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HARMONIC MAP HEAT FLOW FOR AXTALLY SYMMETRIC DATA

Joseph F. Grotowski

We examine the harmonic map heat flow problem for maps between the three-
dimensional ball and the two-sphere. We give blow-up results for certain initial
data. We establish convergence results for suitable axially symmetric initial data,
and discuss generalizations to higher dimensions.

1. Introduction

We consider a compact smooth m-dimensional Riemannian manifold (M, ¢), pos-
sibly with nonempty boundary OM, and a compact smooth n-dimensional Rie-
mannian manifold (N, A). Given u € C'(M, N), we define the energy density of u

at z by
1 af But oul

e(u(z)) = 59 B2 BB i
and the energy of u by

B(u) = /M e(w)dvol . (1.1)

It is natural to seek a suitable domain of functions for which the integral (1.1)
makes sense, in order to be able to find critical points. Via Nash’s embedding
theorem, we can consider N to be isometrically embedded in RF for some k, so N

is defined by a system of constraint equations

filu)=0 i=1,...,k—n.
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We can then consider (1.1) for u belonging to D, where
D = L®(M,R*yn HY(M,R*) N {u ' filu(z))=0for a.a. z,i =1,... ,k—n}.
The energy integral (1.1) then reduces to the standard Dirichlet integral

E(u):%/ Vuldvol , (1.2)
M
where |{Vu| denotes the Hilbert-Schmidt norm. We obtain the Euler-Lagrange

equation

i i ap 4i Ou Ou
T(u)=AMU’ -9 ﬂAu(az—aaW

where Ay is the Laplace-Beltrami operator on NV, and A is the second fundamental

)=0, i=1,...,k, (1.3)

form of N (refer to [16] for details). The field r(u) is referred to as the tension
field of u.

We call a solution u to (1.3) a karmonic map. For (1.3) to make sense we must
have u € C%(M, N)N D, although we can define a weak harmonic map to be u € D

such that u satisfies (1.3) in the weak sense, i.e.
k . .
out 9¢* . ;. Ou Ou
ag X% Y& aﬂtAl____d ! =
;fM[g 8z 9z +97¢ "(89:""8:::5)] vol =0,
for any ¢ € C&°(M,R¥). We have the following result for higher regularity of weak

harmonic maps:
Theorem 1.1. Ifu € C'(M, N)N D is weakly harmonic, then u is smooth.

Proof. See [15], Chapter 8, Theorem 2.1. See also [16], Lemma 2.1, and [2], section
3.10.

The relationships of the energy given in (1.1) to the bulk energy of a nematic
liquid crystal, and hence of harmonic maps to equilibrium configurations of liquid
crystals are well documented: see for example [9].

In section 2 we summarize the nomenclature associated with the harmonic map
heat flow. In section 3 we show that blow up can occur for the solution to this
system in the case where we map from B® to $%. The main theorem, presented in
section 4, is also concerned with mappings from B? to $%. This theorem asserts
that given sufficiently regular,axially symmetric nonsurjective initial and bound-
ary data we will have a unique regular solution to the harmonic map heat flow
equation, which subconverges as £ — 0o to a smooth harmonic map. We also

discuss extensions to higher dimensions in section 5.
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2. Heat Flow for Harmonic Maps

One approach to determining the existence of harmonic maps from M to N
homotopic to a given ug is the so called “heat flow” method, whereby one considers

the system
Owu(z,t) = 7(u(z,t)) on M xRy (2.1)
with initial conditions

u(z,0) = up(z) on M . (2.2)

We refer to ¢ as the time variable, and z as the space variable. If M is nonempty,
then given ¢ : 9M — N it is natural to ask whether or not there exists a harmonic
map u : M — N such that u laM = ¢. One way of studying this question is to
consider the problem (2.1), (2.2) for up a suitable extension of ¢ to M, together
with the Dirichlet boundary condition

u(z,t) ‘BM =p(z) onMxRy. (2.3)

The problem (2.1), (2.2) has two useful properties. The first is short-term

existence for suitable ug.

Theorem 2.1. Given up € C**(M, N), there exists T > 0 depending only on
(M, g) and (N, k) and ug such that (2.1), (2.2) possesses a unique solution u(z,t)
for 0 <t < T: the solution is of class C*®L,

Proof. See [11], p. 72; see also [8], p. 105 for uniqueness.

