
Comment. Math. Helvetici 60 (1985) 630-655 oo 10-2571/85/040630-26501.50 + 0.20/0 
�9 1985 Birkh/~user Verlag, Basel 

The topology  o f  a modul i  space for linear dynamical systems 

UwE HEt~r.z 

1. Introduction 

Several basic questions in linear control theory are related to problems 
concerning the topology of spaces of linear dynamical systems as e.g. the orbit 
space X ... .  p(D:) of controllable linear systems given by 

it(t) = Ax( t )  + Bu(t)  

y(t) = Cx(t) 

(with m inputs, p outputs and state space D :n) or the space Rat .. . .  p (0:) of all p x m 

proper rational transfer matrices 

G(s) = C ( s I -  A ) - IB  ~gcP• 

with McMillan degree n. 
To illustrate this point a bit, we recall (Hermann and Martin [17]) that any 

rational transfer matrix G ~Ra t  .... o(0:) defines a unique holomorphic map 
q~G : P x ( C ) ~  Gm(C re+o) into the Grassmann manifold Gm(C re§ which sends each 

s ~ C  to the graph of the linear map G(s ) :C  m ---~C p. Moreover,  in this way the 

space Rat .. . .  o (C) is identified with the complex manifold of all holomorphic maps 

: PI(C) -~ Gm(Cm+P), 

of degree n, which satisfy the base point condition r  C m. 

By means of this construction, Hermann and Martin [17] proved that the 
system theoretically defined McMillan degree of a transfer matrix G(s) is equal to 

the first Chern class of a certain holomorphic vector bundle ~6 on PI(C), hence a 
topological invariant. Here ~6 is defined as the pull back of the dual bundle U* of 
the universal vector bundle U on Gm(C re§ via the Hermann-Mart in  map 
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q~6 : P I ( C ) ~  Gm(C"+P). Moreover,  the Birkhoff-Grothendieck decomposition 

, ~  --- G ( n O |  �9 �9 �9 @ ~ ( n m )  

turns out to be equivalent with Brunovsky's  canonical form [5], which is of well 
known importance in systems theory; see [15], [17], [24]. 

We further note that the space Rat  . . . .  0 (C) of linear systems and in particular 
the manifold Rat  . . . .  ~ (C) of based holomorphic maps from P~(C) to P,,(C) arises 
also naturally in physics, namely in the so-called "nonlinear o--models" of 
two-dimensional Yang-Mills theory; see e.g. Atiyah [1], Atiyah and Jones [2]. 

Despite the great importance of the moduli spaces Rat  . . . .  p (0:) their topology is 
still not sufficiently understood. Partial results have been obtained by e.g. Broc- 
kett [4], Byrnes and Duncan [9], Delchamps [11], Segal [25]; see also [16] and 
section 5 of this paper.  

In this paper  another natural class of linear dynamical systems is studied: the 
orbit  space ~,.,,(~) of all controllable linear systems. This space X,,m(~:) has the 
advantage to be easier to analyse than Rat  . . . .  p if),  fur thermore the vector bundle 
X . . . .  off) on X .... (~:) (defined in section 5) may serve as a "partial compactifica- 
t ion" for Rat  . . . .  o (1:). 

To define X,,m(~:), recall that a linear dynamical system 

(A, B) :2 ( t )  = A x ( t ) + B u ( t )  

with x(t)e~:", u(t)c~:", A e ~  :"• B e 7  "• (0:=N or C) is controllable iff the 
generic rank condition rk (B, A B  . . . . .  A " - I B )  = n holds. This condition implies 
that for any states Xo, xl in U:" and times to< tl there exists a control function u on 

[to, tl] and a solution x(t) of (A, B) with x(to) = Xo, x(tO = xl. 
Let ~, ,m(D:):={(A,B)eF-"•215 A B  . . . . .  A "  ~B)=n}  denote the 

Zariski-open set of all controllable systems (A, B). Any linear change of coordi- 
nates z = Sx in the state space 7" transforms (A, B) into the equivalent system 

(SAS  -1, SB) : ~(t) = SAS  lz(t) + SBu(t).  

This defines an algebraic group action on ~,,m(~:) 

: O L .  (~) • 2 . , ~  (~) ~ .~,~ (~) 

(S, A ,  B)  ,---> ( S A S - ' ,  SB), 



6 3 2  EWE HELMKE 

called the similarity action on 2~.,m(~z). Each two similar systems (A ,B) ,  
(SAS -l, SB) have the same systemtheoretic properties. Therefore  the orbit space 

.~.,m (Dz) : = ~,,.,,,(IF)/GL,~(Y) 

of the similarity action should be viewed as the true space of all controllable linear 
systems. 

We always endow ~n.m(G:) with the quotient topology. 
Previous work of Hazewinkel,  Kalman [13], [14], Byrnes, Hur t  [7], [10] has 

shown that Xn.m(0:) is a connected algebraic manifold of dimension ran; X..m(~:) is 
non-compact  and for n = 1 or rn = 1 there are diffeomorphisms 

N..I(~:) ~- ~:" (1) 

~l ,m(~) ------- ~X Pm_l(~ 7) (2) 

In particular Xn.m(B:) is a generalization of projective spaces. 
Byrnes [7] has shown that ~n.,.(F) is homologically nontrivial for rn > 1 by 

finding lower bounds for the Betti numbers.  In [6] the author constructed a cell 
decomposit ion of ~n.m(~:) to determine the Betti numbers.  By a direct calculation 
it was found that Xn.,.(C) has the same homology groups as the Grassmann 
manifold Gn(Cm+"-l). However  the method of [16] worked only over  the field of 
complex numbers  ~: = C. In this paper  a different cell decomposit ion of X..m(~:) is 
constructed which will enable us to compute also the mod  2 Betti numbers of 
X.,m(R). By combining these calculations with [16] we will show that again the 
mod  2 Betti numbers of ~..m(R) coincide with those of the Grassmann manifolds 
Q(R,-+n-1) .  

One should perhaps remark that besides these computat ional  coincidences of 
the Betti numbers of s with those of G.(Q:m+"-I), no direct relation to the 
Grassmann manifold G.(~ :"+"-1)  is known so far. Nevertheless it appears that the 
orbit  space s of controllable linear systems shares many interesting topolog- 
ical properties with the Grassmann manifold. 

