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Absolute Continuity of Hamiltonians with yon 
Neumann Wigner Potentials II 

H. Behncke  

Physicists have known for a long time that there is a close connection between the asym- 
ptotics of the eigenfunctions of a linear differential equation and the spectral properties of 
the corresponding differential operator. According to this eigenfunctions associated with the 
absolutely continuous spectrum behave almost like plane waves. Here this is extended by sho- 
wing that values ~, for which all solutions are bounded belong to the absolutely continuous 
spectrum of the corresponding differential operator. In addition we continue our analysis of 
[1] and extend all results of this paper. As in [1] we treat only separated Schr5dinger- and 
Dirac operators, and we state conditions which imply the absolute continuity of the spectra 
of these operators off a finite or countable resonance set in terms of the potential V. These 
conditions are satisfied for example if V admits a decomposition near infinity of the form 

V = S + P I + P 2 + . . . + P , + W  

where W is a Wigner yon Neumann potential, S E s and where Pi is/-times differentiable 
with P[J} 6 s for j < i and p[0 6 s For n = 1 and W = 0 these are just the results 
of Weidmann [16] and Heinz [11]. Thus rougly speaking slower decay can be compensated 
by better smoothness. Even though subordinacy requires control of the eigenfunctions only 
for real eigenvalues ,~, we analyze eigenfunctions also for complex ~ in order to deduce the 
continuity of the m-function, a limiting absorption principle and the singularity of m near 
the resonances. 

This paper is divided into four sections. In the first we collect all information on methods 
and results used in the analysis of spectra. Here we also state our first main theorem. The 
second section is devoted to asymptotic integration, while Schr5dinger- and Dirac operators 
with smooth potentials are studied in the third part. Embedded elgenvalues are investigated 
in section IV. 

I 

In this paper we study the separated Schr6dinger equation 

rsy = - Y "  + VY = Ay 

and the separated Dirac equation 

rou = V2 V3 + m u +  1 0 

on (a, oo). Though in most cases a is finite, we will occasionally also allow a = -o~ or a 
singular endpoint a. With suitable conditions on the potentials V, V1,..., which are always 
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assumed to be real and locally integrable, these differential operators rs  and rD can be 
extended to sdfadjoint operators ~ s  and ~ o  on the corresponding Hilbert spaces [16]. 
These operators we call Hamiltonians. 

In the system notation ro becomes 

V1 - m -- A V~ u. (1) 

This system also covers the systems form of rs if one replaces -Vs - m + )~ by 1 and V2 and 
r u b y 0 .  

Thus both equations can be treated in a unified manner. In the proofs however, we shall 
mostly adher to the Dirac case, because it is more complicated. 

Def in i t ion :  Let r be a Sturm Liouville differential operator on (a, b ) , -oo  < a < b _< 00, 
which is singular at b [16]. A solution y of ry  = Ay is subordinate at b, if for any linear 
independent solution of rz  = Az 

where 

lim IlYlld/ll~ll~ = o 
d ~ b  - 

d 

Ilfll~ = / I f ( s ) l  2 ds. 
c 

This definition is dearly independent of c, a < e < b. 

If ~" is singular at a, subordinacy at a can be defined similarly. In the same manner subor- 
dinacy can be defined for Dirac systems. 

One speaks of sequential subordinacy if the limit above is required for a sequence dn ---, b_ 
only. 

By abusing the notation slightly we shall also speak of subordinacy for Schr6dinger- respec- 
tively Dirac Hamiltonians. 

Subordinate solutions are thus functions which decay faster near the singularity than the 
other solutions. Eigenfunctions are in general subordinate. Subordinacy generalizes therefore 
the notion of a principal solution and an eigenfunction. In order to state the main result 
of Gilbert and Pearson [8,9] and its extension to Dirac operators [1], we need two more 
definitions. 

Def in i t i on :  Let S be a measurable subset of R and let p be a Borel measure on R. Then S 
is a set of minimal support of p, if 

i) p (R \S)  = 0 

ii) for any measurable subset T C S with/~(T) = 0 one has ~(T) = 0, where $ is the 
Lebesgue measure. 

Minimal supports are clearly not unique. But this lack of nonuniqueness will not concern us 
here. 
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Def in i t ion :  For a Borel measure p on R the absolutely continuous (singular continuous, 
discrete) part  of p will be denoted by P~c(goc, gd). 

In the same fashion these suffixes will be used to denote the corresponding minimal supports 
M, -M~c, ... and if 7"/is a selfadjoint operator with spectrum ~(~ ) ,  tr~c(~) or ~d(~)  will denote 
the absolutely continuous or discrete spectrum of 7-/. 

If p is a spectral measure minimal supports Moc, Mo~ and Md of P,c,P~ respectively #d can 
be choosen such that  their closure contains the corresponding spectra tr~, ao~ respectively 
ad [8, Lemma 51. 

L e m m a  1: a) Let ~ be a Hamiltonian which is derived from a SchrSdinger- or Dirac 
differential expression r on (a, ~ )  with two singular limit point endpoints. Then minimal 
supports Mffi~ and M,~ of the absolutely continuous respectively singular continuous part  of 
the spectral measure p of 7~ are given by 

i) M ~  = {$ E R ] There is no solution of ru  = Su which is subordinate 
at a or vr or both.} 

ii) Moo = {$ E fl R [ There is a solution of ru  = ~u which is subordinate 
at  a and cr but which is not square integrable.} 

b) If a is a regular endpoint the minimal supports are given by 

i) M ~  = {~ E R I There is no solution of ru  = $u which is subordinate 
at  cr 

ii) M,~ = {$ E R ] ~'u = Su has a subordinate solution satisfying 
the boundary condition at  a.} 

c) (b) remains valid also if a is a singular limit circle endpoint.  

