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Eigenfunetions and Nodal Sets 

SHIU-YUEN CHENG 

w Introduction 

The purpose of this paper is to study the nodal sets, i.e. zero sets of the eigen- 
functions of the Laplacian operator on a Riemannian manifold. We first study it 
locally. The result of Lipman Bers [2] concerning the local behaviour of solutions 
of elliptic equations is our main tool. It tells us that the nodal set locally looks like the 
nodal set of a spherical harmonic. Hence, we can prove in w that, except on a closed 
set of lower dimension, the nodal set is a C ~~ submanifold. This regularity result 
enables us to prove in w 1 the well-known Courant's nodal domain theorem for high 
dimensions. 

Courant's nodal domain theorem is the only known global theorem about nodal 
sets. We use it in w to prove that there is a global restriction to multiplicities of eigen- 
values. Specifically, we prove the following theorem: Suppose that M is a Riemann 
surface of genus g, the multiplicity of the i-th eigenvalue is less than or equal to 
( 2g+ /+  1)(2g+ i +2)/2. 

The results in w show that when M is homeomorphic to S 2 the multiplicity of the 
1-st eigenvalue is at most 3. This phenomenon of relatively low multiplicity makes it 
feasible to study the geometry of the nodal lines of some special surfaces. We show 
that: If  M is homeomorphic to S 2 and is isometric to a surface of  revolution then 
we can find a basis for the space of 1-st eigenfunctions such that the nodal lines of 
each eigenfunction in the basis is a line of constant geodesic curvature. 

Part of the results in this paper has been announced in [4]. 

w 1. Courant's Nodal Domain Theorem 

Suppose that (M, g) is an n-dimensional C ~ Riemannian manifold. The Lap- 
lacian operator, denoted by A, acting on functions is locally given by 

x/g  c3xl gig , 
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where as usual g~j is the fundamental tensor, g~ is its inverse, and g=det(g~i  ). We 
shall consider two kinds of eigenvalue problems. 

FIXED MEMBRANE PROBLEM. Suppose that D is a compact domain of M. 
We shall study the following: 

AqS+2tk=0, qS=0 on OD. 

It is well-known that when OD is reasonably regular, e.g. piecewise C ~, the fixed 
membrane problem has discrete eigenvalues and we list them as 0 < 21 ~< 22 ~< 23 ~<.'.. 
Therefore, 21 (D) shall mean the i-th eigenvalue of the domain D w.r.t, the fixed mem- 
brane problem. We shall also show the well-known fact that 21 <22, i.e. 21 has simple 
multiplicity. Also the term i-th eigenfunction is a function satisfying the fixed mem- 
brane problem with 2= 2i(D). 

FREE MEMBRANE PROBLEM. Suppose that M is a compact Riemannian 
manifold without boundary. We shall study the following eigenvalue problem on 
M:  A~9 + / ~  =0.  

This problem also has discrete eigenvalues and clearly constant functions are eigen- 
functions with # =  0. We list the eigenfunctions of the free membrane problem as 
0 =/~0 < /~  ~< P2 ~</~3"". Therefore, /q  (M) shall mean the i-th eigenvalue of the com- 
pact manifold M w.r.t, the free membrane problem. The term i-th eigenfunction will 
be used to mean a function on M satisfying the above differential equation with p = 
= / h (M) .  

DEFINITION. Suppose t h a t f i s  a solution of an elliptic equation on a manifold 
M . f - 1  (0) is called the nodal set of f ,  when d imM = 2  it is also called the nodal lines. 
Every connected component of M \ f - 1  (0) is called a nodal domain of f .  

One should notice immediately that if f is an eigenfunction of the Laplacian 
operator thenf i s  the 1-st eigenfunction of each of its nodal domains. This observation 
suggests that we can reduce the problems about the i-th eigenvalues to problems 
about the 1-st eigenvalue of the fixed membrane problem. 

Courant's nodal domain theorem. For the fixed membrane problem: 
# of nodal domains of the i-th eigenvalue <<. i. 
For the free membrane problem: 
# of nodal domains of  the i-th eigenvalue <<.i + 1. 
In [3], this theorem is stated and proved in the two dimensional case. Using re- 

suits in w about the regularity of  nodal sets, we can follow the same method to prove 
this theorem. 
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The proof goes as follows: Suppose that 0~ is the/- th eigenfunction of the domain 
D, and D 1 ..... Di+t, ... are all the nodal domains of 01. Define functions 0~, 1 ~<j ~<i~ 
on D as 

0{=01 on Dj and 0{=0  outside Dj. 

