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A stability estimate for the 
Aleksandrov-Fenchel inequality, with an 

application to mean curvature 

Rolf Schneider 

Abstrac t  

In the quadratic Aleksandrov-Fenchel inequality for mixed vol- 
umes, stated as inequality (1) below, where C1,. . . ,  Cn-2 are smooth 
convex bodies, equality holds only if the convex bodies K and L are 
homothetic. Under stronger regularity assumptions on C1,. . . ,Cn-2,  
a stability estimate is proved, expressing that K and L are close to 
homothetic if equality is satisfied approximately. This is applied to 
estimate explicitly the deviation of a closed convex hypersurface with 
mean curvature close to one fi'om a unit sphere. 

1 In troduct ion  and results  

In the theory of mixed volumes of convex bodies, the Aleksandrov-Fenchel 
inequality 

V(K,L,C, , . . . ,C,~_2) 2 > V ( K , K ,  CI , . . . ,C,~_2)V(L,L,C, , . . . ,C,_2)  (1) 

is a central result (see, e.g., Susemann [3], Leichtwei~ [9], Burago-Zalgaller 
[2]). Here K, L, Cx , . . . ,  C,-2 are convex bodies in n-dimensional euclidean 
space E ~, and V denotes the mixed volume. We assume that n > 3. Equality 
in (1) holds if K and L are homothetic, but in general, depending on the 
properties of C1 , . . . ,  C,-2,  not only in this case (see [11] for a discussion of 
the equality problem). If 6 '1 , . . . ,C ,_2  are smooth, that is, if they have a 
unique supporting hyperplane at each boundary point, then equality in (1) 
holds only if K and L are homothetic. This was recently proved in [13]. In the 
special case where C1 , . . . ,  C,-2 are balls, this uniqueness assertion admits a 
stronger version in the form of a stability result: if equality is almost satisfied, 
then K and L are almost homothetic, in the following precise sense. 
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We introduce the nonnegative deficit A by 

A(K, L, C1,. �9 �9 C,-2) := 

V(K, L, C1,..., 6~-2) 2 - V(K, K, e l , . . . ,  C,_2)V(L, L, C~,..., C~-2) 

and the L2 metric 62 for convex bodies by 

u) -  h(L, 

where h(K, .) is the support function of K,  S n-1 is the unit sphere of E n and 
the integration is with respect to spherical Lebesgue measure w. By B we 
denote the unit ball of E ". 

After applying a suitable homothety we may assume that the convex 
bodies K and L have coinciding Steiner points and equal mean widths. Under 
these assumptions, it was shown independently by Goodey and Groemer [5] 
and by Schneider [12] that 

n + 11)a(K,L)52(K,L)2 (2) A(K,L,B,...,B) > n ( ~  

with 
a(K, L) := max {V(K, K, B , . . . ,  B), V(L, L, B , . . . ,  B)}. 

(This follows, e.g., from the first inequality for V~ - V0:V20 in [12], p. 55, 
where the roles of K and L can be interchanged.) 

The L2 metric (is can be further estimated in terms of the Hausdorff 
metric 5, namely by 

52(K, 5) 2 > cb(K,i) "+' (3) 

with a constant c depending only on n and the diameter of K U L (see Vitale 
[15] and, for a better estimate if one of the bodies is a ball, Groemer and 
Schneider [61). 

For the general inequality (1), no strengthening of type (2) can exist, 
since equality in (1) is possible for non-homothetic convex bodies K and L. 
For the same reason, if a stability version of inequality (1) for C1 , . . . ,  C,-2 
taken from a restricted class of convex bodies is to be proved, then this class 
cannot be dense in the space of convex bodies. In particular, the uniqueness 
result of [13] for smooth C1, . . . ,  C,-2 cannot be improved in this way. 