This result can be extended to the Dirichlet problem (2.1), (2.2), (2.3) for OM
nonempty: see [8] p. 122.
The second property is the fact that the energy is nondecreasing. This follows

directly from integrating the expression %E(u(-,t)) by parts: we obtain

%E(u(,t)) = — /M (%)2 dvol . (2.4)

There are three broad classes of behaviour for the system (2.1), (2.2), or (2.1),
(2.2), (2.3). We say that the solution u(z,t) blows up at t =T if

lim sup ||[Vu(:, t)]|cc = 00 .
t—T~
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Then the system (2.1), (2.2) or (2.1), (2.2), (2.3) will behave in one of the following

three ways:

1) the solution blows up in finite time, i.e. there exists T > 0 such that u(-,t)
is regular for 0 <t < T, but blows up at ¢t = T

ii) the solution is regular for all finite time, but blows up for T’ = oo;

iii) the solution is regular for all time, and subconverges to a smooth harmonic
map ueo (1.e. there exists a sequence {tx} — oo such that u(:,tg) converges
to a smooth us(-)). Indeed, the solution may possibly converge to such
a map. The resultant us, is homotopic to up (relatively homotopic in the

event that OM is nonempty).

Examples exist for each type of behaviour. Eells and Sampson [3] introduced
the heat flow method in 1964: they showed convergence of the solution of (2.1),
(2.2) to a smooth harmonic map homotopic to the original (¢t = 0) map in the case
where N has everywhere nonpositive sectional curvature. Hamilton [8] extended
this to the case where M is nonempty. Similar results were obtained by Jost [12]
and von Wahl {18] in the case that the image of ug(M) lies in a geodesically small
ball in N, and again by Hamilton [8] in the case that the image of uo(M) lies in

a geodesically convex set in N.

There can be topological restrictions which prevent the system from having
any chance of converging or subconverging. For example it was found by Eells and
Wood [4] that there exist no harmonic maps T? — $? with degree +1, whatever
metrics are put on T2 and §2%. It follows that the solution to (2.1), (2.2) for any
initial data of degree £1 must blow up, although it may do so in finite or infinite

time.

Coron and Ghidaglia [1] gave symmetric initial data R™ — S™ and S™ — 57,
n > 3 for which the heat flow (2.1), (2.2) blows up in finite time. In contrast
Grayson and Hamilton [7] construct symmetric initial data B? — S? such that
the system (2.1), (2.2), (2.3) has a solution which is regular for all time, and has
image S? for all time: the solution is prevented from converging to a smooth
harmonic map because the only such map with the appropriate boundary data is

a constant. It follows that blow up occurs at T = oo.
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3. Heat Flow from B2 to 5?2

We consider B2 and S? as the (closed) unit ball and unit sphere respectively in

R3, with the induced (standard) metric. In this case (2.1)-~(2.3) takes the form
uy — Au = u|Vul? |
u(0,t) = ug(") , (3.1)
u('yt)|333 = LP() .

Firstly we show that, for suitable initial data, blow-up occurs for the harmonic

heat flow.
Define S% to be the upper half unit hemisphere in R, i.e.
53 = {(z1,22,23,74) € R 244l ai=1, x>0}

Note that _,S—'i_ is diffeomorphic to B3, and 853, the “equator” on 53, is diffeomor-
phic to §2.

We have the following Lemma:

Lemma 3.1. Let ¢ : —S;i- -+ S? be a smooth harmonic map which is constant on

0S3. Then ¢ is itself constant.
Proof. This is a special case of Theorem 1.4 of [13]. See also [17], Lemma 2.5.

In an analogous manner to S3, we can define
S% = {(z1,29,23,24) ER* | 22 422 422+ 23 =1, =z, <0}

Let St = 853 =983

We now state

Theorem 3.2. There exists smooth initial data ug on B® such that the solution

to the problem (2.1), (2.2), (2.3) blows up.

=8, =3
Proof. Note that $® = i"'—;—s—”, so by the above diffeomorphism relationships, a

_,)and vy : B® — §?

