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Consider the variational integral J(u) := [ [Vul? + H(det Vu)dz where
o

QCR*andp>n>2 H:(0,00)— [0,00)is a smooth convex function
such that ltilrgx H(t) = co. We approximate .J by a sequence of regularized

functionals Js whose minimizers converge strongly to an J-minimizing
function and prove partial regularity results for Js—minimizers.
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0 Introduction

We study a special class of polyconvex variational integrals which are related to
nonlinear elasticity. Our main purpose is to illustrate some ideas which might
lead to partial regularity of minimizers for stored energies studied in the papers
of John Ball (see [3],{4]). To be precise consider a bounded open set Q in R™
and a real number p > n. Werequire n > 2and p >2 —thecasen=p=2
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has been treated in the paper [6]. Suppose further that we are given a function
up € HYP(Q,R") such that

T < det Vuo(z) < 1/7 a.e. on

for some 7 € (0,1). Then we look at the variational problem

Q (0.1)

J(u) = [ |VulP + H(det Vu) dz
— min in € := {w € H"*(Q,R") : w = ug on 00}

with H : (0,00) — [0,00) of class C?, strictly convex and with the property

lim H () = oo. (0.2)

Integrands of this type occur as stored energy densities for certain models from
nonlinear elasticity (see Ball [3],(2] and Ogden [9]) and from the work of Ball
[3],/4] or Miiller 8] we deduce that problem (0.1) has at least one solution u € C.
Up to now nothing is known about the regularity properties of minimizers « but
the results described below give rise to the following

CONJECTURE: There is an open subset 0y of & whose complement has
vanishing Lebesgue measure such that u € C*(Q) for any 0 < a < 1. Moreover,
zo € Qp if and only if the following conditions hold:

a) xq is a Lebesgue point for Vu
b) det Vu(zp) >0
¢) §IVu— (Vi)g,lP de — 0 asr | 0.

B:(x0)

Here and in the sequel we use the symbol (f)z,. to denote the mean value
F [ dz of the function f.

By (z0)
As a first approach towards this conjecture we consider the case
tlgg H(t)=o0 (0.3)
and replace (0.1) by a sequence of more regular variational problems

Js(v) == /IVU{” + hs(det Vv) dz — min in C (0.4)
Q

where for 0 < 6 < 7
H'(5)(t — 6) + H(6) ,t<3d
hs(t) = H(t) , 06T
H'(1/8)(t—-1/8)+ H(1/8) , t>67!
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is defined for all ¢t € R with linear growth at +o00. (In case that (0.3) does not
hold we just let hs(t) = H(¢) for all ¢ > 4.)

It is easy to show
he(t) < hs(t) if d<e, hs(t)— H(t) as 40 (0.5)

if we define H(t) = oo for ¢t < 0.

THEOREM 1: Problem (0.4) admits a solution us. After passing to a
subsequence we also have

ug —:u in HYP(QR™)  strongly

and u is a solution of (0.1).

We obtained this result in [6] and it is worth remarking that Theorem 1 gives
existence of solutions to our original problem without using the elaborate argu-
ments of Ball or Miiller.

According to Theorem 1 the sequence {us} converges strongly to a solution
of (0.1) and it therefore seems reasonable to analyze the regularity properties of
these functions.

THEOREM 2: There ezists an open subset Qs of Q such that us € C1*(€)
for any 0 < a < 1. We have the estimates

LMQ Q) < min{H(8), H(1/8)} ' J(ug) — 0 as 610

and § < det Vug(z) < 671 on Q.

Unfortunately our integrand
Q) = |QP + he(det @), Q€ R™™™,

does not satisfy the hypotheses which are usually imposed on the data. For
example, Anzellotti — Giaquinta [2] require the integrand to be a strictly con-
vex function but f is only quasiconvex. On the other hand Acerbi — Fusco (1]
discuss integrands of the form |@}? + f(Q) by the way compensating the degen-
eracy caused by |@[?. In the same spirit Evans ~ Gariepy [5] require the second
derivatives of the integrand to grow like |@Q[P~% which is false for our function f.
1t should also be noted that f is not of class C? since hs is only in the space
CM(R). One might therefore ask if some of the difficulties can be avoided by re-
placing hs by a sequence % of smoother functions, for example the second order
Taylor approximation. But in this case hs(det @) behaves in certain directions
like |Q[2", moreover the approximation property (0.5) which is essential for the
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proof of Theorem 1 will in general be violated.

