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Consider the variational integral J(u) := f IVul p + H(det  Vu) dx where 
f~ 

f~ C R n and p > n > 2. H : (0, ee) -~ [0, ec) is a smooth convex function 
such that  lim H(t) = ec. We approximate J by a sequence of regularized 

t.[0 
functionals J~ whose minimizers converge strongly to an J -minimizing 
function and prove part ia l  regularity results for J~-minimizers. 

AMS Classification: 73 C 50, 49 N 60 
Key Words: part ial  regularity, nonlinear elasticity 

0 Introduction 

We study a special class of polyconvex variational integrals which are related to 
nonlinear elasticity. Our main purpose is to illustrate some ideas which might 
lead to part ia l  regularity of minimizers for stored energies studied in the papers 
of John Ball (see [3],[4]). To be precise consider a bounded open set ~ in R n 
and a real number p _> n. We requiren_> 2 a n d p >  2 - - t h e c a s e n = p = 2  
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has been treated in the paper [6]. 
u0 E HI'P(~, R ~) such that  

7 < d e t V u 0 ( x ) <  1/T a.e. onf~ 

for some ~- C (0, 1). Then we look at the variational problem 

J(u) := f tVul p + g ( d e t  Vu) dx 
(0.1) 

rain in C := {w E Hl'P(gt, R ~ ) : w  = u0 on 0~} 

with H : (0, ~ )  ~ [0, oc) of class C 2, strictly convex and with the property 

lira H(t)  = oc. (0.2) 
t+0 

Integrands of this type occur as stored energy densities for certain models from 
nonlinear elasticity (see Ball [3],[2] and Ogden [9]) and from the work of Ball 
[3],[4] or Miiller [8] we deduce that  problem (0.1) has at least one solution u C C. 
Up to now nothing is known about the regularity properties of minimizers u but 
the results described below give rise to the following 

C O N J E C T U R E :  There is an open subset f~o of f~ whose complement has 
vanishing Lebesgue measure such that u E Cl'a(f~o) for any 0 < c~ < 1. Moreover, 
Xo E f~o if and only if the following conditions hold: 

a) Xo is a Lebesgue point for V u  

b) det Vu(x0) > 0 

c) ~c IVu - (vU)~o,rlp dx - - ~  0 as r ~ O. 
Br(xo) 

Here and in the sequel we use the symbol (f)~ox to denote the mean value 
f dx of the function f .  

B~(zo) 

As a first approach towards this conjecture we consider the case 

lira H'(t)  = c~ (0.3) 

and replace (0.1) by a sequence of more regular variational problems 

f [Vvl p + h~(det Vv) dx - -*  min in C (0.4) &(v) :~_ 

f~ 

where for 0 < 5 < ~- 

H ' ( 5 ) ( t - 5 ) + g ( 5 )  , t<_5 

h~(t) := H( t )  , 5 < t < 5  -1 

H ' ( 1 / 5 ) ( t -  1/5) + H(1/5)  , t > 5 -1 

Martin ghchs, Jiirgen Reuling 

Suppose further that we are given a function 
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is defined for all t E IR with linear growth at 4-00. (In case that (0.3) does not 
hold we just let he(t) = H(t)  for all t > 5.) 

It is easy to show 

h~(t) <_ he(t) if 

if we define H(t)  = co for t < 0. 

5 < c ,  he ( t ) - -*H( t )  as 5 5 0  (0.5) 

T H E O R E M  1: Problem (0.4) admits a solution ue. After passing to a 
subsequence we also have 

u~ --~: u in HI'P(f~,R n) strongly 

and u is a solution of (0.1). 

We obtained this result in [6] and it is worth remarking that Theorem 1 gives 
existence of solutions to our original problem without using the elaborate argu- 
ments of Ball or Miiller. 

According to Theorem 1 the sequence {ue} converges strongly to a solution 
of (0.1) and it therefore seems reasonable to analyze the regularity properties of 
these functions. 