Sy

(consider v _, ). Conversely given vy, vz : B? — §?, with v,
5

map v : S — S? induces maps v; : B} — S§% (consider v

= vy ‘ we
aBs aBs’

Sy -3
can form v = vy * v, mapping S — S? by considering v; to map S, and va to

map 5.
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Now choose a point {p} on $2. Let u be a smooth map from S® to S? with
nonzero Hopf invariant, such that u " is the constant map to p. Let ug = u|_,
by the above argument ug induces a I;lap from B3 to S?%, which we shall also call
ug. Let us be the constant map from S to p. Then up and u; agree on St so
u = uj * uy is well defined.

On B2, we consider u;(-,) to be the solution to (2.1), (2.2), (2.3) with initial

data ug(:), i.e. u; solves

g
Eul — Au1 = u1|Vu1|2

u1(-,0) = uo(:) (3.2)
i) I833 = ‘aB3 =P

This induces a smooth family of homotopic maps on 53, viz

u(-,t) = ur (-, 1) * ua(-).

If the solution to (3.2) does not blow up, it must subconverge for suitable
{tk} — oo to a smooth harmonic map u(-) homotopic to u1(-,0) = ug(-). By
Lemma 3.1 the only such map is the constant map to p, so u(-,tx) converges to a
constant map, which has Hopf invariant 0.

However u(-,0) has nonzero Hopf invariant. As our deformation respects homo-
topy type and the Hopf invariant is integral, u(-,tx) has nonzero Hopf invariant
for all £, 50 uoo(-) also has nonzero Hopf invariant.

This is a contradiction, so the solution to (3.2) must blow up: this completes

the proof of Theorem 3.2 O

4. Axially Symmetric Heat Flow from B® to $?

We wish to consider the harmonic map heat flow from B? to $%, (3.1), with
specific coordinates, viz cylindrical coordinates on B?® and spherical coordinates
on S2,

In rectangular coordinates,

Ba={(z,y,z)€R3 22 +y? 4+ 22 <1}

212



GROTOWSKI

Introducing cylindrical coordinates by the equations

T =rcosf
y =rsinf
2=z

we have

B3 = {(r,0,2) l P 422 <1, r>0},
where we identify (r, 6, 2) with (r,68 4 27, z). In rectangular coordinates,
S ={(z,y,2) € R® ‘ 2 4y 422 <1},

Introducing spherical coordinates by the equations

z =sinycosy

y = sinysin x
z = cos,
we have
§* = {(x, %)}

where we identify (x, ) with (x + 2w, %) and with (x, ¢ + 2x).

We can thus calculate the Christoffel symbols, and use the expression for the

tension field in local coordinates, (1.3)to express (3.1) in our chosen coordinates,

obtaining the equations

Xt = Ax + 2cotp (Vx, Vi)
sin 2¢

and Py = Ap — 5

[VxP?,

with initial conditions

X('vo) = XO(')’ 1,0(-,0) = o(-),

and boundary conditions

x(51) ‘333 =xo() ‘aBB’ S ‘683 = %) ‘6}33'

(4.1)

(4.2)

(4.3)

(4.4)

Note that in deriving these equations we allowed each variable in S? to depend

upon all of the coordinates in B3, i.e. xo = xo0(r,8,2), x = x(r,6,2,t), ¥ =
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to(r,6,2) and ¥ = ¢(r, 6, 2,t). We wish to restrict this considerably by searching
for an axially symmetric harmonic map. These maps are studied in, for example,
[19] and [10].

A function u : B® — $? given by

(r,0,2) = (x,%)

is azially symmetric if
p=1(r,z) and x=4.

Here the boundary data can be expressed in a simple form, for at (r,6,z) € 8B3

we have r = /1 — 22, so defining a function g by
9(z) = $(V1 = 2%, 2),

we have

u| ., = (6,9(2)).

aBs

Consider the region D in (r, z) space given by

D={(rz2)|r>0,rP4+22<1}.

Let

Iy ={(r,2)

ng{(ﬂ,z)' -1<z<1}.

r>0,r2 422 =1},

Note that 6D = I'1UT,.

For such axially symmetric u, the energy is given by

B(u) %1 /B _[Vuldvol

where

sin?