Despite of these difficulties we are going to prove Theorem 2 in the spirit
of Evans — Gariepy where of course the special form of the function ks is very
helpfull. The main step towards partial regularity is an energy decay estimate
which is shown by contradiction. In this step we consider a sequence of scaled
minimizers converging weakly to a solution of a linear elliptic system with con-
stant coeflicients. In section 2 we improve this result to strong convergence which
immediately leads to the desired contradiction.

1 An Energy Decay Estimate

For the rest of this section we fix § € (0,7) and assume that all the hypotheses
of Theorem 2 are satisfied. We write u and A in place of us and hs.

Suppose that we are given Ay € R™*" such that
ag := det Ag € (6,1/6).

Then we can calculate o = (A, §) such that
1 1 -1 -1
det A € 5(@04‘5),5(&0-{-(5 ) C(6,5 )
holds for all A € R"", |A — 4p| < 0.

MAIN LEMMA: There is a constant ¢, = c,(Aq,p, H"(ag)) with the fol-
lowing property: For each t € (0,1) there erists ¢ = (Ao, t,0) such that, for
every ball Br(zy) C Q, the conditions

|(vu)zo,R - AO‘ <o,

E(u, Br(xo)) = ][ Vi = (Va)ay a2 + [Vt — (Vat)sy  di < €2

Br(zo)

imply
E(U, BtR(Z'o)) S C*tQE(’U/, BR(.’L'Q)) .

From this result the statement of Theorem 2 follows in a routine manner:
Let Q := {z € Q:§ < det Vu(z) < 6'}. Minimality of u implies

/ h{det Vu)dz < /\Vuol” + H(det Vug) dz
Q

-0
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and the term on the left is bounded below by the quantity

L9 - Q) min{H(6), H(1/6)}.

Next consider zq € €0} such that
zo is a Lebesgue point for Vu

§ < det Vu(zg) < 671
E(u,Br(z0)) — 0 as r|0.

17

(1.1)

(1.2)
(1.3)

Clearly (1.1)-(1.3) are true for £* — almost all 2o € 2j. If we take Ay =
liﬂ}(Vu)zw ( = Vu(zp)) then iteration of the Main Lemma gives u € C' in a

neighborhood of 4. This shows u € C*(Q;) with
Q1= {zo € O : 70 satisfies (1.1) — (1.3)}

and the proof of Theorem 2 is complete.

The proof of the Main Lemma proceeds in several steps: We fix ¢t € (0,1)
and define ¢, later on. If the lemma were false then we could find a sequence of

balls Bp, (zx) C § such that

|Ak—-A0l§0', Ak = ][Vud:c,

E(u,BRk(zk)) =2 —0 but
E(u, BtRk(mk)) > C,.t2 E(U,ng(xk)).

We let

1
R [u(xk + sz) - (u)zk'}zk — Ry AkZ] , 2 € By,

'uk(z) = o
hence
(Vop)oa =0, (v)or =0, Vu(z) = egl(Vu(zk + Ry2) — Ak),

Fp, IVl dz

6’:2f33k(1k)|vu - Akl2 dr <1,

- 2
Jcallvvk‘p dz = E,cpfgﬂk(zk)|Vu - Al dr < €77,

that is
/[E,lc'z/" VP dz < 1.
By

(1.4)
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After passing to subsequences we can arrange
Ap —: A, det A € [%(G;o + 6), %((l() + 5,1)],
v — v weakly in  H2(B;,R"),
. (1.5)
v, — v strongly in  L2(B;,R"),

e Py — 0 weakly in  LP(B;, R™M).
For the last statement we use (1.4) to deduce
el —: F weakly in  LP(By,R™™).
This implies for any testvector ¥
UF Y dz| = lim ;fgl 2o < P dz|

< hrknsupek 2/p||VkaLz eoll¥ll2my =0
since we assume p > 2. From (1.5) we also deduce

{ exVyy — 0 strongly in  LP(B;,R™") (16)

and almost everywhere on  Bj.

