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R O T A T I O N A L  H Y P E R S U R F A C E S  O F  S P A C E  F O R M S  

W I T H  C O N S T A N T  S C A L A R  C U R V A T U R E  

Maria  Luiza Leite * 

Let M be a complete rota t ional  hypersurface of a space form 
with constant  scalar curvature S. In this paper  we classify 
these hypersurfaces in the cases of R "  and H " ,  determine 
the admissible values of S in each of the three spaces and 
give a geometrical  description of the hypersurfaces according 
to the values of S. In the case of S" we find examples of 

n--2  embedded hypersuffaces with constant S 6 (~-Y-1,1) , which 
are not isometric to product  of spheres. 

The scalar curvature S of a r iemannian manifold is an impor tant  geometric 

invariant, thus the interest in those manifolds with constant  S and in par t icular ,  

in the hypersurfaces of space forms. 

One impor tan t  result is the theorem of A. Ros [7] according to which the only 

embedded compact  hypersurfaces of R n with constant S are round spheres. For 

the non-compact  ones there is a theorem of Cheng-Yau [3] s ta t ing that  the only 

complete examples wi th  sectional curvatures K > 0 are S k-1 x R n-k,  1 < k < n. 

In [4] and  [5] Hsiang analysed rotat ional  hypersurfaces of space forms with a 

symmetric function aj of the principal  curvatures constant,  which includes con- 

stant scalar curvature  when j = 2. There he obtains a collection of complete 
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hypersurfaces of R "  and H n with S > 0 and of S" with S > 1, but  no classifica- 

tion theorem is presented. 

In this paper we classify all complete rotational hypersurfaces of R n and H "  

with constant scalar curvature (Theorems 3.4 and 3.5). Partial results for S" are 

presented in Theorem 3.6. We also prove that  S is precisely greater than or equal 

to the space form curvature, except in the case of S n where any value greater than 

(n - 3) / (n  - 1) is admissible. In particular we exhibit a collection of new complete 

hypersurfaces of H "  with S ranging in [-1,0] ,  of R "  with S = 0 and of S" with 

S in the interval n-3 (h--:'i-1,1). Surprising examples of embedded hypersurfaces of S n 

with S < 1 are presented. We point out that  Theorem 3.4 has been announced 

earlier (see [2]). 

Our results suggest interesting problems in Global Differential Geometry. We 

state below three of these: the first one carries a flavor of Hilbert theorem for 

surfaces and the second a flavor of Bernstein theorem for minimal surfaces. 

- Is there a complete hypersurface of R n with constant S < 0? 

- Is there a nonttat complete graph in R "  with constant S = 0? 

- Are there embedded hypersurfaces of S n with constant S _> 1 other than product 

of spheres? 

The author wishes to acknowledge the hospitality of both  Universit6 Paris 7 

and lBcole Polytechnique while preparing this work. 

1. U N I F I E D  E X P R E S S I O N  F O R  T H E  S C A L A R  C U R V A T U R E .  

We denote by Ne the simply connected n-dimensional space form of constant 

curvature c = 0,1 or - 1 .  We will take as models for Ne the euclidean space R" ,  the 

unitary round sphere S" and the hyperbolic upper space H n = {y E R "  : yn > 0}. 

Let M be a rotational hypersurface of No, that  is, invariant by the orthogonal 

group O(n  - 1) considered as a subgroup of isometries of the ambient space. To 

study the geometry of M,  we generalize the method used by Spivak ([8], page 173) 

to compute the intrinsic Gaussian curvature of a rotational surface of H 3. 

There, an element of 0 (2 )  fixes all points of a given geodesic 7, which is the 

axis of revolution, and rotates the initial tangent vector of a geodesic ray starting 

orthogonally from 7. The orbit of a point p, at a distance r > 0 from 7, under the 
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action of 0 (2 )  is a geodesic circle of radius r and center in 7. He chooses (s, 8) for 

coordinates of the surface, where s is the arc length of its profile curve a and 0 is 

the angle of rotation. The curve a lies in the orbit space {(yl, 0, Y3) ~ H 3 : Yl ~ 0}. 
The first fundamental  form is given by 

I = sinh ~ r(s)d8 | d8 + ds @ ds, 

so the curvature is intrinsically computed. 

In the general case, the orbit of a point in Nc under the action of O ( n - 1 )  

is an (n -2) -d imens iona l  geodesic sphere of radius equal to the distance r from 

the point to 7- We also choose coordinates (s, 0) ,  where s is as before and 0 = 

(0~, . . - ,  0n-2) parametrizes the uni tary euclidean ( n -  2)-sphere whose points are 

in correspondence with the initial velocities of all geodesic rays with length r(s) 

which are perpendicular to 7. The axis of rotation 7 is the vertical geodesic defined 

by Yl = Y2 . . . . .  yn-1 = 0, so the profile curve a lies in the orbit space given 

by Y2 . . . . .  yn-1 = 0 and yl >_ 0. 

