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Uniqueness of least energy solutions to a
semilinear elliptic equation in R2

Chang-Shou Lin!

Summary. In this paper, we prove that solutions minimizing the nonlinear
functional
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among the Sobolev space H3(§2) are unique when {2 is bounded convex domain
in R2. This uniqueness’s result is equivalent to saying that solutions obtained
from the Mountain Pass Lemma for the equation Au + uP = 0 are unique. We
also prove that the level set of the unique solution is strictly convex.
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1. Introduction

In this paper, we want to study the question of uniqueness of solutions of

Au+uP =0, and u>0in £,
(1)

u=0, on 412
o2  0?
where {2 is a bounded domain in R2, A = %5+ 55 is the Laplacian, and p > 1.
Oz{ Oz

It is well-known that (1) has a unique solution when £2 is a ball. Although a
domain {2 could easily be constructed so that (1) has more than one solution
(See [D1]}, the question whether solutions of (1) are unique or not for convex
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domains is still open. In this paper, we will give a partial answer to this problem.

Consider the following minimizing problem,

(2) my = Inf{/ v ¢[2 |6 € Hé(Q), and /¢P+1 =1}

By Kondrachov’s compactness theorem, the infinimum of (2) can always be
achieved by some positive function. Our main result is concerned with the
uniqueness of functions which achieve the infinimum.

Theorem 1. Suppose that 2 is bounded and convezr in R%. Then solutions which
achieve the infinimum of (2) are unique.

Suppose v is one solution minimizing the L? norm of the gradient of functions
among the Sobolev space H3(£2). Set u = (m,)~/P~'y. Then u is a solution of
(1). In fact, this solution u can be also obtained by the Mountain Pass Lemma
if u is considered as a critical point of the functional F which is defined by

1 1
PO = [190 - = [+

where ¢1 = max(¢,0). Hence Theorem 1 implies that solutions of (1) obtained
by the Mountain Pass Lemma are unique provided that 2 is convex.

The proof of Theorem 1 will be given in the next section. After establishing
the uniqueness’s result, and using a result due to Korevaar and Lewis [KL], we
can prove that the level set of the unique solution is always strictly convex.

2. Proof of Theorem 1

Let v be a solution which achieves the infinimum (2). Then v satisfies
Av+mp? =0,v >0 in £,

(3)
v=0, on 442.

Lemma 1. The linearized equation of (3) at v has a nonnegative second eigen-
values.

Proof. For any ¢ € C3°(£2), define

flt) = / |V (v +t¢)|2/[/n(v + i)ty

Since f has its minimum at ¢ = 0, we have f'(0) = 0, and f’(0) > 0. A
straightforward computation shows that

@ =2 [ 19 @ —pmy [ 716+ 202 [wor2)
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Applying the minimax principle for the second eigenvalue A, for the linearized
operator A + pm,v?~!, we have

da2 ot {176 = pm, [vig) >0

Q.E.D.

Set u = (mp)_F:_lv, then u is a solution of gl) Lemma 1 is equivalent to
saying that the second eigenvalue Ay of A+ puP~" is nonnegative. Next, we will
show that Ay # 0.

Lemma 2. Suppose thal u is a solution of (1), and the linearized equation at u
has a nonnegative second eigenvalue Aq, then Ay >0

Proof. Assume that Ay = 0, and ¢ is a second eigenfunction; namely,

Ap+puP~lép =0, in 2
(4)
¢ =0, on 012.

Fix a point Q = (zo, yo) € R? which will be chosen later. Let T be a differ-
ential operator of the first order defined by

i} i}
T= (1’_-’80)(“9;‘*‘ (y‘yo)ég-

Let w = Tu. And, by AT =TA + 2A, we have

(5) Aw + puP ™y = — 2P
Applying Green’s Theorem and (3) & (4), we have

(p—l)/u"qu/n(mu—uAm:o.

Also, by (4) and (5), we have

(6) —~/ wids = / (pAw — wAP) = ——2/ u¢ = 0.
n n
By Courant’s nodal line theorem, the nodal line {z € £2 | ¢(z) = 0} divides
£2 into two subdomains. Two case occur: Either the nodal line of ¢ enclosed a
region in §2 or the nodal line intersects with the boundary 842 at exactly two
points. If the first case happens, Q could be chosen to be any interior point of

£2. Then, Vp = (z,y) € 602, w = (:z—-zo)g—z + (y—yo)g—: :6; vV u<0,and

0
a—i has only one sign on 0§2. Then (6) implies that gls- = 0 on 02, which is
v
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impossible by Hopf’s boundary lemma.

Suppose the second case happens. Let p; € 62,1 = 1, 2, be these two points
at which the nodal line of ¢ intersects with 32. Suppose that the tangent line
L; at p; are not parallel. Then we choose Q) to be the intersection point of L

and Ly. Therefore w and —— both simultaneously change sign at p;,i = 1,2,

v
a . . T S
and wgé has only one sign on Jf2. Again, (6) implies 6—4) = 0 on 82, which is a
v
contradiction to the Hopf’s boundary lemma. If L; are parallel, we may assume

u
, and repeat the same

Ju
61,‘1

that the direction is in the z;-direction. Set w =

argument as before. We can obtain
0
/ w——di =0
an 01y

.. 0 o
which implies ——?— = 0 on 8{2, a contradiction to the Hopf’s boundary Lemma

Oz

1
again. Hence the proof of Lemma 2 is complete.