We can find real numbers al ..... ai not all zero such that 0 = ~ ' =  ~ aj0{ -1- the space 
generated by 0l, .--,  0~-1. Then, we have 

f ' f  2 (dO, dO) Z aj (dOi, dOi) 
j = l  

i 

f 0 2 Z aj 
j = l  

D Dj 

However, 0i is the i-th eigenfunction and it satisfies A0~ + 2~ (D)0 ,  =0. The results 
in w shows that except on a closed set of lower dimension the nodal sets of 0~ form a 
C ~ manifold. Thus, we have 

Dj Dj Dj 

Consequently, 

f (dO, dO) 

D 

Then 0 is C ~ and satisfies A0+21(D ) 0 = 0 .  However, the fact that 0 = 0  on an open 
set of D implies 0 = 0, a contradiction. This completes the proof of the theorem for 
fixed membrane problems. The proof  for free membrane problem is the same. 

Notice that we have 02•  and ~O~_l_~O o, where ~O 0 is a constant function. Hence 
02 and ~k 1 must change sign. This proves the following well-known proposition: 

PROPOSITION 1.1. For the case of fixed membrane problems: 
# of  nodal domains of 02 =2. 
For the case of free membrane problems: 
# of  nodal domains of  ~1 = 2. 
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w 2. Local Behaviour of Nodal Sets 

The nodal sets are a very "unstable" object. Slight changes of the metric or the 
domain would result in a violent change of the nodal sets, (see [6]). Therefore, the 
global behavior of the nodal sets is a quite difficult subject. We shall use a theorem of 
Lipman Bers [2] concerning the local behaviour of solutions of elliptic equations to 
study the nodal sets. 

THEOREM 2.1 (Lipman Bers [2]). Suppose that 

L~b ( x ) =  
v=O i + . , - + i n = v  

is an elliptic equation with C ~ coefficient defined in a neighborhood of the origin. 
I f  a solution q5 (x), Lq~ =0, vanishes at the origin, but not of infinite order, then there 

exists a homogeneous polynomial of degree N, PN (X) ~ 0 such that 

o ' r  ~ 'p, , (x)  
ax'~,. . .Ox~-~x' , ' .  . .~x~ ~ o (txl ~-'+~) 

for l = 0  ..... m, l =il + "'" +i,, where e is any number in the open interval (0, 1). Also, 
PN (X) satisfies the "osculating equation" with constant coefficients 

(~, O'pN(x) 
LoPN(X)= 2 ai , , , o ) - - = - - - - = = 0 .  

~,+...+i.=m "'" ~x'?...Ox~? 

When we are dealing with Laplacian operator on a manifold, we shall pull back 
the equation to the tangent space and apply Theorem 2.1. 

THEOREM 2.2. Suppose that M is an n-dimC ~~ Riemannian manifold without 
boundary (not necessarily compact). I f  f ~ C ~ ( M ) satisfies ( A + h ( x ) ) f = O, h ~ C ~ ( M ), 
then except on a closed set of lower dimension (i.e. dim < n -  1) the nodal set o f f  forms 
an ( n -  1)-dim C ~ manifold. 

Proof. Let xoeM,  a n d f ( x o ) = 0 .  It is clear that we can assume M is within a very 
small neighborhood of Xo. We use normal coordinates around x o and hence we can 
assume we are working in a small open set of the origin in R". The equation 
(A + h ( x ) ) f =  0 pulls back to a second order elliptic equation in a small neighborhood 
of 0~ R". By the results of N. Aronsajn [1 ] , f c an  vanish only up to finite order around 
the origin. Hence we can apply Theorem 2.1. It tells us that 

f (x)=pN(X)+O(Ixl N+~) 

where PN is a homogeneous polynomial of degree N and e~(0, 1). 
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Also, pu satisfies the osculating equation at the origin. Since we are using normal 
coordinates, the osculating equation is the usual Laplace equation in Euclidean space, 
i.e., 

p =0 

Thus, PN is a spherical harmonic of degree N. 
If N = 1, Pu (x) is a linear polynomial and this shows that df(O)#O, then the nodal 

set around 0 is a very nice piece of C ~ manifold. 
When N >1,  the situation is more complicated. We shall extend the method of 

T. C. Kuo [5] in Lemma 2.4 to prove t ha t f ( x )=pu(r  where r is a C 1 diffeo- 
morphism between two small neighborhoods of 0~R" and ~ ( 0 ) = 0 .  Thus, the nodal 
set of f around the origin is C ~ diffeomorphic to the nodal set of a spherical harmonic 
around the origin. However, there is not much information about nodal sets of 
sphereical harmonics. The following simple observation will be useful. 