In this case, the first fundamental  form is given by 

I = f2(r(s))Egij(O)dOi | dOj + ds | ds, 

where gij is the metric of constant sectional curvature 1 in an (n-2) -d imens iona l  

sphere and f ( r )  = r, sin r or sinh r, depending on whether c = 0, 1 or - 1 .  

P R O P O S I T I O N  1.1.The scalar curvature S of a rotational hypersm'face of Nc  

is constant along the orbits and is given by 

2 F  (n  - 3) (1  - Y ~ )  
S -  - - +  (~ - 1 ) F  ( n  - 1 ) F ~  ' 

where F(s)  = f ( r ( s ) )  and s is the arc length of the profile curve.  

P R O O F .  We recall that  S is the normalized average of the sectional curvatures 

on a basis of orthogonal two-dimensional subspaces of the tangent space at a given 

point. In coordinates (s, O) we compute intrinsically from the first fundamental  

form that  K(O/OOi, O/OOj) = (1 - F 2 ) / F 2  and K(O/OOi, O/Os) = - F / F ,  1 < i < 

j ~ < n - 2 ,  hence 
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R E M A R K .  In terms of extrinsic geometry, we may compute the n - 1  principal 

curvatures of the hypersurface and use the Gauss formula K i j  = k i k j  + c to obtain 

the above expression for S. For the sake of curiosity we write down the principal 

curvatures in coordinates (s, 0):  

` / 1 -  ~2 _ c F  2 F + c F  
kl . . . . .  kn--2 = , kn--1 = 

F , / 1  - iz2 _ c F  ~ '  

where the normal points outwards the orbit. The geodesic curvature of c~ in the 

orbit space is - k , - 1 .  

2. E Q U A T I O N S  F O R  S C O N S T A N T .  R E D U C T I O N  T O  A F I R S T  

O R D E R  S Y S T E M .  

The proposition 1.1 yields that  an O ( n - 1 )  hypersurface of Nr with constant 

scalar curvature S is generated by a unit speed curve c~(s), to which corresponds 

a solution F ( s )  of the 2 nd order ODE 

2F_/5 - (n - 3)(1 - T,2) + (n  - 1 ) S F  2 = O. (2.1) 

In order to determine c~ from a solution of (2.1), we make use of the orbit space 

geometry. Since F = f ( r )  is injective for r > 0, it suffices to solve the 18t order 

ODE 

( ~ 2  h2 = 1, (2.2) § + \ d r ]  

where h ( s )  measures the riemannian height, with respect to a fixed origin in 7, of 

the point where the geodesic ray starting from ~ will meet 3'. The equation (2.2) 

states that  c~ is parametrized by arc length. The factor ( d f / d r )  2 is intrinsic to 

the geometry of Ne, as it can be seen by standard computation. We fix as origins 

the points (0,. . . ,0) E R" ,  (0,...,0, 1) E S" C R n+l or (0,...,0, 1) E H n, according 

to c = 0, 1 or - 1 ,  respectively. It is well known from hyperbolic geometry that 

sinh r = tan  r and exp(h) = p, where p and r are polar coordinates in the euclidean 

plane. 

Therefore our problem of classification is reduced to the determination of all 

complete integral curves of the system given by equations (2.1) and (2.2). Of 
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course we include in this  set those curves mee t ing  o r thogona i ly  the  orb i t  space 

boundary ,  i.e., those  solut ions  where r(s)  ---* 0 toge ther  wi th  7:2(s) ~ 1, as s ---* so. 

R E M A R K .  F r o m  now on, we assume tha t  n _> 4. The case n = 3 is o f  a different 

na ture  due to  the  vanishing of the  fac tor  (n - 3)(1 - F 2 )  in equa t ion  (2.1). 

P R O P O S I T I O N  2.2 .  Equation (2.1) is equivalent to its t~rst order integral 

F n - 3 ( 1  _ ~-,2) _ S F n - 1  = / ( ,  (2.3) 

where K is a constant; moreover, for a constant solution equals to Fo, one has 

that S > 0 and F# = (n - 3 ) / ( n  - I )S,  so 

K o - ( n  1) [ ( ~ - - 1 ~ S ]  ~;~) 

P R O O F .  The  left h a n d  side of equa t ion  (2 . t )  mu l t i p lyed  by -t~-~F n-4 is precisely  

the der iva t ive  of F " - 3 ( 1  - ~2 )  _ S F , - I ,  which is the  left h a n d  side of equa t ion  

(2.3); let  F(s)  = Fo in (2.1), so t h a t  (n  - 1)SF0 2 = (n - 3) and  the  co r respond ing  

value of the  cons tan t  K is K0.  

