Uniqueness of least energy solutions to a semilinear elliptic equation in IR 2

Chang-Shou Lin¹

Summary. In this paper, we prove that solutions minimizing the nonlinear functional

$$
\frac{\int |\bigtriangledown \varphi|^2}{(\int \varphi^{p+1})^{2/p+1}}
$$

among the Sobolev space $H_0^1(\Omega)$ are unique when Ω is bounded convex domain in \mathbb{R}^2 . This uniqueness's result is equivalent to saying that solutions obtained from the Mountain Pass Lemma for the equation $\Delta u + u^p = 0$ are unique. We also prove that the level set of the unique solution is strictly convex.

Key words: Semilinear elliptic equation, solutions at the least energy, uniqueness, Pohozaev's identity

1. Introduction

In this paper, we want to study the question of uniqueness of solutions of

(1)
$$
\begin{cases} \Delta u + u^p = 0, \text{ and } u > 0 \text{ in } \Omega, \\ u = 0, \text{ on } \partial \Omega. \end{cases}
$$

 ∂^2 ∂^2 where Ω is a bounded domain in \mathbb{R}^2 , $\Delta = \frac{1}{\Omega} + \frac{1}{\Omega}$ is the Laplacian, and $p > 1$. It is well-known that (1) has a unique solution when Ω is a ball. Although a domain Ω could easily be constructed so that (1) has more than one solution (See [D1]), the question whether solutions of (1) are unique or not for convex

domains is still open. In this paper, we will give a partial answer to this problem.

Consider the following minimizing problem,

(2)
$$
m_p \equiv \inf \{ \int |\nabla \phi|^2 | \phi \in H_0^1(\Omega), \text{ and } \int \phi^{p+1} = 1 \}
$$

By Kondrachov's compactness theorem, the infinimum of (2) can always be achieved by some positive function. Our main result is concerned with the uniqueness of functions which achieve the infinimum.

Theorem 1. *Suppose that* Ω is bounded and convex in \mathbb{R}^2 . Then solutions which *achieve the infinimum of (2) are unique.*

Suppose v is one solution minimizing the L^2 norm of the gradient of functions among the Sobolev space $H_0^1(\Omega)$. Set $u = (m_p)^{-1/p-1}v$. Then u is a solution of (1) . In fact, this solution u can be also obtained by the Mountain Pass Lemma if u is considered as a critical point of the functional F which is defined by

$$
F(\phi) = \frac{1}{2} \int |\nabla \phi|^2 - \frac{1}{p+1} \int (\phi^+)^{p+1}
$$

where $\phi^+ = \max(\phi, 0)$. Hence Theorem 1 implies that solutions of (1) obtained by the Mountain Pass Lemma are unique provided that Ω is convex.

The proof of Theorem 1 will be given in the next section. After establishing the uniqueness's result, and using a result due to Korevaar and Lewis [KL], we can prove that the level set of the unique solution is always strictly convex.

2. Proof of Theorem 1

Let v be a solution which achieves the infinimum (2). Then v satisfies

(3)
$$
\begin{cases} \Delta v + m_p v^p = 0, v > 0 & \text{in } \Omega, \\ v = 0, & \text{on } \partial \Omega. \end{cases}
$$

Lemma 1. *The linearized equation of (3) at v has a nonnegalive second eigenvalues.*

Proof. For any $\phi \in C_0^{\infty}(\Omega)$, define

$$
f(t) = \int |\nabla (v + t\phi)|^2 / [\int_{\Omega} (v + t\phi)^{p+1}]^{2/p+1}.
$$

Since f has its minimum at $t = 0$, we have $f'(0) = 0$, and $f''(0) \ge 0$. A straightforward computation shows that

$$
f''(0) = 2\{\int |\nabla(\phi)|^2 - pm_p \int v^{p-1}\phi^2 + \frac{p+1}{2}(\int v^p\phi)^2\}.
$$

Applying the minimax principle for the second eigenvalue λ_2 for the linearized operator $\Delta + pm_p v^{p-1}$, we have

$$
\lambda_2 \ge \inf_{\phi \perp v^p} \{ \int |\nabla \phi|^2 - pm_p \int v^{p-1} \phi^2 \} \ge 0.
$$
 Q.E.D.

