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2-dimensional simple factors of Jy(V)

Xiangdong Wang

In this paper we investigate abelian variety Ay which is derived from a
newform f € S2(I'o(V)) an is Q-simple factors of Jac(Xo(N)). We will de-
velop algorithms for computing the period matrix of Af and for determing
when Ay is principally polarized. If A; is 2-dimensional principally polar-
ized, we give an algorithm for computing the associated hyperelliptic curve
C with Jac(C) = Ay.
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1 Introduction

For a positive integer N, let S;(V) denote the space of cusp forms of weight 2
for the group Lo(N). Let f = 22, a.q™ € S3(N) be a newform and Oy be the
the ring generated over Z by the complex numbers a, for all n. Then Oy is an
order in a totally real algebraic number field K of finite degree d, say. Shimura
defined in [Shi] a simple abelian variety A; of dimension d, along with an action
by Oy, both defined over Q. Ay is a simple factor of the Jacobian variety Jo(N)
of the modular curve Xo(N), and is dual to a subvariety of Jo(V). This factor
Ay is very important due to the generalized Shimura-Taniyama conjecture which
asserts that any abelian variety A with real multiplication, both defined over Q,
is isogenous to a factor of Jo(N) for a suitable V.

We investigate in this paper the explicit structure of Ay, develop an algorithm for
computing the period matrix of A; and for determining when Ay is principally
polarized. If A; is a two dimensional principally polarized abelian variety, we
give also an algorithm to determine the associated hyperelliptic curve C with

Jac(C) =2 Ay.

We start our treatment in §2 by showing that A; can be obtained as a complex
torus C?/A;. Then we derive a formula for the the period matrix of A; using
certain intersection numbers ey, ..., ;. We will see that Ay is principally polarized
ifel == €4,
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In §3 we derive firstly an explicit formula for computing the intersection numbers
on Hy(Xo(N),Z). Then we show how to compute the period matrix of A; ex-
plicitly. If A; is two dimensional principally polarized, we give also an algorithm
for computing the invariants of A; and the associated hyperelliptic curve C' with
Jac(C) = Ay. Our algorithms generalize some results of [Cre2] on modular ellip-
tic curves. To illustrate the method we also give some examples and tables at the

end of §3.

I would like to thank Prof. G. Frey for drawing my attention to the problem of
this article and G. Riick and Q.-V. Pham for useful discussions.

2 The abelian variety A;

We summarize firstly some results of [Shi].

Let N > 2 be a integer, g be the genus of the modular curve Xy(N); we con-
sider the structure of Xo(N) as a real 2-manifold whose first homology group
Hi(Xoe(N),Z) has rank 2g. Let f(2) be a cusp form of weight 2 for ['o(N), and
let w(f) = 2rif(2)dz = f(z)iqi be the associated differential. Then w induces a
holomorphic 1-form on Xg(N), which we will also call w, and the set of such w
forms a C-vector space of dimension g.

Let f = Y anq® € Sa(Lo(N)) be a newform, K; be the subfield of C generated
over by the complex numbers a,, for all n, I5 be the set of all isomorphisms of K;
into C, d := {1y, {f°*, ..., f?} (0i € If) be the complete set of newforms conjugate
to f over Q. Shimura showed in [Shi] that there exist an abelian variety Ay
rational over Q with the properties: A; is a simple factor of Jo(N), dim(Ay) = d
and the differential 1-forms Q'(A;) = 5,7, Cw(f7).

Set £ = (f°,...,f°¢)" and w(f) = (w(f),...,w(f°¢))" , then the image of
H,(Xo(N),Z) under the map

Hy(Xo(N),Z) — C*
e [[wlf) = (fw(F), e [l F)
is a free Z-module of rank 2d, in other words it is a lattice Ay in C%. The map
P P
4] aa\\i
P ([ wlf™),e [ 0l

is a morphism of Xo(N) into C?/A;, where 0 is a given point of Xo(N). Shimura
showed that A; is isomorphic to C?/A; and Ay is dual to a subvariety of Jo(N).

