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1. I n t r o d u c t i o n  

1.1. 

By surface I denote an (oriented) connected Riemann surface of constant curva- 
ture -1 .  Its signature (g, n) indicates the genus g and the number of boundary 
components n which here are simple closed geodesics or cusps. The systole of 
a surface is the shortest closed geodesic which is not a boundary component. 
T(M) denotes the Teichmfiller space of a surface with the additional condition 
that  the lengths of the houndary components (if any) are always fixed for the 
surfaces of T(3I). A geodesic , of a surface M is considered as being marked. 
This means that  the geodesic in the same marked homotopy class in another 
surface M' E T ( M )  is also denoted by u. Instead of simple closed geodesic, I 
will only write geodesic. 

This paper treats the following two main problems, cited as (I) and (II) in 
the sequel: 

(I) For a fixed signature (g, . )  search tile surfaces with a systole of maximal  
length, they are called global maz'imal .surfaces. Surfaces for which the length 
of tile systole is a local nlaximum in the corresponding Teichmiiller space are 
called maximal surfaces. 

(II) For a fixed signature (.q, . )  search the surfaces with the maximal number of 
systoles, these surfaces are called be.st kisszno number surfaces. 

Here. a fixed signature means that (g, r~) and the length of each boundary 
geodesic are fixed. For ,,very fixed signature (g, n) with 2 g + n  > 4 both problems 
have at least one solution. The proof of this basic result is ill "03] for (I) and for 
(1I) in Section 2 below. 
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The two problems (I) and (II) were introduced by the author, see [13],[14], 
[15],[16]. A theory is developed in [13] how maximal surfaces can be found and 
many examples are presented. The most important  and interesting examples 
appear in [14], they are the surfaces corresponding to the principal congruence 
subgroups of PSL(2,Z). [15] and [16] treat (II), but in a less general context. 
Surfaces with a very big number of systoles are constructed, see [15] for surfaces 
with cusps and [16] for closed surfaces. Section 2 below will introduce a general 
theory of (II) and examples of best kissing number surfaces are presented. In 
particular, problem (II) will be completely solved for genus 2 and an upper 
bound for the number of systoles of closed surfaces is proved. 

1.2. 

The two problems (I) and (II) have well known analoga in Euclidean spaces, 
namely the problem of finding the best lattice sphere packing and the problem 
of finding the lattice sphere packing with the bigest kissing number, compare 
[6],[10], see also [2],[12]. In fact, if 9 = 1, the correspondences are the following 
for flat tori of dimension 2. Let Q be a Euclidean parallelogram which is the 
fundamental domain of a torus T of a normalized area. The systole of T then 
corresponds to a side or to a diagonal of Q. So, placing circles with centers in 
the corresponding vertices and with a radius being half of the length of the 
systole, we have a lattice circle packing in the Euclidean plane. The solution for 
problem (I), namely the torus with the longest systole, induces the best lattice 
circle packing. The solution of problem (II), namely the torus with the maximal 
number of homotopy classes of systoles (in the hyperbolic case we do not need 
to speak of homotopy classes since there is a unique geodesic in a homotopy 
class), induces the circle packing with the bigest kissing number. Of course, these 
Euclidean problems are trivial in dimension 2 and their solutions were already 
known by greek mathematicians, but for dimensions bigger than 2, they are 
non-trivial.  Their analysis has led to important  theories with many interesting 
applications. For the problems (I) and (II) (in the hyperbolic case) the genus 
serves in some sense as an analogon to the dimension in the Euclidean case. One 
can see that  the theory developed in [13] has some rather near correspondences 
with Vorono'/'s theory of the bigest minimum of positive definite quadratic forms 
with integer coefficients, see [18], which is another formulation for the problem 
of the best lattice sphere packing. 

The theory in the Euclidean case gives some ideas what can happen in the 
hyperbolic case. 

(i) Only for small dimensions the same lattice sphere packing solves both 
problems, so one expects the same thing in the hyperbolic case. I conjecture 
t ha t  already for closed surfaces of genus 5, the best kissing number surface and 
the global maximal surface are different, see below Section 3c. 

(ii) There exist dimensions such that  the solution of one (or both) of the 
Euclidean problems is not unique. We have seen in [14], Section 5, that the 
same can happen for (I). Further, we will see in Section 3c that there exist two 
different closed surfaces of genus 4 with 36 systoles, and I conjecture that both 
are best kissing number surfaces. 
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(iii) The first idea that the solutions of the two problems should have many 
symmetries, is wrong in the Euclidean case. We will see a plausible argument 
that the same is true in (I). 

(iv) In the Euclidean case, the kissing number and the bigest minimum of 
positive quadratic forms increase monotonically with the dimension. One is led 
to the idea that  the same happens in the hyperbolic case, more precisely, if the 
number of boundary components and their lengths are fixed, then the maximal 
length of the systole and the maximal number of systoles should increase mono- 
tonically with the genus. The assertion is however wrong if we only compare 
with the area of the surfaces: There are global maximal surfaces M1 and M2 
such that, in M2, the area is bigger, but the length of the systole is smaller than 
in M1, see [14], Section 5. 

1.3. 

Problem (I) has another closely related problem, namely the so called isostolic 
problem. Here, one is looking for bounds (depending on the topology, for ex- 
ample) for the systole of Riemannian manifolds with an arbitrare continuous 
metric. This problem of course is much more general, and important progresses 
have been made in the last years, in particular due to some papers of M. Gromov, 
see [8],[9], see also the papers of M. Berger [3] and of E. Calabi [4]. 

1.4. 