In the following, we show stability for the Aleksandrov-Fenchel inequality 
(1) under the assumption that the convex bodies C1 , . . . ,  C,-2 are g-smooth, 
for some fixed r />  0. A convex body C in E"  is called ~-smooth if a ball of 
radius r/can roll freely in C, that is, if to each point x in the boundary of C 
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there is a vector t such that x E y B + t  C C. Sufficient (but not necessary) for 
this is that  the support function of C is twice continuously differentiable and 
all principal radii of curvature of C are >_ 7. (This fact, known as "Blaschke's 
rolling theorem", follows from a standard convexity criterion, applied to the 
difference h(C, .) - h (yB ,  .) of support functions. See also Koutroufiotis [8].) 

By/C~(r, R) we denote the set of convex bodies in E ~ that contain some 
ball of radius r and are contained in some ball of radius R. 

T h e o r e m  1. Let positive numbers ~, r, R and an integer p E {1 , . . . ,  n -2}  
be given. I f  K,  L, C~, . . . , Cp e IC"(r, R)  and ~ f  C l ,  . . . , Cp arl~ ~?-smooth, then 

A(K, L, C l , . . . ,  Cp, B , . . . ,  B) > c, y4(2P-1)A(K, L, B , . . . ,  B) 2", 

where the constant cl depends only on n,p,  r, R .  

Together with inequality (2) (and (3), if one prefers the Hausdorff 
metric), this theorem provides a stability estimate for the equality case 
in the Aleksandrov-Fenchel inequality (1) in the case of y-smooth bodies 
C1 , . . . ,  C,,-2. An explicit value for the constant cl could be read off from the 
proof below, but this seems of minor interest since the order of the estimate, 
expressed by the exponents, is probably not optimal. 

As an application of Theorem 1 we can prove a stability theorem for 
closed convex hypersurfaces with almost constant mean curvature. 

T h e o r e m  2. Let K C E ~ be a convex body contained in some ball of  ra- 

dius R,  let 0 < co < l. Suppose that the boundary o f  K is twice continuously 
differentiable and that its mean curvature H satisfies 

1 - e < H < l + e  

for  some positive e <_ eo. Then there is a ball B1 o f  radius 1 such that 

1 
5(K,  B~) < c2e q with q - (n + 3)2 n-3' 

where c2 is a constant depending only on n, R, Co. 

Stability of the sphere in the class of closed convex surfaces with al- 
most constant mean curvature was treated by Diskant [4], Koutroufiotis [7], 
Moore [10], Treibergs [14]. These authors use completely different meth- 
ods; their results are either restricted to threedimensional space, or need 
stronger assumptions, or are less explicit. We point out that the constant c2 
in our stability estimate involves an a-priori bound for the circumradius of K. 
Without further restriction of e0, this is inevitable, as shown by examples. 
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One should expect that  there is a number eo > 0 such that the assumption 
1 - e < H < 1 + e with e < e0 implies an absolute bound for the diameter 
of K (if so, the convexity would be essential). For n = 3, this was proved by 
Diskant [4], but his method does not seem to extend to higher dimensions. 

2 P r o o f  o f  T h e o r e m  1 

By K: '~ we denote the space of convex bodies (nonempty, cx~mpact, convex 
subsets) of n-dimensional euclidean vector space E n. We assume that n _> 3. 
Let K0, K 1 , . . . ,  Ks E K". First we assume that all these bodies have interior 
points. The bodies I Q , . . . ,  K~ will be kept fixed until the formulation of the 
Lemma below. By 

V(I( , , I (2,1(3)  :-.~. V(K1,K2,  K3, K 4 , . . . , K , )  

we abbreviate the mixed volume of K 1 , . . . ,  Kn. As long as also Ko, K1, K2, 
I~'3 are fixed, we further use the abbreviations 

Wij := V(Ki ,  Kj, K3), i , j  E {0,1,2}, 

A = A(K1,K2,K3)  := W?2 - WxaW22, 

Wn 2W12 W22 
h = A(K~,K~,K~;Ko).- Wg, + Wo~Wo~ Wg~" 

Aleksandrov-Fenchel inequality (1). Further known Then A > 0 by the 
inequalities are 

A>_O 

and 
( Woo W12 - wol Wo2 ) ~ < ( w ~o, - woo w ,  ~ ) ( w:,~ - Woo W~ ) 

(compare (2.7) in [11], respectively (2.5) in [12], where references can be 
found). We derive some consequences. Rearranging the terms of the latter 
inequality, we get 

2 2 
A _< W~ W~2 A 

w0o --" (4) 

Using the identity b 2 - ac = - c ( a  - 2b + c) + (b - c) 2 with 

Wll W12 W22 
a -  wo21' b -  Wol Wo2 C -  w g  2' 

we see that 

w~,wd~ - w ~  + \Wo,  Wo~ w & ]  ' (5) 
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in particular 
A >_ W2oIW~A. 