Set $u = (m_p)^{-\frac{1}{p-1}}v$, then u is a solution of (1). Lemma 1 is equivalent to saying that the second eigenvalue λ_2 of $\Delta + pu^{p-1}$ is nonnegative. Next, we will show that $\lambda_2 \neq 0$.

Lemma 2. *Suppose thal u is a solution of (i), and the linearized equation at u has a nonnegative second eigenvalue* λ_2 , then $\lambda_2 > 0$

Proof. Assume that $\lambda_2 = 0$, and ϕ is a second eigenfunction; namely,

(4)
$$
\begin{cases} \Delta \phi + p u^{p-1} \phi = 0, & \text{in } \Omega \\ \phi = 0, & \text{on } \partial \Omega. \end{cases}
$$

Fix a point $Q = (x_0, y_0) \in \mathbb{R}^2$ which will be chosen later. Let T be a differential operator of the first order defined by

$$
T=(x-x_0)\frac{\partial}{\partial x}+(y-y_0)\frac{\partial}{\partial y}.
$$

Let $w = Tu$. And, by $\Delta T = T\Delta + 2\Delta$, we have

$$
(5) \t\Delta w + pu^{p-1}w = -2u^p
$$

Applying Green's Theorem and (3) & (4), we have

$$
(p-1)\int u^p\phi=\int_{\Omega}(\phi\Delta u-u\Delta\phi)=0.
$$

Also, by (4) and (5) , we have

(6)
$$
- \int_{\partial \Omega} w \frac{\partial \phi}{\partial \nu} ds = \int_{\Omega} (\phi \Delta w - w \Delta \phi) = -2 \int_{\Omega} u^p \phi = 0.
$$

By Courant's nodal line theorem, the nodal line $\{x \in \Omega \mid \phi(x) = 0\}$ divides Ω into two subdomains. Two case occur: Either the nodal line of ϕ enclosed a region in Ω or the nodal line intersects with the boundary $\partial\Omega$ at exactly two points. If the first case happens, Q could be chosen to be any interior point of *O.* Then, $\forall p = (x, y) \in \partial\Omega$, $w = (x - x_0) \frac{\partial u}{\partial x} + (y - y_0) \frac{\partial u}{\partial y} = Qp \cdot \nabla u < 0$, and $\frac{\partial \phi}{\partial \nu}$ has only one sign on $\partial \Omega$. Then (6) implies that $\frac{\partial \phi}{\partial \nu} \equiv 0$ on $\partial \Omega$, which is 16 Lin

impossible by Hopf's boundary lemma.

Suppose the second case happens. Let $p_i \in \partial \Omega$, $i = 1, 2$, be these two points at which the nodal line of ϕ intersects with $\partial\Omega$. Suppose that the tangent line L_i at p_i are not parallel. Then we choose Q to be the intersection point of L_1 and L_2 . Therefore w and $\frac{\partial \phi}{\partial x}$ both simultaneously change sign at $p_i, i = 1, 2$, and $\omega_{\overline{\Omega}}^{\partial \phi}$ has only one sign on $\partial \Omega$. Again, (6) implies $\frac{\partial \phi}{\partial \phi} \equiv 0$ on $\partial \Omega$, which is a contradiction to the Hopf's boundary lemma. If *Li* are parallel, we may assume that the direction is in the x_1 -direction. Set $w = \frac{\partial u}{\partial x_1}$, and repeat the same argument as before. We can obtain

$$
\int_{\partial\varOmega}w\frac{\partial\phi}{\partial x_1}=0
$$

which implies $\frac{\partial \phi}{\partial \phi} \equiv 0$ on $\partial \Omega$, a contradiction to the Hopf's boundary Lemma again. Hence the proof of Lemma 2 is complete.

Q.E.D.

To prove Theorem 1, we need another lemma.