This paper  is organized as follows: In section 2 we show that a well known set 
of arithmetic invariants for the similarity action a - t h e  Kronecker  indices of 

(A, B) - define a Whitney stratification of ~ .... (D:). The main technical result of this 
paper  appears  in section 3 where we explicitly characterize those Kronecker  strata 
which are conta ined  in the closure of a given one. These are described by an 
ordering on the set of combinations. To prove our main result Theorem 3.1 we 
need an explicit description of the covers of this ordering; this is done in 
Appendix A. The Whitney stratification of ~.,m(~) induces a cellular decomposi-  
tion of the orbit space ~.,,.(~:). Using a result of Borel and Haefliger we compute 
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the Betti numbers of X,.,,(U:) and then prove that the mod 2 Betti numbers of 
Xn.m(R) are equal to those of the real Grassmannian Gn(~m+n-1). Section 5 deals 
with the Betti numbers of Rat .. . .  p(N). Using a result of [16] (where it is shown 
that the spaces Rat .... p (~:) and X,.m(Y) are homotopy equivalent up to a certain 
degree), we apply our previous results on X,,,(N) to determine the first 

max (m, p ) - 1  mod 2 Betti numbers of Rat .... p (~). 
This work was part of the author's doctoral thesis [16a] written at the 

University of Bremen. 
I like to thank the Forschungsschwerpunkt Dynamische Systeme, Bremen 

University, for supporting this work and especially my advisors Prof. Dr. D. 
Hinrichsen and Prof. Dr. H. F. Miinzner for many helpful discussions and 
comments. I like further to thank Prof. Dr. C. I. Byrnes for many helpful 

discussions on "the geometry of linear systems". 

2. Kronecker indices 

We start by describing a well known class of arithmetic invariants for the 

similarity a : G L , ( Y )  x ~n,m(n:)--~ ~n.m(~:), introduced by Brunovsky [5], Popov 

[211. 
Let D = denote either N or C. 
Let (A, B)~  ~,,m(Y) be a controllable linear system and let bl . . . . .  bm denote 

the column vectors of the n x m-matrix B. Consider the following d e l e t i o n  

p r o c e d u r e  on m n  vectors of ~:": 

Delete in the list (b l  . . . . .  bin, A b l  . . . . .  A b  . . . . . .  A " - l b l  . . . . .  A"-lb,~), while 
going from the left to the right, all vectors A i b j  which are linear dependent on 

the predecessors. 

Symbolically: 

b l---~ b2---~ . . .---~ b, ,~-] 

[-~ A b l ~ A b 2 ---*" " �9 --~ A b ~ - - ]  

G 

-q 

L A ' ~ - l b l  -..., A ' ~ - l b 2  ---> �9 �9 �9 ~ A ' ~ - l b m  
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After a suitable permutation of the remaining vectors one obtains a basis 

(bl, A b l  . . . . .  A K'-lbl . . . . .  bin, A b  . . . . . .  AKin-ibm) e GL,(U:) 

with certain non-negative integers K 1 . . . . .  Km satisfying K1 + ' ' "  + K,, = n. The 
m-tuple K =  K ( A ,  B )=  (K1 . . . . .  Kin) is called the list of Kronecker indices of 
(A, B). By construction, the Kronecker indices are invariant with respect to the 
similarity action, i.e. for all S c GL,(O:) 

K ( S A S - ' ,  SB) = K(A ,  B) (2.1) 

Any m-tuple of non-negative integers ( K  1 . . . . .  Kin) with sum equal to n is called 
a combination of n with length m; let K,.,~ denote the set of all such combina- 
tions. The number of these combinations is equal to the binomial coefficient 

n + m - 1 )  
card K,,,, = 

r/ 

A combination (K1 . . . . .  Kin) of n can be visualized by a Young diagram of 
appropriate size; for example the Young diagrams for (2, 3, 1) resp. (1, 2, 3) are 

(2, 3, 1) (1, 2, 3) 

Figure 1. Young diagrams. 

Remark 2.1. The set {K1 . . . .  , Kin} of Kronecker indices of (A, B) coincides 
with the set of minimal indices for the singular matrix pencil ( s in -  A,  B). These 
minimal indices were studied by Kronecker [20], extending earlier work of 
Weierstrass [25] on regular matrix pencils. The system theoretic interpretation of 
the minimal indices is due to Kalman [19]. 

The following lemma is proved in [16]: 

L E M M A  2.2. For any combination K ~ K,.m, the set 

K r o r  (0:) := {(A, B) ~ ~,.m(~:) I (A, B)  has Kronecker indices K} is an analytic 
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submanifold of X.,.~(IF) of dimension 

n2+ ~ min (K~ ,Ki )+~  K~, K~i={~ Ki<Ki .  
i , j  = 1 i > j  Ki > Ki 

We call the submanifolds KrOK (IF) the Kronecker strata of -~,m(IF). They form a 
decomposition 

~.,m(IF) = U KroK (IF) (2.2) 

of X,,,,(IF) into non-empty disjoint submanifolds and each Kronecker stratum is 
invariant under the similarity action on ,~,,,,(IF). 

There is a system theoretic interpretation of the Kronecker indices which is 
useful in order to understand the decomposition (2.2) further. 

In both systems theory and its applications to automatic control, the concept 
of feedback plays a central role in controlling the dynamics of a given dynamical 
system. 

input output 
~ I '  [dynamica lsys tem ] '  I 

, [ feedback law ] 'c 

Figure 2. Feedback loop. 

In linear system theory, state feedback is defined by a certain algebraic group 
action on the space ~,,,~(IF) of controllable systems. More precisely, the state 
feedback group J;~.,, is the subgroup of GL,+.~(IF), consisting of all 
(n + m) x (n + m)-matrices 

where S e GL,  (IF), F �9 IF" • U c GL,n (IF). 
The state feedback action is defined as the algebraic group action 

((s, F, U), (A, B)) ~ (S(A + BF)S- ' ,  SBU ~). 
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Brunovsky's theorem [5] classifies the orbits of this action ~ : t h e y  are in one to 
one correspondence with the partitions ~ . . .  >-~,,>--0 of n; see e.g. 
Brunovsky [5[, Byrnes [8], Hazewinkel and Martin [15] for this result and more 
information on the feedback theory for linear dynamical systems. 

Instead of dealing with the full state feedback group :T,.,, and the correspond- 
ing feedback action �9 we consider the restricted feedback group F..,.. Fn.,. is 

defined as the set of all (n+m)x(n+m)-matrices  [ ;  U ] '  with SeGL.(~) ,  

F c ~:m• U ~ GLm(g:) upper triangular. F..,. is a parabolic subgroup of GL.+m(O:) 
and the restricted feedback action 

6 : F.,.,x2..m(U:) ---> 2~..m (~:) 

((S, F, U), (A, B)) ~ (S(A +BF)S ', SBU-')  

is an algebraic group action. 
It is easy to check that the Kronecker indices K(A, B) are invariant under the 

restricted feedback action: 

K(S(A + BF)S- ' ,  S B U  -1) = K(A, B) 

for all S ~ GLn (g:), F ~ 0:" • U ~ GLm (B =) upper triangular. Even more, these are 
the only invariants. 