LEMMA 2.3. Suppose that Pu is a spherical harmonic qf degree N, N> I. Then, 
the nodal set of p N around the origin has a singularity at O. 

Proof Notice that if S "-~ is the sphere of radius 1 in R" then PNts.-1 is an eigen- 
function of S "-~. Since N > 1, PN[s,-, is not the 1-set eigenfunction. PN]s .... must have 
zeros on S "-~ and the homogeneity of PN shows that if x ~ S  "-  1 with PN (x) = 0 then 
PN (tx)= 0 for all t > 0. The only case where the nodal sets ofpN around the origin is a 
smooth manifold is when the nodal set ofpu[s , - i  lies on a great circle of S "-~. Since 
great circles are nodal sets of  1-st eigenfunctions on S "-1 and N > l, the assertion of  
the lemma is immediately seen to be true. 

We now prove the theorem by induction on the dimension n. 
If  n =  1, it is trivial. 
Suppose that it is true for n -  1. 
We now prove it for n: 
We shall show that the nodal set o f f  around the origin is C 1 diffeomorphic to 

the nodal set of a spherical harmonic PN of degree N around the origin in R". How- 
ever, the nodal set of  pN around the origin is equal to {tx: t > 0 ,  pN]s,-,(x)=O}. 
Remember that pN[s,-I is an eigenfunction on the ( n - 1 ) - d i m  sphere S "-1. Our in- 
ductive assumption then applies and shows that Theorem 2.2 is true for the nodal set 
ofpN. Now recall that we have the relation f(x)=pN(eb(x)), where r is a C l dif- 
feomorphism keeping the origin fixed. Suppose that p ~  ( 0 ) \ n = M o  around the 
origin, where n is a closed set of  lower dimension and Mo is an ( n -  1)-dim C ~ mani- 
fold. Then f - 1 ( 0 ) \ ~ - '  (n) = ~ -  1 (Mo)" Thus ~ - x  (Mo) is a C 1 manifold. We now 

want to show further that ~ -1  (Mo) is C ~. Indeed, let y ~ - i  (Mo). Then f ( y ) = 0 ,  
and r ( y )eM o. Apply our previous argument to a small neighborhood of y, we have 
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f (x)~pN, (X), near y, where PN" is a spherical harmonic of degree N' in R". We claim 
that N ' =  1. If this is true, then an open set of ~-1 (M0) around y is a piece of smooth 
manifold. N ' >  1 would lead to a contradiction. Note that a small neighborhood of 
~-1 (M0) around y is C 1 diffeomorphic to the nodal set ofpN. around the origin. 
Lemma 2.3 shows that if N' > 1, pN, 1 (0) has a singularity at 0. The C 1 diffeomorphism 
transfers this singularity to ~ -  1 (Mo) and hence results in a contradiction. This com- 
pletes the proof of Theorem 2.2. 

We now follow the method of T. C. Kuo [5] to prove the following lemma. 

LEMMA 2.4. Suppose that f, p are smooth functions in R" 

f (x)= p(x)+ 0 ([X[N+~), 

Of(x) Op(x) t_O(IxIN_,+~)" U~>l e~(0,1) 
Oxl Oxi 

8 v 
0x~,...Ox,, p (01=0 0 ~ v ~ N - I  

and 

I gradpl >/const Ixl u- 1. 

Then, there exists a local C 1 diffeomorphism ~ fixing the origin such that 

f (x)= p(Cb (x) ). 

Proof, We may suppose N > 1. 
Set F(x, a )=  ( 1 - a ) f ( x ) + a p ( x ) ,  a~R. Notice that 

gradF(0,  a ) =  0F ~F ' " " 0 x , ' O a  =0  for all a .  

Define 

[grad F]- 2 (p ( x ) - f ( x ) )  (grad F) when x # p 
X ( x , a ) =  0 when x = 0 .  