Problem (I) already appears in a rudimental form in Fricke/Klein [7]. In Zweiter 
Abschnitt, Sechstes Kapitel of [7], Fricke/Klein treat the (2,3,7) triangle surface 
of genus 3 with an automorphism group of order 168 which they call F16s; 
this was certainly Klein's prefered surface. w on page 379 is intitled "Die 21 
kfirzesten Linien der F16s...", and in this paragraph they write " . . .  und um 
fiir diese einen zweckm/issigen Namen zu besitzen, benennen wir sie (auf Grund 
einer nahe liegenden Ueberlegung) als eine kiirzeste Linie auf der Flh'che F16s." 
So, Fricke/Klein identify the 21 systoles of F16s, but did not prove this fact. It 
seems that the first proof has appeared in [13] where it is also shown that FI~s 
is a maximal surface, but not the global maximal surface for genus 3. 

1.5. 

I already have described the content of Section 2. Section 3 treats some questions 
concerning problem (I). New maximal surfaces of small genus are presented and 
I show why a maximal surface does not need to have many symmetries. I also 
show that there exist non-congruence subgroups of PSL(2,~) which correspond 
to maximal surfaces. 

2. B e s t  k iss ing n u m b e r  sur faces  

T h e o r e m  1. For every fixed signature (g, n) there exists a best kissing number 
surface. 
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Proof. By [13], Theorem 2.6 and Theorem 2.8, for every signature a maximal  
surface M ~ exists and has at least d im(T(M' ) )+  1 systoles. Therefore, the best 
kissing number surface M has at least d im(T(M))+ 1 systoles. It follows that M 
has systoles which intersect and they thus must be longer than 2 sinh -1 1. Hence 
we can restrict the search for the best kissing number surface to a compact part  
of the moduli space which proves its existence. [] 

2.1. The notion of a local maximum for problem (II) 

While for problem (I) it also makes sense to look for local maxima,  this is not 
the case for problem (II), at least not in a naive way, since for problem (II) each 
surface is a local maximum (the number of systoles does not increase locally). 

To avoid this problem we could look for isolated local max ima  for (II) and 
we have the following result. 

T h e o r e m  2. For every fixed signature (g,n) there exists only a finite number 
of isolated local maxima for (II). 

Proof. Let M be an isolated local max imum of (II), let F be its set of systoles. 
Then F fills up, this means that every inner closed geodesic of M is intersected by 
a systole. Since if a simple closed geodesic a is not intersected by a systole, a small 
twist deformation along a cannot change the number of systoles contradicting 
thus the hypothesis that  M is an isolated local maximmn.  Therefore, all isolated 
local maxima of (II) lie in a compact subset of the moduli space and since among 
them, there is no cluster point, their number is finite. [] 

But also the notion of an isolated local maximum of (II) is not completely 
satisfying. The problem is that there exist non-trivial  examples of local maxima 
which are not isolated. See for example the following closed surface M of genus 
2. The set of systoles F of M contains exactly seven systoles, one of them is 
dividing, call it a. It divides M into two subsurfaces $1 and $2 of signature 
(1,1). Let S1 and $2 be isometric such that  each of them contains three systoles. 
It follows that  M is well determinded up to a twist deformation along a, compare 
[13] Corollary 4.1. Let Ad be the set of surfaces in the moduli space of genus 2 
which are constructed, from M, by a twist deformation along a. Then all surfaces 
of M have the same seven systoles and all surfaces in a small neighborhood of 
.Ad have less than seven systoles. 

Such examples exist for most signatures and we can even not exclude a priori 
that the global max imum of (II) is of this nature (I conjecture however that this 
cannot happen, see below). So, it is not easy to find a reasonable notion for a 
local max imum of (II). 

T h e o r e m  3. A maximal surface M is an isolated local maximum of (II). 

PrOof. Let F be the set of systoles of M. In a neighborhood of M the set of 
systoles is a subset of F.  If M is not an isolated local max imum for (II), then 
there exist surfaces M ~ # M in each neighborhood of M such that  all geodesics 
of F are systoles. On the other hand, since M is a maximal  surface, there exists 
a neighborhood U of M such tha t  for M ~ E U, the geodesics of F cannot all be 
longer than in M.  It follows tha t  there exists a surface M ~ E U such that  F is 
the set of systoles which, in M ~, are shorter or of equal length than in M. But 
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this contradicts the fact. that M is F -min imal  (see [13]) which means that  for 
each surface M ~ # M in the moduli space of M, there is at least one geodesic 
of F which is longer in M '  than in M. We therefore have proved that  M is an 
isolated local maximum for (II). [] 

The preceeding theorem leads to the interesting question if there exist isolated 
local maxima of (II) which are not local maxima of (I). Moreover, I conjecture 
that the global maximum of (II) is at least a local maxiinum of (I): 

C o n j e c t u r e .  The best kissing number surface is a maximal surface. 

2.2. Examples of best kissing number surfaces 

I now give examples of best. kissing number surfaces. 

T h e o r e m  4. The best kissing number surfaces for the signatures (1,1), (0,4) 
and (1,2) are identical to the global maximal surfaces of these signatures. Their 
respective numbers of systoles is three i,~ the cases (1,1), (0,4) and five in the 
case (1,2). 

Proof. The proof of Theorem 4.2 in [13] shows that a surface of signature (1,1) 
has at most three systoles and it has three systoles if and only if it is the unique 
global maximal surface. The proof of Theorem 4.3 iu [13] shows the analogon in 
the case (1,2), uamely that a surface of signature (1,2) has five systoles if and 
only if it is the unique global maximal surface. Finally, Theorem 5.6 of [13] and 
its proof shows the assertion in the case (0,4). [] 

T h e o r e m  5. The best kissing number surface for genus 2 is the global maximal 
surface of genus 2, namely the (2,3,8) triangle surface with an automorphism 
group of order 48. 