T H E O R E M  2.3. The orbits of the restricted feedback action cb are precisely the 
Kronecker strata KroK if)  of ~n,,,(g:). 

The proof is by a straightforward modification of the proof for Brunovsky's 
theorem. We omit the details. 

Let  ,A denote the relative topological closure of a subset A c 2~,.m(0:). 

C O R O L L A R Y  2.4. For K, L ~ K,,,,: 

KroK (IF) c KroL (iF) r K r o r  (IF) CI KroL (IF) ~ 0 .  

By the closed orbit lemma, the topological closure KroK (C) of any Kronecker  

stratum is an algebraic subvariety of X,,,~(C). Since the orbits of a semialgebraic 
group action are semialgebraic again, Theorem 2.3 implies 

C O R O L L A R Y  2.5. The decomposition of ~.,~,,.(~) into Kronecker strata 
KroK (R), K E K..m, is a semialgebraic Whitney stratification of ~..m(R). 
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3. Comblnatorics of Kroneeker strata 

In o r d e r  to compu te  the  Bet t i  numbe r s  of the  o rb i t  space  ~.,~(IF), we need  an  
expl ici t  charac te r iza t ion  of those  K r o n e c k e r  s t ra ta  Kro~: (IF) which fo rm the 

b o u n d a r y  of  a given K r o n e c k e r  s t ra tum KroL (IF). To do this we s tudy the  pa r t i a l  

o r d e r  on  combina t ions  K , , , ,  def ined by  the adhe rence  p r o p e r t y  

K c_ L r KroK (IF) c KrOL (IF) (3.1) 

Le t  --< d e n o t e  the  lex icographic  o rde r  on h x m :=  {0 . . . . .  n}•  . . . . .  m}. F o r  any 

c o m b i n a t i o n  K c K, , , ,  define 

YK : = { ( i , j ) ~  h x  _m ]O<-i<-Kj-1} 

and  

rij(K):=card{(k,l)c YKt(k,l)<_(i,j)}, ( i , j ) ~ h x m .  

Def ine  the  Kronecker order c_ on K,.,~ by 

K~_L C:~r~i(K)<_rii(L) for all ( i , j ) ~ h x m .  

T H E O R E M  3.1. The Kronecker order ~_ on K,,m is the adherence order for 
Kronecker strata: 

KroK (IF) N KrOL (IF) :/: ~ r KroK (IF) c KroL (IF) r K _ L 

forK, L6K, . , , .  

In o r d e r  to  p rove  this, we need  to know the covers  of a c o m b i n a t i o n  K with  

r e spec t  to the K r o n e c k e r  o r d e r  c_. Reca l l  that  for  any par t i a l ly  o r d e r e d  set  (P, --<) 

an e l e m e n t  y is cal led a cover  for x ~ P w h e n e v e r  x < y and x < z < y holds  for  no 

zEP. 
The  covers  for  the  K r o n e c k e r  o r d e r  have  been  expl ic i t ly  cha rac t e r i zed  by 

H.  F. Mi inzne r  in an unpub l i shed  manuscr ip t ,  see A p p e n d i x  A ,  T h e o r e m  A.  It  

fol lows f rom T h e o r e m  A,  tha t  any combina t i on  L ~ K~,,~ with K c L  can be 
obtained from the combination K by a sequence  of successive t r anspos i t ions  

K 1 . . . . .  K, :  

K c K l c . . . c K , = L .  
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Here  a transposit ion is defined as follows: 
Let  K e K,.,,, i, j e _m with i < j, Ki # K~ + 1. A combinat ion T~jK: = / (  is called a 

transposition of K iff: 
(1) If K~ = Kj, r ,  iK: = K; 
(2) If K~ < Ki: 

ffit := K, for  l # i, j 
g,:=Kj 
/(i := Ki; 

(3) If K , > K i + I :  
Rl := Kl for  l # i, j. 
R i : = K j + I  
/(~ := K i -  1. 

For  j < i define TiiK: = TicK. 

E X A M P L E  

I 
(1, 2 ,6 ,  3) 

T34 
) 

( 1 , 2 , 4 , 5 )  

holds. 

(a) "Kros:  (IF) NKrOL ( Y ) # 6  f f  K ~ L " .  Let  (A, B ) c  KroK ([]=) f-) KrOL (IF). 
Obviously for any (i, j) ~ h • _m 

rii(K) = rk (B, , A i - I B ,  . . .  A bl . . . . .  A ibi). 

Since the rank funct ion is upper  semicont inuous,  any (ft , , / ))  c KrOL (IF) sufficiently 
near  to (A, B)  satisfies: 

rk (/) . . . . .  Ai-1/ ) ,  ffki/~l . . . . .  fiki/9i) = rii(L) 

-- r,i (K). 

KrOK (IF) c KroL (IF) r Kros: i f )  f') KrOL (IF) # 

Proof of Theorem 3.1. We have already seen that 
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T h e r e f o r e  r~j(K)<--r~i(L ) for  all ( i , j ) c r i x  _m. q.e.d. 

(b) " K  c L f f  KroK (F) c KrOL (F)". Wi thou t  loss of  general i ty  we can assume 
that  L is a cover  of K, i.e. by T h e o r e m  A there  exists (i, j) e h x _rn with L = TiiK. 
It  is enough to find a pair  (A, B) c KroK (~:) f] KroL (F). 

C O N S T R U C T I O N  O F  (A, B). The re  exists a unique (A, B)  ~ KroK (Y) satis- 
fying: 
(1) A~bi = e~,,(K) for  all (i, j) e Yk, where  e, denotes  the r- th s tandard  basis vec tor  

of F". 
(2) Aribi = 0 for  all j ~ m. 
W e  show that  for  any e > 0  there  exists ( f i t , /~ )eKroL  (F) which is e - n e a r  to 
(A, B).  

C O N S T R U C T I O N  O F  ( f i , / ) ) .  
a ssume K~# Kj. 

Case 1. K~ < K i. Thus  

L t = K t  for  l ~ i , j  

L~ = K i 
Li= K, 

For  K~ = 0 set 

L = TijK for  i < i, K~ # K i + 1 ; w.l.o.g, we m a y  

f i ~ : = A  and / 3 : = ( / ; t  . . . . .  /~m), 

/~s:=b~ for  s # i  
/]i := bi + eb i. 