LEMMA 1: The weak limit v satisfies

By (1.7)

{ [ plAPHVo + (p - 2)|A]2(A: Vo)Al : Vo
+H"(det A)(Cof A: Vv)(Cof A: V) dz =0

for all p € C3(B1,R™).

Here Cof A denotes the cofactor matrix of A which by definition satisfies the
equation
Ao (CofA)T =det A 1.

We calculate

%I&

1 1
det (A+ B) —det A= / t (A + sB)ds / Cof(A+ sB): Bds.
0 0

Since A # 0 and H"(det A) > 0 (1.7) is a linear elliptic system with constant
coefficients. This gives v € C®(B1,R") and the estimate (see [7])
][ Vv — (V) |*dz < cg t2 ][ |Vv — (Vo) dz (1.8)
Bg Bl

with ¢, depending only on Ay ,p and C?-norms of H near det 4. We define
c, 1= 2¢p.
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In order to verify (1.7) we rewrite the Euler equation for v in terms of the
scaled functions:

0 = f ps,:l(|svak + A,c|”‘2(evak + Ak) - |Ak’p“2Ak) :Vepdz
By
+ [ et ((det[ex Vg + Ag]) ~ B'(det Ay)) Cof (6, Vg + Ay) : Vipdz
By
=: Iy + I, \pGCé (Bl,Rn)

Clearly
1
I = pet [ [ 1Ak + 5, Vue|P=2 e,V : Vo dsdz
By 0

1
+ plp— et [ [ Ak + sexVug[P~(Ag + sexVug) 1 £ Vi
B0
(Ax + sexVy) : Vodsdz
= I} + 1}
I,i = ].’Jf |Ak|”‘2Vvk Vopdz
By
1
+ p [ ([1Ac + sexVulP~2ds — |AlP~*) Vi : Vi dz
By

0

with
klim I :p/(A|”_2Vv :Vpdz.
B

This will follow as soon we can also show that the second term in I} vanishes as
k — oo. To this purpose fix ¢ > 0 and select M C By such that (recall (1.6))

LM(M) <e, &V, —0 uniformlyon B - M.

Then

1
| [ ([ 1Ak + sexVurlP~2ds — [AxP?) Vg : Vpdz |

B 0
1
< [ |Vul|Veldz  sup | [|Ax + sex VP2 ds — |Ag[P72 |
Bi-M Bi-M ¢
+ [ ¢ 1+ Vul~2) |V [Vl de
M

where here and in the sequel ¢ denotes a constant independent of k.

The quantities involving By — M go to zero as k — oo. For the rest we
observe

f < cHchHLm(Bl)(f[Vvk{dz+sz_2fleklp‘1 dz)
M M M
< Vel pooga (LM (M2 Vil posyy + €82 [ Vo1 dz)
M
< || VeollLoeny (VE + sfez—zlvmp dz +62"’E£"2)
M
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so that limsup f < |Vl pes) (Ve +€).

k—o0
Since ¢ was arbltrary the claim for klim I} follows.
—00

In a similar way we obtain
lim 2= f p(p—2) [AP~4(A : Vo)(A : Vi) dz
B

and it remains to discuss

1
I = [&'f % ' {det A + s{det{Ar +ex Vi) — det Ag]) ds
B 0
-(1(3of(A,c +exVug) : Vo) dz
= f Ek{ f R'(. )ds} (det A + e V] — det Ak)
(Cof(A;:C +&xVg) 1 Vo) dz
= f {fh" dS} (fCOf Ak +r5vak) Vvk d’/‘)
0
(COf(Ak + 5vak) V(,D) dz.

By the same reasoning as for I} we arrive at {see also the calculation in the proof
of Lemma. 2)

klim I, = /h"(det A)(Cof A : Vuv)(Cof A : Vy)dz
B,

and Lemma 1 follows.