Lemma 3. *Suppose that* $\Omega \subseteq \mathbb{R}^n$ be a bounded convex domain, then there exists $p_0 > 1$ such that (1) has a unique solution for $1 < p < p_0$.

Proof. The Lemma will be proved by several steps.

Step 1. Suppose that u_1, u_2 are two distinct solutions of (1.1), then $u_1 - u_2$ must change sign.

By (1) , we have,

$$
0=\int_{\Omega}u_2\Delta u_1-u_1\Delta u_2=\int_{\Omega}u_1u_2(u_1^{p-1}-u_2^{p-1}).
$$

If $u_1 \geq u_2$, then it implies $u_1 \equiv u_2$.

Now, let u_n be solution of (1) with $p = p_n$, and p_n tends to 1. And let $M_n = \sup_{\overline{\Omega}} u_n = u_n(Q_n)$, for some $Q_n \in \Omega$.

Step 2. $M_{n}^{p_{n}-1}$ tends to λ_1 as $p_n \to 1$, where λ_1 is the first eigenvalue of Δ with respect to Dirichlet's problem.

By a blowing-up argument, we can show that $M_n^{p_n-1}$ is bounded. Suppose that $M_n^{p_n-1}$ tends to $+\infty$, Set

$$
u_n^*(x) = u_n(\epsilon_n x + Q_n)/M_n, \quad \text{where} \quad \epsilon_n^2 = \frac{1}{M_n^{p_n-1}}.
$$

By the method of moving plane, Q_n is always away from the boundary $\partial \Omega$. Applying standard estimates of elliptic equations, u_n^* is uniformly convergent to a function u in $\mathbb{C}^2(K)$ for any compact set K in \mathbb{R}^n , and u satisfies

(7)
$$
\begin{cases} \Delta u + u = 0, & u > 0 \text{ in } \Omega \\ u(0) = 1 \end{cases}
$$

Let $\lambda_{\mathbb{R}}$ and $\phi_{\mathbb{R}}$ be respectively the first eigenvalue and eigenfunction of Δ for the ball $B_{\mathbb{R}}(0)$. If R is large, we have,

$$
0 > \int_{\partial B_{R}(0)} u \frac{\partial \phi_{\mathbb{R}}}{\partial \nu} ds = \int_{B_{\mathbb{R}}(0)} u \Delta \phi_{\mathbb{R}} - \phi_{\mathbb{R}} \Delta u
$$

$$
= (1 - \lambda_{\mathbb{R}}) \int_{B_{\mathbb{R}}(0)} u \phi_{\mathbb{R}} > 0,
$$

a contradiction. Therefore, $M_n^{p_n-1}$ is bounded.

Now, suppose that λ is any accumulation value of $M_n^{p_n-1}$. Let $\overline{u}_n = u_n/M_n$, and

$$
\begin{cases} \Delta \overline{u}_n + M_n^{p_n - 1} \overline{u}_n^{p_n} = 0 & \text{in } \Omega, \\ \n\overline{u}_n \mid_{\partial \Omega} = 0. \n\end{cases}
$$

By elliptic estimates, \overline{u}_n uniformly converges to $\overline{u} \in C^2(\Omega) \cap C(\overline{\Omega})$, and \overline{u} satisfies

$$
\begin{cases} \Delta \overline{u} + \lambda \overline{u} = 0, & \overline{u} > 0 \text{ in } \Omega, \\ \\\\ \overline{u} \mid_{\partial \Omega} = 0. \end{cases}
$$

Hence, λ and \bar{u} must be respectively the first eigenvalue and the first eigenfunction of Δ . And the proof of step 2 is complete.