For  Ki --> 1 set 

where  

/ ~ : = B ,  f i r / ~ = A , b s  for  all r>-0 ,  
f ibi  := Ab~ . . . . .  f~ (A ~-2b~) := A ~-lb~, 
f i (AK, - lb i )  := AK,bi + eA•,bi = eA~bj. 

s # i  

In bo th  cases ( f i , /~)  is wel l-defined and e -nea r  to (A, B).  O n e  easily verifies tha t  
( .~,/}) c -~,,m(F) has K r o n e c k e r  indices (L~ . . . . .  Lm), i.e. ( f i , /~)  e KrOL (F). 

Case 2. Ki > Kj + 1. H e r e  

L ~ = K t  for  l # i , j  

Li = K j + I  
Lj=K,-1. 
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For  K i = 0 define 

A : = A  and /~:=(/~1 . . . . .  /~,.) with 

/~ :=bs  for  s r  
/~ := b i + EAbi = eAbl. 

For  Kj >- 1 define 

/~ := B, fi.'/~, := Arb~ for  all r -> 0, s :/: j, 

Ab i := Ab  i . . . . .  f~ (A  K,-2bi) := A K,-'bi. 

.,~(AK~-lbi) : = A K, b~ + eAK~+lbi = e A  rq+lb,. 

(ft.,/~) is well-defined, e -nea r  to (A, B)  and has the right Kronecke r  indices 
(L1 . . . . .  L.~). This shows that  

KroK (D:) N KrOL (0:) r 0 .  q.e.d. 

It follows f rom T h e o r e m  3.1 that  the topological  closure of KroK (U:) in ~.,m(0:) is 
given by 

KroK (0:) = {(A, B) c .~.,,.(~:) I rk (B . . . . .  A ' -~B ,  A'b~ . . . . .  A 'b  i) <- r~i(K) for  
all ( i , j )~hXm_.}  

The re fo r e  

C O R O L L A R Y  3.2. The topological closure KroK (0:) is an algebraic subvariepy 
of Y..... (0=). 

E X A M P L E .  The  Kronecke r  strata of .~..~(B=) are l inearly o rde red  by adher-  
ence: 

(0, n )~_(n ,O)_(1 ,  n -  1) c_ ( n -  1, 1)~_(2, n - 2 ) ~ _ .  �9 �9 

4. Kroneeker cells 

The  spaces .~.,,.(F) and 2. , , . (F)  are re la ted by the principal fibre bundle  

�9 r:  $:.,m (n:) --,  ~..m (~:) 

(A, B)  ~ [A, B]  = similarity orbi t  of (A, B).  
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Since the  s imilar i ty  act ion a "  GL.( IF)•  X..m(iF)--~ 2..re(iF) restr icts  to a free ac t ion  

with a c losed graph on each K r o n e c k e r  s t ra tum KroK (iF) of  X .... (iF), each  quo t i en t  

Kro  (K) :=  1r(KroK (iF)) = K r o r  (IF)/GL.(IF) 

is an analyt ic  submani fo ld  of Y. . . . .  (iF) of d imens ion  

f l  K~ < Ki. 
n ( K ) =  2., min (Ki, K~)+ ~ Kii, Kii= ~0 (4.1) 

~,~ 1 ~>i K~ --> K~ ' 

by L e m m a  2.2. 

L E M M A  4.1. For each combination K c K . . . .  Kro  (K)  is an analyt ic  cell,  i.e. 
analytically isomorphic to affine space IF,,K~. 

Proof. Let  -< deno te  the lex icographic  o rde r  on fi • _m. F o r  each 1--< l --< m and  

(A, B ) c  KroK (iF) there  are  uniquely  d e t e r m i n e d  c~ii(A, B ) c  iF with 

A K, bt ~ . l = cii(A, B)Aibi.  
(i,i)<(Kt,I) 

By uniqueness ,  c lii( S A S  ~ 1, SB ) = c lii( A ,  B)  for  all S c G L .  (iF). Le t  ct ( A ,  B ) c i F  "~n) 

deno t e  the vec tor  consist ing of the  nl(K) = card {(i, j) c fi • m ] i < K i, (i, j) < (k~, l)} 

c o m p o n e n t s  c~gA, B);  c(A,  B) :=  (c~(A, B) . . . .  c, .(A,  B)). Since n(K)  = 
n l (K)  +" �9 �9 + nm(K), c(A,  B)  c iF"Kk 

The  map  

t :KroK (iF) --~ GL,,(iF) xiF "cK~ 

~(A, B) :=  ((bl . . . . .  A K, lb a . . . . .  b . . . . . . .  A K'' lb, ,) ,  c(A,  B)) 

= (RK(A,  B),  c(A,  B)) 

is an iF-analytic d i f feomorphism.  Since 

~(SAS -~, SB) = (SRK(A,  B),  c(A,  B)),  

induces  the iF-analytic d i f f eomorph i sm 

t : K r o  ( K )  ~ iF.(n~ 

[ A , B ] ~ - ~ c ( A , B ) .  q.e.d.  
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We call Kro (K) a Kronecker cell and its topological closure Kro (K) a Kronecker 
variety of ]~..,.([F). By Corollary 2.5 the decomposition of ]~..m(IF) into Kronecker  
cells (Kro (K))K~K ...... is a finite cellular decomposition. 

It is in general a difficult problem to compute topological invariants like the 
Betti numbers of a space X from a given cellular decomposition (X~)~d. Often one 
has to impose additional assumptions on the cell decomposition, e.g. that (X~)~I 
defines a C W  cell complex; but even then the calculations can be quite compli- 
cated. 

Unfortunately the Kronecker  cell decomposition of X..,.(F) is not a CW cell 
complex, since I; .... (0:) is non-compact.  Therefore  we have to look for a different 
concept. A decomposition ( X i ) ~  of a real analytic manifold X into disjoint 
submanifolds X~ is called an analytic cellular decomposition, if the following 
conditions are satisfied: 
(a) (X~)~ is locally finite and each X~ is diffeomorphic to some affine space Nn, 
(b) the boundary of X~ in X is contained in the union of cells Xi of strictly smaller 

dimensions, 
(c) the topological closure X~ of X~ is a locally analytic subvariety of X. 

Here  a closed subset A ~ X is called a locally analytic subvariety if for any 
a ~ A there is an open neighbourhood U of a in X and finitely many analytic 
functions fi : U --~ ~, j c J, such that 

A n U = { x  e u l~(x)  = o for all j~J} .  

The adherence order on the set of cells X~, i ~ L is defined by 

i~j:Cr> X i c X i ,  i , j~ I .  

(Xi)~E~ is said to satisfy the frontier condition, if for all i, /" e I:  

x~ n x~ ~: ~ ~ x~ ~ x~. 

