Set 

~.y b -z ( X l ,  X 2 )  :~-- o.~(f).  ( ( a f ,  f), ('Tg,, "",'Tg2d))N, 
gl ~"" "''t~d ) 

then f~l = - D I X ~  IX1" 



188 X. Wang 

3 . 3  T h e  i n v a r i a n t s  o f  A f  f o r  d = 2 

We assume throughout this section d = 2 and that  fl.f is principally polarized. 

We summerize some results of [Igu] and [Spa] that  we need, and give references 
to suitable texts. 

L e m m a  5 A principally polarized abelian variety of dimension 2 (defined over 
C) is either the Jacobian of a smooth curve of genus 2 or the canonically polarized 
product of two elliptic curves. 

See [LB] p348 for proof. 

Since ~41 is a simple abelian variety, ,41 is the Jacobian of a hyperelliptic curve C. 
The invariants of Jtf  are defined as the invariants of the associated hyperelliptic 
curve. We begin with the definition of invariants of a hyperelliptic curve of genus 

2. 

Let k be a field with char(k) r 2, 

f ( x )  = a6 x6 + a s x  5 + a4x  4 + a3x  3 + a2x  2 + al  x -Jc ao e k[x] 

with a6 # 0 or a5 # 0. If disc(f) # O, then 

C: y~= f(z) 

is a hyperell iptic curve of genus 2 dcfincd ovcr k. Let xl ,  ..., xs be roots of f(x).  
Then an expression of the form 

a~  Z~(~ '  - xj ) (~k  - 5 , ) - . .  

in which every xi appears m times in each product  and which is symmetric 
in xl ,  ..., xs, can be considered as an irrational form of a homogeneous i n t e g r a l  
i n v a r i a n t  of degree m. Write (i j) for ( x i -  xj). Igusa defined in [Igu] four integral 
invariants 

12 := a~ ~5(12)2(34)~(56) ~ 

14 := a~ E~o(12)2(23)2(31)2(45)2(56)~(64) 2 

Is := a 6 E60(12)2(23)2(31)2(45)2(56)2(64)2(14)2(25)2(36) 2 

110 := a~ ~ I ] ,< j ( i j )  2. 

The calculations of their rational forms are elementary but long and tedious. For 
the convienient for the reader we give the explicit rational forms, which might be 
useful to those wishing to write their own programs: 
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I2 = 

h =  

16 --.= 

189 

-240aoas + 40alas - 16a~a4 + 6a~ 

48a0a~ + 48a~a6 + 4a~a~ + 1620a~a~ + 36ala~a~ - -  12alaaa~ - 12a~a3a5 + 300a~a4a6 + 
300aoa~a2 + 324aoasa~ -- 504aoa4a~a6 -- 180aoa4a3as -- 180alaaa~a6 + 4ala4a2as -- 
540aoasala6 -- 80a~a~ 

176alasa 2 2 + 64alasa4a22 2 + 1600a~asa4a6 + 1600ala~aoa2 -- 2240a~a~aoa6 - 160aoa~a2 -- 
96a~a~as+60aoa]a~+72ala~a5 -24axa~a~ +2250a~aaa~ - 160a~a4a6 -96a~aoa~ + 
60a~a~a6 2 2a3a 2a2 2 2 2 2 3 3 4 2 2 4 

- 4a~ 3 s+8a2 ~a~-9OOa2ala 6-24a2a 4-36%a 5 - 3 6 a l a  4+ 
424aoa~a]a6 + 492aoa~a2a3as + 20664aga4aga2 + 3060a~a4asa3a5 -- 468aoa4a~aua6 -- 
198aoa4a~a5 - 640aoa4a~a~+ 3472aoa4a~asala6 - 18600aoa4a~a~ -- 876aoa~ala6a3+ 
492ala3a]a4a6 -- 238ala~a2a4a5 + 76axa3a2a~ + 3060ala3aoa~a2 + 1818ala~aoasas -- 
198ala~a2as +26ala3a~a~ - 1860a~a3a2asa6 +330a~a~asa4 +76a~a4aaas - 
876a~aoasa3a5 + 616a~asaxa6 + 2250a~a~a3 - 900a~a~a~ - lO044a~a~a] + 162aoaea~ + 
28ala~a~a~--640a~a]a2a6+26a~a~aaas- 1860a,a4aoa~aa+616ala~aoa5 - 
18600aga~asau +59940a~asa~aa +330aoa~a~a2 - l19880a~a~ - 320a~a~ 

