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H A R M O N I C  M A P  H E A T  F L O W  F O R  A X I A L L Y  S Y M M E T R I C  D A T A  

J o s e p h  F.  G r o t o w s k i  

We examine the harmonic map heat flow problem for maps between the three- 
dimensional ball and the two-sphere. We give blow-up results for certain initial 
data. We establish convergence results for suitable axially symmetric initial data, 
and discuss generMizations to higher dimensions. 

1. I n t r o d u c t i o n  

We consider a compact smooth m-dimensional Riemannian manifold (M, g), pos- 

sibly with nonempty boundary  OM, and a compact smooth n-dimensional Rie- 

mannian manifold (N, h). Given u 6 CI(M, N), we define the energy density of u 

at x by 

! g ~  Oui OuJ . 
4~(x))  = 2 ~ 0-~hi~,  

and the energy of u by 
f 

E(u) = /M e(u)dvoI. (1.1) 

It is natural  to seek a suitable domain of functions for which the integral (1.1) 

makes sense, in order to be able to find critical points. Via Nash's embedding 

theorem, we can consider N to be isometrically embedded in R k for some k, so N 

is defined by a system of constraint equations 

fi(u)=O i= l , . . .  , k - n .  
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G R O T O W S K I  

We can then consider (1.1) for u belonging to l:), where 

T) = L~176 k) n H I ( M , R  k) M {u I fi(u(x)) = 0 for a.a. x,i = 1 , . . .  , k - n)  m 

The energy integral (1.1) then reduces to the s tandard Dirichlet integral 

:1 . / ,  iVui2 dvol (1.2) E ( u )  = 

where 1~Tu] denotes the Hilbert-Schmidt norm. We obtain the Euler-Lagrange 

equation 

4 ~ i Ou Ou v (u i )=AMui - -g  PA,,.(O-~-,O-~)=O, i = l , . . . , k ,  (1.3) 

where A M is the Laplace-Beltrarni operator on N,  and A is the second fundamental  

form of N (refer to [16] for details). The field v(u) is referred to as the tension 

field of u. 

We call a solution u to (1.3) a harmonic map. For (1.3) to make sense we must 

have u E C2(M, N) M :D, Mthough we can define a weak harmonic map to be u E :D 

such that  u satisfies (1.3) in the weak sense, i.e. 

k [ "  ~a a u i  O ~ i  o, ~ i i au O u  
JM tg + g "r A"(O-~' or,. )]dvol = O, 

i = 1  

for any ~ e C~(M, Rk). We have the following result for higher regularity of weak 

harmonic maps: 

T h e o r e m  1.1.  I f u  E C~ MT~ is weakly harmonic, then u is smooth. 

Proof. See [15], Chapter  8, Theorem 2.1. See also [16], Lemma 2.1, and [2], section 

3.10. 

The relationships of the energy given in (1.1) to the bulk energy of a nematic 

liquid crystal, and hence of harmonic maps to equilibrium configurations of liquid 

crystals are well documented: see for example [9]. 

In section 2 we summarize the nomenclature associated with the harmonic map 

heat flow. In section 3 we show that blow up can occur for the solution to this 

system in the case where we map from B 3 to S 2. The main theorem, presented in 

section 4, is also concerned with mappings from B 3 to S 2. This theorem asserts 

that  given sufficiently regular,axially symmetric nonsurjective initial and bound- 

ary data  we will have a unique regular solution to the harmonic map heat flow 

equation, which subconverges as t ~ 0o to a smooth harmonic map. We also 

discuss extensions to higher dimensions in section 5. 
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2. Heat  Flow for Harmonic  Maps  

One approach  to de termining  the existence of harmonic  maps  from M to N 

homotopic  to a given u0 is the so called "heat flow" method,  whereby one considers 

the system 

O,u(x,t) = ~ ( u ( x , 0  ) on M • R+  (2.1) 

with ini t ial  condit ions 

u(x,0) = ~0(x) on M .  (2.2) 

We refer to t as the t ime variable,  and x as the space variable.  If 0 M  is nonempty,  

then given ~ : a M  --* N it is na tu ra l  to ask whether  or not there  exists a harmonic  

map u : M --* N such that  u 0M = ~a. One way of s tudying this question is to 

consider the  problem (2.1), (2.2) for u0 a sui table extension of ~a to M,  together  

with the Dirichlet  bounda ry  condit ion 

u(x, t )  OM = ~o(x) on M • R+ . (2.3) 

The problem (2.1), (2.2) has two useful propert ies.  The first is shor t - te rm 

existence for sui table  u0. 

T h e o r e m  2.1.  Given uo E C2'~(M, N), there exists T > 0 depending only on 

(M,g )  and (N, h) and uo such that (2.1), (2.2) possesses a unique solution u(x, t)  

for 0 < t < T: the solution is of class C 2,~;1'~. 

Proof. See [11], p. 72; see also [8], p. 105 for uniqueness. 

This  result  can be extended to the Dirichlet problem (2.1), (2.2), (2.3) for OM 

nonempty:  see [8] p. 122. 