By assumption we have
][ (Vu — (Vt)gp ir | + [V — (Vi) ir, [P dz > at’el
Bir, (%x)
so that
IVue — (Vo) + €272 Vg — (Vu)P dz > e t2.
B,
Suppose now that we already know
LEMMA 2: The convergence properties stated in (1.5) can be improved to
Vuy, —= Vv in Lfoc(Bl,R"X")
Ei_z/vak -0 in Lloc(Bl,R"x")

strongly.
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Then the last inequality turns into
][ Vv — (Vo) 2 dz > c,t?.
By
From weak convergence in H%2(B;,R"™) we infer
][ |Vvitdz < liminff |Vug|?dz < 1,
B k—oo J B
hence
7[ Vo — (Vo)2dz > c,ﬁ][ Vo — (Vo) |2 dz
By B

contradicting (1.8) and our choice of c,.

2 Strong Convergence of the Scaled Sequence

It remains to prove Lemma 2. Define

(@) = e.%(| Ak + exQIP — |Ak|P — p|lAklP72 Ak : 64Q)
+e5 2 (h(det[Ag + exQ)) — h(det Ay) — B'(det Ap){det(Ax + 4Q) — det Ay })

for @ € R™™" and observe

I (vg, B,) := /fk(Vvk)dz < I(w) (2.1)

B,
for any w € Hll(‘)”c(Bl,R"), spt (v —w) C By, 7 < 1.

We claim
0 < f(@Q) < MIQP +€7%IQP), Q e R, (2.2)

for some positive constant A independent of k.
Case 1: e|Q| <o Then
77 (lex@ + AklP — |AklP — k@ : A Axl7?) =

1Df1 (|Ac + 5exQP2Q:Q + (p — 2)| A + sexQP4(Q: [Ax + 52xQ])?) (1 — 5) ds
0
< Q)
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and
e 2 (h(det[Ax + £xQ]) — h(det Ay) — I (det Ag){det(Ax + £,Q) — det Ac})
= ;2 (det(Ax + exQ) — det A)°

1

[ h"(det A + s(det[Ax + e,Q] — det Ag)) (1 — s) ds
0

1
< e (sup h){ [ & det(d+ 56,Q) s}’

= 6;2(S‘rlcp R { fl Cof (A + sexQ) : exQds}’
0
< @I

Case 2: &|Q| > o Then

e (| Ak + exQIP — [AklP — exQ : AxlAilP?) =
Ei_zpafl{‘éf +3QPQ:Q+ (2|2 + QP (@: [ +5Q]) - 9)ds
< el QP [ | 4 +5Q P2 ds

<ee QR (1 2 P2 +IQP)

< et QP (17 +1QP)

< el QP (5 PIQP + 1QP?)

=clQPeg

and
;2 (h(det[Ax + xQ)) - ...)
< ep (1 + | det(Ax + £xQ)| + sup |K| | det(Ax + Q) — det Ag|)
R

IA

cegt(1+€2Q|"+ | fl Cof (Ax + 56xQ) - exQds | )
cet (L4 1) = e(e7? + 27IQP)

¢ (0721QP + e 2 (ex Q1P (exlQ))™P)

c(0721Q + 7RI o™ 7)

c(IQI* + e *1QP)

which proves (2.2). Following Evans — Gariepy [5] we define the measures

IA NN

IA

1(Z) = / IVurl? + 22 VuuP dz, Z C By,
z

which are uniformly bounded on account of (1.5). Thus there is a measure p
such that p, — p at least for a subsequence. We fix 0 < r < 1 with the property
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u(8B;) = 0. Let 0 < s < r and choose n € C} (B, [0,1]) satisfying » = 1 on By,
n =0 on By — B,. Next recall that v is smooth so that I7(v) makes sense. From
(2.1) we then deduce

L(v) — I[(v) < I,:(vk+n(v—vk)) - II(v)

(2?2) ¢ [ ([Vue)® +|Vv]* + 22 [[Val? + | VulP]
B.-B,
Vit — vt + Ez"z\VnF’\vk —v|P) dz

which gives

limsup (If(w) — ff(v)) < ¢ (,u(BT - B,)+ / |VU|2) .

k—o0
Br—B,
Taking the limit s /' r we arrive at

lim sup (I} (vx) — Iz (v)) <0 (2.3)

k—o0

for £'-almost all 7 € (0, 1).