11o is the well-known discriminant of f ( x )  and can be computed with the following 
command in MAPLE 

d i s c r i m ( a 6 * x A 6 + a 5 * x A 5 + a 4 * x A 4 + a 3 * x A 3 + a 2 * x A 2 + a l  * x  +aO,  x); 

The quotient of two integral invariants of the same degree is called the abso lu t e  
invar ian t .  Since Ilo r 0, we can define three absolute invariants 

ia I~ i2 I a h  ia I~Is 
: :  11--~' : =  11~-'  : =  I l o '  (3) 

The invariants it, i2, i3 are very important owing to the following lemma: 

L e m m a  6 Let  C, C'  be two hyperelliptie curves o f  genus 2. I f  I~ 7 t O, I~ 7t O, 

then C and C ~ are i somorphic  over C i f  and only i f  

il = i'1, i2 = it, ia = i~. 

see [Igu] p632 for proof. 

On the other hand, the invariants of G can also be determined by Theta functions. 
We introduce now the definition of Theta functions. 

In general, let Hd be the d-dimensional Siegel half space, it consists of symmetric 
d x d complex matrix 9t whose imaginary part is positive definite. We define the 
Theta function with characteristics a, b E �89 a as 

0[;]:CdxH  , C 
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# 

n E Z  e 

The Theta  function has the following properties (cf. [Mum] Chap. II): 

#[~] defines a holomorphic function on C d • Ha. 1. 

1 d 7 / J .  2 0 ,b+q r~ ( z , n )  = [;] (z,n),  Va, b E p,q E 

3. O [ : ]  ( -z , l~)  = e4=i:'st7 [ : ]  (z,~l). If 4atb ~0 (mod 2), then 17[:1 is an odd 
function. 

L - - j  L - - j  

Now let d = 2 and fl �9 H2. Because of the quasi-periodicity of # [~], the Theta 

functions can be parametrized by the characteristics a, b �9 {�89 0} 2. Therefore we 
have 16 Theta functions ( 6 of them are odd and 10 functions are even). Define 
the Theta  null-value of a Theta function as 

o[;] 
Because 6 Theta functions are odd, their Theta null-values vanish. The Theta 
null-values of the 10 even functions are (we use the notations of [Spa]): 

[00] 
v 0 : : #  0 0 

o] 
Vl : : ~  0 

i111 
[oo] 

v43 :=  0 0 

[i} 

7125 : =  ~ 1 

v4~ := 0 0 

Let fie be the period matrix of the Jacobi variety Jc of C. We define four modular 
forms of weight 4,10,12,16: 

= 8 8 8 8 8 h4 iso ~ + is~ + is8 + is83 + is2. + v3 + ~4, + ~43 + is45 + is~ 

h l 0  = (ISOV2,1)43ISS~),IS25IS45IS3IS4,IS23) 2 

h , 2  ---- (isO~lis2,t~23T125is4,) 4 + (isois21v23is25is3is43) 4 + (is,~J23u25~)3is4,is45) 4 + (Vl?12,is25is3is43is45) 4 + 

(ISO'Vlis21IS4,IS43IS45) 4 + ('O'U23IS3U4,~)43IS45) 4 + (? )Ois l '21~)3 is4 , i sS)  4 + ( 'O ' ,V23is3 'O43is5)  4 + 

(islis23is25is41I)43isS) 4 -t- (is21iJ25"3is4,is43isS) 4 "4- (V0is2,is23is251)45175) 4 + (isOislis25is31145VS) 4 "t- 