C O R O L L A R Y  2.3 .  Tile constant solutions o f  the sys tem formed by (2.1) and  

(2.2) correspond to embedded cylinders equidistant from % that is, to hypersur -  

faces isometric to 7 x S'~-2(ro) , with F0 = f ( r 0 )  as in Proposition 2.2. Moreover, 

for c = 0 or - 1 ,  S ranges in (0, oo), while for  c 1 it ranges in n-a -= ( -g-z7-1, oo). Figure 

1 illustrates these curves. 

Yn 
Gt 

4-- ro --~ 

7 

Yl 

Yn 
7 

Y( ~ Yl 

Figu re  1: Cyl inders  in space forms  
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P R O O F .  We have  tha t  r(s) is cons tant ,  so h(s) = as, with  a = 1, 1/coshro, 

or 1 / c o s t 0 ,  depend ing  on c = 0 , - 1  or 1, respectively.  In all cases, the  orbi t  is 

i sometr ic  to  a round  sphere  of radius  r0, where  F0 = f(ro). 

Clearly, the  ro t a t iona l  hypersurfaces  are r i emann ian  p roduc t s  of the  axis 7 

(n--3) by the  cons tan t  orbi t .  As Fo 2 = ~h":'D-~, we have tha t  for c = 0 or  - 1  the  only 

res t r ic t ion  to S is to  be posi t ive,  while for c = 1 the  value F0 2 = sin 2 r0 must  be 

smal ler  t h a n  1. 

3.  T H E  T H E O R E M S  O F  C L A S S I F I C A T I O N .  

E q u a t i o n  (2.3) tells us tha t  a local solut ion F of (2.1) pa i red  wi th  its first 

der iva t ive  is a subset ,  deno ted  by (F,~b), of a level curve for the  func t ion  H 

defined by 

H(u,v )  = un-3(1  - v 2 - Su2), 

wi th  u > 0. 

D E F I N I T I O N  3.1 .  We say that a solution F > 0 o f (23)  is c o m p l e t e  i f  either 

F is defined for all s or i f (F,  F) admits only (0,1) and (0,-1) as limit values. 

L E M M A  3.2 .  A11 solutions of equation (2.3) can be extended to complete solu- 

tions. The sets ( F, F) are connected components of the level curves indicated in 

Figures 2,3 and 4. 

P R O O F .  Let us m a p  the  open half  p lane  {(u, v ) :  u > 0} by level curves  H = If .  

E a c h  curve  is a s m o o t h  un ion  of two graphs 

K 
( + v )  2 = l - S u  2 u . _ 3  , 

excep t  for the  level  K0 given by propos i t ion  2.2, when  S > 0. T h e  level curve 

H = K0 consists  of the  un ique  cri t ical  point  of H ,  which is on the  hor izonta l  axis, 

as it can be  seen f rom 

v H  = u " - 4 ( ( n  - 3) (1  - v 2) - (n  - 1 ) S u  2, - 2 ~ v ) .  
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Figure 2: Level curves for S = 0 
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Figure 3: Level curves for S > 0 

v'~~ K<O K=O 
~ -  "~'K ,o 

-- - "-1 i l /~ : '~  

Figure 4: Level curves for S < 0 
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For K = 0 , the level curve v 2 + Su 2 = 1 is a conic whose boundary in the 

closed half plane consists of (0, 1) and ( 0 , - 1 ) .  

For K ~ 0, we claim that the level curve is closed in the open half plane, 

hence it is a complete subset. Indeed, if u --* 0 + one gets that  v 2 ~ oc, so either 

the level curve asymptotes the vertical axis or it is at a positive distance from it. 

We consider the foliation of the open half plane by level curves H = K for 

S = 0 ,  S > 0 a n d S < 0 :  

CASE S = 0 (figure 2). Here K takes all values and H has no critical points. The 

conic at K = 0 is formed by two half lines. For K > 0 one has that u "-3 > K. 

CASE S > 0 (figure 3). Here H has a maximum at K0, so K takes all values 

_< K0. The conic at A" = 0 i s  a half ellipse. For 0 < K_< K0, the level curve is 

compact and for K < 0, it asymptotes the vertical axis. 

CASE S < 0 (figure 4). Here K takes all values and H has no critical points. The 

conic /4  = 0 is formed by two half branches of an hyperbola . For K > 0, the level 

curve asymptotes the conic from its inner side, and for K < 0, from its outer side. 