Not all analytic manifolds admit an analytic cellular decomposition. The following 
example has been suggested to me by D. Fried and F. Takens: For coprime 
integers p, q 6 N  let L(p ,q)  denote the 3-dimensional lens space. L(p, q) is a 
compact  analytic manifold which has no analytic cellular decomposition, provided 
p is oddl The reason is that in this case there is odd torsion in the integral 
homology of L(p, q). 

A classical example of a space with an analytic cellular decomposit ion is the 
Grassmann manifold G,([F") of r-dimensional linear subspaces of gzM. Recall that 

the Schubert cells So(a) resp. the Schubert varieties S(a)  are defined for any 
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sequence  a := (aa . . . . .  a,) of integers a~ with 

O ~ a l ~ .  �9 . ~ a r ~ n - r  

by 

So(a):= { X  c G,(Y-") I dim (X R V<+,) = i, d im ( X  N V,~ +,-O = i - 1 

for  all 1 --< i <- r} 

resp.  

S(a)  := {X ~ G,([F ") t d im (X n V,,+i) -> i for all i <- i --< r}, 

6 4 3  

where  0 c V 1 c �9 �9 - C Wn =~ 2n, dim Vi = i, denotes  a fixed flag of subspaces  of U :". 
So(a) is a cell of d imension a l  + ' "  �9 + a, and dense in the a lgebraic  subvar ie ty  

S(a)  of G,(g:"). The  adherence  order  on the Schuber t  cells is the p roduc t  o rde r  

So(a) c So(b) r a~ <- b~ . . . . .  a, <-- b,; 

Stoll [24]. 
It is well known that  the set of Schubert  cells, endowed  with this order ing,  is a 

graded lattice which is rank symmetr ic  and unimodal .  In fact, this latt ice of 
Schuber t  cells is i somorphic  to the lattice of integer part i t ions;  see Brylawski  [6]. 

T H E O R E M  4.2. The decomposition of the orbit space X,,.,,(IF) into Kronecker  
cells Kro  (K),  K E K . . . .  is a finite analytic cellular decomposition which satisfies the 

frontier condition. The adherence order is the Kronecker  order on combinations. 

Proof. By Corol lary  3.2, the closure KroK (F) of a K r o n e c k e r  s t ra tum is an 
analytic subvar ie ty  of ,~n,r,(DZ). The re fo re  the closure Kro  ( K ) =  w(Kro (~z)) is a 
locally analytic subvar ie ty  of X~,~(~z). T h e  rest follows immedia te ly  f rom T h e o r e m  

3.1. 

Le t  ( X ~ ) ~  deno te  a finite analytic cellular decompos i t ion  of an analytic 

manifo ld  X, dim X = n. 
Bore l  and Haef l iger  [3] have  shown the existence of a rood 2 fundamen ta l  class 

[ ~ ] c H ~ M ( X ; 2 [ 2 )  in the B o r e l - M o o r e  homology  of X. By Poincar6 duality,  
BM . H ,  (X, Y2) is i somorphic  to Hn_q(X;  Y-2), the ( n - q ) - t h  singular  homology  group 

of X (with coefficients in 212 = 7//277). 
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For any non-negative integer q let 

cq := card {i e I I codim X~ = q} 

denote the number of cells of (real) codimension q. The following result is due to 
Borel and Haefliger [3]: 

T H E O R E M  4.3. (Borel-Haefliger). Let X be a real analytic manifold and 
(X~)~x a finite analytical cellular decomposition. Then for any q>-O, the set 
{[Xi] I codim Xi = q} of fundamental classes is a basis for H, (X;  7/2) and conse- 
quently 

Hq(X; ~-2) ~- ~-'2~ 

It follows that cq is a topological invariant for X: the q-th mod 2 Betti number of 
X. 

Let  cq(n, m) denote the number of Kronecker cells Kro (K) of X.�9 of real 
codimension q. By the Borel-Haefliger Theorem, Theorem 4.2 implies 

C O R O L L A R Y  4.4. For any q--O: 

�9 a - 2 2  = a _ 2 "  . 

More precisely, we have the following result which is analogous to the basis 
theorem in the Schubert calculus for Grassmann manifolds [24]. 

For any Kronecker variety Kro (K) of X,,,,,(I:) with codimension q, its funda- 
mental class [Kro (K)]c  Hq(I;.,m(D:); 7/2) is called a q-Kronecker cycle. 

C O R O L L A R Y  4.5. The q-th Kronecker cycles form a basis of Hq (X,,m(~); 7/2)- 

Furthermore,  since Kronecker cycles are represented by algebraic subvarieties 
(see Appendix B), H.(Xn,m(~:); 7/2) is totally algebraic. 

One would like to have a more explicit formula for the mod 2 Betti numbers 
of -~n,m(D:) than the one given by Corollary 4.4 and the dimension formula (4.1). 
In [16], a different cell decomposition of ~n,m(D:) has been constructed by means 
of "Hermite  cells" Her  (K), K ~ K,,m. Unfortunately, the corresponding decom- 
position of -~,m(~) into Hermite cells does not define an analytic cellular 
decomposition: the real Hermite varieties Her  (K) are only semialgebraic sub- 
varieties of .~n,,.(~). However,  for D: = C, the Hermite cell decomposition can be 
used to effectively determine the Betti numbers of 2..,.(C). A central result 
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appearing in [16] is: 

T H E O R E M  4.6. The integral homology groups H.(X.,m(C);  7/) are isomorphic 
to the homology groups H , ( G . ( C  "+m 1); 7/) of the Grassmann manifold. 

By combining Corollary 4.4 with Theorem 4.6 we obtain our main result 

T H E O R E M  4.7. The mod 2 homology groups of .~..m(R) are isomorphic to 
those of the Grassmann manifold G.(O~ "+" 1): 

H.(-~.,m (~); 7/2) ~ H , ( G . ( ~ ' ~ + " - I ) ;  7/2)- 

Observe that this result is obtained by a pure dimension count; no direct relation 
between the spaces ~.,m(B:) and G.(B z"+" 1) is known till now. 

Remark 1. It follows from Theorem 4.7 that the partially ordered set 
(K.,m, ___) of all combinations of n endowed with the Kronecker  ordering is rank 
symmetric and unimodal. It  is in general not a lattice. 

Remark 2. As a consequence of Theorem 4.7 we see that the Hermi te  cycles, 
introduced in [16], also form a bases for H,(.~., . ,(R); 22). Therefore  there are two 
different basis for H,(2~.,,.(~); 7/2): The algebraic Kronecker cycles constructed in 
this paper  and the semialgebraic Hermite cycles of [16]. 

It seems that they correspond to different kinds of a Schubert calculus for the 
cohomology ring H*(X.,m(N); Y2). The cohomology ring of Xn,,.(0 z) will be studied 
in a subsequent paper  (joint work with C. I. Byrnes). 

