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U n i q u e n e s s  o f  least  e n e r g y  so lut ions  to a 
s emi l inear  e l l ipt ic  equat ion  in IR 2 

C h a n g - S h o u  Lin  1 

S u m m a r y .  In this paper, we prove that solutions minimizing the nonlinear 
functional 

r i v a l  2 
(f ~op+l)2/p+l 

among the Sobolev space H01 (D) are unique when/2 is bounded convex domain 
in IR 2. This uniqueness's result is equivalent to saying that solutions obtained 
from the Mountain Pass Lemma for the equation Au + uP = 0 are unique. We 
also prove that  the level set of the unique solution is strictly convex. 

K e y  words :  Semilinear elliptic equation, solutions at the least energy, unique- 
ness, Pohozaev's identity 

1. I n t r o d u c t i o n  

In this paper, we want to study the question of uniqueness of solutions of 

(1) 
I Au+u v=O, and u > O i n E ) ,  

u = O, o n  0~.  

a 2 0 2 
where ~ is a bounded domain in N 2, ~ = --1~-Z~-2 + ~ is the Laplacian, and p > 1. 

It is well-known that (1) has a unique solution when ~ is a ball. Although a 
domain ~ could easily be constructed so that (1) has more than one solution 
(See [D1]), the question whether solutions of (1) are unique or not for convex 
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domains is still open. In this paper, we will give a partial answer to this problem. 

Consider the following minimizing problem, 

(2) mp _= i n f { / 1 V  r I r e H0~(~), and J t e + l  = 1} 

By Kondrachov's compactness theorem, the infinimum of (2) can always be 
achieved by some positive function. Our main result is concerned with the 
uniqueness of functions which achieve the infinimum. 

T h e o r e m  1. Suppose that f2 is bounded and convex in IR 2. Then solutions which 
achieve the infinimum of (2) are unique. 

Suppose v is one solution minimizing the L 2 norm of the gradient of functions 
among the Sobolev space H~(D). Set u = (rnv)-l/P-lv. Then u is a solution of 
(1). In fact, this solution u can be also obtained by the Mountain Pass Lemma 
if u is considered as a critical point of the functional F which is defined by 

1i l /  F(r = 7 I ~ r - p +---7 (r 

where r = max( t ,  0). Hence Theorem 1 implies that  solutions of (1) obtained 
by the Mountain Pass Lemma are unique provided that ~2 is convex. 

The proof of Theorem 1 will be given in the next section. After establishing 
the uniqueness's result, and using a result due to Korevaar and Lewis [KL], we 
can prove that  the level set of the unique solution is always strictly convex. 

2. P r o o f  o f  T h e o r e m  1 

Let v be a solution which achieves the infinimum (2). Then v satisfies 

I A v + m p v  p = O , v > O  in~2, 

(3) ( v = 0, on 0~2. 

L e m m a  1. The linearized equation of (3) at v has a nonnegalive second eigen- 
values. 

Proof. For any r G C~(s define 

s(t) = J iv  (v + t~,)i~l[J,,(v + tr 21p+1. 

Since f has its minimum at t = 0, we have f ' (0 )  = 0, and f" (0)  > 0. A 
straightforward computat ion shows that  

,q , iv.-,+,+ .+l q 
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Applying the minimax principle for the second eigenvalue A~ for the linearized 
operator A + pmpv p - l ,  we have 

A2> inf { ] ' l y e [  ~ -  
- r  J 

pmp / vv-~ r 2} >_ O. 

Q.E.D. 

1 

Set u = (rnp)-~-~v, then u ~s a solution of (1). Lemma 1 is equivalent to 
saying that the second eigenvalue A2 of A + pu p-~ is nonnegative. Next, we will 
show that ),2 r 0. 

L e m m a  2. Suppose thal u is a solution of (i) ,  and the linearized equation at u 
has a nonnegative second eigenvalue A2, then A2 > 0 

Proof. Assume that A2 = 0, and r is a second eigenfunction; namely, 

I Ar162 in S2 

(4) / r = 0, on 0.(2. 

Fix a point Q -- (x0, y0) E IR 2 which will be chosen later. Let T be a differ- 
ential operator of the first order defined by 

T = (x - xo) ~-~ + (y - yo) ~---~. 

Let w = Tu.  And, by A T  = T A  + 2A, we have 

(5) A w  + puP- iT  = - 2 u  p 

Applying Green's Theorem and (3) & (4), we have 

(p- 1) f u.r = uar = 0 

Also, by (4) and (5), we have 

fo OCds=s162163 "pr176 ( 6 )  - , ~  

By Courant 's  nodal line theorem, the nodal line {x E s I t ( x )  = 0} divides 
f2 into two subdomains. Two case occur: Either the nodal line of r enclosed a 
region in .f2 or the nodal line intersects with the boundary 012 at exactly two 
points. If the first case happens, Q could be chosen to be any interior point of 

Ou Ou 
(2. Then, Yp = (x,y) e O ~ , w  = ( x -  zo)--~--~r ~ + (y -Yo) - f f~  =Qp . V u  < 0, and 

0r 
0_r162 has only one sign on 0~ .  Then (6) implies that ~uu -= 0 on 0~2, which is 
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impossible by Hopf's boundary lemma. 