T H E O R E M  2: There exists an open subset f~e of Fz such that ua E Cl'~(f~e) 
for  any 0 < c~ < 1. We have the estimates 

Z:'~(f~ - f~) < min{H(5), H(1/5)} - l J (uo)  ~ 0 as 5 J. 0 

and 5 < det Vue(x) < 5 -1 on f~e. 

Unfortunately our integrand 

f ( Q )  := IQI ~ + he(det Q), Q e R ~• 

does not satisfy the hypotheses which are usually imposed on the data. For 
example, Anzellotti - Giaquinta [2] require the integrand to be a strictly con- 
vex function but f is only quasiconvex. On the other hand Acerbi - Fusco [1] 
discuss integrands of the form IQI 2 + f (Q)  by the way compensating the degen- 
eracy caused by IQI p. In the same spirit Evans - Gariepy [5] require the second 
derivatives of the integrand to grow like IQ] p-2 which is false for our function f .  
It should also be noted that f is not of class C 2 since he is only in the space 
CI,I(PQ. One might therefore ask if some of the difficulties can be avoided by re- 
placing he by a sequence he of smoother functions, for example the second order 
Taylor approximation. But in this case he(det Q) behaves in certain directions 
like IQI 2~, moreover the approximation property (0.5) which is essential for the 
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proof of Theorem 1 will in general be violated. 

Despite of these difficulties we are going to prove Theorem 2 in the spirit 
of Evans - Gariepy where of course the special form of the function h~ is very 
helpfull. The main step towards partial regularity is an energy decay estimate 
which is shown by contradiction. In this step we consider a sequence of scaled 
minimizers converging weakly to a solution of a linear elliptic system with con- 
stant coefficients. In section 2 we improve this result to strong convergence which 
immediately leads to the desired contradiction. 

1 A n  E n e r g y  D e c a y  E s t i m a t e  

For the rest of this section we fix 6 E (0, T) and assume that  all the hypotheses 
of Theorem 2 are satisfied. We write u and h in place of ue and he. 

Suppose that  we are given A0 E R ~x~ such that 

ao := det Ao E (6, 1/5). 

Then we can calculate a = a(Ao, 5) such that 

detA~ (ao+5),[(ao+ 

holds for all A E R n• IA - Ao[ <_ a. 

M A I N  L E M M A :  There is a constant c, = c,(Ao,p,H"(ao)) with the foX- 
lowing property: For each t E (0, 1) there exists G = r t , f)  such that, for 
every ball BR(Zo) C f~, the conditions 

I(W)~o,R - Aol _< o, 

I Vu - (Vu)~o,RI 2 + IVu - (Vu)~o,RlPdx < c 2 E(u, BR(xo)) :~ -  

BR(zo) 

imply 
E(u, BtR(xo)) <_ c, t2E(u, BR(xo)). 

From this result the statement of Theorem 2 follows in a routine manner: 
Let f~ := {x E f~: 5 < det Vu(x) < 5-1}. Minimality of u implies 

h(det dx / IVUol p + H(det Vu0) dx 
f 

Vu) _< 
t ]  
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and the t e rm on the left is bounded  below by the quant i ty  

s - f~)  min{H(~),H(1/5)}.  

Next  consider xo E f~  such tha t  

xo is a Lebesgue point  for Vu  (1.1) 

5 < det  Vu(zo)  < 5 -1 (1.2) 

E(u, B~(xo)) ~ 0 as r J. 0. (1.3) 

Clearly (1.1)-(1.3) are t rue  for /2~ - a lmost  all Xo C f~}. If we take Ao = 
l~m(Vu)zo ~ ( = Vu(xo))  then i te ra t ion  of the Main Lemma gives u e C 1 in a 

10 
ne ighborhood  of xo. This shows u E C l ( f ~ )  wi th  

f~  := {xo e D}:  Xo satisfies (1.1) - (1.3)} 

and the proof  of Theorem 2 is complete.  