This Lemma has been shown by Gilbert and Pearson [8,9] and has been extended to Dirac 
equations by Behncke [I]. 

It is the aim of this paper to derive spectral properties of SchrSdinger- or Dirac-Hamiltionians 
from the asymptotics of their eigenfunctions. The methods to be used are: 

i) The technique of Weidmann 

ii) Subordinacy 

iii) The continuity of the m-function and 

iv) The fimiting absorption principle 

Of these methods the last two rely on the analysis of the  eigenfunctions in the complex 
domain. Because of the appearance of exponentially growing terms, this leads to considerable 
difficulties and requires among other things a modification of the 1 + Q-transformation. 
For the limiting absorption principle it is also necessary to control the resolvent, i.e. the 
eigenfunctions near O, though this may be overcome part ial ly by applying the resolvent 
only to functions which vanish near zero. In contrast to these techniques the first two 
methods rely on the analysis of the eigenfunctions for real eigenvalues only. Apart  from 
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using real and generally bounded eigenfunctions, these methods exhibit a better stability 
under perturbations. For periodic differential operators this has recently been shown for 
Weidmann's technique by Stolz' [15]. 

In Weidmann's approach one has to verify the following two conditions 

(Wl)  For 0 < al < a~ and )'1 _< )'2 there exist constants C, C'  and c such that for all 
d > c,O < b <_ c,(r - ),)u = 0 implies lu(~)l _< Cllullto,~. Illllt:,~ for all z �9 [al,a2] and 

)` �9 [,h, )`~]. 

Moreover 

(W2) The (generalized) Prfifer angle O(x, p) corresponding to r restricted to [b, d] satisfies 
IO(d, m)  - OCd, g~)l <-- C'ld - bl Im - g=l for Pl, #s 6 [A1, )'2] 

In contrast to this, the non (sequential) subordinacy condition amounts to: 

(P) For any two nontriviat solutions ul, u2 of ( r  - ),)v = 0 lim inf Ilu, llt,,r 
~.oo Ilusllto,~ 

> 0  

This condition is closely related to (Wl) ,  because if u is a nontrivial subordinate solution 
and v an arbitrary nontrivial solution of (r - A)w = 0 the condition (Wl)  can be written as 

lu(=) l  < c Ilull[~ I1.',.'11[o,,~ = e [,~,.,a~] 
- II',,lllo,,~l Illllco,,~ 

Since the first quotient on the right hand side converges to 0 for d ---* co, we would imme- 
diately get a contradiction if the second quotient was bounded, i.e. if on the average the 
s of v did not grow faster than the s of 1 or sin(At + or). 

These considerations allow us to simplify condition (P) in our situation and at the same time 
extend Weidmann's methods considerably. 

T h e o r e m  1: Let - c o  < a, A1, A2 E R and let rD be a Dirac differential expression on (a, oo) 
such that  each solution u of rou  = Au is bounded in [c, co]. Then [)'~, A2] belongs to the 
spectrum of any Dirac Hamittionian 7"(0 associated to VD and a(7-lD) is absolutely continuous 
in ()'1,)'s). The result is also valid for Schr6dinger operators vs if the boundedness is required 
for y and y'. 

P r o o f :  We shall show that for each ), E [),i, )'~] no solution exists which is subordinate at 
co. Contrary to this claim let u be such a (real) subordinate solution with [[u(c)[[ = 1. 
Moreover let v be a complementary real solution, i.e. the Wronskian W(u, v) of u and v is 
1. Then 1 = u~(z)vs(x) - Vl(Z)us(x) for x E (a, co). Compute the s of both sides 
and use the Cauchy Schwarz inequality 

Illll~o.,,q = I d -  cl _< 211,.,ltio.,dlvllt,,,,q __< 2CIlullto,r - c)�89 

to show that  u is not subordinate. 

In the Schrbdinger case one shows first that u and v are oscillatory and deduces from 1 = 
uv' - vu' that there are constants cl and cs with 0 < cl _< u s -t- u n, v s -t- v a _< cs. With this 
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one shows that the distance of successive zeros of u respectively v are bounded and bounded 
away from zero. This finally easily yields a contradiction to the assumed subordinacy of u. 

Coro l la ry :  Let - c r  < a, $~,A2 E [t and let rs(y)  = - y "  + qy be a Schr6dinger differential 
expression on (a, oo) such that 

i) q = q, + q~ with q~ e/21,ql e / : L  with q,_ = (Iqxl- q~)" } bounded. 

ii) For all ~ E [~,  )~] all solutions y of rsy = )~y are bounded on [c, oo) for some c > a. 

Then [~1, )~2] E ,r('Hs) and a(7"ls) is absolutely continuous in (,~a,)~2). 

P roof :  Because of the conditions on the eigenfunctions rs  is clearly limit point at infinity. 
Assume y is a nontrivial real solution of rsy = Ay. Then 

d d d 

f y,2dt = yy,[a _ f yy"dt = YY'I~ - f y2(q _ ~) dt 
c e r 

< YY'I~ + Ilyll~" tlq2ll + ]l(qx - A)-II~IIyII~o,~. 
Since the boundary terms can easily shown to be finite, , 2 Ily lll,,m can he estimated in terms 
of 2 Ilyllt~162 Now the proof can be completed as in the Theorem. 