Suppose the second case happens. Let Pi E 012,  i = 1, 2, be these two points 
at which the nodal line of r intersects with 012. Suppose that the tangent line 
Li at Pi are not parallel. Then we choose Q to be the intersection point of L1 

0r 
and L2. Therefore w and ~u both simultaneously change sign at pi , i  = 1,2, 

0r ar 
and w~u has only one sign on 0.(2. Again, (6) implies ~ --= 0 on 0~7, which is a 

contradiction to the Hopf's boundary lemma. If Li are parallel, we may assume 
Ou 

that the direction is in the xl-direction. Set w = , and repeat the same 
Oxl 

argument as before. We can obtain 

f0 0r n w ~ x l  = 0 

0r 
which implies ~z l  = 0 on 0X?, a contradiction to the Hopf's boundary Lemma 

again. Hence the proof of Lemma 2 is complete. 
Q.E.D. 

To prove Theorem 1, we need another lemma. 

L e m m a  3. Suppose that ~ C_ N "  be a bounded convex domain, then there exists 
Po > 1 such that ( I )  has a unique solution for  1 < p <_ Po. 

Proof. The Lemma will be proved by several steps. 

Step 1. Suppose that ul, u2 are two distinct solutions of (1.1), then ul - u2 
must change sign. 

By (1), we have, 

If ul >_ u2, then it implies ul - u2. 

Now, let un be solution of (1) with p = p. ,  and p. tends to 1. And let 
Mn = supun = un(Qn) ,  for some Q .  6 .Q. 

Step 2. M~ "-1 tends to A1 as p.  ~ 1, where A1 is the first eigenvalue of A 
with respect to Dirichlet's problem. 

By a blowing-up argument, we can show that M~ "-1 is bounded. Suppose 
that M. p ' - I  tends to + ~ ,  Set 

u*(x)  = u,~(enx + Q,~)/M,~, 
1 2 where % -  .-~.-i. 

M~ 
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By the method of moving plane, Q,  is always away from the boundary 092. 
Applying standard estimates of elliptic equations, u~ is uniformly convergent to 
a function u in C2(K) for any compact set K in IR ~, and u satisfies 

(7) 

z f l u + u = O ,  u > 0 i n ~  

~(0) = 1 

Let Ax and bx be respectively the first eigenvalue and eigenfunction of A for 
the ball B~(0). If IR is large, we have, 

0 > J[OBR(O) U~ds=~B,(O) 
fB ur > O, = ( I - A , ~ )  .(o) 

u A r  - r  

a contradiction. Therefore, M~ --1 is bounded. 

Now, suppose that A is any accumulation value of M~ "-1. Let g,~ = u , ~ / M , ,  
and 

A ~  + M~"-tu--ffP~ ~ = 0 in .r 

g ,  10n= 0. 

By elliptic estimates, g~ uniformly converges to g E C2(f2) fq C(~),  and g 
satisfies 

A g + A g = 0 ,  g > 0  inf2, 

5 I0n= O. 

Hence, A and g must be respectively the first eigenvalue and the first eigenfunc- 
tion of A. And the proof of step 2 is complete. 

The final step. Suppose that Lemma 3 is false, un and v,~ are two solutions 
of (1) with p = Pn and pn tends to 1. From step 2, we know that both uP, "-1 
and v~ ~-I uniformly converges to ,kl in any compact set in s Set 

U n  - -  '/.)v 
q~n-- 

I1~- - v . l l L ~  

Then r  satisfies 
/ A r 1 6 2  in D, 

r = 0 on 0S?. 

where V , ( z )  - u { "  - vP~ ~ which converges to At by Step 2. It is easy to see that 
U n - -  V n 

r  uniformly converges to the first eigenfunction of A. But, by Step 1, r  is 
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k-th eigenfunction for some k _> 2. This leads to a contradiction. Therefore, we 
have finished our proof of L e m m a  3. 

Q.E.D. 

Now we are in the position to prove Theorem 1. 

Proof of Theorem I. Suppose there are two functions vi E H~(12), i =  1,2, to 

achieve the infinimum of (2) with po > 1. Let ui = (mpo)-,~--~rvi. Since (1) is 
superlinear, the first eigenvalue of  the linearized operator  is always negative. 
By Lemma 2, the linearized equat ion of (1) at ui is non-singular. By implicit 
function's  theorem, we can construct  two solutions ui(p) of 1 for 1 < p < P0, 
and by L e m m a  2, the linearized equation a t  Ui(p) are always nonsingular. But, 
by Lemma 2, there exists pl > 1 such that  u~(pl) = u2(pl), and the linearized 
equation is singular. This leads to a contradict ion.  Therefore, the proof of The- 
orem 1 is complete.  

Q.E.D. 

Our nex theorem is 
e _ : l  

T h e o r e m  2. Let v be the unique solution stated in Main Theorem, Then v 2 
is convex in 12. 

Proof. Withou t  loss of generality, we may assume that  12 is smooth  and strictly 
convex. Set Mp = sup vp, where vp denote the unique minimizing solution. By 

the step 2 of Lemma 3, vp/Mp uniformly converges to the first eigenfunction vl 
of A. By a well-known theorem, - l o g  vl is strictly convex. Hence, - l o g v p  is 

_ ~.7..k 
strictly convex and then vp ~ is strictly convex for all p close to 1. Suppose 

_L~A. 
tha t  Theorem 2 fails for some p = P0. Hence, there exists p < P0 such that  vp 

is convex but  is not strictly convex. Let u = v - e @ ,  then u satisfies 

+ (1 + -})1V ul 
Au = f (u ,  Vu)  ---- 

u 

where • -  p -  1 Obviously 1 . 2 ' ] Is convex in u. By a theorem of Korevaar and 

Lewis [KL], we know that  the rank of the Hessian of  a2u is constant  throughout  
12. But the rank (02u)(x) is two for z near 012. Therefore, u is strictly convex 
at p. This is a contradict ion.  Therefore, the proof  of  Theorem 2 is complete. 

Q.E.D 
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