Q.E.D.

To prove Theorem 1, we need another lemma.

Lemma 3. Suppose that 2 C R™ be a bounded conver domain, then there exisis
po > 1 such that (1) has a unique solution for 1 < p < pe.

Proof. The Lemma will be proved by several steps.

Step 1. Suppose that u;,us are two distinct solutions of (1.1), then u; — u;
must change sign.

By (1), we have,

0= / usAuy — u Aug = / ulug(u’l’"1 —uh™h.
n n
If u; > ug, then it implies u; = us.
Now, let u, be solution of (1) with p = p,, and p, tends to 1. And let

M, = supu, = u,(Qn), for some Q, € £2.
n

Step 2. MP~~! tends to A; as p, — 1, where A is the first eigenvalue of A
with respect to Dirichlet’s problem.

By a blowing-up argument, we can show that MZ?~! is bounded. Suppose
that M?~~! tends to +oo, Set

1
u;(z) = un(fnz + Qn)/Mﬂl where 6’2‘ = Mp"_l :
n
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By the method of moving plane, Q, is always away from the boundary 812.
Applying standard estimates of elliptic equations, u;, is uniformly convergent to
a function u in C?(K) for any compact set K in R", and u satisfies

Au+4+u=0, u>0in {2
(7)
u(0) =1

Let Ag and ¢g be respectively the first eigenvalue and eigenfunction of A for
the ball Bg(0). If R is large, we have,

0 > / u%ds = / uldg — drAu
Bg(0)

- (I—AR)/ udg > 0,
Bm(o)

a contradiction. Therefore, MZ»~! is bounded.

Now, suppose that A is any accumulation value of M,’:"‘l. Let &, = un/M,,

and .
Ay, + M,’f“_lﬁ;?“ =0 1n £,

U, lan=0.

By elliptic estimates, u, uniformly converges to 7 € C%(£2) N C(f2), and T
satisfies
AT+ )T =0, uw>0 in {2,

U lan= 0.

Hence, A and u must be respectively the first eigenvalue and the first eigenfunc-
tion of A. And the proof of step 2 is complete.

The final step. Suppose that Lemma 3 is false. u, and v, are two solutions
of (1) with p = p,, and p, tends to 1. From step 2, we know that both u2~~!
and vE»~! uniformly converges to A, in any compact set in §2. Set

Up — Uy
l[un — vallz="

¢n:

Then ¢, satisfies
Aép + Vau(2)pn =0 in 12,

¢n =0 on 012.

uPr — P

where V,(z) = -2 n" which converges to A; by Step 2. It is easy to see that

Uy, — v
¢n uniformly consergesrl to the first eigenfunction of A. But, by Step 1, ¢, is
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k-th eigenfunction for some k£ > 2. This leads to a contradiction. Therefore, we
have finished our proof of Lemma, 3.

Q.E.D.

Now we are in the position to prove Theorem 1.

Proof of Theorem 1. Suppose there are two functions v; € H}(£2), i = 1,2, to
achieve the infinimum of (2) with p, > 1. Let u; = (mpo)"rlflv;. Since (1) is
superlinear, the first eigenvalue of the linearized operator is always negative.
By Lemma 2, the linearized equation of (1) at u; is non-singular. By implicit
function’s theorem, we can construct two solutions u;(p) of 1 for 1 < p < py,
and by Lemma 2, the linearized equation at u,(p) are always nonsingular. But,
by Lemma 2, there exists p; > 1 such that u;(p;) = uz(p1), and the linearized
equation is singular. This leads to a contradiction. Therefore, the proof of The-
orem 1 is complete.

Q.E.D.

Our nex theorem is

Theorem 2. Let v be the unique solution stated in Main Theorem, Then v
1s conver in §2.

Proof. Without loss of generality, we may assume that £2 is smooth and strictly
convex. Set M, = sup v,, where v, denote the unique minimizing solution. By

n
the step 2 of Lemma 3, v, /M, uniformly converges to the first eigenfunction v,

of A. By a well-known theorem, —logv, is strictly convex. Hence, —logu, is
ezt
strictly convex and then v, * is strictly convex for all p close to 1. Suppose
_ezL
that Theorem 2 fails for some p = pg. Hence, there exists p < pg such that v, 2

. . . _Ezl .
Is convex but is not strictly convex. Let u = v~ "7 | then u satisfies

+(1+ ) vl

u

Au= f(u,gu) =

-1 . 1. .
where a = ?—2—— Obviously ? is convex in u. By a theorem of Korevaar and

Lewis [KL], we know that the rank of the Hessian of §?u is constant throughout
£2. But the rank (0%u)(z) is two for z near §2. Therefore, u is strictly convex
at p. This is a contradiction. Therefore, the proof of Theorem 2 is complete.

Q.E.D
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