It follows from the theory of ODE that a local solution F(s)  of (2.3) can be 

extended through values of s for which (F,/5) is interior to the half space. We 

look at the level curves maps and conclude that  the solutions F corresponding to 

K r 0 are complete. Furthemore, the solutions corresponding to K = 0 may be 

extended up to a value where (F, F )  --* (0, 4-1), hence they are complete in the 

sense of definition 3.1. 

L E M M A  3.3. Given a solution (r, h) of the system given by equations (2.1) and 

(2.2), it determines a solution F of  (2.3) such that 

F2 F2 
, - - < 1  o r  < 1  

F 2 _ ~ 1  I + F  2 - 1 - F  2 - ' 

depending on c = 0 , - 1  or 1, respectively. 

P R O O F .  It follows from equation (2.2) that § < 1. This inequality gives the 

desired result, for F(s)  = r(s), s inhr (s )  or s inr(s) ,  respectively. 
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T H E O R E M  3 . 4  ( C L A S S I F I C A T I O N  i n  R n ) .  

i) Up to vertical translation, there is precisely a one parameter family o f  complete 

rotational hypersurfaces of  constant scalar curvature S = O, converging to a hy- 

perplane R n-1 . In R 4 the prot~Ie curve is a parabola, in R ~ it is a catenary and 

in R n, n > 6, it asymptotes  two horizontal lines. In all cases, the hypersurfaces 

are embedded. 

ii) For any S > 0, there is a one parameter family of  complete embedded hypersur- 

faces of  constant scMar curvature S, all periodic and cylindrically bounded, which 

converges to a sequence o f  spheres, two by two vertically tangent (see figure 5). 

iii) There is no complete rotational hypersurface with constant scalar curvature 

S < 0 .  

P R O O F .  By lemma 3.2, all solutions of equation (2.3) are complete. But those 

corresponding to complete hypersurfaces of R n must also satisfy inequality F2_< 1, 

as asserted by Lemma 3.3. Thus, only level curves contained in the region v2_< 1 

will be taken into consideration. The admissible values of K are directly indicated 

in figures 2, 3 and 4, depending on S = 0, S > 0 or S < 0. 

In any of the three cases we have that u = r and v = #, so the intersection 

of a level curve with the horizontal axis v = 0 corresponds precisely to the points 

where the distance r from the profile curve a to the axis of rotation 7 is critical; 

clearly the symmetry of all level curves allows critical distances only of maximal 

and minimal  type. 

Without  loss of generality, we will take h(0) = 0 for initial height always. 

For S = 0, figure 2 yields that K takes values in [0, oc). The value K = 0 

gives us the trivial solution r(s)  = s and h(s) = 0, s _> 0, corresponding to the 

hyperplane generated by the horizontal line h = 0. 

For a fixed K > 0, r at tains a unique min imum r I > 0 which we take as 

initial distance r(0). 

It follows from equations (2.2) and (2.3) that  

K ]~2 = 1 - § _ 
rn--3 

where K = rl n-3. Clearly r has no upper bound,  so no hypersurface is cylindri- 

cally bounded. Away from rl ,  we may divide ]~2 by § to get 
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< dh'~ 2 _ r l  n - 3  

~ )  r . - 3  _ r l . - 3  , 

hence the profile curve is formed by two symmetric graphs as given below 

-4-h = ~ x x / r  n -3  - t i n - 3 "  
r l  

We can solve these convergent integrals when n = 4 and n = 5, and get that 

! h  = 2 v ~ / r -  rl  and i h  = r 1 l o e ( ~ + r ~  respectively. We observe that 

the profile curves are parabolas * r - r 1  = h2/4 rl in the case n = 4, and catenaries 

r/rl  = cosh (h/rl)  in the case n = 5. 

When n = 6, we compare the integrand with 1 / ~ ,  for r > 2rl ,  

and get that  the integral j" dr �9 is uniformly bounded by the constant 
2F I ~rn--3--rl n-3 

O0 

f ~ so the profile curve is asymptotic to two horizontal lines :]=h = constant. 
N/m-- 3 

2 r l  

Geometrically , this means that except for dimensions n = 4 and n = 5, the 

distance of a rotational hypersurface of R n with 0 scalar curvature from the axis 

reaches infinity in a finite interval of height. This property also holds for rotational 

hypersurfaces of R n with 0 mean curvature, except for n = 3 (see [1]). 

The embeddedness is clear, since the two graphs glue smoothly at (r l ,  0) with 

tangent line parallel to 7- This completes the proof of i). 

For S < 0, figure 4 yields that  for K > 0 there are local solutions, although 

none of these can be completed due to the fact that/b2 reaches 1 in a finite interval. 

For K < 0 not even local solutions do exist. This proves iii). 

For S > 0, it is immediate from figure 3 that the admissible set for K is [0, K0] 

and that  all level curves are compact. Also the level curves for negative values of 

K correspond to non-complete hypersurfaces, for they reach the region v 2 > 1. 