5. Topology of the spaces of rational maps 

In this chapter the previous results on the topology of -~.,m(~) are applied to 
compute  some Betti numbers of the space Rat  . . . .  o (0~) of all real proper  rational 
matrices G c ~ ~ 2 1 5  with McMiUan degree n. Recall that this space Rat  . . . .  o(R) 
can be identified with the manifold of all base point preserving holomorphic maps 

of degree n 

: P~(c) ---, o.,(c ~+~) 

which commute  with complex conjugation. 
Quite a lot is already known about the topology of Rat  . . . .  o(0 z) for min (m, p) = 

1, due to work of Brockett  [4], Byrnes and Duncan [9] and Segal [23]. The 
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deepest results have been obtained by Segal [23] who shows that the inclusion 
map / : R a t  . . . .  1(C) ~ I]~(Pm(C)) into the loop space of all base point preserving 
continuous maps ~:$2---~ Pro(C) of degree n is a homotopy equivalence up to 
dimension n ( 2 m - 1 ) .  The general multivariable case, max (m,  19)>1, has been 
quite intensively studied in the theses of Delchamps [11] and Guest  [12]. 
Delchamps [11] uses a Morse theoretic approach to study Rat.,.,,, (~). He  
computed the Betti numbers of Rat  . . . .  . (~) (resp. Rat  ..... , (C)) up to dimension 
min (m, p ) - 2  (resp. 2 rain (m, p ) - 2 ) .  Even more,  for n = 1 he computed all 
singular homology groups of Ratl,m.. (F). However  for n -- 2 the necessary Morse 
theoretic calculations become too involved to be carried out completely. Due to 
our complete knowledge of the m o d 2  Betti numbers of Z~.m(N), the first 
max (m, p ) - 1  mod  2 Betti numbers of Rat  . . . .  ,(0~) will be easily obtained. An 
analogous result concerning Rat  . . . .  v(C) is given in [16]. 

For n, m, p-> 1 let 

. . . .  .(N) := {(A, B, C) e R "• x N "•  N "• I (A, B) controllable} 

and 

Z . . . .  . ( ~ ) : = Z  . . . .  .(N)IGL.(R) 

denote the orbit  space of the similarity action (A, B, C) ~-* (SAS -1, SB, CS 1) on 
. . . .  ,(N). Byrnes and Hur t  [10] have shown that Z . . . .  .(N) is a real analytic 

manifold of dimension n(m + p) and 

p : X  . . . .  .(N) ~ X.,~,(O~), [A, B, C I ~ [ A , B ] ,  

an analytic vector bundle on Z..m(N). In particular s . . . .  .(N) is homotopy  equival- 

ent to .~.,,.(N). 
For O<-r<-n let 

- r  , _ _  , �9 S . . . .  . . - { ( A ,  B, C ) e  2 . . , . ( R ) [  rk (C r, ATC T . . . . .  (AT)~- IC  T) = r} 

and ~a-t.,.,.p (N):= -n S . . . .  p denote the set of all systems (A, B, C) which are con- 
" r  

trollable and observable.  By [16], Thm. 5.1, S . . . .  p is an analytic submanifold of 
r l - - 1  2 . . . .  p([R) with codimension p ( n - r )  and the union S:  (.Jr=o -r = S . . . .  p is a closed 

analytic subvariety of 2 . . . .  p(N). Note Ra'-'-i . . . .  p (N)= 2 . . . .  p(N)\S. 
Since the similarity action (A, B, C) ~ (SAS -1, SB, CS -1) acts freely and with 
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a c losed graph  on S . . . .  p and R a t . . ,  p (R), the  co r r e spond ing  orb i t  spaces  

647 

r . ~r S . . . .  p .= S ..... p/GL, (~) 

R a t  . . . .  p (JR) = Rat  ..... p (~)/GL,(~) 

are  analyt ic  submani fo lds  of ~ ..... p(N). 

Remark. It  follows f rom the main  t h e o r e m  of rea l iza t ion  theory  for  finite 

d imens iona l  l inear  dynamica l  systems (Kalman [181), Byrnes  and D u n c a n  [9]) tha t  

the  o rb i t  space  Rat~'~,m,p (N)/GL,([~) can in fact be ident i f ied  with the  space  of all 

(strictly) p r o p e r  ra t iona l  t ransfer  mat r ices  G ~NP•  with McMi l l an  degree  n. 

Ra t  . . . .  p([~) is open  and dense  in X . . . .  p(~) and S~,,,,,p has cod imens ion  p(n - r ) .  

The  set 

S := S/GLn (N)= X . . . .  p(R)\Rat  . . . .  p (N) 

is a c losed analyt ic  subvar ie ty  of  X . . . .  v([R) with cod imens ion  p. Thus  the  inclusion 

m a p  

i : R a t  . . . .  o (N)  --~ X . . . . .  o (N)  

is a h o m o t o p y  equiva lence  up to d imens ion  p - 2 .  Since the  t r anspos i t ion  of 

t ransfe r  mat r ices  G ( s ) ~  G(s) T defines a d i f feomorph ism f rom R a t  . . . .  p (N) on to  

Rat , .p , , , (N),  the h o m o l o g y  groups Hq(Rat  . . . .  p(E)) a re  i somorph ic  to 

Hq(Rat~,p,,~ (~)) for all q. 

T h e r e f o r e  we get 

T H E O R E M  5.1. For m a x ( r e ,  p ) - > 2  there are isomorphisms of (integral) 
homology groups 

H .  (Rat  . . . .  p (~))  ---- H q  ( ~  n,min (,n,p)(~)) 

for O-<q -<max (m, p) - 2. 

By T h e o r e m  4.7 we conc lude  

T H E O R E M  5.2. Let l :=  min (m, p) and max  (m, p) >- 2. Then 
Hq (Rat  . . . .  p (JR) ; 2~a) is isomorphic to Hq ( G. (~n+l 1); 7/2) for 0 <- q -< max (m, p) - 2. 
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Appendix A 

In this appendix we prove a technical result concerning a character izat ion of  
the covers for the Kronecker  order  c_ on K,.m. The  material  in this section is due 

to H. F. Miinzner;  I like to thank him for his help in these matters.  

A useful description of combinat ions  K ~ K,,m is obta ined  by means  of the 
count ing function z :77 • _m ~ 2[, z(i, j):= im +j. z is m o n o t o n e  increasing 

(k, l)<-(i,j) ~ z(k, l)<-z(i,j) 

and shift-invariant,  i.e. z ( i+ l , j )=z ( i , j )+m.  To any combina t ion  K =  

(K1 . . . . .  K, ,)  there is an associated m- tup le  s(K)= (st . . . . .  s,~) defined by 

s i : =  z (K j -  1, j)= (K i -  1)m + j  

for  all j ~ m. s~ satisfies 

(a) S l + ' ' ' + s , , = m ( n - 1 ) + � 8 9  
(b) 1-m<-s~<-mn 
(c) s i =-j (rood m). 