Inequality (5) together with A > 0 yields 

I Wl~ W= < ~/K 
WolWo~ W022 - WolW02" 

Multiplication with W~2/W12 gives 

w~ Wool< Wo___.~v~S, 
w12 wo~ - WolWl2 

(6) 

(7) 

while multiplication with WolWo2/W22 leads to 

wl~ Wol <_ 4-~ 
w ~  w0: w~---~" (8) 

Now let n-dimensional convex bodies K, L, M, M', _M E/C ~ be given. For 
n-dimensional convex bodies P, Q E K>, put 

V(L,M,Q) 
'~(Q) - V(K, M, Q) 

and 

#(P, Q) := V(K, K, P)a(Q) - 2V(K, L, P) + V(L, L, P)ot(Q) -~. 

With the choice K1 = K, K2 = L, Ka = M, inequality (7) gives 

Is(L) - ~(K0)l < 
V(Ko, L, M) CA(K, L, M) 
V(Ko, K, M) V(K, L, M) ' (9) 

and inequality (8) yields 

x/A(K, L, M) 
a(L)-' - a(Ko) -1 < V(L,L,M) (i0) 

Applying (6) to Ko = L, K1 = K,  K2 = L, Ks = M, we get 

~(M, L) > 
A(K,L,M) 
V(K,L,M)" 

For arbitrary convex bodies P we have 

(11) 

[#(P, P) - #(P,L)I < 
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V(K, K, P)Ia(P) - a(L)[ + V(L, L, P) a ( P )  -1  - a ( L )  -1  , 

hence (9) and (10) yield 

tfl(P, P) - fl(P, L)I <_ A(P)~/A(K, L, M) 

with 

(12) 

A(P) := V(K, K, P)V(L, M, P) V(L, L, P) (t3) 
V(K, L, M)V(K, M, P) + V(L, L, M)" 

Applying A _> 0 to K0 = M, K: = K, K2 = L, Ks = M', we get ~(M', M') < 
0 and hence ~(M',  L) < ~(M', L) - fl(M', M'), thus by (12) 

~(M', L) < A(M')~/A(K, L, M). (14) 

From now on we assume that 

M =ff/l+M'. 

Then f~(37/, L) = fl(M, L) - ~3(M', L) by the linearity of the mixed volume 
in each argument, hence (11) and (14) yield 

A(K, L, M) A(M')~/A(K, L, M). (15) 
~(M, L) > V(K, L, M) 

Further, B(M,M) = ]3(/17/, L) + [~(/17/,/17/) - B(h:/, L)], hence (15) and (12) 
give 

~(M, M) > - B  (:6) 

with 
A(K, L, M) A(/~/)]r L, M). 

B . -  V(K, L, M) § [A(M') + 

Dividing (16) by V(K, M, AI)V(L, M, i9I), we get 

B 
A(K, L, ./f'/; M) _< 

V( K, M, !VI) V( L, M, !fl) " 

Inequality (4) with K1 = K, K2 = L, Ks = 37/, K0 = M yields 

A(K, L, l~I) <_ V(K, M, ifl)2V(L, M, if'I) ~ 
V(M, M, if.I) A(K, L,/17/; M). 

Both inequalities together show that 

A(K, L,/17/) < (17) 
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V(K, M, lf4)V(L, M, IVI) [A(K, L,M) ] 
V-(i~,M-----,~ [V(K,L,M) + [A(M') + A(IVI)I~/A(K,L,M )J . 

To simplify this estimate, we now assume that K, L, M E K:"(r, R). Then 
K is contained in some translate of (R/r)M, hence the monotoneity of the 
mixed volume in each argument gives 

R V(K, M, if~I) < --. 
V(M, M, M) - r 

Since M = M + M', we may assume that ~ / C  M and M' C M; then 

V(L, M, if~i) <_ I~V(B, B, B). 