The value K = K0 gives us the solution r(s) = ro and h(s) = s, correspond- 

ing to the cylinder of Corollary 2.3. 

The value K = 0 gives us the solution 

�9 I am obliged to Robert  Bartnik for pointing out the longtime knowledge of 
these parabolas by physicists (see [6]). 
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1 1 
r ( s )  = - ~  s i n ( v ~ s ) ,  h(s) = - ~ ( 1  - cos (x /Ss) )  

and its t ranslat ions,  corresponding to a sequence of (n-1)-spheres of radius 1 /x/~ ,  

two by two tangent  at points intersecting the axis of revolution. 

For a fixed K E (0, K0), it follows from the compacteness of the level curve 

that  the function r(s) is periodic and varies monotonically from a minimum rl  > 0 

to a maximum r2 < 1/v/if ,  while its square derivative § is bounded away from 

1. Therefore, ]z 2 = 1 - r ~2 is everywhere positive, so h is monotonic and the profile 

curve is embedded.  

Figure 5 below pictures geometrically how the periodic hypersurfaces converge 

on one side to the cylinder and on the other side to the spheres. 

Yn 

K~O 

0 

Yl 

Yn 
\ 

I K;~K o 

K:K  o 

Figure 5: Hypersurfaces of R "  with S > 0 

R E M A R K .  Any profile curve reaching the axis 7 does it orthogonally. This 

behaviour is in contrast  with dimension 3, for there are surfaces of revolution in 

1[ 3 with constant  Gaussian curvature K = 0 generated by curves meeting the axis 

at an acute angle, e.g., flat cones. Analogously for K > 0. 
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T HE ORE M  3.5 (CLASSIFICATION in Hn). 

i) Up to translation, the complete rotational hypersurfaces of constant scalar cur- 

vature S E [ -1 ,0]  form a one-parameter family of examples which converge to 

a totMly geodesic hyperbolic plane H n-1 , to a hypersphere or to a horosphere, 

depending on S = - 1 ,  S E ( - 1 , 0 )  or S = O, respectively. The prot~le curves 

are asymptotic to two geodesic lines, except when S = O. In all cases, they are 

embedded and not cylindrically bounded (see figure 6). 

ii) For any S > O, there is a one-parameter family of  complete embedded hyper- 

surfaces of  constant scalar curvature S, all periodic and cylindrically bounded, 

converging to a sequence of  geodesic spheres, two by two vertically tangent (see 

~gure 7). 

iii) There is no complete rotational hypersurface with constant scalar curvature 

S <  -1 .  

P R O O F .  The proof is analogous to the euclidean one. In hyperbolic space, 

F = s inh r  and one has that  /32_< 1 + F 2, so only level curves contained in the 

region v 2 _< 1 + u 2 will be taken into consideration. The admissible values of 

K are indicated in figures 2, 3 and 4. Again we take h(0) = 0 as initial value. 

Furthermore,  using that  F ( s )  = s inhr ( s ) ,  it follows from equation (2.2) that  

/~2 _ 1 - ~2  1 - ( / 3 2 / e o s h  2 r )  1 + F 2 - ~+~ 
cosh 2 r cosh 2 r (1 q- F2)  2 ' 

we call the far right hand side hyperbolic expression of ]~2. 

Let us recall that  s inh r  = t a n r  and exph  = p, where p and ~r/2 - r are 

the usual polar  coordinates in the  euclidean plane. We observe that  for a given 

solution (r, h), its symmetr ic  ( r , - h )  will correspond in hyperbolic  plane to the 

reflection of the original solution around the geodesic h = 0, that  is, to the curve 

obta ined  by euclidean inversion with respect to the circle p = 1. 

For S E [ -1 ,0 ] ,  figures 2 and 4 yield that  the admissible set for K is [0, oo), 

since the hyperbo la  v2+  Su 2 = 1 is inside the  region v 2 - u  2 < 1, when S E [ -1 ,  0). 

The value K = 0 in equation (2.3) gives us tha t  /32 = 1 - S F  2. Put t ing  

F (0 )  = 0 one gets F ( s )  -- s or F ( s )  = (sinh x/-Z-Ss)/x/-CS, depending on S = 0 
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or S E [ - 1 , 0 ) ,  respectively. These solut ions pu t  into the hyperbol ic  expression of 

]~2 yield 

o r  

h2 = ( - S ) ( 1  + S) (s inh  2 x/-ZSs) 

(sinh 2 v/Z--~s _ S) 2 

W h e n  S = - 1 ,  the profile curve has equat ions  r (s )  = s and  h(s) = O, corre- 

sponding to the  hyperbol ic  ( n - 1 ) - s p a c e  genera ted  by the geodesic p = 1. 