The second p roper ty  is the  fact tha t  the energy is nondecreasing.  This follows 

directly from integrat ing the expression d E ( u ( . ,  t)) by parts :  we obta in  

d E(u(.,O) = - jM ( O--~ ) 2 dvoI . (2.4) 

There are three broad  classes of behaviour  for the system (2.1), (2.2), or (2.1), 

(2.2), (2.3). We say tha t  the solution u(x, t) blow~ up at t = T if 

l im sup I l V u ( . , e ) l l ~  = o ~ .  
t ~ T -  
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Then the system (2.1), (2.2) or (2.1), (2.2), (2.3) will behave in one of the following 

three ways: 

i) the solution blows up in finite time, i.e. there exists T > 0 such that  u(., t) 

is regular for 0 <_ t < T, but blows up at t = T; 

ii) the solution is regular for all finite time, but blows up for T = co; 

iii) the solution is regular for all time, and subconverges to a smooth harmonic 

map uoo (i.e. there exists a sequence {tk} ---* co such that  u(., tk) converges 

to a smooth u~o(')). Indeed, the solution may possibly converge to such 

a map. The resultant uoo is homotopic to u0 (relatively homotopic in the 

event tha t  OM is nonempty).  

Examples exist for each type of behaviour. Eells and Sampson [3] introduced 

the heat flow method in 1964: they showed convergence of the solution of (2.1), 

(2.2) to a smooth harmonic map homotopic to the original (t = 0) map in the case 

where N has everywhere nonpositive sectional curvature. Hamilton [8] extended 

this to the case where OM is nonempty. Similar results were obtained by Jost  [12] 

and yon Wahl [18] in the case that  the image of uo(M) lies in a geodesically small 

ball in N,  and again by Hamilton [8] in the case that  the image of uo(M) lies in 

a geodesically convex set in N. 

There can be topological restrictions which prevent the system from having 

any chance of converging or subconverging. For example it was found by Eells and 

Wood [4] that  there exist no harmonic maps T 2 ---* S 2 with degree :El, whatever 

metrics are put  on T 2 and S 2. It follows that  the solution to (2.1), (2.2) for any 

initial da ta  of degree =hl must  blow up, al though it may do so in finite or infinite 

time. 

Coron and Ghidaglia [1] gave symmetric initial data  R ~ --* S"  and S"  --* S",  

n > 3 for which the heat flow (2.1), (2.2) blows up in finite time. In contrast 

Grayson and Hamilton [7] construct symmetric initial data  B 2 ---* S 2 such that 

the system (2.1), (2.2), (2.3) has a solution which is regular for all time, and has 

image S 2 for all time: the solution is prevented from converging to a smooth 

harmonic map because the only such map with the appropriate boundary  data is 

a constant. It follows that  blow up occurs at T = co. 
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3. H e a t  F l o w  f r o m  B a t o  S 2 

We consider B 3 and S 2 as the (closed) unit  ball  and unit  sphere respectively in 

IR 3, with the  induced (s tandard)  metric.  In this case (2.1)-(2.3) takes the form 

u ,  - exu = u W u l  2 , ] 

u(0,t) = / (a.1) 
= 

Fi r s t ly  we show tha t ,  for sui table  ini t ial  data ,  blow-up occurs for the harmonic  

heat  flow. 

Define S~_ to be the upper  half  unit  hemisphere in ~R 4, i.e. 

S~ = {(x , ,x2,x:3 ,x4)  e R 4 x~ + x ~  + x ~  + x ~  = 1, x~ > 0}. 

Note tha t  S +  is diffeomorphie to B:3, and  c3S~, the "equator" on S:3, is diffeomor- 

phic to S 2. 

We have the following Lemma: 

--:3 S2 L e m m a  3.1 .  Let ~0 : S+ -+ be a smooth harmonic  map  which is constaaat on 

0S~_. Then ~ is i tsel f  constant.  

Proof. This is a special case of Theorem 1.4 of [13]. See also [17], Lemma 2.5. 

In an analogous manner  to S~_, we can define 

S ~_={(x~,x2 ,x :3 ,x4)  e R  ' x ~ + x ~ + x ~ + x ~ = l ,  x~ < 0 } .  

Let S ~=OS~_=OS a. 

We now s ta te  

T h e o r e m  3.2.  There  exists smoo th  initial da ta  uo on B a such that  the solution 

to the  prob lem (2.1), (2.2), (2.3) blows up. 

Proof. Note tha t  S 3 ~ so by the above diffeomorphism relat ionships,  a S~ 

map v : S:3 --* S 2 induces maps  vl : B 3 -+ S 2 (consider v E~) and v2 : B 3 --* S 2 

(consider v E3 )" Conversely given v l , v2  : B:3 --* S 2, with vl OB ~ = v 2 0 B  8, we 

- - 3  
can form v = vl * v2 mapping  S 3 ~ S 2 by considering vl to map  S+ and v2 to 

map  S:3_. 
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Now choose a p o i n t  {p} on S 2. Let u be a s m o o t h m a p  from S 3 to S s with 

nonzero Hopf invariant ,  such tha t  u s ~ _ is the constant  map  to p. Let u0 = u E~_ : 

by the above argument  u0 induces a map  from B 3 to S 2, which we shall also call 

u0. Let us be the  constant  m a p  f r o m S  3_ t o p .  T h e n u 0  a n d u 2  agree on S t , so 

u = ul * u2 is well defined. 