The final step. Suppose that Lemma 3 is false, u_n and v_n are two solutions of (1) with $p = p_n$ and p_n tends to 1. From step 2, we know that both $u_n^{p_n-1}$ and $v_n^{p_n-1}$ uniformly converges to λ_1 in any compact set in Ω . Set

$$
\phi_n = \frac{u_n - v_v}{\|u_n - v_n\|_{L^\infty}}
$$

Then ϕ_n satisfies

$$
\begin{cases}\n\Delta \phi_n + V_n(x)\phi_n = 0 & \text{in } \Omega, \\
\phi_n = 0 & \text{on } \partial \Omega.\n\end{cases}
$$

where $V_n(x) = \frac{v_n - v_n}{u_n - v_n}$ which converges to λ_1 by Step 2. It is easy to see that ϕ_n uniformly converges to the first eigenfunction of Δ . But, by Step 1, ϕ_n is

k-th eigenfunction for some $k \geq 2$. This leads to a contradiction. Therefore, we have finished our proof of Lemma 3.

Q.E.D.

Now we are in the position to prove Theorem 1.

Proof of Theorem 1. Suppose there are two functions $v_i \in H_0^1(\Omega)$, $i=1,2$, to achieve the infinimum of (2) with $p_o > 1$. Let $u_i = (m_{p_0})^{-\frac{1}{p-1}}v_i$. Since (1) is superlinear, the first eigenvalue of the linearized operator is always negative. By Lemma 2, the linearized equation of (1) at u_i is non-singular. By implicit function's theorem, we can construct two solutions $u_i(p)$ of 1 for $1 < p < p_0$, and by Lemma 2, the linearized equation at $u_i(p)$ are always nonsingular. But, by Lemma 2, there exists $p_1 > 1$ such that $u_1(p_1) = u_2(p_1)$, and the linearized equation is singular. This leads to a contradiction. Therefore, the proof of Theorem 1 is complete.

Q.E.D.

Our nex theorem is

Theorem 2. Let v be the unique solution stated in Main Theorem, Then $v^{-\frac{p-1}{2}}$ *is convex in* Ω *.*

Proof. Without loss of generality, we may assume that Ω is smooth and strictly convex. Set $M_p = \sup v_p$, where v_p denote the unique minimizing solution. By the step 2 of Lemma 3, v_p/M_p uniformly converges to the first eigenfunction v_1 of Δ . By a well-known theorem, $-\log v_1$ is strictly convex. Hence, $-\log v_p$ is strictly convex and then $v_p^{-\frac{p-1}{2}}$ is strictly convex for all p close to 1. Suppose that Theorem 2 fails for some $p = p_0$. Hence, there exists $p \leq p_0$ such that $v_p^{-\frac{p-1}{2}}$ is convex but is not strictly convex. Let $u = v^{-\frac{p-1}{2}}$, then u satisfies

$$
\Delta u = f(u, \nabla u) \equiv \frac{\alpha + (1 + \frac{1}{\alpha})|\nabla u|}{u}
$$

where $\alpha = \frac{p-1}{2}$. Obviously $\frac{1}{f}$ is convex in u. By a theorem of Korevaar and Lewis [KL], we know that the rank of the Hessian of $\partial^2 u$ is constant throughout Ω . But the rank $\left(\frac{\partial^2 u}{x}\right)$ is two for x near $\partial \Omega$. Therefore, u is strictly convex at p. This is a contradiction. Therefore, the proof of Theorem 2 is complete.

Q.E.D

References

- [BC] V. Benci and G. Cerami, The effect of the domain topology **on the** number of positive solutions of nonlinear elliptic problems. Arch. Rational Mech. Anal. 114(1991), 79-93
- [D1] E. N. Dancer, The effect of domain shape on the number of positive solutions of certain nonlinear equations. J. of Differential Equations 74(1988), 120-156
- [D2] E. N. Dancer, The effect of domain shape **on the** number of positive solutions of certain nonlinear equations, (II). J. of Differential Equations 87(1990), 316-339

[KL] N. J. Korevaar and J. L. Lewis, Convex solutions of certain elliptic equations have constant rank Hessian. Arch. Rational Mech. Anal. 97(1987), 19-32

Department of Mathematics, National Chung Cheng University, Minghisiung, Chiayi 621, Taiwan, R.O.C.

This article was processed by the author using the I&T_EX style file *cljourl* from Springer-Verlag.

(Received September 12, 1992; in revised form January 7, 1994)