E) = /D (¢Z+¢3+ = >rdrdz, (4.5)
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The L?-gradient flow associated with the functional £ is

d)t = d’rr + wzz -+ % - Sin2¢ . (46)

2r2

Suppose that we can solve the evolution problem (4.6) with initial and boundary

conditions

P(r,z,0) = o(r, z) }
(4.7)

1jJ(T‘,Z,t) r = g(z)

Then the function u(r, §, z,t) given by

(r,8,2,t) — (6,¢(r,2,1))

will satisfy (4.2) and (4.3) for r # 0. If we can show that this extends to a solution
for r = 0 also, then we will have found an axially symmetric solution to (4.2) and

(4.3). Also the initial and boundary conditions (4.4) will be satisfied by

u(r,9,2,0) = (6,¢o(r,z)) and
u(rvevz’t) Py :(G,g(z)),

by (4.7).

There are two potential sources of difficulty in dealing with the problem (4.6),
(4.7). The first is the singularity of the coefficients of +, and sin 2y along T',.
The second is that we do not have a well posed boundary problem, as the data is
not explicitly specified along I';. We show now that the second problem can be
alleviated by imposing the additional boundary condition

1/)('7t) =0. (48)

8B3

We consider continuous boundary data (8, g(z)) on 0B3. We firstly note that
the North and South Poles of B3 (N = (0,6,1), § = (0,8, —1)), must each be
mapped to either the North or South Pole of S2, i.e.

g(£1) = jr, j€L.

This follows from the fact that the choice of 8 is arbitrary in assigning coordinates
(0,6,1) to N, so
u(N) = u(0,8,1) = (8,9(1))
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is a circle, and hence u is not well defined, unless the coordinates of the image of
N are similarly independent of the choice of §: the only points on S? for which
this occurs are the North and South Poles. The same argument holds for S.
Suppose that the initial map (6,e(r, z)) is continuous. The above argument
shows that
Pe(0,2) =jr jE€Z,-1<2z2<1.

In particular

¥o(0,1) = ¢p(0,~1), 1ie. g(1)=g(-1).

We suppose now that our initial boundary data are continuous and axially
symmetric, and further that our boundary data is of degree zero. We also assume
that the image of the boundary is not all of §?, so that we may assume that there
exists a 6 > 0, such that

0 < tp(r,z) <m—6.

By the above argument ,
$o(0,2) =0 —-1<z<1.

We then have

Theorem 4.1. Given axially symmetric boundary data p : 8B® — S$? which
does not cover S, and which is Lipschitz continuous and of dégree zero, and an
axially symmetric initial extension ug € C?%(B3,S?), which does not cover S2
either, (3.1) subconverges as t — oo to an axially symmetric smooth harmonic

map homotopic to uy. This map is also nonsurjective.

The result follows from intermediate steps showing:

i) short term existence;
ii) no blow-up on the z-axis;
ili) no blow-up for r > 0; and

iv) convergence considerations.
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Step i).

Lemma 4.2. The problem (4.1)-(4.4) for axially symmetric initial and boundary
data

XO('aO) = 97 "/’0(30) = '(/)O(T‘,Z,O) € CZ,G(D)
(8|, =0 D], = w(VI=2,2,0) = g() € CON(TY)

aB3
satisfying 0 < v < 7 has a unique regular (i.e. C*>*%* (IntB® x [0,T)) NCO 11

(B?® x [0,T))) axially symmetric solution for 0 < t < T for some T > 0.

Proof. We know by Theorem 2.1 and the regularity of the initial and boundary
data that we have a unique regular solution (x,) to the evolution problem of
Lemma 4.2 for 0 < t < T, for some T > 0. A priori this solution need not be
axially symmetric. Consider then ¥ and 17; defined by

)A('(T,O,z,t) = X(T70 + Olazvt) -
J(r, 0,2,t) = ¢(r,0 + a, 2,1)

for @ a fixed (arbitrary) real number. We can check that (¥, 1’[;) also solves the
evolution problem of Lemma 4.2 : by the uniqueness result in Theorem 2.1 we
can thus conclude that (¥, 1/)) (x,%). Since « is arbitrary, this shows that 9 is
independent of 6, i.e.