(V21IS23ISSV41IS45ISS) 4 + (Vlis21IS23IS43IS45ISS) 4 + (ISOIS25IS41IS43V45ISS) 4 

h 1 6 .  = 4 4 4  4 4 8 4 4 8 4  4 4 4 4 4 4 4 4 4 8 4 4 4 4  4 4 4 8 v is v is V is "O - 4 - ' o ' o  v is "v is is .-~.is v is v v v 'v is0islis21is23is25is3is41-I- 0 1 21 23 25 3 43 0 21 23 25 3 41 43 O 1 21 23 25 41 43 "~- 
8 4 4  4 4 4  4 4 8  4 4 4 4  4 8 4 4  4 4 4  4 4 4  8 4 4 4  4 is i s i s  is is U ~ -~-V U U is i s i s  tJ ISOIS,IS23IS25U3IS4, U45"~-IS, IS2,U23IS25IS3IS4,IS45 JF 0 I 2 ,  25 3 43 45 1 2,  23 25 3 43 45  "~- 
4 4 4  8 4 4 4 4 4 4  8 4 4 4 4 8 4  4 4  4 4 4 8  4 4 4  4 4 

isOis, ~2,IS23IS41U43IS45 "~ isOisl V21IS25U41IS43IS45 "4- isO is, U23~3IS4'IS43IS45 "~ isOis21is23is3 V41 ~43is45 "~ 
4 4  8 4 4  4 4 4 4 4  8 4  4 4 4 4  4 4 8  4 4 4 4  4 4 4  8 4 

isOis23is25is3is41is431145 -~ isOis, is21 TJ3IS4, U43IS45 -~- 11, I)21U25IS3IS4, V43IS45 "4- T)I is23is25V37141is43~)45 "~ 
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4 4 4  4 4 4 8 4 4  4 4 4 4  8 4 4 4  8 4 4 4 4 4 4  8 4 4  4 
~OUI ?121U23V25~41V45 ~ rOY21U231125713~437)45 "~ 'VOUI V211~23~3~411~5 -~ UOUIV21?}25t~3U41~ 5 -~ 

4 4 8  4 4 4  4 4 4 4  8 4 4  4 8 4 4  4 4 4 4 4 8  4 4 4 4 4 
~0111~21U23~3~43U5 "4- ~oVlV23~25713~43~5  "3 u VO~I V231/25V41U43V 5 Jc Vl  V21V23~25?J41U43~5 "~- 

8 4  4 4 4  4 4 8 4  4 4 4  4 4 4 8 4 4 4  4 4 4 4  4 8 4  4 4 
VO~J21~25U3~J41V43U5 n u Vl V21V25V3?)41U43V5 -~- V21?}23?}251~3~J41~43V5 ~ VI~23V25V3U411~437) 5 -4- 

4 4 4  4 8  4 4 4 4 4  4 4  8 4 4 8 4  4 4 4 4 4 4 8  4 4 4  4 
VO1)l V23 V3 V 41V 43 V 5 -~- ?)O ?]l V21V3 V 41?) 43 V 5 -~ UOVl ~21v23?J25v45~5 --~ vO?)l u21u257)3~45715 --J- 

4 4 8  4 4 4  4 4 4  4 4 8 4  4 8 4  4 4 4  4 4 S 4 4 4 4  4 4 
v01}l v23?)25~3"v451)5 -~- UOU21U23V25V3U451) 5 -~- t~oV21V231)3U41U45~ 5 "4- ~ lV21  ?)23V37}411~45715 -~- 

4 4 8 4 4  4 4 4 4  4 4 8 4 4 4 4 4  4 8  4 4 8 4 4  4 4 4 4 
?921U23U25V3V41V45V5 "4- V07) 21V23?)25?J41V45U5 -~ ~07) 1 ?/25U3?)41U45VS -~ VOVl?I21?)23V43U45V5 -~ 

4 4  4 8 4 4 4 4 4  4 8 4  4 4 4 8 4  4 4 4 4 4 8  4 4 4 4 4 
~lU21?J23V25?J43~45V5 "4- Vl V21 ?J23~)37)43'045~15 -~ ~07)i U~SV41U431}451}5 "~ UOU21V25U41~431~45~5 "4- 