We recall now some results of [Hid].
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Let H be the upper half plane. Denote by H* = HUQU {co} the extended upper
half plane, obtained by including the Q-rational cusps Q U {oo}. The quotient
space Xo(N)(C) = I'e(N)\ H* may be given the structure of a compact Riemann
surface. By utilizing the well-known identity for the smooth compactification
Xo(N) of ['o{N)\ H and Poincaré duality we obtain a non-canonical isomorphism

Hy(Xo(N),Z) = H'(Xo(N),Z) = H)(To(N)\ H,Z) = H,(T'o(N), Z)

where H)(T'o(N),Z) is the cuspidal cohomology of I'o(N). Hida defined in [Hid]
a pairing (-, )~ on H}(I'o(N),Z) which comes from the cup product on the coho-
mology. This pairing corresponds to the intersection numbers on Hy(Xo(N),Z)
which is a non-singular skew-symmetric bilinear form on H;(Xo(N), Z).

Define a subspace S(f) of Sy(I'o(N)) by
S(f) =3 Cf7 C S3(To(N))

g€ly

and let W;(R) be the isomorphic image of S(f) in Hy([o(N),R) under the
Eichler-Shimura isomorphism, dimg(W;(R)) = 2d. Put L := H}(I'o(N),Z) and
Ly :=W;(R)NL. Then Ly is a lattice in W;(R) of rank 2d and the Q-linear span
Wi(Q) of Ly coincides with W(R)NH, (Fo(N), Q). The binear form (-, -) is non-
degenerate on W;(Q) and (Ly, L)y C Z if N > 2. Due to a well-known result
in linear algebra we can obtain a symplectic base {a;,b;} = {ai, ..., a4,b1, ..., ba}

of L; with
0 A
((as by} (g, by)hn = (—A, ()j)

with Ay = , where eq|e;|- - - |eq are positive integers.
€d

Remark: The number e;e; - - - €4 is the so-called cohomologic congrunce number
which coincides with a product of special values of Theta functions of a newform
f (cf. [Hid}).
Let Y be the orthogonal complement of W;(Q) in H,(T'o(N),Q) under (-, }n-.
We obtain

L C Hy('o(N), Q) =W, (Q &Y (1)
Let M; be the projection of L to the first direct summand of (1). Then M; is
also a lattice of Wy(R) and Ly C My C W;(Q). By the definition L; and Mj are
stable under the Hecke operators. Let L} be the dual lattice of Ly under {-,-)x
over Z, namely

Ly ={z e W/(Q)|{z,y}n €Z, Yy € Ly}.
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. . AP0
It can be verified easily that L} = M;. Set (a},b}) := (a,by) 6‘ A=l )
f
Since ((a},b}), (a5, bs))v = ((1) 2), it follows that {a},b}} is a base of L} =
Mf dual to {a!,bf}.

We have seen that A; = C?/A; with Ay = {f,w(f)|c € L}. Because L C
W;(Q)® Y, we can write c = z +y with z € My, y € Y. Since W;(Q) LY, we
have [, w(f) =0 and [ w(f) = [, w(f). This implies that

Ar={[ )]z €M},

Since {a},b}} is a base of Mj, the lattice A; is spanned by the matrix Py :=
(fa; w(f),fb; w(f)). Define two d x d matrices

Ly wl(f7) o fagw(f)
Ag = ( ., w(f)) = : : ,
Joyw(fo4) - fogw(f°?)
fw(fr) - foy ()

Sy w(f4) - Sy, w(F%)

-1
Since (a},b}) = (as, by) (Aof AO_I), we obtain
f

A7l 0 - _
P; = (A4, By) ( ({ A;‘) = (A;AFY, BfATY).
Lemma 1

1. Ay is invertible.

2.0 := A]lB,Afl is symmetric and its imaginary part is positive definite, i.e.,
0, € Hy, the d-dimensional Siegel half space.

In order to prove this lemma, we need Poincaré Duality:
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Lemma 2 For each cycle o € Hi(Xo(N),Z) there ezists a holomorphic differ-
ential ¢ € O (Xp(N)) such that

[ #=t(en), ¥r e Hi(Xo(N),2)

where §(o,7) denotes the intersection number of ¢ and 7. Moreover, if ¥ €
QY Xo(N)) corresponds to 7, then

Sy 818 = 7).
See [GH] p59 for the proof. The following corallary can also be verified easily.