Conversely,  for any m- tupe l  s = (sl . . . . .  sin) with (a), (b), (c) there exists an 

unique K c K.,m with s = s (K). For  any real number  x, let [x l : =  max {l c 2~[I-< x}. 
Le t  c_ be the Kronecke r  order  on K..m and for  K c Kn,.~ set 

[r-s~] 
hK(r) :=  ~" L--m---J' r e N. 

s l u r  

Then  it is easy to check 

K~_LC:~hr(r)>-hL(r) f o r a l l  r c ~ .  

We  will make  use of  the following opera t ion  on  combinat ions:  Given i, j c _t_m, i~  j, 
and K ~ K,,m with K i -> 1. Set tiiK : = / (  6 K,,m with 

(1) /(l :=  Kl for l:P i, ] 

(2) /~ :=  K~ + 1 
(3) /(i :=  K / -  1. 
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E q u i v a l e n t l y ,  in t e r m s  of  (ga . . . . .  g,~) :=  s ( /~) :  

(1') gl = st for  l ~ i,/" 

(23 g t = s t + m  

(3')  gj = s i - m. 

S imi l a r ly ,  the  ef fec t  of a t r a n s p o s i t i o n  TtiK (see  s ec t i on  3) can  b e  d e s c r i b e d  as 

fo l lows :  

F o r  a,  b c 2~, a < b, de f ine  

d(a, b ) : = m i n { / e N o l  l = - b - a  ( m o d  m)} 

a n d  d ( b , a ) : = - d ( a , b ) .  

F o r  st < s i l e t  Ttis(K):= g be  d e f i n e d  by  

(4) g t : = s l f o r l ~ i , J  
(5) gi :=  s~-d(st ,  sj) 
(6) gi:=s~+d(st ,  si) 

whi le  fo r  s~ > si: 

gt: = st f o r  l r  i, j 

g~ := sj + d(s i, st) 
g~ :=  s , - d ( s  i, st).  

T h e n  Tiis = Tiis a n d  Ttis(K) = s(TijK).  
C o n s i d e r  fo r  r ~ N 0  a n d  K, L c K,,m : 

zihK(r)  : = hK(r)  - hK(r  - 1) 

h~:,L(r) : = hK(r) - hE(r) 

AhmL(r )  : =  hK.L(r) -- hK,L(r--  1). 

S ince  h(0)  = 0 a n d  hK,L(r) = 0 fo r  r >  mn, we have  

h•(r) = ~ ZihK(l) 
/ = 1  

h•.L(r) = ~ AhK,L(I) 
t = l  

- ~ AhK,L(/) 
l:>r 
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Obviously ,  K ~_ L ~ hK,L(r)>--O for  all r. 
One  easily shows 

L E M M A  A1. Let  r = l m + j  for l>-O, j e m .  Then 

{~ [~ r > si(K) 
(a) AhK(r) = [ o r r < s i ( K  ) 

i f ~  
(b) AhK, L ( r ) =  f o r s t ( g ) ,  s i ( L ) < r  or st(K), st(L)>--r. 

- f o r s t ( L ) < r < _ s j ( K  ) 

For K t >- s >-- 1 let t~}K := t~j . . . . .  tii(K ) 

s - t imes  
For L = t~}K, L e m m a  A1 specializes to 

for r = st(K) + Ira, l = 1 . . . . .  s 

for r = sj(L) +lm,  l = 1 . . . . .  s 

otherwise 

L E M M A  A2. Let K ~ K~,,~ and L = t~K. 
(a) s~(L)<s t (K)  ~ K c L .  
(b) s j ( K ) < s ~ ( L ) ~  L c K .  

Proof. AhK,c(r)= 1, resp.  --1, resp.  0 for  r = st(L), resp. r = st(K),  otherwise.  
Thus  s i ( L ) < s t ( K )  implies hK,L(r) >-- 0, while s i (K)<s~(L)  implies hK,L(r) < -- 
0. q.e.d. 

Ana logous ly  one  obtains  

L E M M A  A3.  Given K ~ K . . . .  L = T~tK, s~(K) + rn < si(K ). Then 

h K ' L ( r ) = { ~  f~ O<- t<-d ( s~ ' s t ) - i  

i.e. K c L .  
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S u p p o s e  s~(K)+ m < s i ( K ) , / ~  :=  T~iK. By L e m m a  A 3 ,  the  s ize  of the  " r e c t a n g l e "  

Ri j (K)  : = {r = s i (K)  + l m  + t I 0 <-- 1 <- B2i - Ki, 0 < t < d(s i (K) ,  si(K))} 

m e a s u r e s  how m u c h  the  c o m b i n a t i o n s  K a n d / (  d i f fer  f r o m  each  o t h e r .  T h e r e f o r e  

o n e  is led  to  c o n j e c t u r e  t ha t  t h o s e  c o m b i n a t i o n s  /~ = TiiK will  be  c o v e r s  of K,  for  

w h i c h  R~i(K ) is as smal l  as pos s ib l e .  Th i s  is in fac t  t rue :  

T H E O R E M  A .  Given K, L ~ K,,m. L is a cover of K for the Kronecker  order c 

on K.. , .  iff: 
(1) L = T~iK for some (i, j)  

(2) si(K) + m < si(K) 
(3) {Sl(K) . . . . .  sm(K)}NR~i (K)  = Q .  

Proof. C l e a r l y  t hese  c o n d i t i o n s  suffice. T o  p r o v e  the  necess i ty ,  we  i n t r o d u c e  

s i :=s i (K) ,  ~ : = s ~ ( L ) ,  g i : = s ~ ( / ( ) ,  i c m .  S u p p o s e  K c L .  I t  is e n o u g h  to f ind an  

(i, j)  c m • m wi th  s~ + m < s i and  K c T~iKcL.  In fact ,  in this  case  t h e r e  ex is t s  a lso  

(_/,_]) wi th  Rii_(K)cR~i(K)  such tha t  K c T ~ j K c _ L  and  c o n d i t i o n s  (2), (3) a re  

sa t i s f ied  fo r  (_/, j ) .  

L e t  / ( : =  T~jK. 

C O N S T R U C T I O N  O F  (i, j). Set  

r + : = m a x { r c ~  I Ahum(r)= 1} 

r : = m a x { r c N ] A h K c ( r ) = - l }  

B y  L e m m a  A l ( b ) :  

r+ = m a x  {gl t st > st} ='gi 

r = m a x { s t  1 s t > ~ t } = : s ,  

S u p p o s e  r + >  r . T h e n  for  all r >  r+: 

hKc(r)  = hum(r -  1 ) +  Ahum (r) = hum ( r -  1) 

hum(r+) = hum(r+- 1 ) +  1. 