4 8  4 4 4 4 4 4 4  8 4  4 4 4 4 4  4 8 4 4 4 4 4  4 4 8 4 4 
u072237)257)41 ?)437)45v 5 ~ - v f j v 2 5 v 3 v 4 1 v 4 3 u 4 5 v 5  -J~ ?)lV21?)23?)41?)43?)45v 5 -~ 1)0v211)~3~251)43v45u 5 -~ 

4 4  4 4 8  4 4 4 4 4 4  8 4 4 4 4 4  4 4  8 4 4 4 4  4 4  8 4 
?)OUIV25~3V43U45715 --~ ~21V23~3V41U43U45U5 -J- ~)07)i V21?)3tI411]45V5 "4- ~OUIV23U3V43~4~I) 5 "4- 

4 4  4 4 4 8 4 4 4 4 4  4 8 4 4 4 4  4 4 4 8 4 4  4 4 4 4  8 
"JIV23U25~41?143U45715 "~ U21?J25t13~41~43~45V5 Jc UO~IV21~123V25~417)5 ~ ~OU21~J23U25~3~3431}5 -~- 

4 4  4 4 4  4 8 4 4  4 4 4  4 8 4 4 4  4 4 4 8 4 4  4 4  4 4 8 
~ i  ~231)25u3~141v45v5 -~- u i u 2 1 u 2 5 u 3 u 4 3 u 4 5 u  5 -~ UO?llU21U41U43U45~ 5 --~ VOU23~3~41V43U45~ 5 

We obtain by using the tables in [Boll p483 that  

h~2 h~2h4 h~2has 
il = Z-d-, i2 - i3 - 

hlo h~o ' h~o 
(4) 

We have shown how to compute the period matr ix of .A]. Hence we can com- 
pute the Theta  null-values vo, vl, v3, vs, w.1, v23, v25, v41, v43, v4s and the absolute 
invariants il ,  i2, i3 of the abelian variety A f  explicitly. The formdla (3)=(4) gives 
then a system of non-linear equations of the coefficients a0, a i , . . . ,  as E k of the 
associated hyperelliptic curve C. 

In general, this system of equations is extremely complicated. But if the hyper- 
elliptic curve C has a rational point in k (i.e., C(k)  ~ O) and char(k)  # 5, then 
the equation of the curve can be written as 

C : y2 = x5 _[_ a3z3 + a2z2 _{_ al = + ao (5) 

with a0, a l ,a2,  a3 E k (cf. [Cas] p41). By using the Buchberger algorithm and 
Grhbner base (cf. [Map] p473) we have solved this system of equations in several 
special cases. 

Mestre gives a criterion over which field the hyperelliptic curve C is defined. 

Assume I~ # 0, set 

8 20i2 + il 
x . - -  

225 il 

16 -600i3 + il + 80i2 
y : =  

3375 il 

-64 -10800000il - 9i~ - 700i2il + 3600i3il + 12400i~ - 48000i2ia 
z .-- 253125 i~ 

Define 
L : ~ C,j=,yj = 0 (6) 

l<ij<3 
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the equation of a conic L where Cij is the coefficient of the matrix 

x § 6y 6x 2 + 2y 2z 

6x 2 + 2y 2z 9x a § 4xy § 6y 2 

2z 9x 3 § 2 4 7  2 6 x 2 y §  ~ §  

X. Wang 

then the hyperelliptic curve C is defined over a number field k if L(k)  ~ 0 (cf. 
[Mes] p332). 