Proof. Call M* the global maximal surface of genus 2. M* has 12 systoles (see 
[13]). It follows that  the best kissing nmnber surface M has at least 12 systoles. 
Systoles of closed surfaces which intersect mutually, are non-dividing. If M has 
a dividing systole, then it is intersected by no other systole and M can have at 
most seven different systoles, compare the above described example. Surfaces of 
genus 2 are hyperelliptic and the simple closed non-dividing geodesics of these 
surfaces pass through exactly two Weierstrass points. There are six Weierstrass 
points, call them 1,2,3,4,5,6. Since systoles of closed surfaces intersect at most 
once, we can identify each systole with the two Weierstrass points where it passes 
through. In the following we speak of systoles 1-2, 4-6 and so on. 

Assume now that  through the Weierstrass point. 1 four different systoles pass. 
Then there are two of them which intersect in 1 by an angle a _< 7r/4. It follows 
as in the proof of Lemma 5.1 of [13] that  ct = 7r/4 and that  M = M*. I however 
note that  in the proof of this Lemma 5.1 instead of 7r/4 it is written 7r/8 which 
is of course a fault. It now follows that either M = M* or at most three different 
systoles pass through every Weierstrass point. In the latter case, M has at most  
nine systoles. [] 

The following theorem is still more interesting and, surprisingly, it can be proved 
in more or less the same manner as Theorem 5.3 of [13] which assures that M* 
is the unique maximal  surface of genus 2. 
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T h e o r e m  6. M* is the unique isolated maximum of (II) of genus 2. 

Proof. Assume that  M # M* is an isolated maximum of (II). Then every closed 
geodesic of M is intersected by a systole hence M has no dividing systole. In the 
proof of the preceeding Theorem 5 we have seen that through each Weierstrass 
point of M at most three systoles pass. 

(i) C l a im  1: Let 1-2 and 1-3 be systoles of M. Then M has no systole 2-3. 
Proof. Assume firstly that M has a systole 2-3 such that there exists a subsurface 
S of signature (1,1) which contains the three systoles 1-2, 1-3, 2-3. Let z be the 
boundary geodesic of S. Then z is the boundary geodesic of another subsurface 
S' with signature (1,1). S' must be isometric to S, compare Lemma 5.2 of [13]. 
The automorphism group of S contains a subgroup of order three. Since S' 
is isometric, this subgroup also acts on M and it follows that systoles which 
intersect z appear as triples. The crucial point is that one such triple is not 
sufficient. We can increase the length of the three systoles of S and of S' be the 
same amount r The result is a new surface M'.  If the twist along z has not 
been changed, then the triple of systoles intersecting z will be shorter in M',  by 
calculation. Executing a twist deformation along z we can increase the length 
of this triple by the same amount e and M'  has again the same nine systoles 
as M. Since M is an isolated maximum of (II), a second triple of systoles much 
intersect z, but then M has 12 systoles which is impossible since M* is the 
unique surface with 12 systoles. 

Assume now that M has a systole 2-3, but there does not exist a subsurface 
of signature (1,1) which contains t -2 ,1-3 and 2-3. This is impossible by the 
calculation made in the proof of Lemma 5.3 of [13] which thus finishes the proof 
of Claim 1. 
(ii) C l a im  2: Let a be a simple closed non-dividing geodesic of M. Then there 
are at most three systoles of M which do not intersect a. 
Proof. Cut M along a, the result is a hyperelliptic surface N of signature (1,2). 
Assume that N contains four systoles of M. Then N has an involution which also 
acts on M and it follows that systoles of M which intersect a, appear as pairs, 
compare the proof of Lemma 5.4 in [13]. Again, the crucial point is that one pair 
is not sufficient by the same argument as above. It follows that there are two 
pairs of systoles which intersect a. It then follows as in the proof of Lemma 5.4 of 
[13] that  M must have three systoles of the type 1-2,1-3,2-3 which contradicts 
Claim 1 and proves therefore Claim 2. 
(iii) By the proof of Theorem 5, M has at most nine systoles. If M has seven, 
eight or nine systoles then a contradiction follows by Claim i or Claim 2, compare 
the proof of Theorem 5.3 in [13]. 
(iv) By (i),(ii), and (iii) it follows that M has at most six systoles and that 
every simple closed geodesic of M is intersected by at least two systoles. Assume 
that through every Weierstrass point at most two systoles pass. Then, up to 
permutations of the Weierstrass points, there are two possibilities. Either M = 
M1 has six systoles 1-2,2-3,3-4,4-5,5-6,6-1 or M = M2 has five systoles 1-2,2- 
3,3-4,4-5,5-1. 

Assume that  M has a Weierstrass point where three systoles pass through, 
for example 1-2,1-3,1-4. Then, by Claim 1, all other systoles pass through 5 or 
6. By (ii), only one systole of the three possible 2-5,3-5,4-5 can exist, and by the 
same reason, only one systole of the three possible 2-6,3-6,4-6 can exist. But 
since each geodesic 5-6 must be intersected by at least two systoles, there exists 
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a systole in both triples. We can therefore assume that  2-5 is a systole. If 2-6 is 
also a systole, then 5-6 cannot be a systole by (i). Hence a third possibility for 
M is M3 with the five systoles 1-2,1-3,1-4,2-5,2-6.  I f 2 - 6  is not  a systole, we can 
assume that  3-6 is a systole. Then 2-5 is only intersected by 1-2, therefore 5-6 
must  also be a systole. The fourth possibility for M is thus a surface M4 with 
the six systoles 1-2 ,1-3 ,1-4 ,2-5 ,3-6 ,5-6 .  Up to permutat ions  of the Weierstrass 
points the four mentioned surfaces Mi cover all possible cases. 