R e m a r k  1: It should be noted that the boundedness of the eigenfunctions is required only 
at one singular endpoint. The conditions on ql-  can certainly be weakened, for example 

~ + I  

sup I f q~-dtl < oo suffices. Another independent proof of this has been given by Stolz 
z > c  a~ 

(private communication). A little thought also shows that  in this case 0 < I m  m(3~) < oo 
for ,~ E (~1, ~2). 

The results of this Corollary are clearly stable with respect to/ : l -perturbations.  This is also 
true for the results of the Theorem and holds in fact in a much wider context. To see this 
let 

u'(t) = A( t )u( t )  

be a system on n equations on (a, oo), for which all solutions are known to be bounded. 
Consider the perturbed system 

i f( t)  = (A(t)  + B( t ) )v ( t )  with Bij E s i , j  = 1,..., n. 

If Y is the fundamental matrix of the unperturbed system, the variation of constants method 

w = Y - i v  

leads to 
w' = Y - 1 B Y w .  

This equation however has only bounded solutions, because the right hand side is integrable. 

Thus s preserve boundedness and thus in the situation of the theorem the 
absolutely continuous spectrum. This for example applies to Schr5dinger or Dirac operators 
with periodic or even quasiperiodic potentials [6,13]. 

167 



Behncke 

I I  

In order to derive the asymptotics of the solutions of (1), we shall use the method of asym- 
ptotic integration. For this we need the basic result of Levinson [7]. Levinson's Theorem 
states that  a system 

u'(t) = ( diag (Ax(t), ..., A.(0 ) + R(~))u(t) = A(t)u(t) 

has an almost diagonal fundamental matrix if the diagonal is not too small - dichotomy 
conditions - and if R is not too large - R E/:x. 

Here we need a slight refinement of this Theorem, because our matrices also depend on 
the spectral parameter A. Better error estimates and conditions, which give a uniform 
dependence of A on A, thus allow us to conclude that the fundamental matrix Y(t, A) is 
almost diagonal and depends continuously on A, even in the asymptotic regime. Since the 
precise statement of this is rather technical, we will not elaborate further on this. 

Levinson's Theorem cannot be applied directly to (1). Instead the asymptotic integration is 
achieved by a series of successive transformations until  this result becomes applicable. Three 
types of transformations are used mainly. These are diagonalization, perturbation and the 
"1 + Q-transformation" used by Harris and Lutz [10]. For later use we give a brief outline of 
these methods. Because of its importance for our work we also state the basics of a complex 
1 + Q-transformation. 

Diagonalization 

Consider the linear differential system 

Y' = (B + B1)y (2) 

on [a, oo) and assume the leading part B = B(t) can be diagonalized by a smooth matrix 
function A = A(0,  A-'BA = diag(Al(t), ..., A,(t)) = A. Then the transformation 

z = A-iV 

leads to 
z' = [A + A-IB1A - A-1A']z (3) 

This transformation is thus useful if A-aA ~ is small, i.e. if B is sufficiently smooth. 

P e r t u r b a t i o n  

Lcwinson's fundamental theorem [7] asserts that s have at most a multipli- 
cative (I + o(I)) effect. We shall use this result however mostly in the following form. 

Let Y be a fundamental matrix for the system 

y~ = By 
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such that Y and y - i  are uniformly bounded. Moreover assume that B1 is integrable. Then 
the transformation 

y = Yz or z = y - l y  (4) 

transforms (2) into 
z '= (Y-~B1Y)z (5) 

The latter system has a fundamental matrix Z with 

zct)  = 1 + C(t) with C' E K' and IF(ol l  -< K . z  IBl, O)ld  (6) 

This follows easily from Levinsons result. Thus in this case (2) has a fundamental matrix 
Y(t).  (1 + C(0).  Of course (6) can also be shown in more general situations. 

The  1 + Q-Transformat ion  

Assume that B1 in (2) is conditionally integrable and let Q =/}1 be a matrix function with 

Q ' = B I + C  with C E s  and Q( t )~O (7) 

Then (1 + Q)-I exists for large t and the transformation 

z = (1 + Q ) - ' y  (8) 

leads from (2) to 
z' = (1 + Q)-'[B + BQ + B,Q - C]z (9) 

This transformation is thus useful if BQ and B,Q are smaller than B1. This applies in 
particular to rapidly oscillating not necessarily bounded B1. This method has been used 
extensively by Harris and Lutz [10]. 

The  complex  1 + Q-Transformat ion  

Later on we shall frequently encounter systems of the following form 

y , =  ( i / ~ + q s  ql ) 
q2 - i g  - q3 Y 

where/~ = gl + ig2 is a smooth complex valued function with g '  6 s and where the q~ 
are conditionally integrable. More specifically we assume q~ = Efq sing s with fit E s and 
flj e l:1 . 