On B 3, we consider Ul( . , t )  to be the solution to (2.1), (2.2), (2.3) wi th  ini t ial  

da t a  u0(') ,  i.e. U 1 solves 

~ 7 2 1  - -  / ~ 1  = Ul[VUl] 2 

0)  = 

u l ( . , t )  o B 3  = u o  o B 3  = p 

This induces a smooth  family of homotopic  maps  on S 3, viz 

t )  = t )  �9 u : ( . ) .  

(3.2) 

If the  solut ion to (3.2) does not blow up, it must  subconverge for sui table 

{tk} ~ oo to a smooth  harmonic  map  Uoo(') homotopic  to u l ( ' , 0 )  = u0(').  By 

Lemma 3.1 the  only such map  is the constant  map  to p, so u( ' , tk)  converges to a 

constant  map ,  which has  Hopf invariant  0. 

However u(-, 0) has nonzero Hopf  invariant.  As our deformat ion respects  homo- 

topy type  and the Hopf  invariant  is integral ,  u(., tk) has nonzero Hopf invariant  

for all tk, so uoo(') also has nonzero Hopf invariant .  

This  is a contradic t ion,  so the  solution to (3.2) must  blow up: this completes  

the proof  of Theorem 3.2 [] 

4. A x i a l l y  S y m m e t r i c  H e a t  F l o w  f r o m  B a t o  S s 

We wish to consider the harmonic  map  heat  flow from B 3 to S 2, (3.1), wi th  

specific coordinates ,  viz cylindrical  coordinates  on B 3 and spherical  coordinates  

on S 2 . 

In rec tangu la r  coordinates,  

B3 = { ( x , y , z )  6 R 3 x2 + y2 + z2 <_ l}.  
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Introducing cylindrical coordinates by the equations 

we have 

x = rcos ~ 

y = rsin 8 

Z : Z  

B a ={(r,O,z) r 2 + z  ~ <1 ,  r > 0 } ,  

where we identify (r, 8, z) with (r, 8 + 27r, z). In rectangular coordinates, 

S 2 = {(x ,y ,z )  C R  3 x 2 + y 2 + z  2_< 1}. 

Introducing spherical coordinates by the equations 

we have 

x = s i n r  / 

/ y = sin r sin X 

Z ~ COSr  

s 2 = { (x ,  r  

where we identify (X, r  with (X + 2rt, r  and with (X, r + 2rr). 

We can thus calculate the Christoffel symbols, and use the expression for the 

tension field in local coordinates, (1.3)to express (3.1) in our chosen coordinates, 

obtaining the equations 

and 

Xt = / k X  + 2 c o t r  (Vx, Vr (4.1) 

Ct = A ~  sin 2r 
- - - y - l V x l L  (4.2) 

with initial conditions 

x(-,  o) = x0( . ) ,  r  o) = r  (4.3) 

and boundary  conditions 

X(' , t)  oB 3 = X0(') OB a, ~b(. , t )  aB a = 00(') OB a. (4.4) 

Note that  in deriving these equations we allowed each variable in S 2 to depend 

upon all of the coordinates in B a, i.e. X0 = x o ( r , O , z ) ,  X = x ( r , O , z , t ) ,  ~bo = 
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r 0, z) and r = r  0, z, t). We wish to restrict this considerably by searching 

for an axially symmetr ic  harmonic map. These maps  are studied in, for example,  

[19] and [101. 

A function u : B 3 --* S 2 given by 

is axially ~ymmetric if 

(~, 0, z)  H (x ,  r  

r 1 6 2  and x = O .  

Here the boundary  da ta  can be expressed in a simple form, for at (r, O, z) E OB 3 

we have r = v f f -  z 2, so defining a function g by 

g(z) ---- r  - z 2, z), 

we have 

u o . .  = (0 ,g ( z ) ) .  

Consider the region D in (r, z) space given by 

D = {(r, z) 

Let 

r > O ,  r 2 + z 2  < 1} .  

r l  = {(r, z) 

r2 = {(0,  z) 

Note tha t  OD = r i o  P2. 

For such axially symmetr ic  u, the energy is given by 

E(u) aoU 1 [ iWl2dvol  
JB 3 

= , ~ E ( r  

r > O , r  2 + z  2 = 1 }  , 

- - 1 < z < 1 } .  

where 

s ~in ~ W 
E(r = r + V-,~ + - 7 ~ )  rd,-dz, (4.5) 
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The L2-gradient flow associated with the functional g is 

~bt = ~ + ~zz + ~br sin2~b (4.6) 
r 2r 2 

Suppose that  we can solve the evolution problem (4.6) with initial and boundary 

conditions 
~ ( ~ , z , 0 ) = ~ 0 ( ~ , z )  ] 

~(~, z, t) r = g(z) .  