From A(K, L, M) < Y(g ,  L, M) 2 we get 

A(K,L ,M)  
< ~/A(K,L,M). 

V(K,L,M) 

Since M ~ C M and M is contained in a translate of (R/r)K, we infer that 

A( M') <_ + 1, 

and the same inequality holds for A(I~I). Now (17) yields the following result. 

L e m m a .  Let K ,L ,M E /C~(r,R), let K4, . . . ,Kn E IC' be arbitrary 
convex bodies. If the convex body IVI is a surnmand of M, then 

Here the initial assumption that K4 , . . . ,  K,~, M be n-dimensional is no 
longer necessary, since by an obvious approximation argument the inequality 
can be extended to the general case. 

The lemma shows, in particular, that A(K,L,M)  = 0 implies 
A(K,L,I~I) = O. This was proved in [11], Theorem 4.1, and the present 
proof can be considered as a quantitative elaboration of the argument given 
there. 

If we now assume that also I Q , . . . , K n  E /C~(r,R) and that /~/ = yB 
with r />  0, then the lemma gives 
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hence  
A(K, L, M) > e2q4A(K, L, B) 2 

with a constant c2 depending only on n, r, R. Repeated application of this 
inequality, with C1 , . . . ,  Cp in turn playing the role of M, now yields Theorem 
1, if we observe the fact that qB is a summand of Ci if Ci is y-smooth. 

3 P r o o f  o f  T h e o r e m  2 

Let K E/C ". Writing, as usual, 

we have 

w, : =  V(!r 
n - i  i 

W1 = -l--[pHdS= l i d s -  (18) 
n J J 7 2  

where all integrations are over bd K,  p denotes the distance of the tangent 
plane from 0, and dS is the surface area element (see Bonnesen-Fenchel [1], 
p. 63). We may assume that p > 0. Under the assumptions of Theorem 2 
we deduce 

W1 < ( l + e ) W 0 ,  W2>_(1-e)W1,  

hence 
2e 

w ?  - WoW~ < WoWs. 
- 1 - e  

Denoting the (nonnegative) principal radii of curvature 
r l , . . .  ,r._1 (where oo is allowed), we have 

hence 

of b d K  by 

1 1 1 
- <  - - + . . . + - -  
ri  r l  rn-1 

= (n - I )H  _< (n - 1)(I + e), 

ri  >__ 
1 

( n -  1)(1 + e) - :  q" 

As remarked before Theorem 1, this implies that  K is q-smooth. Now The- 
orem 1 yields 

2e 
WoW2 >_ Iu - WoW2 = A(K, B, K, . . . ,  K) >_ 

1 - ~  
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_F 1 ] 4(2"-2-1) 
A ( K , B , B , . . .  , B)211--2. (19) C3 

. ( n -  1)(1 + r 

Here the constant c3, like the constants c4,.. .  ,er below, depends only on 
n, *o, R (since K is q-smooth, its im'adius is not less than [(n - 1)(1 + r 

Let BK denote the Steiner ball of K (the ball which has the same Steiner 
point and mean width w(K) as K), then 

A(K,  BK, B , . . . ,  B) = A(K,  B, B , . . . ,  B) < c,tA(K, B , . . . ,  B). 

(20) 
Now inequalities (19), (20), (2) together with the estimate 

established in [6] yield 

~(K, BK): ___ c56(K, BK)~ 

1 
5(K, BK) _< c6~ ("+~)2"-3 �9 (21) 

We may assume that K has its Steiner point at the origin. Denoting the 
radius of BK by p and the right-hand side of (21) by ~, we then have 

( p -  a)B C K C (p + ~)B. 

From (18) we get 

thus (1 + e)(p + , )  _> 1, and similarly (1 - ~)(p - (~) _< 1. We conclude that 
]p - 11 _< cr~ and hence that 

5(K, B) < 5(K, BK) + 5(BK, B) <_, + cry. 

This completes the proof of Theorem 2. 
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