(v) The cases M1, M3, M4 each contain two pairs of systoles which do not 
intersect, namely 1-2,2-3 and 4-5 ,5-6  in M1, 1-3,1-4 and 2-5 ,2-6  in M3, 1 -3 ,1-  
4 and 2-5 ,5-6  in M4. Hence there exists a dividing geodesic z which separates M 
into two isometric subsurfaces of signature (1,1). Therefore, a symmet ry  on M 
is induced which implies tha t  systoles intersecting z appear as pairs. It follows 
by the argument  of (i) tha t  two pairs of systoles must  intersect z which shows 
tha t  the three cases M1, M3, M4 are impossible. 

(vi) Case M., remains. The systoles of M2 induce a hyperbolic pentagon P 
with sides of equal length. Then  there exists a pentagon PP with sides of equal 
length which are a little bit longer than the sides of P and such that  the angles 
of  both pentagons are almost  the same. Moreover, we can construct by p t  a 
surface M ~ of genus 2 which has the same five systoles as M2 proving thus tha t  
M.~ is not an isolated m a x i m u m  of (II). [] 

The topology induces an upper bound of the maximal  number  of systoles. For 
closed surfaces for example, there is a bounded number  of non-dividing simple 
closed geodesics which mutual ly  intersect at most  once. 

T h e o r e m  7. Let M be a closed surface of genus g and a a systole of M .  Then 
a is intersected by at most 8(g - 1) other systoles. 

Proof. Since in a closed surface systoles nmtual ly  intersect at most  once, we 
assume that  a is non-dividing.  In the sequel, a geodesic is a simple closed n o n -  
dividing geodesic which intersects a once and all geodesics mutual ly  intersect at  
most  once. We will calculate the maximal  number  of such geodesics. This is a 
topological question, so we are free to choose the metric of M.  Let b a geodesic 
and cut M along a and along b. We can assume that  the result is a Euclidean 
rectangle in which the opposite sides are identified and from which 2(g - 1)  
circles are removed. 

We firstly count the geodesics which do not intersect one of the circles and 
do not intersect b. Their maximal  number  is 2(g - 1). There is also a maximal  
number  of 2(g - 1) geodesics which do not intersect a circle, but  intersect b. So 
we have at most  4(g - 1) geodesics which do not intersect a circle, compare Fig. 
1. 

Assume now that  the geodesics intersect two circles. Then again, we have at 
most  2(g - 1) geodesics which do not intersect b and at most  2(g - 1) which 
intersect b, compare Fig. 2. 

Every geodesic which intersects more than four circles would intersect more  
than once one of the 8 ( g - 1 )  geodesics mentioned. So, this set of  8 ( g - 1 )  geodesics 
is a maximal  set. Other  maximal  sets of  geodesics are induced by other choices 
of  b and of the circles. [] 

C o r o l l a r y  1. A surface M of  genus g has at most 12g 2 - 21g + 9 systoles. 
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Fig. 1. The rectangle for 9 -- 3 with the geodesics not intersecting ,~ circle. Four geodesics do 
not intersect b (thin lines), four geodesics intersect b (thick lines). In the figure, the circle on 
the top must be identii~ied with the circle on the bottom, and so on 

/ r l l  

" - - \ - \ ' ~ ? ' ~  \ \  t - ' T  
I 

Fig. 2. The geodesics intersecting two circles (recall that the circle on the top is identified 
with the circle on the bottom, and so on). Four geodesics do not intersect b (dotted lines), four 
geodesics intersect b (plane Hnes, one is denoted by z )  
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Proof. We calculate the maximal  number of simple closed geodesics of M which 
mutually intersect at most once. Let S be a set of mutually non intersecting 
simple closed geodesics of M. Let a C S. Then a is intersected by at most 
8(g - 1) systoles by Theorem 7. Each systole which intersects a, intersects at 
least a second element of S. It follows that  M has at most 

3 g - 3 + ( 3 g - 3 ) ( 4 g - 4 ) =  12g 2 - 2 1 g + 9  

systoles. [] 

R e m a r k .  Assume that for g ---* oc the maximal  number of systoles of a closed 
surface of genus g increases with gk for a real number k. Corollary 1 shows that  
k < 2 and [16] proves that  k > 1. 

3. S o m e  r e m a r k s  on m a x i m a l  su r f aces  

3.1. Maximal surfaces wilhout symmetries 

In most  cases, we can construct a maximal  surface from a closed surface M which 
admits a tesselation of triangles of equal sides such that  around each triangle 
vertex the same number N of triangles lies. The construction goes as follows. 
Replace each triangle by a right angled hexagon which has an isometry group of 
order three. This means that  the hexagon has three sides a, b, c of equal length 
c such that these three sides are not neighbors. Construct a surface M(NE/2) 
with the same tesselation structure as M in which the triangles are replaced by 
hexagons and the triangle vertices by boundary geodesics of equal length Ne. 
Let M(0) be the surface with c = 0, this means that the boundary geodesics 
become cusps. 