W h e n  S C ( - 1 , 0 ) ,  there are two solut ions for different signs of ]z: if/~ < O, 

direct in tegra t ion  gives us the solut ion 

1 cosh x/r2Ss - x/1 + S sinh x/-L--Ss 
p(s~ - 1 - x / f +  S , tanq~(s) - ~ , 

which parametr izes  an eucl idean half-circle of radius  R = 1 - v 4 - ~  and  center  - S  

(0, R v / i - +  S); if h > 0, one gets p ins tead of i hence the inversion of the  previous p~ 

circle, now wi th  center  in the negat ive g,,-axis. The  corresponding hypersurfaces 

are called hyperspheres.  

W h e n  S = 0, it follows by in tegra t ion  tha t  •  = logx/1 + s 2 ;  besides, 

t an  ~b(s) = F ( s )  = s, so e lementary  t r igonomet ry  implies tha t  cos 2 ~ = 1/(1 + s2). 

Again we o b t a i n  two solut ions for different signs of h: if ]t > 0, then  p cos 4~ = 1 

and the  profile curve is half of the eucl idean horizontal  line Yn = 1; if h < 0, then  

p = cos q~ and  the  profile curve is half  of the eucl idean circle t angen t  to yl-axis.  

The  cor responding  hypersurfaces are called horospheres. 

For a fixed K > 0, r a t t a ins  a un ique  m i n i m u m  r l  > 0, which we take as ini t ia l  

value r(0).  Clearly F1 = sinh r l  is de te rmined  by the equal i ty  F ~ " - a ( 1 - S F ] )  = K,  

since the left hand  side is an  increasing func t ion  of FI as long as S _< 0. Also F 

has no uppe r  bound ,  so no hypersurface is bounded  by a hyperbol ic  cylinder.  

Subs t i tu t ing  ~62 = 1 - S F  2 I~" F,_3 in the  hyperbol ic  expression of ]z 2, one 

gets 

/~2 = (1 + S ) F  2 + F.K_3 

(1 + F2) 2 
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Y. 

, ,  (a )  / 
/ x 

i I ~ \~ 

'"i i i II II "~ 
Yl 

Yl 

Yn 

1 

~(~1"~1/̀ J ( C )  

t 

Yl 

Figure 6: Hypersurfaces of H n with (a) S = - 1 ,  (b) S e ( - 1 , 0 )  and (c) S = 0 
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Away from F1, we may divide j~2 by p2 to arrive at 

= 0 + s ) y - - '  + K 1 
d F /  ( 1 - S F s ) Y  " - 3 - K  x ( I + F S )  s '  

hence the profile curve is formed by two graphs, symmetr ic  with respect to inver- 

sion around p = 1. 

When  S = 0, I ~ 1  > F _ ~ on ( F l , o c ) ,  so h(F) is unbounded.  On the 

contrary, w h e n , C  [ -1 ,0 ) ,  I dh ( 1 ~ )  (I+--~F) 2-Yl is bounded at infinity by x , so 

the integral  h(F) is uniformly bounded.  That  means the profile curve asymptotes  

two geodesics h = iconstant. The embeddedness is clear, since the two graphs 

glue smoothly at r = r l  with tangent orthogonal to p = 1. This completes the 

proof of i). Figure 6 i l lustrates the geometry. 

The proof of iii) is immediate  from figure 4, for ~ always reaches 1 in 

a finite interval when S < - t .  In other words, all level curves asympto t  the 

hyperbola  v s + Su s = 1, which is exterior to the region v s - u  s < 1 precisely when 

S <  - 1 .  

The proof of ii) goes as in the previous theorem, so K varies in [0, K0]. The 

profile curve oscillates periodical ly around the cylinder of Corollary 2.3 and con- 

verges to it as K -~ K0. Moreover, as K --* 0, we claim that  the  profile curves con- 

verge to a sequence of geodesic circles. Indeed, the limit solution satisfies 1 - l/'2 = 

SF 2 hence F ( s )  = si, v-d, which yields h 2 = ((1 + S ) s i n  s v 'Ss ) / (S  + sin s v/Gs):  
' v ~  

integrat ion for Jz < 0 gives us 

x / l + S -  1 
, (~)  = 

v r f +  s - cos v ~ s '  

so we have an euclidean half-circle of radius R = ~ + X + I  and center R , /1  + S, 

which is well known to be a geodesic circle in the hyperbolic plane; integrat ion for 

h > 0 gives 1/p, hence the inverted circle. Subsequent inversions of the hypersur-  

face produce a sequence of geodesic spheres. 