P =Y(r, z,1) . (4.8)
Further we see that x can be written in the form
x(r,0,z,t) =6+ p(r,z,t) . (4.9)
Using (4.8) and (4.9), we can reduce (4.1) and (4.2) to

,Bt - Aﬂ + 2cot 1/) (ﬂrd’r + Bz"»bz) (410)

and

sin 21/)

P = Ay — ——(B? + = +82), (4.11)

where A is the Laplacian in R? (ie. A = 25 + &5 + 1.2 as both § and ¢ are

independent of §).
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We see from (4.8), (4.9) and the initial and boundary conditions in Lemma 4.2
that 3 satisfies

/H('at) =0

8B3

(4.12)

We shall use a maximum principle argument to show that §(-,t) is identically zero

on B3 x [0,T). We define v by

v(t) = e_—tﬂ('vt) :

then by (4.10) v satisfies

Y+ v = Ay +2cot ¢ (vror + v292). (4.13)

Suppose B(-,t) takes on a positive maximum on B? x [0,T"], for some T' > 0.
Then ~y(-, t) must also take on a positive maximum (although not necessarily at the
same point). This maximum for v cannot be achieved on B3 x [0, 7"] nor on B® x
{t71(0)} by (2.31). By (4.11) we see that this maximum also cannot be achieved
at (r',0',2',t') contained in IntB® x (0,T"], unless possibly ¥(r',8',2',t') = kn,
and

li t . 4.14
(r,o,z,t)—ffrrl’,O’,z’,t')[co p (7r¢’r + 71'#/)2)] >0 ( )

We note from our initial conditions and the regularity of the initial data that
0<p(-t) <. (4.15)

To see this, we suppose i}rzlaf ¥(-,t) < 0 for some ¢t > 0. Since the initial data is

non-negative and regular, for T3 sufficiently small

- — 4.16
0> IntBBx[o T2]¢( t> (4.16)

Then 1 must take on a negative minimum on IntB3 x (0,T3]: we see from (4.11)

that this is not possible, given that at this minimum, by (4.16), we have

sin 21/)

(ﬂ,+—+ﬂ2)<0

Similarly since the initial data is less than =, we see that for any point (-,%;) at

which ¥(-,%1) = 7, 9¢(-,t1) < 0. This establishes (4.15).
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Thus if P(r',8',2',t') = 0, we can conclude that 3 achieves a local minimum at
(r',8',2',t'). Since then v achieves a maximum at (+',6',2',#') and ¢ a minimum
a first derivative sign analysis in a small neighbourhood of (r',8',z',¢') yields a
contradiction with (4.14) If ¥(r',8',2',t') = m, ¢ achieves a local maximum at
(r',8',2',t'), and a similar argument shows (4.14) cannot hold in this case.

Thus (-, t), and hence §(-,t) cannot achieve a positive maximum on B? x [0, T
forany T' < T.

In the same way we show that §(:,t) cannot achieve a negative minimum on
B?® x {0,T'] for any T' < T. We have thus shown §(-,t) is identically zero on
B3 x [0,T). By (4.9) then we have

X(r7 97 'z’t) = 0'

Combining this with (4.8), we have shown that the solution to the initial-boundary

value problem is axially symmetric for 0 <t < T. O

It follows that we can restrict our attention to the behaviour of the system (4.6),
(4.7), a semilinear parabolic equation. Further from (4.15) above, we know that

the solution satisfies

0<Y(r,z,t) <7 for (r,2) € D, te0,T).

Step ii). We need to show that the evolution problem (4.6), (4.7) cannot develop
a singularity on the z-axis until after it develops one on D \ I';. Denote by T the

time of “first blow-up”, i.e.

T =inf{T | lim sup||V3(:,t)|lec = 00}.

t—T-

We note that if blow-up first occurs on I's then we have a sequence (r}, zi,1;) —
(0,2*,T) for which || — oco. For if not, then we must have such a sequence for
which |¢,| — oo. Since our solution is C** for t < T, we can choose {f;} for

which

B )l < - (417)
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In addition, since we have blow-up at (0,2*,T), for all ; sufficiently large there

exists P = (r;, 2;), ri < 7 with |¢.(P,t;)| > 2. But then

Hw("ti)”?,l! > ma‘xl"l)zr("ti)[
> |¢Z(P7 ti) - '(/)Z(O, Z.‘,t.‘)l

T

SENS-Y

Ti Ti
This contradicts (4.17), so we must have blow-up in the radial direction.

In particular if we can show that 1 is Lipschitz continuous on I'; (uniformly in
time), then we will have shown that first blow-up cannot occur on the z-axis. To
do this, it suffices to show that ) is bounded above pointwise on D x [0,T) by a
function £(r, z,t) which is uniformly Lipschitz continuous on D x [0, ).