Corollary 1 Let {uy,...,u2,} C Hi{Xo(N),Z) be a base of Hi(Xo(N),Q), A =
(ai;) be a 2g x 2g matriz with a;; := §(u;,u;). Then

fu ¥
/X(N)dw\z/z:(/ ¢,...,/ #)(—A"1) f:
[\] uy uzg uzg,l/)

Proof of Lemma 1: Let uy C Y N L be a Q-base of Y. Then {a;,b;,uy} is a
Q-base of L. Since (ay,by) L uy, we can write

0 A; 0
((ahb/’uy)v(ahbhuY»N = _A/ 0 0 :
g o Uy

By using the above corollary we obtain
_ -1 t -1 t_ -1 t
Lo @70 = ([ 987 0= ([ o8 ([ v = ([ 5[ 9"

If ¢ or ¢ is a linear combination of w(f!),...,w(f¢), then f, #=0or [, ¥ =0.
Therefore we obtain

S ? ¥ = 987, 0= ([ 987 v @)

Let ¢ = (c1,...,¢4) € C? be such that

cAy =Zc‘-/alw(f0-)=0.
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Consider the holomorphic differential form w = ¥ ciw(f%) € Q*(Xo(N)), we have
Ja,w=0. This implies also that [, & =0 and due to the formula (2) we obtain

/ wAo=0.
Xo(N)

Therefore w = 0 and ¢; = --- = ¢4 = 0. This proves the assertion 1.

Moreover, since 22(Xg{N)) = 0, we have w(f™)Aw(f?1) =0for 1 <i,5 < dand
the matrix

(0) = (xy(m w(f7) Aw(f7))
= (fay WEDAT (Jo, WD) = o, w(E)AF (Ju, w(E))f
= A;A7' Bl — BiAT AL
This implies that Q) := A7'B;A}" is symmetric.
We apply again the formula (2) to ¢ = - ciw(f7) = cw(f) and ¢ = ¢ with ¢ # 0:

/. o 1 8= =AM A’

Since %an(N) ¢ Ad >0, Im(Q) is positive definite. _ O

We have seen that Ay is spanned by the matrix
Pr = (AgA7Y, BiATY) = Ai(A7, ) = 7' Ag(eadT eahy).
Set

edf €1
Qf = edﬂl, Df = BdA;l =

Theorem 1 There ezists a base (vy,...,v4) of C* (as a complez vector space)
and a base (A, ..., A2a) of Ay such that the matriz of (A, ..., A2a) with respect to
(v1, ..., va) takes the form (Dy, Q) where Qy is symmetric and Im(Q;) is positive
definite. The matriz Q; is called the period matrix of the abelian variety Ay,

Corollary 2 Ife; = e = - -+ = ey, then Ay is principally polarized.

1
In that case Dy = and Oy = A;le. In next paragraph we will

1
show how to compute the numbers ey, ..., e and the period matrix of Ay explicitly.
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3 Algorithms for computing intersection num-
bers, period matrix and invariants of Ay

3.1 Intersection numbers

We discuss firstly how to compute the intersection numbers.

Let I' = SLy(Z), Exy = {(c,d) € Z|gcd(c,d, N) = 1} the set of all elements of
order N in Z/NZ x Z{/NZ and ~ the relation

(Ae, M) ~ (c,d), A € (Z/NZ)".
Put P}(Z/NZ) := En/ ~. It is obvious that the map
(¢ 5)—ea
induces an identification between T'o(N) \ [ and P*(Z/NZ).
Let W be the co-induced module of Z on I':
W= C’oindFO(N)(Z) 2Z®ryn [ =2 Z (To(N)\T) 2 Z[P(Z/NZ)] = Z¢
where g = [[' : [y(N)]. The operation of I on P*{Z/NZ) (resp. W) is given by

(u,v). <Z 2) := (ua + ve,ub + vd).

By the Shapiro lemma there is a canonical isomorphism

HY(T,W) = HY(To(N), Z).

Let H}(T', W) be the cohomology of I' with compact support, and I', =< T >

where T := (1 1

01 ) We have then a long exact sequence:

. — HYT,W) -5 BT, W) — H'(Too, W) — ---

The cohomology group H}(I', W) can be described as the group of cocycles which
are trivial on ['.:

HYT,W)={¢:T — W|d(ab) = ¢(a).b+ ¢(b),Va,b € T;¢(T) = 0}.