3.4 Example and table 

E x a m p l e :  Let N -- 63, ~ = x/3. f = ~a , ,q"  E S~(F0(N)) with the Fourier 
coefficients 

p ]2  3 5 7 11 13 17 19 23 29 31 37 41 43 47 
[ ( 0 - 2 ~  1 2~ 2 2 ( - 4 - 2 (  0 - 4  2 6 ~ - 4  4(  ap 

(~  0 )  Therefore is a newform and K!  = Q(x/~). Then we get the matrix Af  = 2 " 

,,4i is principally polarized. Denote the period matrix ~f  by ( :  ~ ) ,  then 

a = -0.726444449092817497150683269275884206033172138425914230926... 
+i.0.8975587979155272148783679001661398612584959389268652141... 

b = -0.363222224546408748549075421056981342130921787228973127995... 
+i.0.4487793989577636075129096314970259080694458701746841170... 

c = -0.363222224546408748622022550010167329325823160872528743256... 
+i.0.4487793989577636074236725001128196057775634360857722684... 

d =  0.2735555509071825027973420774111928116965766608432242840918... 
§ 

The absolute invariants of ,Af are 

il = 539117.25558794481992208602 . . . . .  

i2 

i3 

23375 

3 '73 

3.373103 
: --22816.0014577257878514160438 . . . . .  

2 .73 

5.372881 
= --2197.68403790085919058405 . . . .  23.73 



2-dimensional simple factors of Jo(N) 

T h e  e q u a t i o n  ( 3 ) = ( 4 )  of t he  hypere l l ip t ic  curve  

C : y2 = x 5 + azxZ + a2x2 + a lx  + ao 

has  a solut ion:  
a3 = --290t  2 

a2 = 15660t 3 

al  = 1541385t 4 
ao = 4475628t s 
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wi th  t he  d i sc r i rn inan t  disc(C) = 2323652~176 Taking  t = 1/5: 

y2 = x~ _ 58z3 3132 ~ 308277 4475628 

+ -y -x + 1--iT -x + 312----g- 

S u b s t i t u t i n g  x --+ x - 328/5  we ob ta in  a hypere l l ip t ic  curve  

C : y2 = zs _ 328x 4 + 43022x 3 _ 2820596x2 + 92430809x - 1211186860 

w i t h  the  d i s c r i m i nan t  disc(C) = 232367 s. 

By us ing  a p r o g r a m e  developed by Liu (cf. [Liu]) we o b t a i n  a m in ima l  e q u a t i o n  
of C over Z[1/2] :  

C : y2 = x 5 _ 288x4 + 33166xz _ 1908900x2 + 54910233x - 631541988 

T h e  p r i m e  to 2 pa r t  of t he  conduc to r  of C is 3087 = 327 a. 

T a b l e :  2 -d imens iona l  pr inc ipa l ly  polar ized factors  of Jo(N) for N < 200. 

W e  exp la in  t he  n o t a t i o n s  in the  following table .  In t he  first co lumn  we give the  
level N ,  in  t he  second we give D wi th  K / =  Q ( x / ~ ) ,  in  the  t h i r d  and  f o u r t h  are 
t h e  in te r sec t ion  n u m b e r s  el, e2 a n d  the  abso lu te  inva r i an t s  i l ,  i2, i3. 

N D ex e2 il  i2 i3 

-2311s13 s -11a1334092 -3.112132713149 
23 5 I I 

236 2.236 23236 
235571o -5376103.593 -527413.1987.3229 

29 2 I I 
29 s 2.295 2a29 s 

23510415 5 6 4 1 3 2 8 1 2  5441294151689 
31 5 1 1 314 2.314 23314 

23375 --3.373103 -5.372881 
63 3 2 2 3-73 2 .73 2373 

2319a43 ~ --193433101.139 11.192432949961 
65 3 2 2 

3755132 2.3s5s132 23365Sl~ 2 
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N D el e2 il 

65 2 2 2 - 
133 

_23715 
67 5 2 2 

672 
-23475 

73 5 2 2 
73 ~ 

23735 
87 5 2 2 

34292 
-23235 

93 5 4 4 34312 
-23475 

103 5 2 2 
1032 

23735 
107 5 2 2 

1072 
2356 

i15 5 4 4 
232 

2355595 
117 3 4 4 

37133 
2375535 

117 2 8 8 

{2 i3 

-255.3135 139.3133701 7-313259104229 
5.133 2352133 

-372713 -712193.659 
2.672 23672 

-473612 -11.47237633 

2.73 ~ 23732 
733 31.67.732181 

2.34292 2334292 
-72192233 -23237.5437 
2.34312 2333312 
-473612 -11.47214593 
2.1032 231032 

