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LOCAL BOUNDEDNESS OF MINIMIZERS
IN A LIMIT CASE (*)

Nicola Fusco-Carlo Sbordone

We prove the local boundedness of minimizers of a functional with anisotropic polynomial growth. The

result here obtained is optimal if compared with previously know counterexamples.

1. INTRODUCTION.

Let us consider the following functional
(1.1) I{v) = / f(z,v, Dv)dr
Q
where §2 is a bounded domain in R" and

(1.2) S lal® < flz,y, ) Sl + D zl®)
=1 =1

with ¢; > 1 and ¢ = max{¢;}, p= min{g¢;}. Some recent counterexamples ({3, [5],(7],[8])
have shown that, if

(1.3) q>q,

where

(*) This work has been performed as a part of a National Research Project, supported
by MPI (40 %, 1987).
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Z ’ q*= q_.v (q<n)
=1 i n—gq

(1.4)

BTN
S
R |

the local minimizers of I(v) are not necessarily continuos or even bounded. So the regu-
larity results obtained when p = ¢ (see [4] e.g.) cannot be always extended to this case.
Of course the growth condition (1.2) is a particular case of the following one:

(1.5) |2]? < f(z,y,2) < (14 |2{9).

However, under the assumption (1.5), in [9] it has been proved that, if ¢ < p* =
np/(n - p), the local minima are locally bounded. A sharper result can be proved when f
satisfies (1.2). Namely in [1] it is shown that, if v € W1?(Q) minimizes I(v) with bounded
boundary data and if ¢ < ¢*, then u € L°(2). This result has almost completely filled the
gap between the counterexamples and the regularity results, leaving out the case ¢ = ¢*
alone. In this short paper we prove that the above results can be extended up to the limit
case. More precisely, we show that if f verifies (1.2) and ¢ < ¢*, then the local minimizers
of I(v) are locally bounded in 2 (theorem 1). We also show that the local boundedness of
minima still holds under more general growth conditions. In particular, we may allow f
to satisfy (1.5) with p > 1 and ¢ = p*.

2. THE LOCAL BOUNDEDNESS RESULT

In the following we shall denote by { a bounded open set in R™. If ¢1,¢2,...,4, > 1,
we set

11 ng
= - 5 7= — Zf g<n
Rl T if g<n)

(2.1)

=T

(22) g = max{g:} p = min{¢:}.
We recall the following Sobolev-type inequality.

LEMMA 1.  Let p,¢;,¢,§" be as in (2.1),(2.2). Ifu € Wy 'P(Q), then

il zer @) < e(@) Y [1Diw]les g2)-

=1
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Ifuisin W,la‘Cp(Q) and Bgr C  is any ball, we put

Ak,R={$€BR5U>k}-

Then one can prove the following extension of Lemma 5.4, Ch. IT of [6].

LEMMA 2. Ifue W_.P(Q) and forany ball BR CCQ, 0<o<1, k>0

(2.3) / |Diu|¥dz < ¢ /
; Ak cRr [ Ak R

then u(x) is locally bounded from above in Q.

u—k |7

{(1-0)R do + | Azl ]

PROOF. Let us fix a ball B CC 2. We may always suppose that Bg is centered
at the origin. Let us define the following sequences:

R R _ Pht+ Pri1
Ph=-—2+2—h+1, Ph= T
k k 1 h
h= (1—2,5+1 ) =0,1,2,...

where k is a positive number to be chosen later.

Moreover, we set

Jo = / lu(z) — kn|7" da.

kpobn

We may suppose that

(2.4) ok g, >1 for any h,
otherwise Jp,, — 0 for a suitable subsequence, hence

/ lu—k|Tdz < Jp, —0
Ak, R/2

and so u < k in Brys.

Let us fix a C*(]0, co[) function £(¢) such that 0 < &(t) < tforevery t >0 ,E(t)=1
for t <1/2, £(t)=0fort>3/4and |DEl <e.
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Set
2h+l

@) =€( = (al-R/2) ),

so that {4 = 1 in B,,,, and & = 0 outside B,,.