Put S = ((1) Bl ), R=TS= (i —;Jl ) It is well-known that S, R generate the

group [. Since % = R® = (_1 0

. _1>,we have for ¢ € HX(T, W), $(S).(1+5) =
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0 and ¢(R).(1 + R + R?) = 0. Moveover, 0 = &(T) = ¢(R).S + #(S), i.e,
H(R) = —¢(5).S = ¢(S). Therefore

HYT, W)= Ker(1 + S)N Ker(1 + R+ R?).
We define now a bilinear form on W:

Cw: WeW — Z

"
(u,v)w = Zu,-v;
i=1
for u = (uy, ..y up)y v = (v1, ..., v,) € W = Z#, This bilinear form has the following
properties:
L. (-, )w is well-defined and non-degenerate.
2. (+,")w is symmetric.
3. (ur,vr)w = (u,v)w, Vr € I
The composition of the cup product and the pairing (-,-)w gives us a bilinear
form on H{T, W):
() = AT, W) x HA(D, W) < HXO,W @ W) &% HX(D,2) 5 Z
where the cup product of two 1-cocycles ¢, ¢ is defined as a 2-cocycle
(pU¥)(a,b) := ¢(a).b® %(b).
The isomorphism ¢ is given by (cf. [Hab] p278)

(p) = (R, $) ~ 30(5,5) = 5(o(R, B) + (R, R), Vo € HA(T,Z).

Recall that ¢(R) = ¢(S) for ¢ € HY{I', W), we get an explicit formula of (-, -)n
on H{(T', W):

Lemma 3

(8,90 = £((4(5).T, 9w = ($(8), $(5)-Thw)

This is a generalization to arbitrary level N of a formula of [Hab] p278, which
applies only to level N = 1.

The cuspidal cohomology HL(T,W) is defined as the image of H;(L',W) in
HYT,W). For classes ¢, € HY(,W) there exist ¢',¢' € H}(I,W) with
i*(¢') = ¢, *(¢') = ¢. Then the pairing on H,(I', W) which we denote as (-, "}
again is defined by

(b, V)N = (¢ ¢ )N
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3.2 The period matrix of Ay

We have shown that the period matrix of A; is Q; = edA}lBjA;l. In order
to determine the matrices Ay, By, we have to calculate the period integrals

Jao,w(f72); Jo, w(f*).

Lemma 4 Letg = (1\(llc 2) € Io(N) withc > 0. Set yo = ﬁ, z; = —dyp, Ty =

ayo, and let f = T anq™ € Sy(To(N)), 7 = {0,90} € Hy(Xo(N), Z). Then

/Yw(f) = i ‘:l_ﬂe—%rnyg (621rin.t2 _ eZm’nzl).

n=1

See [Cre2] p25 for proof.

Because of the complicated structure of ay, by, it is very time consuming to
compute the period integrals directly. To speed up the computations, we consider
the modular symbol v, := {0,90} € H{(Xo(N),Z) C W;(Q) @ Y where g €
Lo(N). We can write v, = (as,bs)c; + y,. Since W¢(Q) L Y, the coefficient c,
can be determined by the following equation

0 A
((as,bp), v)v = (27, by), (a5, by)Ine, = (—A OI) ¢,
f
Moreover we have
f) = fic, + fl=(A ’B C..
[stw( ) /(a,,b,)w( ) g /ygw( ) ( f !) 9

Since the modular symbols {0,g0} (¢ € [I'o(N)) generate the homology
Hy(Xo(N),Z), we can find g1, ..., 924 € [o(NV) such that the matrix

0 —A7!
C:= (Cy“..,,cg“) = (A;l 0! ) <(af7bf)a (’YQH"'"’Ygzd))N € M2dx2d(Q)

is invertible. We obtain

(4r.B)) = [ w(f)C.
Yoy v Vaza)
The matrix f(,m ’’’’’ o22) w(f) can be computed using the formula of Lemma 4. Set
(X1, Xz) = / w(f) - ((af>bf)7(79”""792:{));/17
(Vo1 1++1Va24)

then Qf = —Dsz_lxl.
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3.3 The invariants of Ay for d =2

We assume throughout this section d = 2 and that A; is principally polarized.

We summerize some results of [Igu] and [Spa] that we need, and give references
to suitable texts.

Lemma 5 A principally polarized abelian variety of dimension 2 (defined over
C) is either the Jacobian of a smooth curve of genus 2 or the canonically polarized
product of two elliptic curves.

See [LB] p348 for proof.