Then the function u(r, O, z, t) given by 

(r, 0, z, t) H (0, ~(~,  z, t)) 

(4.7) 

will satisfy (4.2) and (4.3) for r 7~ 0. If we can show that  this extends to a solution 

for r = 0 also, then we will have found an axially symmetric solution to (4.2) and 

(4.3). Also the initial and boundary  conditions (4.4) will be satisfied by 

u(r,O,z,O) = (8,~bo(r,z)) and 

u(r, o, z , t )  0B3 = (0, 9(2)) ,  

by (4.7). 

There are two potential sources of difficulty in dealing with the problem (4.6), 

(4.7). The first is the singularity of the coefficients of r and s in2r  along F2. 

The second is that  we do not have a well posed boundary problem, as the data  is 

not explicitly specified along F2. We show now that  the second problem can be 

alleviated by imposing the additional boundary  condition 

~b(-,t) 0B~ = 0 .  (4.8) 

We consider continuous boundary data  (0, g(z)) on OB 3. We firstly note that 

the North and South Poles of Ba(N = (0,0,1), S = (0 ,0 , -1 ) ) ,  must  each be 

mapped to either the North or South Pole of S 2, i.e. 

g ( + l ) = j T r ,  j e Z .  

This follows from the fact that  the choice of 0 is arbitrary in assigning coordinates 

(0, 0, 1) to N,  so 

u(N) = u(O, O, 1) = (0, g(1)) 
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is a circle, and hence u is not well defined, unless the coordinates  of the image of 

N are s imilar ly  independent  of the choice of 0: the  only points  on S 2 for which 

this occurs are the  Nor th  and South Poles. The  same argument  holds for S. 

Suppose tha t  the  ini t ia l  map  (0 , r  is continuous. The above argument  

shows tha t  

r z ) = j T r  j e Z , - l < z < l .  

In par t i cu la r  

r  = r  i.e. g(1) = g ( - 1 )  . 

We suppose now tha t  our ini t ial  boundary  d a t a  are continuous and axially 

symmetr ic ,  and further  tha t  our boundary  da t a  is of degree zero. We also assume 

tha t  the image of the bounda ry  is not all of S 2, so tha t  we may assume tha t  there 

exists a 6 > 0, such tha t  

o ~ r  < ~ - ,~. 

By the above a rgument  , 

r z ) = 0  - - l < z  < 1 .  

We then  have 

T h e o r e m  4.1.  Given axially symmetr i c  boundary data ~ : OB 3 -+ S 2 which 

does not  cover S 2, and which is Lipschitz  continuous and o f  degree zero, and  an 

axially s ymme t r i c  initial extension uo E C2'~(B 3 , $2), which does not  cover S 2 

either, (3.1) subconverges as t --~ oo to an axiadly symmetr i c  smooth  harmonic  

map  homotopic  to uo. This map  is also nonsurjective.  

The  result  follows from in termedia te  steps showing: 

i) short  t e rm existence; 

ii) no blow-up on the z-axis; 

iii) no blow-up for r > 0; and  

iv) convergence considerat ions.  
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The problem (4.1)-(4.4) for axially symmetr ic  initial and boundary 

xo( . ,0 )  = e, r  = r  e C2,~(D) 

X(-,t) OB ~ = 8 ,  ~b(.,t) OB~ = ~ b ( 4 1 - z 2 ' z ' O ) = g ( z ) E C ~  

satisfying 0 _ r < ~ h a  a u~ique regular (i.e. C 2'"'1'o ( I n t B  ~ • [0, T))  n C ~ 

(B 3 x [0, T)  ) ) axially symmetr ic  solution for 0 ~_ t < T for some T > O. 

Proof. We know by Theorem 2.1 and the regularity of the initial and boundary  

data  that  we have a unique regular solution (X, r  to the evolution problem of 

L e m m a 4 . 2  for 0 ~ t < T, for some T > 0. A priori this solution need not be 

axially symmetric. Consider then ~ and r defined by 

~ ( r , e , z , t )  = x ( r , e  + , ~ , z , t )  - o, 

~(~ ,e , z , t )  = r  + ~ , z , t )  

for ~ a ~•  (arbitrary) real number.  We can check that (~, ~) also solves the 

evolution problem of Lemma 4.2 : by the uniqueness result in Theorem 2.1 we 

can thus conclude that  (~, r  = (X, r Since a is arbitrary, this shows that  r is 

independent of 8, i.e. 

r = r  z, t) . (4.8) 

Further we see that  Z can be written in the form 

x(r,  8, z, t) = 8 + fl(r, z, t) . (4.9) 

Using (4.8) and (4.9), we can reduce (4.1) and (4.2) to 

#, = ,~# + 2 cot r (#~r + # , r  (4.10) 

and 

~ 2 r  1 r  = / ~ r  _ si + 7~ + #~)' (4.11) 

as 0 2 
where A is the Laplacianinl l~ 3 (i.e. A = ~ r  r + ~ + ! ~  as both fl and ~b are 

independent of 0). 
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We see from (4.8), (4.9) and the initial and boundary  conditions in Lemma 4.2 

that  fl satisfies 
~(., 0) = 0 ) 

OB~ i (4.12) ~(.,t)  = 0 

We shall use a maximum principle argument to show that  fl(., t) is identically zero 

on B 3 x [0, T). We define 7 by 

7(.,t) = , - 'Z( . ,  t ) :  

then by (4.10) 7 satisfies 

7 + 7t = A 7  + 2 c o t r  (TrOt + 7*r (4.13) 

Suppose fl(., t) takes on a positive maximum on B 3 • [0, T'], for some T'  > 0. 