Outside (0, a), aeR, X(x,  a) is a C ~ vector field. X(x, a) is C ~ at (0, a). Indeed, 

I(P ( x ) - f  (x)) grad F[ -- 0 (Ixl N + ~) IgradFI 

Note that 

IgradF[/> 1(1 - a )  g r a d ( f ) + a  grad ( p ) l -  [ ( P - f ) l  
i> I(1 - a )  g r a d ( f - p ) +  grad ( p ) l -  ] ( P - f ) l  
>t const. Ixl N-~ . 
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So tgradFI2~>lgradFIconst. Ixl N-~. Thus, X(x,a)=(Olxt l+*) .  This shows that 
X(x,  a) is a C 1 vector field. 

Define v(x, a)=(0 , . . . ,  0, l ) - X ( x ,  a). v(x, a) is also C 1 and we can assert that 
local solutions of v(x, a) exist and are unique and depend in a C 1 way on the initial 
value and time. 

Let qS(t; Xo, ao) denote the solution with initial condition 4(0;  Xo, ao)= (Xo, ao). 
Observe that, the dot product 

(v(x, a), (0 .... ,0, 1))= 1 - IgradF1-2 ( p ( x ) - f ( x ) )  2 
>>. l - O ( I x l  z + z~) 
>0 when x is small. 

So the a-component of any solution ~b (t; x, 0) increases monotonically with t. 
Hence qS(t; x, 0) meets the hyperplane a =  1, when x is small, at a unique point 

q~(x). The mapping x ~  q~(x) is a C ~ local diffeomorphism. Moreover, as q'(t; 0, 0)= 
(0, t) we have q~ (0)= 0. 

Now the dot product 

(v(x, a), gradF)=((0 ,  0 ..... 0, 1 ) -X(x ,  a), gradF) 
= ( p ( x ) - f ( x ) ) -  (X(x,  a), gradF) 
~ 0 .  

This shows that F is constant along the trajectories of v(x, a). Hence 

f ( x ) = r ( x ,  0)=F(q~(t; x, 0)) for all t. 

As (q~ (x), 1 ) = q~ (t'; x, 0) for certain t' we have 

f (x) = F( (~  (x), 1 )) = p (q~ (x)). 

This completes the proof of Lemma 2.4. 
One readily sees that the topology of the nodal sets will be very complicated. In 

order to say more, we assume the dimension of M is two. The nodal set is then a set of 
lines. This becomes more manageable. 

THEOREM 2.5. Suppose that M is a 2-dim manifold. Then, .for any solution of  
the equation (A + h ( x ) ) f  =O, h~C ~ (M),  the following are true: 

i) The critical points on the nodal lines are isolated. 
ii) When the nodal lines meet, they form an equiangular system. 

iii) The nodal lines consist o f  a number of  C2-immersed one dimensional closed sub- 
manifolds. Therefore, when M is compact, they are a number of  C2-immersed circles. 
(A C2-immersed circle means q~(SX), where q~:S 1 ~ M is a C z immersion). 
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iv) When the nodal lines meet, the geodesic curvatures are zero there. 
Proof. i) is obvious from Theorem 2.2. 
ii) is clearly true when the nodal lines are free of critical points. Around a critical 

point on the nodal lines, the nodal lines are C 1 diffeomorphic to the nodal lines of 
a spherical harmonic in R 2. The nodal lines of a spherical harmonic in R 2 are 
quite simple. IfpN is a spherical harmonic in R 2, then Pu[s~ is an eigenfunction. The 
zeroes ofpuls, on S ~ are isolated and they divide S 1 into 2N arcs with equal length. 
Remember that ifpNlS~ (X)=0 then pN( tx )=O for all t >0.  Thus, the nodal lines of 
PN consist of 2N straight lines passing through the origin. Moreover, the straight lines 
from an equiangular system at the origin. Observe that straight lines passing through 
the origin of the tangent plane map to geodesic lines under the exponential map. The 
delivative of the exponential map at the origin is the identity map. These observations 
show that ii) is valid. 

To prove iii) and iv), we first recall that at a critical point Xo on the nodal lines, the 
spherical harmonic describing the local behaviour of the eigenfunction around Xo has 
degree greater than or equal to 2. The error term is O(IxlN+~), ~(0, 1), N~>2. So 
the order of contact of the nodal lines around Xo and an equiangular system of geo- 
desics is equal to 2. This observation proves iv) immediately, iii) also follows imme- 
diately because the nodal lines of  a spherical harmonic in R 2 are a set of straight lines 
through the origin. 

w 3. Global Restrictions to Eigenfunctions 

We have studied the local behaviour of the nodal lines in w The nodal lines are 
also subject to a global restriction, namely, Courant's nodal domain theorem. If we 
have many closed curves on a surface, we can disconnect the surface into many 
components by deleting these curves. 