Let a be a hexagon (triangle) side in M(0) between two cusps v and w. Then 
there exists a unique subsurface S(a) of M(0) of signature (0, 3) which contains 
a, v and w. Denote by z the third boundary geodesic of S(a). Then the length of 
z depends only on N, but not on the specific tesselation and we have (compare 
[14], Proposition 2) 

N 
cosh z/4 -= -~. 

The geodesics of type z are the shortest dividing geodesics of M(0) and they are 
also systoles in most cases. This depends on the following argument. 

There exists an infinite number of (2,3,N) triangle surfaces, see [11]. Accept 
that,  for a fixed N, the length of the systoles of the (2,3,N) triangle surfaces 
tends to infinity if the genus tends to infinity. Accept further that the length 
of each simple closed geodesic increases if we pass from M to M(0). It follows 
that  the length of the shortest non-dividing closed geodesic in M(0) tends to 
infinity and therefore, in most cases, the systole must be a dividing geodesic and 
its length depends only on N. It then follows by [14], Theorem 13, that M(0) is 
a global maximal  surface. 

Now, there are many surfaces M which admit  a triangle tesselation in the 
above defined sense, which are however not (2,3,N) triangle surfaces. This means 
that  the automorphism group of M does not act on the triangles. M. Conder 
[5] has even shown that  such surfaces can have trivial automorphism group. 
Therefore, by the above argument,  it is very plausible that,  in this way, one can 
construct global maximal surfaces with trivial automorphism group. 
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3.2. Maximal surfaces and non-congruent subgroups of PSL(2,Z) 

The principal conguent subgroups of PSL(2,Z) are the most important  maximal 
surfaces. This has led to the question [1] if the property of being a maximal 
surface has something to do with the distinction of congruent and non-congruent 
subgroups of PSL(2,Z). It however seems that  this is not the case, at least not 
in a simple maimer. 

Let P(n)  be an Euclidean regular pyramid with the basis being a regular 
n-gon and in which the triangles all have three sides of equal length. To P(n) 
corresponds a surface, also denoted by P(n), where the vertices are replaced by 
cusps. Let D(n) be the corresponding double pyramid which is the double of 
P(n) with respect to the basis. Then, at least if n is odd, D(n) corresponds to 
a non-congruent subgroup of PSL(2,Z). This is a classical result, compare [17], 
pg 162. 

T h e o r e m  8. D(3) is a maximal surface. 

Proof. Denote by T1 and 7'2 the two vertices of D(3) which correspond to the 
tops of the pyramids and by Si,i = 1,2,3, the three vertices of the basis of 
the pyramid. To an edge e of D(3) there corresponds a unique closed geodesic 
z(e) as was explained above in Subsection 3.1. D(3) has three edges si,i = 
1,2, 3, between the vertices Si and six edges ti, i = 1 . . . . .  6, such that one of the 
corresponding vertices is T1 or T2. The systoles of D(3) are either the z(si) or 
the z(ti). A simple calculation implies that the z(ti) are shorter and hence the 
systoles of D(3). Denote this set of systoles by F. 

It is easy to see that  D(3) is the unique surface of the fixed signature (0,5) 
which has the enlarged isometry group of the double pyramid (the enlarged 
isometry group also contains the orientation inversing isometrics). It thus follows 
by [13], Corollary 3.3, that D(3) is strongly F-minimal .  

Let us make the notation of the systoles more precise. Let ti, i = 1,2, 3, be 
the systoles which are induced by the edge connecting T1 and Si, i = 1, 2, 3. Let 
r be the systole which intersects ti, i = 1, 2, 3. Then, for example, t l  intersects 
t2,t3 and t4. 

Let ~i be the vector corresponding to a twist deformation along ti (for the 
definition of vectors and the following notation compare Section 2 of [13]). Let 
~i(tj) be the coefficient of ~s corresponding to tj. We have 

k 

where the angles c~k are the directed angles from ti to tj in the intersection points. 
By the symmetry of D(3) we have ~i(ti+3) = 0, i = 1, 2, 3. Moreover, ~l(t2) = 
-~ l ( t z )  # 0. It  follows that the four vectors ~i, i = 1,2, 4, 5, are independent in 
the vector space TRF(D(3)). This implies that  D(3) is F-regular.  

The theorem now follows by Theorem 2.7 of [13]. [] 

C o n j e c t u r e .  D(3) is the global maximal surface of signature (0,5) with cusps. 
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3.3. Maximal surfaces constructed as twisted doubles 

Many maximal surfaces can be constructed as twisted doubles, see [13], Section 
7, or Section 5 of [14]. Here some new maximal surfaces of small genus are 
presented. 

In [13] it was shown that among the twisted doubles of the principal con- 
gruence subgroups F(N), N = 2, 3,4, 5, there exists a maximal surface. For 
N = 2, 3, 4, 5, the surface corresponding to F(N) is the unique (2, 3, oo(N)) tri- 
angle surface. But for N > 6 there exist infinitely many different (2, 3, oc(N)) 
triangle surfaces. For N = 6 they have been classifed by Coxeter/Moser [6]. 
Here we construct, twisted doubles of (2, 3, oo(6)) triangle surfaces. I repeat the 
construction. Let M be a (2,3,6) Euclidean toms. Replace the vertices by cusps, 
the result is a (2, 3, oo(6)) triangle surface M(0). Let. M(y) be defined as above 
in Subsection 3.1, namely the cusps are replaced by boundary geodesics of length 
2y. Let N(y, 0) be the double of M(y). Execute a twist deformation of the same 
amount 0 along all boundary geodesics of M(y). Denote the result by N(y, 0). 
This is the twisted double of M or of M(0). If M is a (2, 3, N) triangle surface, 
then N(y,O) is a (2, 2, 2, 3) quadrilateral surface. 