We next give, via a maximum principle argument, sufficient conditions for a

function to be a suitable barrier.

Lemma 4.3. Suppose (-,t) is a regular solution to (4.6), (4.7) on [0,T). Let
£(-,t) be a regular solution to (4.6) on [0,T), i.e.

ft“grr_gzz_ér"’: +81n2£ =0. (418)

2r2

In addition let £ be Lipschitz continuous on I'; (uniformly in time), and let ¢ and
1 satisfy the initial and boundary relations
6(7’,2,0) 21/)0(7‘72) on D’

> -
¢ rx[0,T) 1/)[I‘1><[0,T) Yo ry’ (4.19)

T, X[O,T)

and =
I'y x[0,T)

Then £ > on D x [0,T).

Proof. Let n = — £ By (4.19) n <0 on D x {0} and on 8D x [0,T). By (4.6)
and (4.18), 7 satisfies
m—An—yTl-kr%n:O (4.20)
on D x [0,T), where A = gé’:—, + 5‘% is the Laplacian in (r, z) coordinates, and
sin 2§ — sin 27
2¢-9)
= /01 cos2[o€ + (1 — o)epldo

a(r,z,t) =
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is bounded and regular on D x [0,T): choose M such that |a| < M.
Suppose that the conclusion of the Lemma is false. Then there exists some time
', 0 <t' < T, such that _max n > 0: by regularity we can choose t' sufficiently

Dx[o t']

small that 0 < max n < £. Using the regularity of £, we can choose p > 0 such
Dx{t}

that £(r,2,t) < F for 0<r < p,t€[0,T). Thusforr < pand 0 <t < ¢/,

Y(r,z,t) — &(r,2,t) < and £(r,z,t) <

T w
8 8’

which means ¥(r, z,) < §, and thus by the definition of a(-,#) we have

a(r,z,t) >0 forr<p, 0<t<T. (4.21)

Mt

Multiplying (4.20) by ¢ %% and introducing A(r,z,t) defined by h = e~ 2:7 1y,
we have

hr a M
Ah——+h(2r2+2—p2>_0' (4.22)

As n takes on a positive maximum on D x [0,t'], h must do so as well. The
function h is, like 5, nonpositive on 8D x [0,#] and on D x {t~1(0)}, so the
positive maximum is achieved on D x (0,¢'], say at (r*,2*,t*). By the regularity
of n, and hence of kh, we can conclude that h.(r*,z*#*) > 0, Ah(r*,z*,t*) <0
and h.(r*, z*,t*) = 0. From (4.22) then, we must have

a(r*,z*,t*) M
—_— 4+ — <0. 4.23
2(r*)? + 2p% (4.23)

If 7 < p, by (4.21) a(r*, 2*,t*) > 0, so (4.23) is false. However if 7* > p, we have
yE > 2p2, so (4.23) is again false.

Thus the conclusion of the Lemma is valid. O

The formulation of a(+,t) as an integral to show its boundedness and regularity
is used by Coron and Ghidaglia [1]: they use it in a barrier-type argument involving

a self-similar supersolution to an equation analogous to (4.6) for dimension n > 3.

We have now reduced the problem of z-axis regularity to that of finding a
regular uniformly Lipschitz continuous solution to (4.6) on [0, co) which lies above
the given initial and boundary data. This is easiest if we seek a static (time
independent) solution of (4.6) : in fact we have a one-parameter family of such

functions (which are functions of r only), as shown in section 5. We also show
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there that we can dominate any initial and boundary data by a member of this

family, provided our data is sufficiently regular and bounded below #. Defining
D.={(r,2)eD|r<e},

we have
Lemma 4.4. The evolution problem (4.6), (4.7) for initial and boundary data
Yo € C*%(D), g€ Lip(T1), 0<¢o,g<m
satisfies
sup ||[VYlleo < 0 if sup  ||V¥lleo <00, foralle>0,

I'2x[0,T) D\Dex[0,T1)

forall Ty, 0< Ty < T < 0.