We need the following topological lemma: 

LEMMA 3.1. Suppose that M is a compact Riemann surface with genus g, and 
~ j : S 1 ~ M 1 <<. j <~ 2g + k, k >I 1, is an injective piece-wise C ~ map such that q~ i ( S 1) c~ 
n ~bj(S1), i r  consists o fa f in i te  number o f  points. Then, M \ q ~  1 (S 1) u . . . u  q~zg+k (S 1) 
has at least k + 1 connected components. 

Proof. It suffices to prove that when k = l ,  M\~bl  (Sl)u. . .uq52g+l (S 1) is not 
connected. Note that 

H1 (M; Z ) = Z ~ . . . ~ Z ,  
2g times 

where Z is the ring of integers. Each ~bg: S 1 -} M defines a cycle in M. Therefore, there 
exists nl, ..., n2s +k Z not all zero such that the homology class represented by ~]$~ 1 njc~j 
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is zero. Observe that nj(aj can be represented by 0.#o/7,j where/7,j:S ~ --+ S 1 is defined by 
/7,s (e ;~ = e ;"j~ Thus, Ojo/7,j (S ~) = ~b(Sl). Since n j, 1 <~ j <~ 2g + k, are not all zero, we 
may assume that n~ ~0.  We can assume there exists Xo~q$t (S ~) such that q$~ is a C ~ 
diffeomorphism in a neighborhood of q$11 (Xo) and XoCd?z (S 1) w.. .w 492g+ 1 ($1) �9 Let 
~ : ( - 1 ,  1)-+M be an injective C ~ map such that 

( ( -  l, l)) ~ (61 ( s ' )  ~ . . . ~  ~2,+,  ( s ' ) ) =  {~ (0)) = (Xo} 

and the tangent vector of cr at Xo is perpendicular to the tangent vector of q$1 at Xo. 
Suppose M\4b  1 (S 1) w ... w q$zg+ x ( $1 ) is not disconnected. Since it is an open set, we 
can find a C 1 c u r v e / 7 : [ - 1 ,  l]--+M\ckl(S1)w...wOzg+~(S 1) w i t h / 7 ( -  1 ) = ~ ( - � 8 9  
and/7 (1)= ~ (�89 This implies that there exists an injective C 1 map O : ( -  1, 1)• S l --+ 
-+M\4Jz(SI)w. . .w02,+I(S 1) and that q ' ( ( - 1 ,  1)• S1)c~r (S l) is a small neigh- 
borhood of q$1 (Sl)  around Xo. 

Let f be a non-trivial non-negative function belonging to C~~ 1)) such 
that S~_~of(t) d t=l .  Then f ( t )  dt is a closed form in ( - 1 ,  I ) •  1. Therefore, 
( O - l ) * ( f ( t )  dt)is a C 1 closed form of M. Now since the homology class repre- 
sented by ~j=~zg+~ 1 ni~b j is zero, we have 

((cl)-l)* f(t)dt)(2;~=f njOj)=O. 

However, 
1 

( ( . - ' ) * s ( t )  d.) ' ..:..,+,) =n. f s(t),t+O. 
- 1  

a contradiction. 
Thus, M\~b 1 (S 1) u . . .  w tk2g + , ($1) has more than one component. 
Remark. We can relax the condition: d?i(S1)nd?j(S1), iv~j, has only a finite 

number of points. The condition can be replaced by 

6, ( s ' )~  6, (s 1) u . . .~  ~,_, (s ' )  ~ 6,+, (s ' )  u . . .~  ,~.+~ (s'). 

DEFINITION.  Suppose that ~O satisfies (A+h(x))$=O, h~C~~ We say 
that the order of vanishing of ~ at Xo~ M is equal to N iff when we pull back ~ to the 
tangent space at Xo via the exponential map there is a homogeneous polynomial PN 
of degree N such that ~O ~PN near the origin. 

THEOR EM 3.2. Suppose that M is a compact Riemann surface of genus g, and 
is the i-th eigenfunction. Let xo~M and ~ (Xo)=0. Then, the order of vanishing of 
at Xo is less than or equal to 2g + i. 
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Proof. The proof is an immediate consequence of Lemma 3.1, the following lemma, 
and the observation that an eigenfunction changes sign around any of its zeroes. 