Then 7( ' ,  t) must  also take on a positive maximum (although not necessarily at the 

same point). This maximum for 7 cannot be achieved on OB a x [0, T'] nor on B 3 x 

{ t - l (0)}  by (2.31). By (4.11) we see that  this maximum also cannot be achieved 

at (r', 8', z', t') contained in I n t B  3 x (0, T'], unless possibly r  0', z' ,  t ' )  = kTr, 

and 

lira [cot r (TrCr + 7*~z)] > 0. (4.14) 
(r,O,z,t)---,(r',O',z' ,t') 

We note from our initial conditions and the regularity of the initial da ta  that  

0 _< r  _< 7r. (4.15) 

To see this, we suppose i~f r t) < 0 for some t > 0. Since the initial data is 

non-negative and regular, for T2 sufficiently small 

0 > inf r t) > - -  (4.16) 
IntBSx[O,T2] 2 

Then r must  take on a negative minimum on I n t B  3 x (0, T2]: we see from (4.11) 

that  this is not possible, given tha t  at this minimum, by (4.16), we have 

sin 2 r  2 1 

Similarly since the initial data  is less than ~r, we see that  for any point ( . , t l )  at 

which r  = ~r, Ct(- , t l )  _< 0. This establishes (4.15). 
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Thus  if r 1 6 2  0 ~, z I, t I) = 0, we can  conclude  t ha t  r achieves a local  m i n i m u m  at  

( r ' ,  0' ,  z ' ,  t ' ) .  Since then  3' achieves a m a x i m u m  at  ( r ' ,  0', z ' ,  t ' )  and  r a m i n i m u m  

a first  de r iva t ive  sign ana lys i s  in a smal l  n e i g h b o u r h o o d  of (r ~) yie lds  a 

c o n t r a d i c t i o n  wi th  (4.14) If r = 7r, r achieves a local  m a x i m u m  at  

( r ' ,  0 ' ,  z ' ,  t ' ) ,  and  a s imi la r  a r g u m e n t  shows (4.14) canno t  ho ld  in th is  case. 

Thus  7 ( ' ,  t) ,  and  hence fl(-, t) canno t  achieve a pos i t ive  m a x i m u m  on B 3 x [0, T']  

for a n y T  ~ < T. 

In the  same  way  we show tha t  f l ( . , t )  canno t  achieve a nega t ive  m i n i m u m  on 

B 3 x [0, T']  for any  T '  < T. We have thus  shown fl(., t) is iden t i ca l ly  zero on 

B 3 x [0, T) .  By (4.9) t hen  we have 

x ( r , O , z , t )  = O. 

C o m b i n i n g  this  w i th  (4.8),  we have shown t h a t  the  so lu t ion  to  the  i n i t i a l - b o u n d a r y  

value  p r o b l e m  is ax ia l ly  s y m m e t r i c  for 0 _< t < T. [] 

I t  follows t h a t  we can res t r ic t  our  a t t e n t i o n  to the  behav iou r  of the  sys t em (4.6), 

(4.7), a semi l inea r  p a r a b o l i c  equa t ion .  F u r t h e r  f rom (4.15) above,  we know t h a t  

the  so lu t ion  sat isf ies 

O < r  for ( r , z )  E D ,  t e [ 0 ,  T).  

Step ii). We need  to  show t h a t  the  evolu t ion  p r o b l e m  (4.6), (4.7) canno t  develop 

a s i ngu l a r i t y  on the  z-axis  unt i l  af ter  it develops  one on D \ F2. Deno te  by  T the  

t ime  of "first  b low-up" ,  i.e. 

T = inf{2P l im sup IIVr = ~ } .  
t---*T- 

(ri,  zi, ti) We note  t h a t  if b low-up  first  occurs  on F2 then  we have a sequence ~ ~ --* 

(0, z*, T)  for which  ICrl ~ oo. For  if not ,  t hen  we mus t  have such a sequence for 

which Ir -o  co. Since our  so lu t ion  is C 2'~ for t < T, we can choose {fi} for 

which 

1 
I1r ti)l[2,~ < =-. (4.17) 

r i  
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In addition, since we have blow-up at (0, z*,T),  for all i sufficiently large there 

exists P = (ri ,zl) ,  ri < fi with Ir ti)[ > 2. But then 

[ l r  >_ m a x  [ r  

> ICz(P, ti) - C z ( 0 , z . t , ) l  

r i  

2 2 
> - -  : > 7 - .  

ri  ri 

This contradicts (4.17), so we must have blow-up in the radiM direction. 

In particular if we can show that  ~p is Lipschitz continuous on F2 (uniformly in 

time), then we will have shown that  first blow-up cannot occur on the z-axis. To 

do this, it suffices to show that  r is bounded above pointwise on D x [0, T) by a 

function ~(r, z, t) which is uniformly Lipschitz continuous on D x [0, t). 