Now the transformation (8) with 

0 0 1 )  
0 = ( 0 2  0 
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leads to a system in Levinson form if Qi(t)  ~ 0 for t ---* co, Qi E s and 

Q'I = 2ipQ1 + ql and Q~ = - 2 i # Q 2  + q2. 

t t 

With a(t)  = f g(s)ds  and ai(t) = f #i(s)ds we write solutions of (10) as 
c c 

. _ �9 

Qx(t = e 2ia s d s -  s ds 

= e 21a 1 - e-2aa)e-2ic'qldS - e-2WlqldS 
t 

and 

(10) 

(11) 

t 

e -2i'(t) / e2i'~(~ (12) Q2(t) 
c ~  

With the aid of partial integration it is now possible to show Qi(t) --* 0 and Qi(t)  E s uni- 
formly in #2, if 12#(t)-gj(t)] > g > 0 near infinity. In a simpler situation this transformation 
has been used by Ben Artzi and Devinatz [4]. 

In the remainder we shall employ a series of such transformations. Our guiding principle in 
this is to handle the smooth or slowly oscillating parts first by diagonalization and then to 
transform the oscillating terms by repeated 1 + Q-transformations.- 

I I I  

Because of Levinson's result it is advantageous to introduce a class of functions, wich is 
particularly suited for a repeated diagonalization modulo s For a natural number n 
let T~.(R) respectively ~ , ( C )  denote the class of real respectively complex valued functions 
on R+ which admit a decomposition 

f = f l  + f2 + -.. + f ,  near infinity where (13.1) 
h is k-times differentiable, f~J) E s  for 1 < j < k and f~)  E s (13.2) 
f(~J)(t) --* 0 for t ~ co and 0 < j < k < n. (13.3) 

In the remainder we shall also consider bounded functions where (13.3) is only required for 
1 < j < k < n. This defines the space Ca. 

As mentioned above the definition of D,  is motivated by the diagonalization procedure and 
the s result, where each successive diagonalization introduces higher deriva- 
tives. For this reason we define the k-th derivative modulo s of such a function by 

fla.] r(k) + . . .+ f~k)  and f["] = 0 (14) 
J k + l  

This extends to products of such functions by 

Because of (13.2) we see that ( f  .g)l~l E s ks. By using power series this can also be extended 
to analytic functions of ~ .  We note that the operation ~ defined above (7) is in some 
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sense the antiderivative of this. Likewise it is clear that neither ] nor f[kJ are unique. But 
this nonuniqueness will not concern us here. For the same reason we shall denote generic 
s by R or r. 

In this paper we shall study the equation (1) for IRe X I > m > 0 because it generalizes the 
separated Dirac equation. The restriction of the eigenvalue parameter $ to [ReA[ > ra >_ 0 
in the Dirac case and ReA > 0 in the SchrSdinger case implies that we study only the 
asymptotics of the positive energy continuous eigenfunctions. In the remainder A may vary 
freely in a set K which is definded by the following inequalities 0 _< l m X  < e, [ReX - X1[ < 
for ,~1 ~ [ - re ,  m] ~ or ,~1 > 0 respectively and 0 < ~ < �89 I [ , h i -  m I or 0 < ~ < ~),1 
respectively. 

For the potentials in (1) we assume near infinity 

V ~ = S i + P i + W ,  S ; E s  i = 1 , 3  
~ = $2 + P2 + I'V2,P2 differentiable ,P~,P2 " P ' , S ~  E s (15) 
P2 real and P2(t) --* 0 for t --* er 

The Wigner yon Neumann potentials Iu I'V2 and Ws will be specified later. (1) can now be 
written as :(( 0 ) 

- m - A  0 + ~ + S + F r  u (16) 

and according to our general philosophy we begin by diagonalizing the smooth part of the 
system. For simplicity replace Pl - m - A by P1 and P3 + m - ,~ by Pz. Define now 

where the square root is defined such that I m p ( t )  > 0 if I m A  > O. Since Pa(t) ~ - m  - 
X, Pa(t) ~ m - A and P2(t) --* 0 for t ~ o0, this can always be achieved for sufficiently large 
t. 4- ip(t)  are just the eigenvalues of 

& -P~ =;v 

The corresponding eigenvectors are (1, a+) t where 

(~:i~, - ~) 
0,4- ,,~ P 3  

Thus the matrix 

~ a +  (p2a- 

satisfie~ A-17PA = d iag( ig , - i# ) .  Because of (3) we also have to compute A - X A  '. 

( ) A-'A' = [~p,~2(a- - a + ) ] - '  cp~[~p~(a_ - a+) - ~,a~.] ' a '  ~ %' ~, [~(a_ - a+) + ~,,a'] 

The diagonal terms of this matrix vanish if 

a t ~ a ~  
t + I . ~1 = ( a _ -  a+ ,~)  and ~2 = ( a _ - a §  '~2) 
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N O W  
+a~ / P~ ~' 'e = q : ' 2  4- P3 2 

(a_ - a+) -2-#~ + ~ 2i# Ps2i# 
Since by assumption the last two terms are integrable, A-~A ' will have approximately, i.e. 
modulo/3 a, a zero diagonal if for i = 1,2 

~~ -2"#~+2PsJ~~ or ~oi= =~o 

Here the sign of the square root should be chosen such that  ~ is a continuous function of ~. 
For sufficiently small Irn,~ there is in fact a power series expansion of # and ~o around Re)~ 
for t near infinity. 