LEMMA 3.3. Suppose that M is a compact Riemann surface, and ~ is an eigen- 
function. Let xo~M and the order of vanishing of ~ at Xo is k. Then, we can find Oi: $1 

M, 1 <~i <~k, satisfying the assumption of Lemma 3.1 and (a 1 (Sl)~_~b -1 (0). 
Proof. This follows from the observation that the set of nodal lines of a spherical 

harmonic of order k in R z consist of k straight lines passing through the origin. 
Theorem 3.2 shows that there is a topological restriction to the order of vanishing 

of an eigenfunction. We then derive in the following theorem that there is a topological 
restriction to multiplicities of eigenfunction. 

THEOREM 3.4. Suppose that M is a compact Riemann surface of genus g, and 
Iti(M ) is the i-th eigenvalue. Then, the multiplicity of p i (M)  is less than or equal to 
(2g+i  + 1) (2g+i  + 2)/2. 

Proof. We first indicate the proof  when g =  0 and i = 1. Then the order of vanishing 
on the nodal lines is less than or equal to 1. If the multiplicity of Pl ( M ) = 4 ,  then we 
have ~1,-.., ~4 linearly independent and AqS~+pl (M)~bi=0, 1~<i~<4. We can find 
a~, b~R ,  1~<i~<3, such that a~+b~#O and (a~ck~+l-biOl) (Xo)=0, i =  1, 2, 3. See 
that aiOi+ 1 - biqbl are again linearly independent. Then consider d(ai(al + i - bickl ) (Xo). 
The dimension of the tangent space is equal to 2. Hence, we have CI .... , C3 not all 
zero such that 

3 

E 
i = 1  

Cid ( aiO~ + x - biOx ) (Xo ) = 0 .  

Since we also have 

3 

Z 
i = 1  

the order of vanishing of  this non-trivial 1-st eigenfunction at Xo is greater than or 
equal to 2. This contradicts the result of Theorem 3.2. 

The general case goes the same by noting that on R 2 the dimension of the space of 
constant coefficient partial differential operator of order less than or equal to k is 
equal to Z]+~ i. 

COROLLARY 3.5. Suppose that M is homeomorphic to S 2, i.e., g =0 .  Then, the 
nodal line of a 1-st eigenfunction is a C ~ simple closed curve and the multiplicity of  
~1 (M)  is less than or equal to 3. 

Remarks. (i) The bound of the multiplicity #1 (M) in Corollary 3.5 is sharp be- 
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cause the coordinate function of spheres in R 3 with center at the origin are 1-st eigen- 
functions. However, when g > 0 we don' t  know whether (2g+ 2) (2g+ 3)/2 is a sharp 
bound for the multiplicity Pl (M)  or not. 

(ii) The Almgren-Calabi theorem states that every minimal immersion of S 2 into 
S 3 must lie on a great circle. Therefore, if we know that every minimal immersion of 
S z into S a is by the 1-st eigenfunctions then we can obtain the Almgren-Calabi theo- 
rem by Corollary 3.5. 

w Geometry of Nodal Lines 

One of the difficulties in studying the nodal sets is the presence of multiple eigen- 
values. This is in some sense a singular case and non-generic. The results of  K. Uhlen- 
beck [6] show that generically all eigenvalues have simple multiplicity. We gave an 
upper bound of the multiplicity of  pi (M) ,  when M is a compact Riemann surface of 
genus g. In general the multiplicities can be pretty big. We shall study the case when 
g = 0  and i = l .  

T H E O R E M  4.1. Suppose that M is homeomorphic to S 2, and is isometric to a 
surface of  revolution in R 3. Then, we can find a basis {~i} of the space of  l-st eigen- 
.['unctions such that the nodal line of  each ~i is a curve with constant geodesic curvature. 

Proof. Corollary 3.5 shows that the multiplicity of Pl (M)~< 3 and that the nodal 
line of a l-st eigenfunction is a C ~ simple closed curve. Let E I denote the linear space 
of 1-st eigenfunction endowed with the usual L 2 inner product. 

Note that S 1 acts on E1 as a group of  isometry and preserves the orientation. 
When d imE 1 = 1, we have a non-trivial ~, leE t such that it is invariant under S ~. 