We next give, via a maximum principle argument,  sufficient conditions for a 

function to be a suitable barrier. 

L e m m a  4.3. Suppose r  is a regular solution to (4.6), (4.7) on [0, T). Let 

~(., t) be a regular solution to (4.6) on [0, T), i.e. 

sin 2[ 
~t - ~ r  - ~zz  - ~ r  + - 0 ( 4 . 1 8 )  

r 2r 2 " 

In addition let ~ be Lipschitz  continuous on F2 (uniformly in time), and let ~ and 

r satisfy the initiM and boundary relations 

~(r,z,O) > r  on D, 

rlx[0,T) -> r rlx[O,T) = r r~' 

and ~ r2x[0,T) = r r2x[0,T) = 0 �9 

Then ~ >_ r on D x [0, T). 

(4.19) 

m 

Proof. Let r / = r  By (4.19) r / < 0 o n D •  and o n 0 D x  [0, T). By (4.6) 

and (4.18), q satisfies 

r h -- A q  -- rl--E-r -V a r ~ - r / =  0 (4.20) 

0 2 0 2 
on D x [0, T), where A = ~ + ~ is the Laplacian in (r, z) coordinates, and 

a(r,  z ,  t) = sin 2~ -- sin 2 r  
2(~ -- r 

= cos 2[a~ + (1 - a)r  
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is bounded  and regular  on D • [0, T):  choose M such tha t  lal < M.  

Suppose tha t  the  conclusion of the Lemma is false. Then there exists some t ime 

t ~, 0 < t '  < T, such tha t  max  ~ > 0: by regular i ty  we can choose t '  sufficiently 
~x[0,t'] 

small  tha t  0 < max  r/ < ~r Using the regular i ty  of ~, we can choose p > 0 such 
Ox{t} 

that ((~, z, t )  _< ~ for 0 < r < p, t e [0, T) .  Thus for r _< p and 0 < t < t', 

7 r  

r  z, t) - ( ( r ,  z, t) < ~  and ~ ( r , z , t )  < 8 '  

which means  ~b(r, z, t) _< } ,  and thus by the definition of a(., t) we have 

a(r,z,t) >_0 f o r r  < p ,  0 < t  < T .  (4.21) 

M t  - -  M t  

Mult ip ly ing (4.20) by e-2%~ and in t roducing h(r,z,t) defined by h = e 2~--'x7], 

we have 

(4.22) 
r \'zr" Ep" / 

As 7/ takes on a posit ive max imum on D x [0, t~], h must  do so as well. The 

function h is, like r?, nonposit ive on OD x [0, t'] and on D x { t - l (0 )} ,  so the 

posit ive m a x i m u m  is achieved on D x (0, t '], say at (r*,z*,t*). By the regular i ty  

of V, and hence of h, we can conclude that  ht(r*,z*,t*) > O, Ah(r*,z*,t*) < 0 

and hr(r*,  z*,t*) = 0. From (4.22) then, we must  have 

a(r*,z*,t*) M 
2(r.)2 + --2p 2 _< 0 . (4.23) 

If r* < p, by (4.21) a(r*,z*,t*) > O, so (4.23) is false. However if r* > p, we have 

M (4.23) is again false. 2(;;)2 > - ~ ,  so 

Thus the  conclusion of the Lemma is valid. [] 

The  formulat ion of a(., t) as an integral  to show its boundedness  and regular i ty  

is used by Coron and Ghidagl ia  [1]: they use it in a bar r ie r - type  argument  involving 

a self-similar supersolut ion to an equation analogous to (4.6) for dimension n _> 3. 

We have now reduced the problem of z-axis regular i ty  to tha t  of finding a 

regular  uniformly Lipschitz continuous solution to (4.6) on [0, co) which lies above 

the given ini t ial  and boundary  data .  This is easiest if we seek a s tat ic  ( t ime 

independent )  solut ion of (4.6) : in fact we have a one-parameter  family of such 

functions (which are functions of r only), as shown in section 5. We also show 
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there  tha t  we can domina te  any ini t ial  and  bounda ry  d a t a  by a member  of this 

family, provided our d a t a  is sufficiently regular  and  bounded  below ~r. Defining 

D r  E D  r < e } ,  

we have 

L e m m a  4.4.  The evolution problem (4.G), (4.7) for initial and boundary data 

Oo E C2'r'(D), g E Lip (I"1), 0 G ,tb0,g < lr 

satisfies 

sup I I v r  < o0 i f  sup I I V r  < oo, t'or all e > 0 ,  
P2x[0,T) D\Dc • 

for all Tl ,  0 < T1 < T < cr 

Proof. By  Corol lary 5.2 we can find a regular  ~ which satisfies ~ > r on D x {0}. 

This  ( is t ime independent ,  and  has a bounded  Lipschitz norm on I'2. By Lemma 

4.3, as long as the  solut ion is regular  away from P2, it does not  cross the  bar r ie r  (: 

bu t  then  the bound  on the Lipschitz norm of ( on I'2 gives the desired conclusion. 