The  proof  of the Main Lemma proceeds in several steps: We fix t E (0, 1) 
and define c. la ter  on. If the  lemma were false then we could find a sequence of 
balls BR~(Xk)  C f~ s u c h  that 

IAk - Ao[ _< or, Ak := / Vudx,  

E(u, BR, (xk)) = s~ - - ~  0 but  

E(~, B,~(~)) > e.t ~ E(u, B,,~(x~)). 

hence 

tha t  is 

We let 

1 
vk(z) := ~ [u(xk + Rkz) - (U),:,,Rk -- Rk Akz] , z C B1, 

Ck l~k 

(Vvk)o,1 = 0, 

f-BllVvkl2 dz 

j%~ I Vvkl ~ dz 

(vk)0,1 = 0, Vv~(z) = e~l(Vu(xk + Rkz) - Ak), 

= e~-2~BR~(~k)IVu-- Akl2dx <_ 1, 

2-p 
= e~- ' J :BR~(~) lVu-  A k l P d x  < e k , 

/ le~ -2/~ Vvkl p dz <_ 1. 

B1 

(1.4) 
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After passing to subsequences we can arrange 

Ak -~: A, de tA G [�89 + 5), 1 :(~0 + ~-~)], 

vk --, v weakly in H:,2(B:,Rn), 

vk ---+ v strongly in L2(B1,R~), 

elk-2/PVvk --~ 0 weakly in LP(B1,R~x'~). 

(i.5) 

For the last statement we use (1.4) to deduce 

:~-2/PVvk ~:  F weakly in LP(B1,Rnxn). 

This implies for any testvector 

A-2/pw~ t f F :  ~ d z  I = lira I f % v - k :  ~dzl  
B1 k ~ o o  B1 

�9 :-~/v 
_< hmsupek IlVv~IrL~(~I)II~tlL=(.1) = o 

k ~ o o  

since we assume p > 2. From (1.5) we also deduce 

:eVvk ---+ 0 strongly in LP(B1,R nxn) 
and almost everywhere on B1. 

(1.6) 

L E M M A  1: The weak limit v satisfies 

f p lAlP-2[Vv+(p-  2)IAI-2(A: Vv)A]:  V~ 
Bi 

+H"(det A)( Cof A : Vv)( Cof A : V~) dz = 0 

for all g) E CI(B1,R~). 

(:.7) 

Here Cof A denotes the cofactor matrix of A which by definition satisfies the 
equation 

A o (ColA) T = det A 1[. 

We calculate 

1 1 

d e t ( A + B ) - d e t  A =  f d d e t ( A + s B ) d s = /  C o f ( A + s B ) : B d s .  
0 0 

Since A r 0 and H"(det  A) > 0 (1.7) is a linear elliptic system with constant 
coefficients. This gives v r C~(B:,  R n) and the estimate (see [7]) 

-/ Iw, - ( w , ) ~ ?  d~ < eo t ~ -/" IW - (W),D ~ dz (1.S) 
J B t d  B~ 

with Co depending only on Ao ,p and C2-norms of H near det Ao. We define 
C, : - -  2C0.  
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In order to verify (1.7) we rewrite the Euler equation for u in terms of the 
scaled functions: 

0 

+ 

Clearly 

Bi 

f e;l(h,(det[e~Vvk + mk]) -- h'(det  A~)) Col (r + dk):  V ~  dz 
Bt 
I~ + / / ~ ,  ~ ~ C 1 (B~, Rn). 

1 

= pc; ~ f f [& + sEkVvkl p-2 ckVv~: V~odsdz 
B~ 0 

1 

+ p(p - 2)e{ ~ f f IA, + sekVvklP-4(Ak + sekVvk) : r 
B~ 0 

(Ak + s'ekVvk) : V ~ d s d z  

=: I~ + I : ,  

with 

= p f IAkl'-Wv~ : V ~ d z  
B1 

1 

+ p f ( f I& + scWvkl p-2 ds - l & l ~ - 2 ) V ~  : Vvk dz 
Bt 0 

lim 1~ = p / tAIP-ZVv : V~ dz. 
k ~ o o  

B1 

This will follow as soon we can also show tha t  the second term in I~ vanishes as 
k ~ oe. To this purpose fix e > 0 and select M C B1 such that  (recall (1.6)) 

s < c, CkVVk ~ 0 uniformly on B1 - M. 