As in the previous theorem, given a fixed K E (0, K0), it follows from the 

compaeteness of the level curve that  the function F, hence also r ,  is periodic and 

varies monotonical ly  from a minimum F1 to a maximum Fs < 1 / v ~ ,  while its 

derivative satisfies F s  < 1 - SF s. Thus, 7:2 = ~ P s  < ~1+F1 is bounded away 
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Figure 7: Hypersuffaces of H "  with S > 0 

from 1, h2 is everywhere positive and consequently, h is monotonic and the profile 

curve is embedded.  Figure 7 pictures the geometry. 

( , -  3 1~ there exists a22 infinitely countable family of T H E O R E M  3.6.  i) For S E ~,_1, J, 

complete immersed rotationa3 hypersurfaces of S n with constant scMar curvature 

S, converging to the embedded cylinder of Corollary 2.3. When S E ~ n - l ,  ,, one 

of  these hypersurfaces is embedded. 

ii) For S >_ 1, there exists a countable family of complete immersed rotational 

hypersurfaces of  S n with constant scalar curvature S, converging on one side to 

the cylinder of  Corollary 2.3 and on the other side to a sequence of isometricMly 

embedded spheres of radius 1 / v ~ .  Possibly except for /~ni~e values of S, this 

family is infinite. 
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i l l)There is no complete rotational hypersurface of  S"  with constant scalar curva- 

ture  S < , - 3  
-- n--l" 

PROOF. In spherical space, one has that F = sinr and /b2 < I - F 2, so only 

level curves contained in the region u 2 + v 2 _< 1 will be taken into consideration. 

Clearly complete solutions do not exist for S = 0 or S < 0~ since all level 

curves reach the exterior of the circle u 2 4- v 2 = I. Also, when S 6 (0, ~-cy-i],"-3 

it follows f rom Propos i t ion  2.2 tha t  F0 2 = U/:i~ -"-3 > 1, so any  curve at a level 

0 < K < K0 encloses the  po in t  (F0, 0), therefore escaping the un i t a ry  circle. The  

value K = K0 provides an  inner  level curve only when  S --- , - 3  in  which case the  g'zY-1, 

solut ion is F = 1 a n d  the curve is reduced to a point .  

n--3  For S 6 (gz-y_~, 1), figure 3 yields tha t  the admissible  set for K is [1 - S, K0], for 

the  ellipse v 2 + Su 2 = 1 is exterior to u 2 + v 2 < 1 while the  inter ior  curve pass ing 

t rough  (1 ,0)  has level K = 1 - S,  as it  can be seen from v 2 1 - Su 2 - g A n d  

for S > 1, the  admiss ible  set for K is [0, K0]. Clearly any  curve at an  in t e rmed ia t e  

level K is compact  a n d  the  associated solut ion r ( s )  a t t a ins  a un ique  m i n i m u m  

r l  > 0 t aken  as in i t ia l  value r(0).  The  value K = K0 gives us the  solut ion 

r (s )  = r0, cor responding  to the  spherical  cyl inder  of Corollary 2.3. 

Using tha t  F(s )  = sin r(s) ,  it follows from equa t ion  (2.2) tha t  

1 - ~2 1 - F 2 - p2  

cos 2 r (1 - F~)  2 

we call the  far right h a n d  side the spherical expression of h2. 

Subs t i t u t i ng  F~ = 1 - S F  2 g - -  F._8 in to  the  spherical  expression of h2, one 

fur ther  gets 

K 4- (S - 1 ) F  2 ]/2 = F "-s 

( 1  - P2)  2 

Away f rom F1 = sin r l ,  we may  divide it by  F2 to arrive at 

( dh'~ 2 K + ( S - 1 ) F  "-1 1 

d F )  = ( 1 - S F 2 ) F  " - 3 - K  x ( l - F 2 )  ~" 

n - - 3  W h e n  S E (A-'cY-1,1), we claim tha t  the value K = 1 - S gives us a curve 

which s ta r t s  at  a d is tance  r l  f rom 7 and  then  spirals indefini tely a round  the po in t  
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(1 ,0 , . . . , 0 ) ,  which is at a d is tance  r = 7r/2 from the  axis 7- Indeed,  the  latest  

equa t ion  becomes 

hence 

( dh'~ 2 (1 - S)(1 - F n - l )  1 

dF.] = S(1-~- F n - ~ - ~ - - - F  -n-3)  x ( 1 - F 2 )  2 ' 

I 1/2 _j.p [ ~ - s dh >_ S - - - ~  x - -  
I _ F  2 ' 

1 -F  "-~ n -3  Now we use tha t  for as F increases to 1 one has tha t  ~ converges to ~-2;-1. 

( I + F  , 1 +  FI"~ F dF _ 1 log 1 o g l - - C - - ~ 1 ) ~ o c ,  
1 1 - F 2  2 1 - F  

as F --* 1. Of course this curve does not  generate  a hypersurface in the induced  

topology of the sphere. 