Since Ay is a simple abelian variety, Ay is the Jacobian of a hyperelliptic curve C.
The invariants of A, are defined as the invariants of the associated hyperelliptic
curve. We begin with the definition of invariants of a hyperelliptic curve of genus

2.
Let k be a field with char(k) # 2,
f(z) = aez® + asz® + asz® + a3z’ + ap2* + a1z + ao € kfz]
with ag # 0 or as # 0. If disc(f) # 0, then
C:y* = f(2)

is a hyperelliptic curve of genus 2 defined over k. Let zy, ..., zg be roots of f(z).
Then an expression of the form

ag Y (zi —z;)(z — ) -

in which every z; appears m times in each product and which is symmetric
in i, ..., Ts, can be considered as an irrational form of a homogeneous integral
invariant of degree m. Write (ij) for (z; — z;). Igusa defined in [Igu] four integral
invariants

L= ag 215(12)2(34).2(56)2
Iy := a§ $10(12)%(23)%(31)*(45)*(56)*(64)*
Is := af T60(12)%(23)%(31)*(45)%(56)%(64)*(14)*(25)*(36)*

I = a(lso Hi(j(ij)z'

The calculations of their rational forms are elementary but long and tedious. For
the convienient for the reader we give the explicit rational forms, which might be
useful to those wishing to write their own programs:
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I, = —240apags + 40a,as - 16aa4 + 6a§

Iy = 480004 + 48a2a5 + 402114 + 1620a2 a5 + 36a1¢13a5 - 12a1a3a4 — 12a2a305 + 3000104a6 +

300a0a5a2 + 324apagal — 504agaqazas — 180ayasazas — 180a;azaqsas + 4a;aqazas —

540agasaias — 80a?a?

Is = 176a%a2a + 64alatasa; + 1600a§a5a4a6 + 1600:11(12«10:12 - 2240a§a§a0a6 — 160agatas —

96aadag + 60acadal + 72a;1adas — 24a,ad aﬁ + 2250a1(13a6 - 1600204u6 — 96adapaZ +

60a3adas — 24a%a3as + 8a2ajal — 900a2a as — 24a3al — 36a3a? — 36alaf +

424agaladas + 492apalazazas + 20664akasatas + 3060adasasazas — 468apasaiasas —
198(10(140%05 - 64000(14&%0% + 3472a0a4a2a5a1a5 - 18600aoa4afa§ — 876(1002!11(16(13 -+
492aya3a3a4a6 — 238(11a3a2a4a5 + 76ajazasal + 306001a3a0a6a2 + 1818a;a3agasas —
198a1a3a2a5 + 2601a3a§a5 - 1860a1a3a2a5a6 + 330a%a3asas + 76a2a4a3a5 —
876(120005(1305 + 616a2(15a1a6 + 2250aladas ~ 900a§a§a§ - 1()044a0a6a3 + 162agaga3 +
28ala4a2a5 — 640a2 a,,a;as + 26a1a4a3a5 - 1860a1a4aoa5a3 + 61601a4a0a5 —
18600a2aZasas + 59940adasala; + 330agaZala; — 119880adad — 320aad

Iy is the well-known discriminant of f(z) and can be computed with the following
command in MAPLE

discrim(ab*z A6+ ab*xAS+adxzAd+a3xxA3+a2xzA2+al*z+al,z);

The quotient of two integral invariants of the same degree is called the absolute
invariant. Since I}y # 0, we can define three absolute invariants

5. _BL . B

——, g = ——, 13!
) “2 y 3
110 110 Il()

(3)

il =
The invariants 1,%,,%3 are very important owing to the following lemma:

Lemma 6 Let C, C' be two hyperelliptic curves of genus 2. If I, # 0, I # 0,
then C and C' are isomorphic over C if and only if

: T g __
11 = Uy, b2 = 1y, 13 = 13.

see [Igu] p632 for proof.

On the other hand, the invariants of C can also be determined by Theta functions.
We introduce now the definition of Theta functions.

In general, let H; be the d-dimensional Siegel half space, it consists of symmetric
d x d complex matrix { whose imaginary part is positive definite. We define the
Theta function with characteristics a,b € %Z" as

9[‘;] L CixH; — C
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0 [Z] (2,9) := ) ezp(ni(n + a)'Q(n + a) + 27i(n + a)'(z + b)).
n€Zd
The Theta function has the following properties (cf. [Mum| Chap. II):

1.6 [';] defines a holomorphic function on C¢ x Hy.