Then  

1 

I f ( f  lAb + SCk~v~lP-2ds --IAklP-2)Vvk : V99dz I 
B] 0 

1 

<_ f fVvkflV~ldz s u p  IflAk+sc~VvklP-2ds-[&lP-21 
B1 - M  B1 - M  0 

+ f  ~ (1 +~g-~lVv~l~-~)lVv~llV~ldz 
M 

where here and in the sequel c denotes a constant  independent  of k. 

The quant i t ies  involving B1 - M go to zero as k --~ oc. For the rest we 
observe 

f . . .  <cllV~llL-(B1)(frVv~ldz+d -2flw~l p-ldz) 
M M M 

< clIv~IIL~(B,)(L"(M)'/2IIVv~IIL~<B,) + ~-= f lw, kl ,-~ dz) 
M 

M 
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so that limsup f . . .  _< clIV~IIL~(~,)(v~ + ~). 
k ~ o ~  M 

Since e was arbitrary the claim for lim I~ follows. 
k ~ o o  

In a similar way we obtain 

lim Ik 2 = / p(p--  2)IAIP-4(A: Vv) (d :  V~)dz 
k ~ o o  

B1 

and it remains to discuss 

1 

//k = f c~ - l f ~ h ' ( d e t A k + s [ d e t ( A k + E k V v k ) - d e t A k ] ) d s  
B~ 0 

�9 (Cof(Ak + EkVVk) V~) dz 
1 

-- f ~{ f h"(...)es} (det[A~ + ~Vv~] - act A~) 

1 1 

--- f { f h"(...)e~} ( f  Cof(A~ + r~Vv~) : Wk er) 
BI 0 0 

�9 (Cof(Ak + EkVvk) : V~v)dz. 

By the same reasoning as for I~ we arrive at (see also the calculation in the proof 
of Lemma 2) 

lira //k = f h"(det A)(CofA : Vv)(CofA : V~)dz 
k ~ o c  

Bt 

and Lemma 1 follows. 

By assumption we have 

I V u -  (Vu)~,,tn, I 2 + I V u -  (Vu)~k,tn, l 'dx > c.t2E2k 

B~n~(xk) 

so that 

L E M M A  2: 

_ _  p - 2  IVvk (W~),I  2 + ~k IVvk - (W~),I  p d z  > c,  t ~ 
Bt 

Suppose now that we already know 

The convergence properties stated in (1.5) can be improved to 

Vvk ~ Vv  in L~oc(B1,R n• 

Ckl-2/P"VVk --~ 0 in LPloc(B1, R nxn) 

strongly. 
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Then the last inequality turns into 

/ B IX7v - (Vv),12 dz > c, t  ~. 

From weak convergence in H1,2(B1, [~) we infer 

/ ] V v t 2 d z < l i m i n f f  ]Vvkl=dz<l, 
B~ - -  k ~ e ~  J B 1  - -  

hence 

[ I w  - (v~)~l ~ dz >_ c.t~[ I w  - ( w ) ~ l  ~ dz 
J Bt J BI 

contradicting (1.8) and our choice of c,. 

21 

2 S t r o n g  C o n v e r g e n c e  o f  t h e  S c a l e d  S e q u e n c e  

It remains to prove Lemma 2. Define 

fk(Q) := ~ k - 2 ( ] A k + c k Q f - [ A k f - P ] A k f - ~ A k : ~ k Q )  

+r 2 (h(det[dk + ckQ]) - h(det Ak) - h'(det mk){det(Ak + r - det Ak}) 

for Q E R ~x" and observe 

I•(vk, Br) := f fk(VVk) dz < If(w) (2.1) 

B~ 

for any w e H~o~c(Bl,a~), spt (~k - ~) C Br, T < 1. 

We claim 

0 <_ A(Q) < A(IQI 2 + 4-~IQI% Q e n ~• (2.2) 

for some positive constant. A independent of k. 