[] 

Note tha t  this  Lemma precludes first blow up occurr ing s imul taneously  off and 

on the z-axis: the  only possibi l i ty  we need now consider is tha t  of first b low-up off 

the  z-axis. 

Step iii). We now wish to show tha t  the  solution to (4.6), (4.7) cannot  blow up 

off the z-axis before blowing up thereon. 

L e m m a  4.5.  Under the same conditions as in Lemma 4.4 if  there exists e > 0 

such that sup I l V r  < ~ ,  then sup IlVr < oo, for all T, 0 < T _< o o  
Dtx[O,T) Dx[0,T) 

Proof. We need to show tha t  there  exists a C1 such tha t  

sup IIvr < c l .  
D \ D ,  x [O,T) 

On D \ D~ x [0, T)  we have 

r  - L r  = f ( r  r) 
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where L r  = r  + r  + ~ is an elliptic operator with bounded coefficients, and 

f ( r  r) = ~ satisfies 2 r  z 

1 
] f l < ~ e  2 o n D \ D ~ .  

Thus we can apply the estimates for linear parabolic equations ([15] Ch. IV, 

Theorem 10.1) to conclude that  there exists C2 such that  

sup Itr < c ~ .  
D\D~x[O,T) 

This implies the desired result. [] 

Step iv). From Lemma 4.4 and Lemma 4.5 then, it follows that there exists C 

such that  

sup IlVO(.,t)ll~ < C, 
t~[0,cr 

and further for any e > O, there exists C1 = Cl(e) such that  

sup IIr < 6 1 ( s  onD\D~. 
tc[o,~) 

It follows that  there exists r  such that  for any 3 < a,  r  6 Cs'Z(D \ D~), 

and {tk} / c e  such that  

r  c ~ r  a s k ~ c ~ ,  o n D \ D ~ .  (4.24) 

Since $( r  is finite and nonincreasing with t, integrating (4.6) from 0 to 

T > 0 gives us 

[/o $(0) - $(T) = r t)dxdt , 

SO 

r t) L' ~ 0  as t ---+ ee . 

By (4.6) and (4.24) this gives us that  

Crr(',tk) + r  + - -  
Cr(',  tk) sin2r tk) L ~ 

r 2r 2 
0 a s  ~ . - ~  o o  ~ 

for r > 0. 

Thus u as given by u(r, 0, z) = (0, r  z)), i.e. 

u ( ~ , v , z )  ( s i n r  x = c o s - ,  s inr  -y, c o s e c )  
r r 

(4.25) 
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is weakly harmonic  for r > 0: since u is C 2,~ for r > 0, it  is harmonic  for r > 0. 

We know by Lemma 4.4 tha t  as r --~ 0, r -+ 0 and ]]Vr is bounded.  

Hence u as defined in (4.25) is uniformly Lipschitz continuous,  in par t icu la r  for 

r = 0. By using exact ly  the same method  as Zhang ([19], (section 4)), we can 

show tha t  u is weakly harmonic  on all of B a, so by Theorem 1.1 u is harmonic  on 

B 3" 

Note also tha t  since r  C C2'~(D \ D~) for any e > 0, by (4.6) Ct ( ' , t )  C 

C~(D \ D~), i.e. the solut ion to (4.6), (4.7) belongs to C2'~;I '~(D \ DE) for any 

e > 0. Since r - 0 for r = 0, r  is homotopic  to r  for any t l ,  t2 (i.e. 

homotopic  relat ive to g), and so r  is homotopic  to ~b(., t)  for any t, in par t i cu la r  

to r 0) = r 

This completes  the proof  of Theorem 4.1. [] 

5. B a r r i e r  F u n c t i o n s  

We look for specific solutions to the evolution problem (4.6) on D x [0, oo) which 

have finite energy, i.e. from (4.5) 

/D[( r + r + sin2 r < c~ (5.1) 
r 

We will look for solutions that  are independent  of r and t. 

If we can find r sat isfying 

~ sin 2~ d 
~"  + - -  - 0 ' = - -  (5.2) 

r 2r 2 ' dr 

for r E (0, 1), wi th  

f0 1 sin2 ~O ]d r [(~')~r + < o o ,  (5.3) 
r 

then  r  = ~( r )  will satisfy (4.6) and  (5.1). As we are in teres ted in these 

barr iers  as they per ta in  to axial ly symmetr ic  maps  of degree zero from B 3 to S 2, 

we impose  the  b o u n d a r y  condi t ion 

~ ( 0 )  = o. (5.4)  
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To solve (5.2), (5.4) we make  the  subs t i tu t ion  r = e ~, 

wish to solve 

sin 2~ . d 
- -  - 0 ,  

2 d~- 

wi th  lira T(r )  = 0. 
r ~ - - o o  

Mul t ip ly ing  (5.5) by r and  in tegra t ing ,  we ob t a in  

- - c ~ < r  < 0 .  T h e n  we 

(5.5) 

(5.6) 

~2 = sin 2 ~ + c , (5.7) 

and we see c = 0 f rom the  b o u n d a r y  condi t ion  (5.6). If  then  we have  a solut ion to 

r = sin r , (5.8) 

by (5.7) it will also solve (5.5). 