2.6 [:i:] (Z,Q) = e21ria‘qo [:] (Z,Q), Va,b € %Zd, p,q€ Zd.

3. 03] (—2,Q) = &9 [3] (2,0). If 4a'b # 0 (mod 2), then 6[;] is an odd
function.

Now let d = 2 and 2 € H,. Because of the quasi-periodicity of 8 [:], the Theta

functions can be parametrized by the characteristics a,b € {3,0}*. Therefore we
have 16 Theta functions ( 6 of them are odd and 10 functions are even). Define
the Theta null-value of a Theta function as

i) ffom,

Because 6 Theta functions are odd, their Theta null-values vanish. The Theta
null-values of the 10 even functions are (we use the notations of [Spal):

00 Ly 0! 00
— . — 2 — 2 —
meog o] meolia] meelfd] el ]
00 11 19
v21:=0[% 0} v23:=9[8 6] v25:=0[6 %]
11 00 01
wmoF] semofs §] mees 6]

Let Q¢ be the period matrix of the Jacobi variety J¢ of C. We define four modular
forms of weight 4,10,12,16:

he = v§+v§ + 05 + 055+ vl + v +vd) +of + vl + o

— 2
hio = (vov21v43vU5v1v25v45V3V41023)

4
V1v23V2503041v45)* + (V1v21V25Vavasvas)t +

VoV1V21v23V25v41)* + (Vov21vaavasvavas)? + (
(vov1v21v3va1v5)? + (vov1v23vavasus)? +
(
(

(
hiz = ( )
(vov1v21va1va3vas)? + (Vov23vava1vaavss)?
( )4 vovz111231!251145!15)4 + (vory vasv3vass)? +
( )¢

4
V1U23V25741043Vs) " + (V21025V3041V4305 .
00025"411143"45"5)

4
Va1U23V3V41V45V5)? + (¥1021V23V43v4505

+ 4+ + +

— y4,4,4 .4 4 8 4 4.8 4 .4 4 4 4 4,4 4 4 4.8 4 4,4,4 .4 4 4 8
hie = vgviv3v33vasV3VL + VgL U3 Va3Va5VaVsa + Vo2 VagUasalay Yas + Yo V21 VaalasVar Vas +

8,44 4 4.4 4 48 4°4°43 4 . 844 4, 44 4 , 44 8.4 44 4
iviviedsubityuly + ol ohdiubidids 4 sfulud i, + olvhddoeduiotl ¢
wiuivipuigdindonds +oduludigondindsnds +udutgsuodideds il ol +
VQU33Va5V3aV41 Vaalss T VgV Va) V3l Vaalys + U1 V5 Va5V ly) Vaalas + V1 V23V2573041 Vaglss +
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vivivg visuisvl vy + vivd vigudsvdvdads + viviviivisviudivi + vivivd viiudud vl +
”é“g”g‘}”ziviv‘ag“g‘{* Ug:f‘:’gsfgszgfgsfg j’ Ug’f"%a”és”éﬂ?avg "; U?"ix V3303504, visvd ;*‘
"21’211;25';3';411;43‘;5 + 21 1;214”2541’34"418"434"5 +4U281U33U25v2"441”42”5 ‘1;"‘} ')23"4‘215":?”51“33"5 +
VgV1Up3V3ly; Vsals + VoUs Uy U3 ly) Ugas + Vg Uy s, Vaaligs sV + gl Vg Va5 U3 Vg Vs +
vgviuhsv3svvdsvd + vivd visvisviuisvd + viug vhudvd visvd + v§ud viivd i visvd +
v31U33V3503v31 V3502 + vvd vigudsvdi visvd + vivivisviod visvd + vivivd visudiudsvd +
v1v31 33055 vaavasvE + vivg vgau§usulsv + vivdudsvd; visudsud + viudivisvd visvisel +
"3'/%3”'35”21 ”23”35”2 + ”3“25”:?”21”23”25"? + ”f”31 ”;3021 1’231’35”; + ”3”31"23”25”23”445"54 +
vguugs U viaviss + v3i v viud vdhudsed + viovg vdud vl + viviuisuiulsediul +
viviaudsud, visvlsvd + v visuiudi viavdsvd + viviug  visudeud vf + vivd visudsvivised +
vivisugsvivdivised + vivd visviudiulsof + vivied vl vdyvdsvd + vivisefud vdgndsef

We obtain by using the tables in [Bol] p483 that

h?z . h?zhf; . h?zhlﬁ
= = 1y = , 13 = 4
B T Y 0T hG, @

U

We have shown how to compute the period matrix of A;. Hence we can com-
pute the Theta null-values wg, vy, vs, vs, Va1, Va3, Va5, Va1, Va3, Va5 and the absolute
invariants i;, 12,13 of the abelian variety A; explicitly. The formula (3)=(4) gives
then a system of non-linear equations of the coefficients ag,a1,...,as € k of the
associated hyperelliptic curve C.