Case I: ck[Q] <_ a Then 

c•2(]EkQ + Ak[ p -  [mk[ p -  EkQ: Aklm~] p-2) = 

1 
p f (]mk + sEkQ[ v-2 Q:Q + (p - 2)]Ak + SCkQ[V-4(Q: [Ak + s~kQ])2) (1 - s) ds 

0 

< clQI 2 
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and 

~;2(h(det[& + ckO]) - h(det & )  - h'(det & ) { d e t ( &  + ekQ) - det Ak}) 

= e~-2 (det (Ak + ekQ) - det &)2 
1 

f h"(detAk + s(det[Ak + ekQ] - det &))(1 - s)ds 
0 

1 

<_ c;-2(sup h") { f ~ de t (& + sckQ) ds} 2 
I:t 0 

1 

= ek2(sup  h") { f Cof (A~ + se~cQ): e~Q ds} 2 
R 0 

<_ clQI ~. 

Case 2: c~]Q[ _> a Then 

c~-2 (IAk + EkQI p -IAk[" - *kQ : Ak}Akl p-2) = 

~k P ~k 

_< cc~ -21012 

_< ~ - ~  IQI 2 

< ~d -2 IQI ~ 

< cc~ -2 IQI 2 
p - 2  = c lel ~,~ 

and 

( l) } + s Q I T ' - 2 Q : Q + ( p - 2 ) I ~ + Q I  Q : [ ~ + s Q  ( 1 - s ) d s  
1 

f I ~ + sQ I "-2 ds ~k 
0 

(I ~ I p-2 +IQI p-2) ~k 

(c~ -p + IQI ~-2) 

(~-p+21QIp-2 + IQI p-2) 

c ;  2 (h(det[Ak + ~kQ]) - . . .  ) 

< ~k 2 (1 + [ det(Ak + ~kQ)l + sup [h' I I det(Ak + ckQ) - det dk]) 
R 

1 

< c c ; 2 ( 1  + ~ [ Q I n + l f  Cof(Ak + S~kQ): ~kQds [)  
0 

_<c~;2(l+c~lQIn)=c(~;2+~n-2,  I I )Q  ~ 

_< c (~-21QI 2 + c;2(~klQI),(cklQI) ~-p) 

< c (a-2lQI 2 + cp-2lQI, ~ ~-p) 

_< c ([QI 2 + E~-21QI p) 

which proves (2.2). Following Evans - Gariepy [5] we define the measures 

~k(z) := f IVvkl 2 +,~-2lVvklP dz, Z c B1, 
Z 

which are uniformly bounded on account  of (1.5). Thus there is a measure # 
such tha t  #k -7 # at least for a subsequence. We fix 0 < r < 1 with the proper ty  
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#(OB~) = 0. Let 0 < s < r and choose r /E  C~(B1, [0, 1]) satisfying r / =  1 on B~, 
r / =  0 on B1 - B~. Next  recall tha t  v is smooth  so tha t  I~(v) makes sense. From 
(2.1) we then  deduce 

p 2 
/~2) c f (IWkl ~ + IVvl 2 + ck [IW'kl p + IWlPl 

B~ -B~  

+lW~l~iv~ - vl 2 + c~-21Wj}~lvk - vl ~) dx 

which gives 

limsup(I~(vk)--I~(v)) <_c ( # ( B r - B ~ ) + k _ o o  B~-B,f IVvl2) " 

Taking the l imit  s / z  r we arrive at 

lira sup (I;(vk) - I~(v)) <_ 0 
k ~ o o  

(z3)  

f o r  /~1 almost  all r E (0, 1). 

On  the o ther  hand we have 

I ; ( v ~ )  - I ; ( ~ )  = :  I~ + ~ ,  

where 

[k  = c; 2 f IAk + 5kVvkl p -- [Ak + ckVvl p - plA~IP-25kAk : (Vvk - Vv)  dx 
B,  

= 5; 2 f lAk+skVvk l  p - I A k + S k V v l  p 
B~ 

-plAk + 5kVvlP-2(Ak + 5kVV) : ek(Vvk -- Vv)  dx 

+ 5; 2 f p(IAk + ckVvlP-2(Ak + ckVv) - IAklP-2Ak) : ck(Vvk -- Vv)  dx 
B~ 

=:  //~r k + / t / k ,  

111k 
1 

d 2 
= s k  -2 f f ~ l A k + s k V v + s s k ( V k - V v )  l p ( 1 - s )  d s d x  