Proof. By Corollary 5.2 we can find a regular £ which satisfies £ > 1 on D x {0}.
This £ is time independent, and has a bounded Lipschitz norm on I';. By Lemma
4.3, as long as the solution is regular away from T';, it does not cross the barrier &:

but then the bound on the Lipschitz norm of € on I's gives the desired conclusion.

O

Note that this Lemma precludes first blow up occurring simultaneously off and
on the z-axis: the only possibility we need now consider is that of first blow-up off

the z-axis.

Step 1i7). We now wish to show that the solution to (4.6), (4.7) cannot blow up

off the z-axis before blowing up thereon.

Lemma 4.5. Under the same conditions as in Lemma 4.4 if there exists ¢ > 0

such that sup ||[Vt|le < 00, then sup ||V¢lleo < o0, forall T,0< T < oo.
D.x[0,T) Dx[0,T)

Proof. We need to show that there exists a Cy such that
sup  ||[Vilo < Ci .
D\D.x[0,T)

On D\ D, x [0,T) we have

d)t '—L’l/) =f(1/)17‘)
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where Ly = ¢rr + ¢, + -wr—’ is an elliptic operator with bounded coefficients, and
fl,r) = %‘l% satisfies

71 < F on D\ D, .
Thus we can apply the estimates for linear parabolic equations ([15] Ch. IV,
Theorem 10.1) to conclude that there exists C; such that

sup  ||[Yllg2e < Co .
D\D. x[0,T)

This implies the desired result. O

Step 1v). From Lemma 4.4 and Lemma 4.5 then, it follows that there exists C
such that

sup V¥ (s Dllee < C,

t€[0,00

and further for any e > 0, there exists C; = Cy(¢€) such that

up l$( D)llozea < Ci(e) on D\ D .
t€fo

It follows that there exists 1oo(-) such that for any 8 < a, 1o € C2#(D \ D),
and {tx} /" oo such that

¥ tk) 5 oo()) as k — oo, on D\ D, . (4.24)

Since £(¥(+,t)) is finite and nonincreasing with ¢, integrating (4.6) from 0 to
T > 0 gives us

T
e0) -6 = [ [ v t)daat,
0 D
so
(-, 1) Ko ast—oo.
By (4.6) and (4.24) this gives us that

1/;,( ) sm21/)( tx) L2

wrr( tk) + 1/’::( tk) + 27‘2 as k —> 00,
for r > 0.
Thus u as given by u(r, 8, 2) = (8, 9(r, 2)), i.e.
T
u(z,y,2) = (sin oo cos —, Sin oo sin 2 o €08 Poo) (4.25)

223



GROTOWSKI

is weakly harmonic for r > 0: since u is C%# for r > 0, it is harmonic for » > 0.

We know by Lemma 4.4 that as r — 0, oo — 0 and ||Vepeo|leo is bounded.
Hence u as defined in (4.25) is uniformly Lipschitz continuous, in particular for
r = 0. By using exactly the same method as Zhang ([19], (section 4)), we can
show that u is weakly harmonic on all of B3, so by Theorem 1.1 u is harmonic on
B3.

Note also that since ¥(-,t) € C**(D \ D) for any € > 0, by (4.6) ¢:(,¢) €
C*(D\ D.), i.e. the solution to (4.6), (4.7) belongs to C%*L*(D \ D,) for any
€ > 0. Since ¢y = 0 for r = 0, ¥(-,t1) is homotopic to (-, t;) for any #1, t2 (i.e.
homotopic relative to g), and so ¥(-) is homotopic to ¥(-,t) for any ¢, in particular
to (-, 0) = to(-)-

This completes the proof of Theorem 4.1. I

5. Barrier Functions

We look for specific solutions to the evolution problem (4.6) on D x {0, co) which
have finite energy, i.e. from (4.5)

/ (%2 + ¢2)r + E—i—riz—l/)]drdz < 00 (5.1)
D

r

We will look for solutions that are independent of r and ¢.