Def in i t i on .  In the sequel the notation of [13], Section 7, will be used, in par- 
ticular: 
(i) The set of the boundary geodesics of M is denoted by Y. There length is 2y. 
(ii) To a triangle side in M corresponds a closed geodesic a in N(y, O) such that 
the order of the isometry group which leaves a invariant, is four. The set of these 
geodesics is denoted by X and its length by 2x. Let b E Y be intersected by a. 
Then there exists a unique shortest simple closed geodesic c such that a,b and e 
are contained in a subsurface of signature (1,1) and such that, c intersects once a 
and once b. The set of the geodesics of type e is denoted by X '  and their length 
by 2x I. 
(iii) The length of a hexagon side in N(y, O) which corresponds to a triangle side 
in M is denoted by t. The length of the second shortest common orthogonal 
between two geodesics of Y is denoted by s. 
(iv) Let a be a simple closed geodesic in a twisted double. Then N(a) is the 
number of intersection points of a with the geodesics of Y. If a E Y then N(a) = 
0 by convention. 

Def in i t i on .  mk denotes the (2, 3, 0o(6)) triangle surface with 6k (2, 3, 00(6)) 
triangles. 

L e m m a l .  Fork = 6, k = 8, k = 24 there exists a surface Mk. Its twisted 
double has genus 4,5 and 13, respectively. 

Proof. The existence follows by the classification of Coxeter/Moser [6]. In their 
notation these surfaces correspond to (b, c) = (1, 1), (0, 2), (2, 2), respectively. 
Since the area of one triangle (hexagon) is ~r, the genus of the twisted double is 
evident. [] 

L e m m a  2. M6 is a maximal surface with 9 systoles (compare Fig. 3). 

Proof. )1/16 has signature (1,3). It corresponds to the surface denoted by M2 in 
Section 4 of [13]. Theorem 4.5 of [13] then says that  M6 is a maximal surface 
if the systoles are non-dividing (which is the case as can easily been verified), 
Moreover, in this case M6 has 9 systoles. [] 
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Fig. 3. M6 with three of its nine systoles (dotted lines). Opposi te  sides of  the  figure must be 
identified. T h e  geodesics  of  the set Y are drawn as circles. The common orthogonals between 
two circles have length t 

De f in i t i on .  The set of the systoles of M6 is denoted by J .  In a twisted double 
of hi6 the set of the 18 geodesics corresponding to the geodesics of J in the two 
copies of M6 is also denoted by J .  The length of these geodesics is denoted by 
2j. 

L e m m a  3. Let T be the Teichmiiller space of M6 which contains all surfaces of 
signature (1,3), also those which have boundary geodesics of different length as 
1~I 6. Then Ms is .I-regular in T. 

Proof. Ill the notation of Section 4 of [13] M6 contains a geodesic e. By Lemma 
4.6 of [13], the set J U {e } is a parametrizing set of T. So, if M6 is J -s ingular  then 
there exists a, up to a scaling factor, unique vector ( such that  the J-coefficients 
of ( are 0 and the coefficient corresponding to e is not zero. Therefore, ( must 
respect the automorphism group of Ms. But there is only one non-zero vector 
which respects this group, namely the vector which corresponds to the family of 
maximal surfaces M,~ (in the notation of Section 4 of [13]) in T and this vector 
is non-zero in its J-coefficients. [] 

D e f i n i t i o n .  The set of geodesics of type b of a twisted double of M6 (see Fig. 
4) is denoted by U, their length is denoted by 2u, 

T h e o r e m  9. There exists a. up to isometry, umque twisted double $4 of 1146 
with x = u = i. $4 is a maximal surface. Its set of systoles F contains exactly 
the ,36 geodesics of X U U U J. 

Proof. (i) Let the twist ill the twisted doubles of AQ be y/3. It then follows that  
x = u. The twisted doubles with this twist are contained ill a one parameter  
family which is parametrized by y. Let a E X and b E U nmtually intersect. 
Then there exists a c E J such that  a,b,c are contained in a subsurface of 
signature (1,1), The three geodesics induce a hyperbolic triangle, denote by 7 
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F ig .  4. M6 wi th  one geodes ic  of type  b ( thick llne). One ha l f  of b lies in  one copy of M 6 (plaJae 
th ick llne), the  o ther  hal f  lies in the  second copy of M6 (do t t ed  th ick line) 

the angle between a and b in this triangle. Now if y increases, then t decreases 
and 7 increases. If y - -  0 then x > j .  If y - -  ~x) then 7 - -  r and therefore z < j .  
It follows tha t  there exists a surface $4. It is unique since if z = u = j increase 
then y and t increase which is impossible. 

(it) We now prove that  F = X t J U U J  is the set of systoles of $4. By 
calculation we have 
y = 2.373, .v = 2.264, x '  = :3.37, t = 2.072. 
Let a be a systole of $4. Then N(a) < 2 by the preeeeding list. Moreover, if 
N(a) = 2 then tim two segments of a are homotopic  to common  orthognals  of 
length t since s > 3. Therefore, if N(a) = 2, then a E X U U. If  N(a) = 0 then 
a E J by Lemma 2 and tile preceeding list. 

(iii) By Corollary 3.3 of [13] we have only to prove that  $4 is strongly F -  
minimal with respect to the set of twisted doubles of M6. This can be done by 
calculation in an analogous manner  as we have done it in Section 7 of [13] for 
several examples. 