B~ 0 
1 

>- p f f I & + 5kVv + sck(Vvk -- VV) I p-2 (1 - s) dslVvk - Vvl 2 dx. 
B~ 0 

Using 

w e  s e e  

///k 

1 

I ~ + s9 1 p-2 (1 - s) ds > c(p)(lal p-2 + 191 ~-2) 

0 

> c(p) f ( I A  + 5kVvl p-2 + 4-21vv~ - w F  2) Iw~ - Vvl 2 d~ 
Br 

+ 5k IVvk - V v l P - 2 ) l V v k  - Vv12dx >c(p )  f ( 1  ~-2 
BT 



24 Martin Fuchs, Jiirgen Reuling 

being valid for large enough k. Here again the local boundedness of Vv enters 
in an essential way. Similar to the discussion of the quantity I 1 in section 1 we 
can prove 

lira Wk = 0 
k ---*oo 

Finally we have (using convexity of h) 

//k = s~-2 f h(det[Ak + r -- h(det[Ak + CkVv]) 
Br 

- h ' ( de t  Ak)(det[Ak + ekVvk] -- de t [& + ckVv]) dz 

> c~ -2 f (h'(det[Ak + ckVv]) - h'(detAk]) 
B.  

�9 (det[Ak + CkVvk] -- det[Ak + EkVv]) dx. 

Writing 

h'(det[Ak + EkVV]) -- h'(det Ak) = 

I 

f h" ( det Ak + s {det(Ak + ek Vv) - det A~ }) ds {det(Ak + ek Vv) - det Ak } 
0 

and observing 

1 

det(Ak + ekVv) - det A~ = f Cof(Ak + sekVv) : ekVv ds 
0 

det(Ak + ekVvk) -- det(Ak + ekVv) = 

1 

f Cof (Ak + r + sek(Vvk -- V v ) ) :  E~(Vvk - Vv) ds 
0 

we get 

//k 
1 1 

> f ( f  h"(...)ds)(f Cof(Ak + 8 kVv) : W 
Br 0 0 

We claim that  the right hand side vanishes as k ~ co. To this purpose we 
consider the case n _> 3 (n = 2 follows by simplification) and observe 

1 

h"(. . . )  ds k-U-~ h"(det A) uniformly on Br 

0 

and (using v e C~176 

1 

f Cof(A~ + sskVv) : Vv  ds k~o? CofA : Vv uniformly onBr.  

0 

We therefore have to show 
1 

Br  0 
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To this purpose we choose M C Br such that  

s  < c, ck(Vvk -- Vv) ~ 0 uniformly on B~ - M. 

Clearly 

1 

B~-M 0 

Then, recalling (1.5), (1.6) 

1 

f ~ f cog(...): d. x 

< f c(1 + ~;-~lVvkl"-~(IV,kl + IVvl)d~ 
M 

<_ c(s + c ( s ~  f 4-'lw~l,) (1->)~ 
Br 

< c ( v ~ + c e  k ) t : Z  0. 

Here we have used the interpolat ion  inequal i ty  

1 A 1 - A  
Ilvv~IIn < IlVv~II~ NW~II~ -~ with - = -  + - -  

- n 2 p 

Collecting the various estimates we end up with 

lim sup (/~(vk) - I;(v)) >_ 
k ~ o o  

c limsupk~oo / IVv~ - Vv]2 + eP-2iVvk - vvlp dx 
B,  

for s  all 0 < r < 1 which together with (2.3) completes the proof of 
Lemma 2 and hence the proof of Theorem 2. 

3 R e m a r k s  

Theorems 1 and 2 easily extend to more general functionals of the type 

F(u) = f f (Vu)  + h~(det Vu) dx 
, 1  

with f of growth order p in Vu and being strictly convex. For example we may 
take 

/~zj ~i f)jW/2 
f (Q)  = v ' . ,  ~,~ ~,,J 

with constant coefficients satisfying the Legendre - Hadamard condition. We 
leave the details to the reader. 
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