The transformed system, z = A-lu is now 

�9 �9 �9 0 qt + A-1WA] 

- r  "~" This can be rewritten as where ql = ~ and q2 = .__.§ a a, t. 

w h e r e q =  ~ ~ E s  - ~ ,  + 2~'3 

We shall continue now the diagonalization of the differeatiable part, i.e. the first two terms 
of this equation�9 Since this transformation will be repeated several times, we rewrite this 
system in a slightly more general form as 

z'= [diag(i#,-i#)+ ( :q ~ ) +B] z e = l , i  (17) 

q differentiable and q E s for some p > I, 

The eigenvalues of the leading matrix in (17) are +iv where 

v = (#~' - q2)�89 (18) 
and we choose the sign of the square root such that sign Irnv = sign Ira#. This can be 
achieved by using the power series expansion of the square root. In fact this expansion is 
even finite modulo s because q E s and this applies to all such analytic functions. The 
eigenvectors corresponding to q-iv are (1, a+)t and (a_, 1) t with 

0 / +  ~ b 

Thus the matrix 

i(~-~) and ~ _ =  i (~-~) 
eq ~q 

A x = (  ex r / 
r r 

will diagonalize the leading part of (17) and we shall choose r  and r such that Ai "1- A~ is 
approximately zero diagonal. A computation as above shows that 

r  = r  = (1 - ~ 2 ) - � 8 9  a 2 = a §  
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has the desired properties. Then the transformed system, w = A'flz becomes 

This is again of the form (17). Thus this transformation can be applied repeatedly. If the 
system, which is obtained by k diagonalizations, is written as 

w' = dmg(2#k,-i#~) + gqk 0 (19) 

with Bk = AA1...Ak-a 

we have 

i) #k(t) - #(t) -~ 0 for t ~ oo and #k(t) is real for real ,~. 

ii) qk e s near infinity. 

iii) The k-th diagonalizing matrix Ak is 1 modulo s  

iv) /~k and Ak depend continuously on A. 

v) Each qk is a rational function of # ,P;P~  and P~" j < 1, where each summand 
contains at least k derivatives. 

vi) There is an r E L 1 such that IRar < r(t) near infinity for all ,~ E K.  Thus near 
infinity Rk depends continuously on ,~ and can be estimated uniformly for ~ E K with 
respect to I1 II1. 

Because of (15) the diagonalization may be terminated after n steps. 

Summing up we have shown: 

T h e o r e m  2: The system (1) with the potentials V1,�89 and Vz satisfying (15) and Wi = 
0 i = 1,2,3 has a fundamental matrix U of the form 

U(t) = A(t)(1 + B(t))(1 + o(1))exp(diag(ia,(t) ,- ir  (20) 

| 

where an(t) = f# , (s)ds .  A andB depend continuously on ,~ and B(t)  ~ 0 for t --* eo 
e 

uniformly in K. The 1+o(1) term depends continuously on 2 and can be estimated uniformly 
for 2 E K.  For real A in I - m ,  rn]' (20) can be written as 

U(t) = A(t)(1 + C(t)) exp(diag(ia~(t), -ion(t)) 
with C(t) ~ 0 for t ---* co uniformly for ~ E K N R (20') 

Proof :  We have shown above that n diagonalizations lead to the system 
w' = (diag( i#~,- i#~)  + R~)w, whose fundamental matrix is by Levinson's theorem (1 + 
o(1)) exp(diag(ia~,-icr,)) .  Thus the result follows, because A1A2...A~-I can be written as 
(1 +Bl ( t ) )  with Bl(t) ~ 0 for t ~ oo as above. It remains to check the dichotomy condition 
of Levinson. For A = A1 + iA2 we see from (i) above 

# . ( t )  ~ # ( c o )  = ( ( - m  - ,k)(m - ,~))�89 ~ 4- (A~ - m2)�89 + ('~x 2 _ rn2)�89 
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and thus this condition holds for /X2 > 0. For real ,X however p ,  is real and Levinson's 
condition holds trivially. 

This theorem has the following consequences. 

Co ro l l a ry  1: On (0, oo) consider the Dirac differential expression 

rDu = 1 0 u' + V2 V3 + m 

with V1,�89 and V3 satisfying the conditions of Theorem 1. Then for ~ E f-re,  m] c any 
A-eigenfunction behaves asymptotically like a plane wave. The spectrum of any Dirac Ha- 
miltonian ~D derived from rD is absolutely continuous in [ - m , m ]  c. If r is regular at 0 any 
Titchmarsh Weyl m-function associated to TO is continuous in K and lim m(Aa + iA2) = A2~O+ 
m+(Aa) exists boundedly with 0 < I m  m+(A1) < oo. If T D i8 regular at 0 "HD satisfies a 
limiting absorption principle i.e. 

1 
s u p  < o o  for > - (22)  

o 2 
~eK 

where Mo is the operator of multiplication by (1 + t2) -*. Moreover 

lira _A/~(A~ + iA2 - 7/D)-a/l~ r, = M,R+M'~ (23) 
A~0+ 

exists in the norm topology. 

Proof :  The asymptotics of the eigenfunctions is a restatement of the result of Theorem 2. 
For real A E f - m ,  m] ~ all eigenfunctions are thus bounded. Thus the absolute continuity of 
the spectrum follows fi'om Theorem 1. 