On the other hand we have
I,:(Uk) - I;(?)) =: I}C + Hk,

where

I e77 [ 1Ar + e VuglP — | A + & VlP — pl AP %exAi 0 (Vg — Vo) da

Il

e’ Bf [ A + exVurlP — | A + ex Vol
Dl Ap + e VOP2 Ay + £6VY) : x(Vo — Vo) do
+e5? [ p(|Ax + e Vo2 (Ag + ex V) — [Ax P72 Ax) @ ex(Vg — Vo) dz
=: I, i IV,

1
Hy =¢;° [ [ L) A+ Vo + see(Vi— Vo) [P (1 - s)ds da
B 0

1
>p [ [| A+ eV +sep(Vue = Vo) P72 (1 - 5) ds|Vug — Vo|* dz.

B, 0
Using
1
[ et 58P 0= 9)ds > co)(ap + 177
0
we see
Iy > c(p) [ (JAx + ex Vol + e 2|V, — Vo ~2) [V, — Vol da

B,
>clp) f(1+ 52’“2|Vvk — VP~ |V, — Vol dr

Br
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being valid for large enough k. Here again the local boundedness of Vv enters
in an essential way. Similar to the discussion of the quantity I} in section 1 we
can prove
lim IV]C =0
k—o0
Finally we have (using convexity of h)
I, = 5;2 f h(det[Ak + evak}) - h(det[Ak + EkV’U])

B,
—h'(det Ag)(det[Ag + €, Vi) — det[Ay + £, Vo)) dx

> &2 f (W (det[Ax + e, Vo)) — B (det A])
(det[Ak + 5 Vog] — det[Ag + £, V]) da.

Writing
h’(det[Ak + EkV’U]) - h’(det Ak) =

1
[ B"(det Ay + s{det(Ax + exVv) — det Ax}) ds {det(Ax + £, Vv) — det 4z}
0

and observing

1
det(Ag +£xVv) — det Ay = [ Cof (Ax + sexVv) : exVuds
b

det(Ag + e, Vug) — det(Ag + £, Vo) =

1
J Cof (Ak + €4 Vv + sei(Vug — V) : ex(Vug — V) ds
0

we get

1 1
> [ ([JR"(...)ds){ [ Cof (Ax + s&xVv) : Vuds)
B 0 0
1
(f Cof( Ay + ex Vv + sex (Vg — V) : (Vo — V) ds) dr.
0

We claim that the right hand side vanishes as & — oo. To this purpose we
consider the case n > 3 (n = 2 follows by simplification) and observe

1
/ h'(...)ds "=% h"(det A)  uniformly on B,
0
and (using v € C*(B,))

/ Cof( A, + sexVv) : Vu ds k=% CofA: Vu uniformly on B,.

We therefore have to show

// Cof (Ax + ex Vv + sex (Vv — Vo)) : (Vg — Vo) dsdz 2% 0.

B, 0
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To this purpose we choose M C B, such that
LMM) <e, eV — V) *2%0 uniformly on B, — M.

Clearly

1
/ / Cof (Ax + €4V + sex(Vvr — Vo)) : (Vg — Vo) ds dz =5 0.
B,.oM D

Then, recalling (1.5), (1.6)

1

e - (Vg — Vo) ds dz'

Mo

< [ e+ e VPN (| Ve + [ Vo) dz
M

C{f|vvk|+f6 1|Vvk|"}
M

e(en (v >1/2||w||)+c(ek Hetoup)

IN

IA

(\/_+cs“ T A))ki’fo.

Here we have used the interpolation inequality

~ . 1 A
IVoelln < [IVorlly [Voelly™  with —=

Collecting the various estimates we end up with

lim sup (I} (vx) — Iz (v)) >
k—oo

c limsup /IVvk ~ V|2 + 272V, — VolP dz
k—00

Br
for £'-almost all 0 < r < 1 which together with (2.3) completes the proof of
Lemma 2 and hence the proof of Theorem 2.

3 Remarks

Theorems 1 and 2 easily extend to more general functionals of the type

= /f(Vu) + hs(det Vu) dz

with f of growth order p in Vu and being strictly convex. For example we may

take ‘

1(Q) = (45, Q. Q)™
with constant coefficients satisfying the Legendre — Hadamard condition. We
leave the details to the reader.
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