For S _> 1, we claim tha t  K = 0 gives us half of an  eucl idean circle of radius  

1/v/-S s t a r t ing  or thogonal ly  from 7, which can be cont inual ly  reflected. Indeed,  

in tegra t ion  of ~/-2 = 1 - S F  2, with  F(0 )  = 0, yields F ( s )  - si, vN~ hence 
2~ , 

h2 = S ( S - 1 ) s i n  2 v ~ s  

( s  - s in  ~ V ~ s ) ~  

W h e n  S = 1, we have tha t  r (s )  = s and  h(s) is cons tant ,  so the profile curve 

is a great  circle which generates  a tota l ly  geodesic ( n - 1 ) - s p h e r e .  W h e n  S > 1, 

e l ementa ry  in tegra t ion  gives us tha t  

h(s) = - a r c t a n  c o s ( x / ~ s )  
S, /g=- r -  1 ' 

1 once we take spherical  coordinates  in the orbi t  space with h(O) = - a rc t an  v~-Zi ; 

the  so lu t ion  satisfies cos r ( s )  cos h(s) = ~ /1  1 - 5 ,  which is the equa t ion  of a half- 

circle of radius  1 / v ~  cut in  the orbi t  space from a p lane  whose d i s tance  to the 

point  ( 0 , 0 , 0 ) i s  ~/1 

The  cor responding  hypersurface is an  isometr ical ly embedded  ( n - 1 ) - s p h e r e  

of radius  1 / v ~  ent i re ly  con ta ined  in an open  hemisphere  of S ~. 

An in t e rmed ia t e  value of K gives us a periodic  solut ion r(s) which oscillates 

a round  r = r0, f rom a m i n i m u m  r l  > 0 to a m a x i m u m  r2 < 1. As J~ never  vanishes,  
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for otherwise F 2 + 1/'2 = 1, one may consider h increasing, so the period P of the 

curve with respect to the variable h is obtained by integration of dh 

/F% J K + ( S - 1 ) F  n-1 dF P ( K )  _ h(F2) - h(F1) = x - -  
2 1 , / r  - K 1 - F ~  ' 

where F1 and F2 are the solutions of r  = K, with r  = (1 - S F 2 ) F  "-3. Of 

course the curve determines a complete hypersurface of S n precisely when P is an 

integer divisor of 2r% where r is the number of turns in the orbit space given by 

the profile curve before it closes. Embeddedness occurs when r = 1. 

We already have that the limit values of P ( K )  for K = 1 - S or K = 0 in the 

situations S < 1 or S > 1 are oo and 2 1 
_ arctan sTY~-l' respectively. 

27r n-3 the period P ( K )  converges to x/ ( ,_ l )s_( ,_a)  as We claim that for S > ~-:-f-1, 

K --* K0. Indeed, both F1 and F2 converge to F0, where r at tains its maximal 

value K0 and ~-~(Y0) = - 2 ( n  - 3)F0 " - s  < 0 (we recall from Proposition 2.2 that 

(n - 1)SF0 2 = (n - 3)). Also, the factor x / K  + (S - 1 ) F " - 1 / 1  - F 2 converges 

to ~'-~on-a/~/1 - F0 2 > 0. Taylor's approximation of r around F0 up to second 

order implies that the desired limit is the same as 

x/~o , -  a f FO+ v /7~  dF 
x lim 2 l 

where A = (n - 3)F0 ~-5. Since the integral converges to 7 r /v~ ,  straightforward 

computat ion proves the claim. 

( n-3 1~ it follows from continuity of P ( K )  that for each rational When S E ~,_1,  J, 
r 1 > ~ / ( , - 1 ) s - ( , - 3 ) '  there exists K E (1 - S, K0) such that P ( K )  = 2rr~ is the 

period of a closed curve which generates an immersed complete hypersurface of 

S" with constant scalar curvature S. At least for values of S in the subinterval 

( , - 2  1) one has that ( n - 1 ) S - ( n - 3 )  > 1, hence the closed curve corresponding to 
n - - l ~  

-~ = 1 determines an embedded hypersufface of S" with constant scalar curvature 
8 

which is neither a sphere nor a cylinder. 

When 5' > 1, continuity gives us that there exists K E (0, K0) such that 

2 ~ r r  r P ( K )  is equal to - 7 ,  for a given rational 7 in the open interval of extremals 

1 / x / ( n  - 1)S - (n - 3) and ~ a r c t a n ( 1 / v / S -  1). It is easy to see that  this open 

interval is non-empty, except possibly for two values of S > 1. We observe that  
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this interval is not su~ciently large to contain rationals of type 1 ~, so the profile 

curves determine non-embedded hypersurfaces. 
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