In general, this system of equations is extremely complicated. But if the hyper-
elliptic curve C has a rational point in & (i.e., C(k) # @) and char(k) # 5, then
the equation of the curve can be written as

C: y? = 2%+ a2 + ap2® + 12 + a0 (5)

with ap,a1,a2,a3 € k (cf. [Cas] p4l). By using the Buchberger algorithm and
Grobner base (cf. [Map] p473) we have solved this system of equations in several
special cases.

Mestre gives a criterion over which field the hyperelliptic curve C' is defined.

Assume I # 0, set

_ 8 Wix+i
T225 4
16 —600is + i1 + 80i;
V= 3375 o
=64 —108000005;, — 9i3 — 70043, + 3600iziy + 12400i3 — 48000i,i;
253125 i2 ’
Define
L: Z ngz;yj =0 (6)

1<i,7<3
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the equation of a conic L where C;; is the coeflicient of the matrix

z + 6y 622 + 2y 2z
6% + 2y 2z 9z® + 4zy + 6y° |,
2z 923 + 4zy + 6y* 6z%y + 2y* + 3z2

then the hyperelliptic curve C' is defined over a number field k if L(k) # @ (cf.
[Mes] p332).

3.4 Example and table

Example: Let N = 63, £ = V3. f = Y a.q" € Sy(T'o(N)) with the Fourier
coefficients

p{? 3 5 7 11 13 17 19 23 29 31 37 41 43 47

ap [€ 0 —26 1 26 2 26 -4 -26 0 -4 2 6f —4 4

2
0

a
C

is a newform and K; = Q(+/3). Then we get the matrix Ay = < g) Therefore

b
d)’ then

a= —0.726444449092817497150683269275884206033172138425914230926...
+2 - 0.8975587979155272148783679001661398612584959389268652141...

Ay is principally polarized. Denote the period matrix 3y by (

b= —0.363222224546408748549075421056981342130921787228973127995...
+1 - 0.4487793989577636075129096314970259080694458701746841170...

c= -0.363222224546408748622022550010167329325823160872528743256...
+1 - 0.4487793989577636074236725001128196057775634360857722684...

d = 0.2735555509071825027973420774111928116965766608432242840918...
+1-0.8975587979155272148913171886365119246952324445332522422. ..

The absolute invariants of A, are

. 2337°
1y = 539117.25558794481992208602... = 3.7
- 373103
13 = —22816.0014577257878514160438... = —:—i—%,?al
5.37%881

13 = —2197.68403790085919058405... = T
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The equation (3)=(4) of the hyperelliptic curve
C: le 215+03$3+a222+a1x+a0

has a solution:
as = —290¢?
a; = 156603
a; = 1541385¢*
ap = 44756285

with the discriminant dise(C) = 2323%52078¢2%, Taking t = 1/5:

2 g5 D80 3132, 308277 4475628

y=2 7y T U TR TTTS

Substituting £ — = — 328/5 we obtain a hyperelliptic curve
C : y? =1° — 328z 4 430222° — 28205962 + 92430809z — 1211186860

with the discriminant disc(C) = 2323878,
By using a programe developed by Liu (cf. [Liu]) we obtain a minimal equation
of C over Z{1/2):

C : y® = 2% — 288z* + 331662° — 19089002 + 54910233z — 631541988

The prime to 2 part of the conductor of C is 3087 = 3273,
Table: 2-dimensional principally polarized factors of Jo(N) for N < 200.

We explain the notations in the following table. In the first column we give the

level N, in the second we give D with K; = Q(+/D), in the third and fourth are
the intersection numbers ey, e; and the absolute invariants i;, 1, 3.