E q u a t i o n  (5.8) can be solved d i rec t ly  by in tegra t ing :  we ob t a in  

cosec ~ + cot ~ = Ae -~  

where  A is a cons tan t  of  i n t eg ra t ion  yet to be  de te rmined .  Th is  yields 

(~2 _r  2 ) r (5.9) 
r = a r c c o s  ~ + r 2  = 2 a r c t a n ~  , 

if 0 < ~ < % u p o n  rever t ing  to the  original  r variable.  

We can check d i rec t ly  tha t  this solut ion satisfies (5.3). If  we set ~ = cosec ~1 + 

cot ~1, where  ~1 = ~,(1) is add i t iona l  given b o u n d a r y  d a t a  sat isfying 0 < ~1 < ~r, 

t hen  0 < A < c~, and  by (5.8), (5.9) gives us a solut ion of (5.2) which is m o n o t o n e  

increas ing  f rom 0 at r = 0 to ~1 at r = 1. We observe  tha t  ~ ( 0 )  = 2: this  says 

tha t  we can f ind a solut ion of  (5.2) which grows as rap id ly  as is des i red at r = 0. 

F u r t h e r  we no te  tha t  ~ ( r )  is s t r ic t ly  convex for r > 0. In t e rms  of  p r o b l e m  (4.6) 

this  means  we can  find a regular  solut ion of f ini te  energy which  lies above  given,  

"nice" ,  ini t ia l  and  b o u n d a r y  data .  T h e  following, which makes  this  no t ion  precise,  

is immed ia t e :  

L e m m a  5 .1 .  SupposeTl(r ) G Lip [0,1], 7/(0) = 0, maxr /  = ~ r - 5 ,  5 > 0. Then 
[o,1] 

there  exists )~ > 0 such that ~ ( r )  = 2 a rc t an  ~ satist~es ~ > q on [0, 1], with strict 

inequality holding for r > O. 
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C o r o l l a r y  5.2.  Consider problem (4.6), with initiM and boundary conditions 

r --~ r r cgD : r  

with r C Lip (D), r  = 0, r < 7r. This problem has a regular solution 

( ( r ,  z, t) which exists for all time, and which satisfies 

~ ( r , z , 0 )  ~ r  ~ OD ~ r OD" 

Proof. Take q(r)  = max  Co(r, z) in Lemma 5.1: ~(r, z, t) = T(r)  suffices. [] 
r 

We wish to comment  briefly on the extension of these methods  to higher di- 

mensions.  We consider cylindrical  coordinates  on B" ,  where ( x l , . . .  , x , )  E B n is 

wr i t ten  as (r, z, 8), for 

and 

1 
r : (Xl 2 + . . .  -~- x 2 _ 1 )  ~- , 

Z : X n  

8 E S ' * - 2  �9 

Then we consider axial ly symmetr ic  u : B"  ~ S n - 1  given by 

where 

u :  (r, e, z) ~ (r  0 ) ,  

r = r z) E S* . 

In this case the  energy of the map  u is given by 

E(~<) ~' ~ /IV,.l'dvo, -n~"E(r 

where wn is the  volume of B" ,  and 

iD n--  2 E(r = [r + r + - - 7 -  sin2 r r " - 2 d r d z  �9 

The Euler -Lagrange  equat ion of E(r  is 

T r  = e r r  + Czz + n - -  2 r  n - -  2 sin 2r  = 0 
r 2r 2 " 

(5.1o) 
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In fact for our bar r ie r  arguments ,  we really only need that  ~, is a supersolut ion of 

(5.10).We look for a t ime and z independent  barrier ,  i.e. ~ satisfying 

~ , + n - 2  , _ _ _ n - 2 s i n 2 ~ < 0  (5.11) 
r 2r 2 - ' 

= r3-~" (5.11) becomes where , d .  Making the change of variable r = n--3, 

j2 
~.2  _ -2  sin2cp _< 0 , (5.12) 

w h e r e =  d ,  and j = v / ~ - 2  ( n - 3 ) .  

Mul t ip lying th rough  by 2~ we obta in  

(~2r2).  _ 2~_~b2 _ j2 sin2~0~ < 0 .  (5.13) 

Since 2 r ~  2 >_ 0, (5.13) will certainly hold if 

(~2t~). _ j2 s i n 2 ~ b  = 0 : (5.14) 

as (5.13) is equivalent to (5.11), it suffices to solve (5.14). 

Working as in (5.5)-(5.9),  we obta in  

r j 
~(r )  = 2 ~ c t a n  - ;  . (5.15) 

For any A > 0, the function given in (5.15) satisfies ~(0) = 0, and ~ is s t r ic t ly  

increasing for 0 < r < 1. As was the case in dimension n=3 ,  given ~1 : 0 < ~1 < ~r, 

sett ing X = cosec ~1 + cot ~1 in (5.15) will yield ~(1)  = ~l-  

We do not,  however, have a full analogue of Lemma 5.1, because 

~ ( r ) = 0 ( r  ~) a s r $ 0 ,  

and so we only guarantee  to dominate  initial  da t a  which is also of order  rJ as r $ 0 

(and which in addi t ion,  as in Lemma 5.1, lies below ~r). 
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