T h u s  hum(r) >- 1, c o n t r a d i c t i o n  to  hKc(r) = 0 fo r  r > ran. T h e r e f o r e  s~ + m --< g~ < sj. 
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Let  

P~!: = {r = s~ + I m  

U W E  H E L M K E  

I ~ t  ] c m denote  the uniquely de te rmined  index such that  

(a) sj c P~; 
(b) d(si, s i) = min {d(si, sk) I si + m < sk}. 

In part icular  s i --- sj. 

i s~= r _  

- v 

R e m a r k  1. For  l - > l  and l < - t < d ( s i ,  s i) given, let s i + l m + t = p m + q  for 

1 <-- q ~ m. Then  ei ther sq ~ si + m or  sq -> gq. 

Proof. Suppose s q > s i + m  and sq<~q. It follows f rom L e m m a  A l ( b )  that  

sq~P~j and d(s~, sq) < d(s~, sj). Contradict ion.  

By R e m a r k  1, for any l >- 1 and 1-< t<d(s~ ,  s i) 

AhKL(Si + l m +  t) >-- 0 

holds. 

Since 

h~j~ (si + Ira) = z ~ h ~  (s~ + Ira) + h ~  (s~ + l m  - 1) 

>- Z~h~j~(s~ + l m )  = 1 

for  1 <- l <-- (gi - s i ) /m,  

hr.L(s~ + l m  + t) > -- 1 

holds for all 1 <- l <-- (g~ - s~)/m, 0 <-- t <- d(s~, si). 

Let  s t > gi = r+. Then  for  r+ < r < r_ 

hKL(r) = -- ~, Ahrj_(r)>----zihKL(r_)= 1. 
/ > r  
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For  s i < r_ = si we have 

hvm(si+lm+t)>-I  for 1<-1-< , O<-t<d(s~,si). 

Let  K =  T~iK. By L e m m a  A3,  KcT~iK and hg~( r )=  hnc(r ) -hgK(r )= 

= hKc( r ) - I  for r = s ~ + l m + t , l < - l < - i _ ~ - -  ], O<-t<d(s~,s i) 

hnL (r) otherwise.  

for  all r-> 0. By assumption,  hn~(r) >- 0 and the previous estimate gives hed~(r) >-- 0 
for all r >--0. Thus / (  ~ L and T he o re m  A is proved.  

Append~ B 

We show that  the Kronecker  cell decomposi t ion  of X,,m(U z) is induced by the 

Schuber t  cell decomposi t ion  of the Grassmann manifold G,(~(~+~m). 
l_~t R ( A ,  B) denote  the vectorspace spanned by the rows of  the n x (n + 1)m- 

matrix (B, AB ,  . . . , A"B) .  Then  

R :X .... (~) -~ G~(F-("+~>"), [A, B]--~ R ( A ,  B) 

defines an analytic embedding of Y, . . . .  called the Kalman embedding; see Byrnes,  
Hur t  [10], Hazewinkel ,  Kalman [14]. Let  e~ denote  the i-th s tandard basis vector  
of  ~ , + ~ m  and 0 c  V i c . . .  c V(,+a),,=Q :("+1~'~ the complete  flag defined by 

F~:= span { e ( n + l ) m ,  . . . ,  e~.+x~,._~+x}. For  any combina t ion  K e K,,,m, 
Yn:  = {(i, j) e h x m I 0 ----- i --< K i - 1} has exactly n elements  (i~, ja) < �9 �9 �9 < (i., j .) ,  

o rdered  lexicographically. Define U(K) = (Ul . . . . .  u.),  where  
u, :=  mi._~+~+j._,+a, l<-t<-n. Let  a K : = ( a l  . . . . .  a~) defined by 

a ~ : = ( n + l ) m - u , - i + l  for l<-i<-n. 

Then  O<-a~<- . ' .  <-a ,~<-(n+l )m-n .  Therefore  an  is a Schuber t  symbol  for 

G.(~ :~"+l~m) and satisfies: 

(1) a K = a L i f f  K = L  
(2) K ~_L r a l (K)<-al (L)  . . . . .  an(K)<--a.(L). 
Let  Sn :=  So(an) denote  the Schubert  cell of G. (~  ("+1)'~) cor responding  to an, for 

any combina t ion  K~Kn.m; let fur ther  R :X.,m(~)--~ G.(~ :("+l)m) deno te  the Kal- 

man  embedding.  
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T H E O R E M  B. Let  a = (al . . . . .  a . ) ,  0 ~ a l ~  " �9 �9 -<a .  

(1) R 1(So(a)) ~ 0 if[ a = an for some K ~ K..m. 
(2) Kro ( K ) =  R-~(SK)  for all K c K.,,.. 
(3) Kro (K) = R-I (SK)  for all K c K . , m .  

<-(n+ l ) m - n .  

Proof. Suppose [A, B i t  X .... (B =) and R ( [ A ,  B ] ) e  So(a). Let  K = (K1 . . . . .  Kin) 
denote  the Kronecker  indices for (A, B). Set R := R ( [ A ,  B]) and 

(a~ . . . . .  fi,,) :=  aK. The aK's are defined in precisely the way so that 

dim (R f3 Va,~) = i, dim (R () Vo,< ~) = i -  1 

holds for 1----- i <-- n. Thus R ~ So(a) ffl So(aK), i.e. So(a) C3 So(aK) ~ Q .  This shows 
a = aK and Kro (K) c R ~(SK). Suppose Kro (K') N R ~(SK) r Q .  Then  SK, = SK, 

i.e. aK, = aK. Therefore  Kro (K) = R-~(SK). 
To prove (3) let <-- denote  the product  order  on n-tuples a = ( a b . . . , a , ) ,  

b = (bl . . . . .  b,):  

a <-b : C:> al <-bl . . . . .  a.<-b,,. 

By T h e o r e m  3.1, 

R- ' (SK)  = [.J R '(So(a)) = [J R 1(St.) 
a ~ d K  ~1 <r 

= U R - I ( S L ) =  [_J K r o ( L )  

= Kro  (K). 

The  Schuber t  varieties are irreducible algebraic subvarieties of the project ive 
variety Gn(D:("+I~"). Since the Kalman embedding  is algebraic it follows that the 

Kronecker  varieties Kro (K) are algebraic subvarieties of the quasi-project ive 
variety X,,m([F). It seems interesting to study the singularities of the Kronecker  

varieties. 
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