733 53.7322909 
2.1072 231072 
52112 53.3209 
2.232 23232 

547.593 5343.592421 
2. 32133 2333133 

7353334537 5.7219.53267.2311 

125 5 2 2 

125 5 10 10 

133 5 4 4 

133 5 4 4 

135 13 6 6 

147 2 4 4 

161 5 4 4 

167 5 2 2 

175 5 6 6 

177 5 4 4 

177 5 4 4 

35132 2. 35132 233~132 
54 52313 

2354 
2 23 
54 52313 

2354 
2 23 

235541335 5 3 4 1 3 3 3  --52389.4133257139 
74192 2.74192 237419 ~ 

-2323 s -52172233 -I122321307 
72192 2.7219 ~ 2372192 

2333115 3511341  3211234613 
54 2" 54 2354 

23295 13.29361 19.292151 
33 2" 33 23 "3 

--231915 - - 1 3 4 1 9 1 3  --11-1912600949 
74232 2.7423 ~ 2374232 

2355135 5 3 1 3 3 8 9 2  3.5213~294787 
1672 2-1672 231672 

231135 1121133 17-19.107-1132 
5474 2-5274 235274 

--23235 --54233 23273-587 
32592 2-32592 23.3.592 

-2371s735 -114713733 -712732227.797077 
34512592 2.345s59 ~ 23345s~92 
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N D el e2 il i2 i3 

-2s295 -29293 --23292281 
188 5 6 6 

472 472 47 ~ 
232715 131. 2713 2712133187 

189 3 6 6 3773 2 �9 3273 233373 
-2347 ~ _473972 -472508799 

191 5 2 2 
1912 2 - 1912 231912 

Remarks :  

1. There  are to ta l ly  93 2-dimensional factors of Jo(N) for N < 200. About  30 
percent  of t h e m  are principally polarized. 

2. We computed  also the equat ion (6) of the conic L for each factor in the  above 
table and noted tha t  L(Q) r (~. This  means that  the  associated hyperel l ip t ic  
curves are all defined over Q. In the major  part of the cases we could only find a 
solut ion of the hyperel l ipt ic  curve (5) over a number  field (of degree 2, 3 or 6). In 
three favorable cases we were even able to determine the  curve equat ions over Z. 

N 

63 

117 

189 

Minimal  equat ion  of the curve C over Z[1/2] 
y2 = x 5 _ 288x 4 + 33166x3 _ 1908900x 2 + 54910233x - 631541988 
pr ime to 2 par t  of conductor:  3087 = 3273 

y~ = 3x s + 150x 4 + 3250x s + 39000x 2 + 264147x + 799370 
pr ime to 2 part  of conductor:  1779573 = 34133 
y2 = 3x5 + 96x 4 + 1498x 3 + 13356x 2 + 64827x + 132300 
pr ime to 2 part  of conductor:  83349 = 3573 

Cremona  invest igated in [Crel] certain simple factors of the Jacobian  var ie ty  
Jo(N) with ex t ra  twist by the character  asssociated to a quadra t ic  number  field. 
There  are  12 explici t  examples  for N < 300 of 2-dimensional factors . A / o f  Jo(N) 
with ex t ra  twist.  In most cases these A]  split as a product  of 2 el l iptic curves 
over a quadra t ic  number  field. For example  he showed the  Jacobian varieties of 
above 3 curves are isogenous to E x E '  over Q(v/-L-3) where E is an ell iptic curve 
over Q(v/-L3) and E '  is the conjugate curve. 

3. We computed  even the spli t t ing of Jo(N) and all 2-dimensional factors of Jo(N) 
for N < 2000. There  are total ly  2850 2-dimensional factors of Jo(N). 

4. We know only tha t  the hyperell ipt ic  curve C and the abel ian var ie ty  A I are 
both  defined over Q and A l -~ Jac(C) over C. We expect  that  A! would be  

isogenous to Jac(C) over Q. 
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