The famous theorem of H. H o p f  on vector fields shows that there are only two fixed 
points under the action of S 1. Then we can find a point Xo which is not a fixed point 
and that ~1 (Xo) =0.  Therefore, ~1 also vanishes on the orbit of Xo under S 1. The 
orbit of Xo is a C ~ simple closed curve. Thus, we must have ~-~  (0) is equal to the 
orbit of  x o. Moreover, S x acts as isometry implies the orbit of Xo has a constant 
geodesic curvature. 

Suppose that dim El = 3. Results from linear algebra supply us with an orthonormal 
basis {~1, ~2, ~3} of El such that ~1 is invariant under S 1 and S 1 rotates on the space 
spanned by {ip2, ~'3}. Consequently ~ -  t (0) is a simple closed curve of constant geo- 
desic curvature. Notice that once we prove the theorem for ~,2 1 (0) and ~ ;  1 (0), we 
also settle that case when dimE~ =2.  This is seen from results in linear algebra that 
we can find an orthonormal basis of  E 1 such that S a acts as the usual rotation. 

Now let us study ~021 (0) and ~31 (0). 
We claim that ~b 21 (0) c~ ~b 31 (0) # O. This is a special case of the following lemma. 
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LEMMA 4.2. Suppose that M is a compact Riemannian manifold, f and h are two 
linearly independent eigenfunctions of the same eigenvalue p. I f  either f -1 (0) or h-* (0) 
is connected then f -1 (0) c~ h-1 (0) r 0. 

Proof. Suppose t h a t f - a  (0 )n  h -I (0)=0.  Assume h-I  (0) is connected. 
Note that {x: f (x) > 0} n {x: f (x) < 0} = 0. We can assume h-I  (0) _ {x: f (x) > 0}. 

One immediately sees that one of the nodal domains of h is contained in { x : f  (x )>  0}. 
Courant's minimum principle immediately shows that #=21 of a nodal domain 

of h > 2 ,  ({x: f (x)>O})=l .C 
This is a contradiction and the proof of the lemma is completed. 
Now if2 * (0) c~ ~'3' (0) 4: 0. Let Xo e ~k2 ~ (0) c~ t/,~- 1 (0). Then, ~'2 (Xo)= 1/13 (Xo)= 0. 

Note that if cteS*, then there exists real numbers a, b such that 

~O2(ct(x))=aql2(x)+b~3(x ) for all x e M .  

This shows that ~k 2 (~ (Xo)) = aqJ2 (Xo) + b~3 (Xo) = 0. Since ~ is arbitrary, ~9 2 vanishes 
on the orbit of Xo and so does ~b 3. This forces xo to be a fixed point of S 1. We claim 
that ~O 21 (0) ~ ~9 31 (0) has more than two points. This is proved in the following lemma. 

LEMMA 4.3. Suppose that M is the same as Theorem 4. l, f and g are two linearly 
independent 1-st eigenfunctions. Then f -1 (0)c~ h-1 (0) has more than two points. 

Proof. Lemma 4.2 shows that f - 1  (0)c~h-1 (0)#0.  We first observe that when 
f - 1  (0) and h -I  (0) meet at x0 they must be transversal to each other at Xo. Suppose 
the contrary. I f f  -~ (0) and h -x (0) are tangent to each other at Xo, then there exist 
a, b not all zero such that d(a f+bh)  (Xo)=0. Recall that (af+bh)  (Xo)=0, Xo is then 
a critical point along the nodal line of the non-trivial eigenfunction af+ bh, a contra- 
diction. Now the lemma is a consequence of the Jordan curve theorem in R ~. 

Actually, ~2 x (0)c~ ~k3 a (0) has exactly two points. This follows from the observa- 
tion that ~b 2 t (0) c~ if3 ~ (0) is a fixed point set of S a acting on M. 

Let {p, q } = ~ , f l  ( 0 ) c ~ 3 1  (0). The nodal lines of if2 and I]/3 a r e  simple closed 
curves passing through p and q. Note that any two points on an orbit of S a have the 
same distance to p and q. Gauss's lemma implies immediately that the orthogonal 
trajectories of orbits of S 1 are closed geodesic loops passing through p and q. f - 1 (0) 
and h -1 (0) are also orthogonal to the orbits of S x because the existence of involutive 
isometries fixing p and q and the result of Lemma 4.3. This shows that fie 1 (0) and 
~k 31 (0) are closed geodesic loops. Thus the proof  of Theorem 4.1 is complete. 
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