(iv) We finally show that  5'4 is F- regular .  By Lemma 3, a vector ~ which is 
0 in its F-coefficients is induced by twist deformations along the geodesics of Y. 
Let a E X intersect the geodesics b and c of  Y. It follows that  ~(b) = -~(c) .  Let 
d be the third element of Y. The same argument  then shows tha t  ~(d) = -~(b)  
and ~(d) = -~(c), hence ((d)  = 0 and ~ is the zero vector. Therefore, $4 is 
F- regular .  

The theorem now follows by Theorem 2.7 of [13]. [] 

R e m a r k .  In [13], Section 8, another maximal  surface of  genus 4 with 36 systoles 
has been described, it was denoted by M(4). The systoles of M(4) are longer than 
the systoles of  $4. I conjecture that.  for genus 4, M(4) is the global maximal  
surface and M(4) and b'4 are best kissing number  surfaces. 

L e m m a  4. Ms is a s'urface of signature (1.~) with six systoles. 

Proof. The systoles of  Ms are the geodesics of  type j of  Fig. 5. [] 
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Fig.  5. Ms with its six systoles (thick lines). Opposite sides of the figure must  be identified 

Def in i t i on .  The set, of the systoles of :l/s is denoted by J. In a twisted double 
of Ms the set of the 12 geodesics corresponding to the geodesics of J in the two 
copies of AI8 is also denoted by .I. The length of these geodesics is denoted by 
2j. 

Def in i t i on .  The set of geodesics of type b of a twisted double of 21,Ia (see Fig. 
6) is denoted by U, its length is denoted by u. 

I 

Fig.  6. Ms with one geodesic of type b (thick line). One half of b lies in one copy of Ms (plane 
thick line), the other  half  lies in the second copy of Ms (dot ted thick line) 
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T h e o r e m  10. There exists a, up to isometry, unique twisted double S5 of Ms 
with x = u = i = y. $5 is a maximal surface. Its set of systoles F contains 
exactly the /tO geodesics of X U U U J U Y.  

Proof. (i) In the twis ted doubles  of Ms we let t i le twist  be y/2. We then have a 
one p a r a m e t e r  fami ly  of twis ted doubles which is pa rame t r i zed  by y and in this  
fami ly  we have x = u. As in the  proof  of  Theore ln  9, x > y if  y ---* 0 and x < y 
if y --* oc. Therefore,  there  exists  a surface 5'5 with x = u = y. I t  is unique by 
the same a rgmnen t  as in the  proof  of Theorem 9. 

(ii) We have to show tha t  x = j in Fs.  Let j l  and j2 be two systoles of Ms 
which do not  intersect .  Let j3 and j4 be the same systoles in the  second copy 
of 2148. Then  the four geodesics ji, i = 1 , . . . ,  4, separa te  F~ into two isometr ic  
subsurfaces of s igna ture  (1,4). One of them,  call it M p, conta ins  two geodesics 
of Y, two geodesics of X and two geodesics of U and these six geodesics are the  
systoles of M'.  In fact M'  = M s ( j ) .  In the  fami ly  Ms(v) ,  2v be ing  the length of  
the  bounda ry  geodesics, v increases faster  than  the length of the  six systoles.  I t  
follows tha t  M '  is i sometr ic  to Ms which impl ies  j = x. 

(iii) We now show tha t  F = X U U U Y U J is the set of  systoles of $5. By 
calcula t ion,  we have the following values 
x = 2.457, t = 2.016, s = 3.77, x ~ = 3.238. 

For a systole  a in F5 we therefore have N(a) _< 2 and it follows by this list 
and  Lernma 4 that. F is the  set of  systoles of  F6. 

(iv) I again r emark  tha t  it  can be shown be calculat ion tha t  F5 is s t rongly  
F - m i n i m a l .  

(v) We have to show that, S~ is F - r e g u l a r .  Assume tha t  there  exists a n o n -  
zero vector  ( such t ha t  all F - c o m p o n e n t s  are zero. ~ is induced by a combina t ion  
of twist  de fo rmat ions  along the  geodesics of  X .  For each a E X there exists 
a geodesic a r which intersects  a twice, but  intersects  no o ther  e lement  of X;  
moreover  a twist  de fo rmat ion  along a in the  good direct ion decreases the length 
of  a t. Therefore,  ( is de te rmined  by the coefficients cor responding to the geodesics 
of  t ype  a ' .  Since ( r 0 we can assume tha t  ( ( a ' )  := a r 0 (1 recall tha t  ~(a/) is 
the  coefficient of  ( with respect  to  a~). F5 has two a u t o m o r p h i s m s  which leave 
a U a * invar iant .  So we can assume tha t  ( is invar iant  with respect  to these 
au tomorph i sms .  I t  follows tha t  the  coefficients of  ( can be denoted  as in Fig. 7. 
Now, there  is a systole  h of  J as in Fig.  7 and since ( ( h )  = 0 i t  follows t ha t  
fl = - 7 .  S ince~(b)  = 0 for b E Y,  i t  follows tha t  (~ = - 6  and r I = 0. Let c E U be 
the  geodesic of  Fig.  7. Since ( (c )  = 0 we mus t  have 6 = a = 0, a contradic t ion .  
Hence $5 is F - r e g u l a r .  

The  theorem now follows by Theorem 2.7 of  [13]. [] 

T h e o r e m  11. The (2,3,8) triangle surface O(xlz) of genus 5 is a twisted double 
of Ms. O(xlz ) is a maximal surface. 