N D (3] (5] il iz ia
a3ls 1 1 —2311513% —11313%409? —3-112132713149
236 2.238 23236
w0la |1 1 2355710 -5376103-593  —527%13 . 1987 - 3229
205 2.295 23293
sils 1 1 23510415 554132812 5%41294151689
314 2.314 23314
23378 —3.373%103 —5.37%881
631312 2 3.1 2.73 2373
653 |2 2 23195435  —19%43%101- 139 11 - 192432949961
3755132 23555132 233655132
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N D €1 €9 il i2 i3
6 12 |2 o —265.313% 139 -3133701 7-313259104229
133 5.133 2352133
—23715 -372713 —712193 - 659
67 15 |2 2 672 2.672 23672
—23475 —473%612 —11-47%37633
73 |5 |2 2 _
732 2.732 23732
23738 733 31-67-73%181
8 15 |2 2 34292 2.34292 2334292
—23235 —7%192233 —23237 . 5437
9 15 4 4 34312 2. 34312 9333312
—23475 —473612 —11-47%214593
10315 12 2 1032 2.1032 231032
23735 733 53 - 7322909
075 12 2 1072 2. 1072 231072
2358 52112 53 - 3209
115 4 4 = - =
> 232 2.232 23232
2358595 547 . 593 5343 - 592421
urps 44 37133 2.32133 2333133
urle ls s 2375535 7353334537  5-7%19 -53%67 - 2311
35132 2.35132 2335132
54 52313
34 il ——
1255 (2 2 235 5 5
54 52313
A4 v v oLy
1255 110 10 235 5 57
23554133°% 534133% —52389 - 4133257139
13315 14 4 74192 2.74192 2374192
—2323% —52172233 —1122321307
13315 14 4 72192 2.72192 2372192
2333115 3511341 3211234613
135 {13]/6 6 = 7 5 —s
23295 13- 29361 19 - 292151
14712 [4 4 % 533 3
—231915 ~1341913 —~11-191%600949
161 4 4
6115 74232 2. 74232 2374232
2355135 53133892 352132294787
167 |5 12 2 1672 2. 1672 231672
231135 1121138 17-19-107-113%
17515 16 6 5474 2. 5274 235274
—23235 —54233 23273 - 587
75 4 32592 2. 32592 23.3.592
wtls la 4 -2371573% 119719733 712732227 . 797077
31512592 2 . 3458592 233458592

X. Wang
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N D €1 €y il i2 i3
— 25295 —29993 —23992981
18815 |6 6
472 472 472
39715 5713 2
189 | 3 6 6 2°271 131271 271133187
3773 2.3273 233373
_.93475 473972 42
191 | 5 9 2 2°47 47997 47508799
1912 21912 231912
Remarks:

1. There are totally 93 2-dimensional factors of Jo(N) for N < 200. About 30
percent of them are principally polarized.

2. We computed also the equation (6) of the conic L for each factor in the above
table and noted that L(Q) # @. This means that the associated hyperelliptic
curves are all defined over Q. In the major part of the cases we could only find a
solution of the hyperelliptic curve (5) over a number field (of degree 2, 3 or 6). In
three favorable cases we were even able to determine the curve equations over Z.

N Minimal equation of the curve C over Z[1/2]

63 y? = z° — 288z + 331662° — 1908900x% + 54910233z — 631541988
prime to 2 part of conductor: 3087 = 3273

117 | y? = 32° + 150z* + 32502° + 3900022 + 264147z + 799370

prime to 2 part of conductor: 1779573 = 34133

189 | y? = 32° + 962* + 14982 + 133562 + 64827z + 132300

prime to 2 part of conductor: 83349 = 3573

Cremona investigated in [Crel] certain simple factors of the Jacobian variety
Jo(N) with extra twist by the character asssociated to a quadratic number field.
There are 12 explicit examples for N < 300 of 2-dimensional factors Ay of J5(N)
with extra twist. In most cases these A; split as a product of 2 elliptic curves
over a quadratic number field. For example he showed the Jacobian varieties of
above 3 curves are isogenous to £ x E’ over Q(v/=3) where E is an elliptic curve
over Q(y/—3) and E' is the conjugate curve.

3. We computed even the splitting of Jo(/N) and all 2-dimensional factors of Jo( V)
for N < 2000. There are totally 2850 2-dimensional factors of Jo(V).

4. We know only that the hyperelliptic curve C and the abelian variety A; are
both defined over @ and A; & Jac(C) over C. We expect that Ay would be
isogenous to Jac(C') over Q.
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