Now, from Lemma 1 we have

(2.5) < [ e bl €] (2)ds =

khd1:Ph

= / (u = kng1) T 6n| T dz <

Br

< C(R)Z[/B [Di((t = kng1) T x| da]T/% <

i=1

n ohgi ) e
< ¢(R) Z[ / |Diul%dz + S | — kg | dz]0" /9

i=1 A“h+1r’h Akh+1r’h

Now we may use assumption (2.3) and Young' s  inequality to get

L 2hq* = ‘i*/‘“
(2.6) eSS [ ST / e = kn4a|* dz + [Aky 41,00 ]
i=1

kn41:0h

Now we observe that
/ = kng1|Tdz < Ty
A"h+1.ﬂh

and .
IAkh+1xPh |(kh+1 - kh)q <

< / (u— kp)Tdz < Ty
A

kh411Ph
and so, if we choose k > 1,

o(h+2)3*
IAkh+11Ph I < g

Jp < 2(h+2)ﬁ*Jh

Then, by these estimates and (2.6) one has

n
@7) Tht1 S o(R) Y [2M 00 < e g,

=1
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since, by (2.4), okd* 1, > 1.
Then, from Lemma 4.7, Ch.2, [6],setting

e=2L _ 1, b=27"/p,

from (2.7) we deduce that, if k¥ > 1 is chosen such that

-1 . =1
Jo<cF b
Then “"'n Jn =0 and thus
sup u<k
Bgs '

As a consequence of the previous lemma, we get the following regularity results.

First of all we suppose that u € W,,?(Q) is a minimizer of
(2.8) 10)= [ f(a,0(z), Do(a))ds
Q
where f = f(z,y,2) : @ xR x R™ — [0, +00) is a Caratheodory function satisfying

(2.9) Sl < flzy,2) S 1+ Jal®)

=1 =1
then we have

THEOREM 1. Ifu € W.P(Q) is a local minimizer of (2.8) and f satisfies (2.9)
with ¢ < @ then |u] is locally bounded in 2.

PROOF. By a standard choice of test functions and the "hole filling” technique,
one can prove that for any ball Bg CC 2 and 0 € (0,1) if cR < s <t < R,

Z/ |Diul|¥dz <
t=1 Ak

u—k
t—s

i
dz 4 ¢|Ag,gls

S9§/A

with0<6<1, k>0.

]D,-ul‘“d:c—}—cz:/
i=3 V4

k.t kR
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By using a straightforward extension of Lemma 3.1, Ch. V in [2], one gets

Diu|%dz < ¢ / dz+cA
;/A | z M= izl
u—k |&
< —_ .
< c’/ALR T-o)R dz + c|Ai |

Then, from Lemma 2 one has that v is locally bounded from above in Q.

Similarly, —u is a local minimizers of an integral satisfying the same assumptions,
hence also —u is bounded from above.

Moreover we may suppose that f verifies the following conditions:

f = f(z,2) is convex in z and measurable in z

fS‘T, z; + Z2) < C[f(.’l:, 21) + f(‘T’ 22)}
Sl < flo,2) < @1+ [2])

(2.10)

Then we have

THEOREM 2. If f verifies (2.10) and ¢ < ¢*, then any local minimizer u €
W2(Q) of the functional
/ f(z, Dv)dz
Q

PROOF. It is enough to observe that if we have {(2.10;) and (2.10;) instead of
(2.9), then we can always deduce (see [10])

Z/ |Dju|%de <
=1 Ak,s

is locally bounded in Q.

7*

T det c|lA gl

|Diju|%dz + c/

Ak, r

<€Z/

Akz

with notations similar to those introduced in the proof of theorem 1. From this inequality
one gets again (2.3) and therefore, by lemma 2, the result.

REMARK. We remark that in the special case ¢; = p, for i = 1,...,n,(2.103)
becomes .
clz|” < fla,2) S (1 +]7)

and so theorem 2 extends the analogous result (theorem 4.2) proved in [9].
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