For simplicity assume rD to he regular at 0 and let ul ( t ,  A), U2(t; .~) be A-eigenfuntions for 
"to with ul (0, A) = (cos r sin cz) t and u2 (0, A) = ( -  sin a ,  cos a)  ~. Then ux and us are real for 
real A and depend analytically on A. Thus 

= d/ )ll +o(1))( co (? + 7 ) )  a n d  u ,  = +o0))( sin(a. 
\~:a s]nta .  ~- 7 ) /  \ + a  cos(a. + ~tl)) 

where a = ]a+(oo)] and where the o(1) term depends continuously on ~ and can be estimated 
uniformly for A e K. Since 1 = [ux,u2](x) = e(A)d(A)(1 + o(1))cos('7 - ' 7 , )  and 

re(A) = lim u2(t) 
,-oo ua(t) 

m depends continuously on A and Im m+(A1) # 0 for 21 E [-m,m]*.  

For k E K and ImA > 0 the resolvent (A - 7-/D) -1 is an integral operator with a 2 by 2 
matrix kerned [16, ch. 7]. Thus this is also true for Ms(A --7"/D)-aM, and it suffices to prove 
(22) and (23) for the matrix component operators only. Since (23) follows from (22) as in [5], 
it remains to show the uniform boundedness of the matrix component operators. For this 
we use the Schur test [14, Th 4.1.2] with p = r = 2 and test function r = ~ = 1. Because 
of Theorem 2 it suffices to apply the test only to the functions exp(+ ia , )  in the resolvent 
kernel of (k - 7"/0) -1. 
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R e m a r k  1: It should be noted that the absolute continuity of the spectrum is valid regardless 
of the behaviour of the potential near 0. The limiting absorption principle can also be shown 
for potentials which are singular near 0, e.g. the Coulomb potential. In many of these cases 
u~ and u0 behave like t -p or ff respectively near 0. Then the Schur test function should 
be chosen as t ~ near 0. In addition it should be noted that the absolute continuity of the 
spectrum follows from the continuity of the m-function and from the limiting absorption 
principle as well. 

R e m a r k  2: Above we have shown the absolute continuity by using the subordinacy principle. 
Likewise we could have employed the technique of Weidmann [16] as in [2]. In this case the 
result in Lemma 15.4 respectively 16.8 in [16] follows from Theorem 2, while the generalized 
Prfifer angle 0 is approximately a~. 

Coro l l a ry  2: Corollary 1 is valid analogously for SchrSdinger differential expressions on 
(0,o~) 

- y" + V y  = r , y  (24)  

if V e :Dn(R). 

R e m a r k  1: The above remarks also apply to this situation. Corollary 1 and 2 extend the 
well known results of Heinz [11] and Weidmann [16]. Corollary 2 also extends the main 
theorem of Ben-Artzi [3] and gives another proof for Theorem 1 in [17] in the case n = 2. 

R e m a r k  2: In the proof of the theorem no essential use was ever made of 
Pl( t ) ,  P2(t) ,  Pz(t)  --4 0 for t ~ ~ .  Thus Theorem 2 and the Corollaries remain valid for 
potentials in E~(B) provided 

( P l ( t ) - m - A ) ( P 3 ( t ) + m - A ) - P ~ ( t ) > 6 > O  f o r a l l t > _ c f o r s o m e c > O .  (25) 

For SchrSdinger operators (25) becomes 

A -- P ( t )  >_ 6 > 0 for all t _> c > 0 for some c (25') 

Coro l l a ry  3: Assume Vi = Si + Pi i = 1,3 with Si E / : i  and Pi E En(R). Moreover let 
V~ = P2 + $2 with P2 differentiable satisfying Sa, P~,/)2" P[E  s and assume that (25) holds 
for some c. Then the spectrum of the corresponding Dirac Hamiltonian 7"/D is absolutely 
continuous in a neighborhood of A. 

Proof." Again the absolute continuity follows from the boundedness of the solutions. 

Remark :  A corresponding result also holds for SchrSdinger operators. It is also possible to 
show a continuity result for m and a limiting absorption principle in this case. 

The previous corollary and the following result were prompted by the analysis of 

- y "  + sin ray = r .y  a < 1 

Coro l l a ry  4: On (0, cr consider the Schr6dinger operators 

T~y = - y "  + (V + S)y with V E E. 

and S E s rl s Then any Hamiltonian 7"/. corresponding to r. satisfies 

i) a~,.(7"/.) = let, co) where a = liminfV(t) 
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ii) (fl, oo) C aa,(7"/,) where/3 = limsup V(t) 

Proof: For A >/3 Corollary 3 shows that any A eigenfunction behaves asymptotically like a 
plane wave. Thus Theorem 1 is applicable. 

L e m m a  2: Consider a SchrSdinger differential expression as above and assume V satisfies 
for some A E I~ the following condition:. 

For each E > 0 there exist an interval I, with length I~ --4 0 for e > 0 and 

IV( t )  - ~l < ~ for t e 1, 

Then [A,oo) C ar for any Hamiltonian 7-[o associated to r .  

Proof :  Let ~o, be a smooth, almost constant function with support I i .  Then e ikz �9 ~n is a 
n 

singular sequence for A + k 2. 

I V  

We shall now extend Theorem 2 to include von Neumann Wigner potentials W. Such poten- 
tials are assumed to be decaying and oscillatory. Mathematically they are thus conditionally 
integrable. If the decay at infinity is improved by integration we call the corresponding terms 
rapidly oscillating. In the next theorem such potentials will be denoted by X. It is clear 
from the work of Harris Lutz [10] and [1] that the 1 +Q-transformation is particularly suited 
to handle Wigner yon Neumann potentials, in particular the rapidly oscillating ones. 