If we can find ¢ satisfying

' sin2 d
pog ot - o
for r € (0, 1), with
1 ;2
[+ = < oo, (5.3)
0

then ¥(r,z,t) = ¢(r) will satisfy (4.6) and (5.1). As we are interested in these
barriers as they pertain to axially symmetric maps of degree zero from B® to S?,

we impose the boundary condition

(0) = 0. (5.4)
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To solve (5.2), (5.4) we make the substitution r = e”, —oo < 7 < 0. Then we

wish to solve

sin 2¢p . d
-y = 0, = (5.5)
with lim ¢(r) =0. (5.6)

Multiplying (5.5) by ¢ and integrating, we obtain
pr=sin’p+ec, (5.7)
and we see ¢ = 0 from the boundary condition (5.6). If then we have a solution to

¢ =sinp, (5.8)

by (5.7) it will also solve (5.5).
Equation (5.8) can be solved directly by integrating: we obtain
cosecp + cot o = Ae™ T
where A is a constant of integration yet to be determined. This yields
/\2 2
@(r) = arccos (m%) = Zarctang , (5.9)
if 0 < ¢ < 7, upon reverting to the original r variable.

We can check directly that this solution satisfies (5.3). If we set A = cosecp; +
cot 1, where ¢; = (1) is additional given boundary data satisfying 0 < ¢; < =,
then 0 < A < oo, and by (5.8), (5.9) gives us a solution of (5.2) which is monotone
increasing from 0 at r = 0 to ¢; at r = 1. We observe that »'(0) = Z: this says
that we can find a solution of (5.2) which grows as rapidly as is desired at r = 0.
Further we note that ¢(r) is strictly convex for » > 0. In terms of problem (4.6)
this means we can find a regular solution of finite energy which lies above given,

“nice”, initial and boundary data. The following, which makes this notion precise,

is immediate:

Lemma 5.1. Suppose n(r) € Lip [0,1], n(0) = 0, r{i&aﬁcn =m—-6,6 >0. Then
there exists A > 0 such that ¢(r) = 2arctan § satisfies ¢ > 7 on [0,1], with strict
inequality holding for r > 0.
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Corollary 5.2. Consider problem (4.6), with initial and boundary conditions

20 =bo(na), | =wl

with vy € Lip (D), 10(0,2) = 0, 9o < w. This problem has a regular solution
&(r, z,t) which exists for all time, and which satisfies

£r,2,0) 2 %o(r2), €], 2]

8D’

Proof. Take n(r) = maxo(r, z) in Lemma 5.1: £(r, z,t) = ¢(r) suffices. O

We wish to comment briefly on the extension of these methods to higher di-
mensions. We consider cylindrical coordinates on B®, where (z;,... ,2,) € B™ is

written as (r, z, 8), for
r:(mf-{—...%—:cfl_l)% ,
Z=1Tq
and 6¢e82,

Then we consider axially symmetric u : B® — $™~1 given by

u:(r,8,z) (4,6,
where
Y =1(r,z) € .
In this case the energy of the map u is given by

Eu) %L / |Vul?dvol = "‘;"s(zp)

where wy, is the volume of B™, and
-2
EW) = / 2 + 92 + _nrz sin? ¢)r" " ?drdz .
D

The Euler-Lagrange equation of £(3) is

n P2 =0, (5.10)
2r2

T1/) = d)rr + wzz +
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In fact for our barrier arguments, we really only need that ¢ is a supersolution of

(5.10).We look for a time and z independent barrier, i.e. ¢ satisfying

y o n—=2, n-2
—_— — < .
¢+ m— 57 sin2¢ <0, (5.11)
where ' = 714;' Making the change of variable r = T::;, (5.11) becomes
j2
pr? — 5 sin2p <0, (5.12)
where " = dir’ and j = v/n—2 (n—3).
Multiplying through by 2¢ we obtain
(p*72) —27¢% — j2sin 209 < 0. (5.13)
Since 2742 > 0, (5.13) will certainly hold if
(p%?) — j%sin2pp =0 : (5.14)

as (5.13) is equivalent to (5.11), it suffices to solve (5.14).
Working as in (5.5)—(5.9), we obtain

ri

¢(r) = 2arctan T {5.15)

For any A > 0, the function given in (5.15) satisfies ¢(0) = 0, and ¢ is strictly
increasing for 0 < r < 1. As was the case in dimension n=3, given ¢ : 0 < ¢ < 7,
setting A = cosec @1 + cot ¢ in (5.15) will yield (1) = ¢1.

We do not, however, have a full analogue of Lemma 5.1, because
e(r)=0(r') asrlO0,

and so we only guarantee to dominate initial data which is also of order r’ asr | 0

(and which in addition, as in Lemma 5.1, lies below ).
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