Proof. We have seen in [13], Section 7, t ha t  O(xlz ) is a m a x i m a l  surface. We 
have thus  to  show tha t  O(xlz ) is a twis ted  double  of  Ms.  We cont inue with  the  
one p a r a m e t e r  f ami ly  of  the  p roo f  of  Theo rem 10, with x = u. Since the  twis t  
is y/2, all these surfaces have geodesics of  the  length  t + s. The i r  number  is 24. 
I t  is easy to see t h a t  there  exists  a unique twis ted  double  in our  f ami ly  wi th  
2x = t + s. By ca lcula t ion  we can see t h a t  this  surface is O(xlz ). [] 
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Fig .  T. Ms with the coei~.cients of ~. The geodesics h of J and c E U are drawn by the thick 
fines 

R e m a r k .  For genus 5, there are thus at  least the three maximal  surfaces $5, 
O(x[z) and O(x]y) (for the third see [13]). 5'5 has the longest systole of these 
three surfaces. On the other hand, O(x]z) has the bigest number  of systoles. So, 
genus 5 may  be an example tha t  the global maximal  surface and the best kissing 
number  surface do not need to be identical. 

R e m a r k .  For a fixed signature, one can construct  a graph called maxzmal graph 
such that  the vertices are the maximal  surfaces. The edges correspond to one 
parameter  families in the sense of  tha t  one considered in the proofs of  Theorem 
10 and 11. Therefore, the maximal  surfaces $5 and O(xlz ) are connected by 
an edge. The third maximal  surface O(x, y) is connected to O(xlz ) by an edge, 
compare  Section 7 of  [13]. [ conjecture tha t  the maximal  graphs are connected. 

L e m m a  5. Let a be a systole of a surface M~,4(y). Then a is longer than 2y. 

Proof. By the s y m m e t r y  of the surface, a must  pass through at least six different 
right angled hexagons (corresponding to triangles in M24(0)) and is therefore 
longer then 6y/3. [] 

D e f i n i t i o n .  The  set. of  geodesics of  type b of a twisted double of  M24 (see Fig. 
8) is denoted by U. Their length is denoted by u. 

T h e o r e m  12. There exists a, up to isometry, unique twisted double Sla of M~.4 
with x = x' = u. Sin is a maz'imal surface. X U.V' U U ~s its set of 126 systoles. 

Proof. (i) The condition x = x ~ defines a one parameter  f ami lyof  twisted doubles 
of  M24 which is parametr ized by y, compare  Lemma 7.2 in [13]. In this family, if 
y - -  0 then u > x and if !! - - ,~o  then the twist tends to y/3, hence u - -  2t - -  0. 
This proves the existence of  Fla. 

(ii) By calculation, we have tile following values 
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F ig .  8. M24 with one geodesic of  type b ( thick llne). Two quar ts  of b lie in one copy of M24 
(plane thick lines), the other  two quar ts  lie in the second copy of M24 (do t ted  thick lines). 
Opposi te  sides of the  figure must  be identified 



446 Schmutz 

y = 3.329, x = 3.2145, t = 1.5526, s = 3.560. 
It  follows by this list that  N(a) < 4 for a systole a of S13. N(a) = 0 is 

excluded by the list and by Lemma 5. If N(a) = 2 and both segments of a are 
homotopic to a common orthogonal of length t then a E X U X I. It is easy to see 
that  a is not a systole if one segment of a is homotopic to a common orthogonal 
longer than t. Since by the list N(a) < 4 the case N(a) = 4 remains. By the list, 
the four segments of a must be homotopic to a common orthogonal of length t. If  
a does not intersect the boundary of Fig. 8 then we have seen in [13], Lemmata  
7.8-7.12, that  there are two possibilities for a. It is easy to see by calculation 
that  in these two cases a is longer than 2x. Hence a must intersect the border 
of Fig. 8 and it follows that  a C U. We thus have shown that F = X U X I U U 
is the set of systoles of $13. 

(iii) By calculation one can see that  $13 is strongly F-min imal .  
(iv) The argument of the proof of Proposition 7.2 in [13] implies that  $13 is 

already X U X~-regular hence also F-regular .  
The theorem now follows by Theorem 2.7 of [13]. [] 

R e m a r k .  (i) I conjecture that  for all (2, 3, c>c(6)) triangle surfaces there exists 
at least one twisted double which is a maximal surface. The length of the systoles 
however becomes stable. To see this consider a "fundamental  domain" which is 
symmetr ic  in the sense of Fig. 8. If this "fundamental  domain" of a (2, 3, (x)(6)) 
triangle surfaces becomes big enough, then the systoles which are nearest to 
the center of the domain cannot intersect the boundary of the domain. So, the 
search for the systoles becomes in some sense a local question, this means that  
all different isometry classes of systoles have a representative in a small part  of 
the "fundamental  domain" and all "fundamental  domains" which are big enough 
contain this small part.  It  follows that  the systoles are determined by the small 
part  and its length becomes constant. By calculation, I conjecture that  this 
length is 7.75 for the (2, 3, co(6)) triangle surfaces. 

Interesting maximal  surfaces are such with long systoles (long with respect 
to the area of the surface). Therefore, only (2, 3, cr triangle surfaces of small 
genus can give interesting maximal  surfaces. 
(ii) I conjecture that  the same phenomena appear for (2, 3, oc(N))  triangle sur- 
faces, N > 6. This means that  they have a twisted double which is a maximal  
surface and that  the length of the systoles of these maximal surfaces becomes 
constant if the genus is big enough (with respect to N). So, also in this general 
case, only (2, 3, co(N))  triangle surfaces of small (with respect to N)  genus can 
give interesting maximal  surfaces. 
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