Since/~ and a depend on A we shall also write/~(t,A) and a(t,A) in order to indicate this 
t 

dependence. As in [1] we write f f(s)ds = ]( t )  for a conditionally integrable f .  
o o  

T h e o r e m  3: Consider the Dirac differential expression (1) such that near infinity 

Vi=P++Siq -Wiq -X i  i =  1,2,3 (26.1) 
P1,P3 e 23~(R),P2 differentiable, P2(t) --* 0 for t --* oo (26.2) 
P;, P2Pa, P~Ps, S i e  s (26.3) 

Moreover assume that Wi, Xi, Wi cos 2or and Wi sin 2a are conditionally integrable and that 

hi = (Wi cos 2a) ~ and hi+3 = (W/sin 2a) ~ 

satisfy 

hiWi, hiP j e 1:1 i = 1,2 ..... 6 , j  = 1,2,3 (26.4) 

and for )(i we demand 

Xi, f( iXi,Xihk e t"  i , j  = 1,2,3, k = 1,2 ..... 6 (26.5) 

Then a fundamental  matrix U of (1) is given by 

U(t) = A(t)(1 + B(t))Z(1 + C(t)) 
t 

where Z = exp diag(i(a + L), - i (a  + L)), iL(t) = f(a+ - a_ )-1(W1 + (a+ + a_)W~ + a_ a+ Wz) 
e 

and B(t), C(t) --* 0 for t ~ co. If (26.4) and (26.5) hold for all A E (A1, A2) this set belongs 
to the absolutdy continuous spectrum of any Dirac Hamittonian associated to (1). 
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Proof :  It follows from the proof of Theorem 2 that (1) with Wi,Xi = 0 has a funda- 
mental matrix U of the form U = AAx~I(1 + C(t)) with C(t) ~ 0 for t --~ eo and 
Fq = exp d iag( ia l , - in1) .  Thus the transformation 

. = ~'~lA'~lA-1 u 

will lead to 
z' = [P,'(1A'~I A-1WAA1Ea + R] z 

Now one sees easily with Wi + Xi "--* Wi 

A _ X W A = ( a _ _ a + ) _ t ( - W l - ( a - + a + ) W , - a - a + W z  - W , - 2 a - W , - a ~ _ W z  ) 
Wa + 2a+W2 + a2+W3 W, + (a_ + a+)W2 + a+a_Wa 

(27) 
( 1 i e r )  w i t h a = , u , q  e ~  s a n d q ' e  s Thuswe Moreover A1 is of the form AI = -ic~ 1 

have #2 - Pl = It2 - # E s and this implies that  e 2;~ = e 21~ �9 k with k' E s 

Writing now 
( l ql e-2'~ ) 

E'llAlX"t-xI'I/AAIEt = q2e 2iq - l  

we see that  qle -21'~ and q~e -2i~ are sums of terms of the form hkI'Vie .2i~ and hkXie 4"21r 
where h is a rational expression in #, P1, P2 and Ps and where k' E s If the corresponding 
expressions in the 1 + Q-transformation are chosen as hk(Wie• ~ respectively hkXie *21~ ( (0 
the transformation w = 1 + Q2 0 z leads to 

w' = {diag(- l ,  l) + R}w 

Here we may take 1 = - (a_ -- a+)-a[l, V1 + (a_ + a+)W 2 q- a_a+W~], because all other terms 
are integrable (27). Even if I is not integrable, the solutions of this system are still bounded, 

I 

because Re l = O. Writing iL(t) = f l(s)ds, the fundamental matrix of this system is given 
c 

by exp d i a g ( i L , - i L ) .  (1 + C(t)) where C(t) --* 0 for t --* oo. The remaining claims follow 
directly from this and the subordinacy principle. 

R e m a r k :  Theorem 3 remains valid even without the assumption Xihk E s In this case 
a further 1 + Q-transformation is needed. It is obvious that a corresponding nonresonance 
result is also valid for SchrSdinger operators. The above theorem extends the main result of 
Behncke, Rejto [2] as well as the principal theorem of Hinton and Shaw in [12]. 

In order to extend the main theorem of [1] we have to specify the W~ further. Following [1] 
we require 

Wi = E f ]  i) sin 9r with ajf!i) = Jj,l*e(i) ~. Jj,2Jr 

fj(0 is k-times differentiable with ,k 

fj( i) 1"3 •(i)' ,,;t e(i)" r(i)' ,k E ... ,sj,k E L2,Ij,  2 ,yj,: E s 

r  -* eo or g~(t) --, O~(eo) > 0 for t ~ eo 

(2s.a) 

(28.2) 

(28.3) 

(28.4) 
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gl! 
- -  �9 s (28.5) ga 

For j r k l iminf [g~(t) - g'k(t)[ > 0 (28.6) 

As in [1] define the resonance sets 7~1 and ~2 by 

~ -- {,~ e I-re ,  m]~ I limgj(t)-2#(t,,~) = 0  for some j} 
t ~ r  (29) 

T~2 = {A E [ - m ,  m] [ lim(oj + g~.) - 2#(t, A) = 0 for some j ,  k} 

T h e o r e m  4: Let V~, �89 V3 be given by (15) with Pi E 293 Xi = {3 and W~ satisfying (28). 
Then any Dirac Hamiltonian corresponding to (1) has an absolutely continuous spectrum in 
I - m ,  rn]~\('R.1 U "R2). The same result holds for corresponding Schr6dinger operators. 

Proof :  Let A E I - m ,  m]Ck(TQ U 7~2). Arguing as in [1] or as above it suffices to show that 
the corresponding A-eigenfunctions behave like plane waves. As above we see that the first 
three diagonalizing transformations, with respect to the P~ lead to 

( l qle -2'~2 ) 
w' --- {r,-x(1 + C)-~A~aA'i:A-q'VAA:A~(1 + C)g}w = q~e~,~ - l  w (30) 

where C(t) -~ 0 for t ~ co and C'  6 s A typical summand of qae -21~2 is now h. fe -21~177 
where h is a differentlable function built from the Pi~,lk,j < k and integrals of s functions, 
while f arises from the Wi. Similar representations can be found for q~e 2~'~ and 1. Since 
A ~ ~1,  or 11m[21#2 + ig[ > 0 a 1 + Q-transformation whose corresponding terms are 

e-2icr2~ig 
h.  f can be applied to transform the off diagonal terms in (30). The resulting 

( -2 i#2  + i9') 

system z = Q2 i w is then of the form 

z , = { ( l l  qa ) ) (3l) 
q4 -11 + R z 

where qs is a sum of terms hhxffle -2i'~+i~ and h[llfe-21"2+% For q4 a similar represen- 
tation is valid. Thus the proof can be completed as in [1] with a second 1 + Q-transformation. 
In fact in this case one obtains the same expression as in the Theorem of [1]. In particular 
Re ll is integrable. 

Altogether this shows that a fundamental matrix for (1) is given by 

A(/)(1 + B(t))E(1 + C(t)) exp diag(iL1,-iLl) 

t 

where B(t) ~ O, C(t) ~ 0 for t --* oo and where iL = i f Iml dt. 
g 

R e m a r k :  By adapting this approach to the case studied in [1], we can also show the 
continuity of the m-fuction off Rl  U R2 and a limiting absorption principle with the aid of 
the complex 1 + Q-transformation. However the proofs are considerably more involved in 
this case. Likewise the result can be extended to Wigner von Neumann potentials which are 
infinite sums provided ?~x U T~2 consists of isolated points and the terms converge sufficiently 
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rapidly. In addition it should be noted that  we only used that  4.g' + 2/~ is bounded away 
from 0 near infinity. 

In order to apply the 1 + Q-transformation we used the invertibility of (1 + Q). So far we 
have achieved this by demanding Q(t) --* 0 for t ~ oo. However if Q is nilpotent, this 
condition is also satisfied. The SchrSdinger differential expression 

r,y = -y"  + (q + hsing)y 

with g real valued twice differentiable and 

h 
g'(t) ---, or q , ~  E s g,2 g--, ~'-'-z e s (32) 

is an example, albeit a strange one, for this. We note that  h may be unbounded. But this 
is compensated by an extreme rapid oscillation. 

As above we write (r,  - )~)y = 0 in systems for m 

 (01) 
q0 0 u with q o - - q + h s i n g - ~  

( 1 0 )  ~ cosg. Then and transform it by v =  Q 1 u, Q =  

q l + Q 1  Q v where q l = q - � 8 9  ~ - . ~ a n d  

and another 1 + Q-transformation, to = Q3 1 - Q2 v transforms this system into 

,__[(0 ] 
ql 0 + R w  

and to this system Theorem 2 can be applied. Thus for ,~ > lira sup qrt~ - �89 ~ (t) -- s 

the solutions of this equation look like plane waves and the spectrum of corresponding 
SchrSdinger Hamiltonian is absolutely continuous in (s, ~ ) .  With  more effort the result can 

be extended to g ' - z E / : n  provided q'g'-', (~)[Z]g,-4-/ 'h '~[ ']  ,-3 --(~)[zl 'g,-,  ~,~} g , E s  It also 

holds for q = ~hl  sin gi if g~-Z, (gl ~ - w-2 ~ s 4- g j ) -  , (g~ =E gj :t: g~,j ~ Even the boundedness of ~, 
may be dropped in some cases. 

Above we have used the asymptotics of the eigenfunctions to show the absence of singular 
continuous spectrum. In addition it is possible to derive the density of states from our 
asymptotic formulae. For this one can use that  a= is approximately the generalized Prfifer 
angle for the corresponding differential expression. Thus ~a,~(d, ,~) is approximately the 
number of zeroes of a ~ eigenfunction of r - remember a~(c) = 0 and the integrated density 
of states in [/~z, ~2] is given by 

d~oo 
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If lira ~(t, 2) = t,(oo, 2) exists, this latter expression is just ~[~(c~, ~2) - g(c~, 2)]. 

With the aid of several complex 1 + Q-transformations it is also possible to derive the 
singularity of m at a resonance. For the simple case P, = S~ = W2 = 0 i = 1,2,3 
and Wi = 0 (~) one finds that m(,~ + i~2) cr 2~'~,0 < a < ] if the corresponding 
subordinate solution behaves like t - "  near infinity. Thus there is a close connection between 
the singularity of the m-function and the decay of the corresponding subordinate solution, 
which certainly holds in a much wider context. 

Remark :  After this paper was completed the author learned that this result had also been 
obtained independently by different methods by Hinton, Klaus and Shaw [18] and Atkinson 
(private communication). 

Acknowledgement :  The author wishes to thank Professor P. Rejto for the many helpful 
discussions concerning this work. Likewise I want to thank the referee for some sugge- 
stions to improve the paper. 
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