Comment. Math. Helvetici 60 (1985) 458-465 0010-2571/85/030458-08%01.50 + 0.20/0
© 1985 Birkhauser Verlag, Basel

On the embedding of 1-convex manifolds
with 1-dimensional exceptional set

Mianea CoLToru

Introduction

Let X be a l-convex manifold and S< X its exceptional set. X is called
embeddable if there exists a holomorphic embedding of X into C*xP' for
suitable k, l eN. When X has dimension 2 a result of C. Binici [1], proved also
by Vo Van Tan [13c], asserts that X is embeddable (in fact in this case we may
allow X to have singularities).

The purpose of the present paper is to generalize this result to higher
dimensions. We consider a 1-convex manifold X such that its exceptional set S is
an irreducible curve. Under the assumption that S is not rational (i.e. its
normalization is not P') we prove that X is embeddable. A similar result holds if
we assume that S=P* and dim X# 3 (see Theorem 5).

The technique of proof enables us to obtain also the following result:

If X is a complex manifold (not necessarily 1-convex) and S<X is an
irreducible exceptional curve with the above properties then the fundamental
class of S in X does not vanish (see Theorem 6).

1. Preliminaries

Throughout this paper we shall not distinguish between holomorphic line
bundles and invertible sheaves.

If X is a complex manifold and L is a holomorphic line bundle on X given by
transition functions {g.} corresponding to an open covering {U,} of X, a hermi-
tian metric on L is a system {h.} of C* functions h: U, — (0, ) such that
hh = gal* on U, N U,

L is said to be Nakano semipositive if there exists a hermitian metric k = (h,)
on L such that —log h, is plurisubharmonic on U, for any k.

Let now X be a 1-convex manifold and S < X its exceptional set. X is said to
be embeddable if it can be realized as a closed analytic submanifold of some
CkxP,
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The following theorem of M. Schneider [12], proved also by Vo Van Tan

[13a], gives sufficient and necessary conditions for a 1-convex manifold to be
embeddable.

THEOREM 1. Let X be a 1-convex manifold and S c X its exceptional set.

Then X is embeddable iff there exists a holomorphic line bundle L. on X such that
Lls is ample.

If X is a complex manifold we denote by K = K the canonical line bundle on
X. In order to prove our results we shall need also the following “‘precise
vanishing theorems’:

THEOREM 2 [10}[13b]. Let X be a 1-convex manifold with exceptional set S
and let L be a holomorphic line bundle on X such that L|s is ample. Then
HYX,K®L)=0 for q=1.

THEOREM 3 [5]. Let X be a Kihlerian manifold and L a Nakano semiposi-
tive line bundle on X. If D<= X is a relatively compact strongly pseudoconvex
domain with smooth boundary then H*(D, K®L)=0 for q=1.

2. Main results

DEFINITION. Let S be an irreducible curve and = : S — § its normalization.
S is called a rational curve iff S=P*.

The following theorem explains us the behaviour of the canonical bundie in
the neighbourhood of an exceptional irreducible curve.

THEOREM 4. Let X be a 1-convex manifold and assume that its exceptional
set S is an irreducible curve. Suppose that:

a) S is not a rational curve or

b) S=P' and dim X=4
Then Kl|s is ample.

The proof of Theorem 4 is based on several lemmas.

LEMMA 1. Let X be a 1-convex manifold, S<X its exceptional set and
k =dim S. Then for every ¥ € Coh (X) it follows that H*(X, #)=0 for q> k.

Proof. By a theorem of Narasimhan [9] H%(X, %)= H*(S, F|) for any q>0.
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Here %|s denotes the topological restriction of & to S, hence %|s is not a
coherent sheaf on S. However, by a result of Reiffen [11 Satz 2] the cohomology
groups H%(S, F|s) vanish for g>k and the lemma is proved.

LEMMA 2. Let X be a 1-convex manifold such that its exceptional set S is
1-dimensional. Then S has a Kdhlerian neighbourhood.

A proof of this lemma can be found in {10 p. 165]. In fact it is shown that S
has an embeddable neighbourhood.

If S is an irreducible curve we denote by 7:S — S its normalization. There is
an injective morphism of sheaves Og <> 7,05 where m40s is the 0-direct image
of Og (i.e. the sheaf of weakly holomorphic functions on S). Let Rg be the sheaf
on S of locally constant real valued functions and similarly define Rg on S. If
Rs <» Og is the natural inclusion map then k =i ¢ j is an injective morphism of
sheaves. Let k*:HYS,Rs) - H'(S, w40s) denote the induced map on
cohomology.

LEMMA 3. The map k* is surjective.

Proof. Consider first the commutative diagram

H'(S,Rs) — H'(S, 05)

v[ 8]
8
H'(S, mRs) — H(S, m40s)

Remark that:
the map & is bijective since RIm(05)=0 for q>0 (= is a finite morphism).
the map vy is bijective since R%4(Rg)=0 for ¢>0
(if U< S is contractible it follows easily that H(w *(U),Rs) =0 for q > 0; since
any point in S has a fundamental system of contractible open neighbourhoods we
deduce that R (Rs)=0 for q>0).
the map a is bijective since § is Kahlerian.
It follows from the the commutativity of this diagram that g8 is bijective.
Consider now the commutative diagram:

HY(S, maRs) —— H'(S, m406)

=

Hl(ss RS) _:") Hl(s’ OS)
H
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The map v is surjective because supp (m4Rg/Rs) is a finite set. Hence k™* is
surjective and Lemma 3 is proved.

LEMMA 4. Let S be an irreducible curve and 7:S — S its normalization. Let
L be a holomorphic line bundle on S which is topologically trivial. Then there exists
a holomorphic line bundle L' on S which can be given by constant transition
functions {g} with |g,| =1 and such that #*(L®L) is the trivial line bundle on S.

Proof. Let A ={U} be a finite open covering of S such that LIUi is trivial and
all intersections U, N---NU; are connected and contractible. Let hy €
0*(U, NU,) denote the transition functions for L. Since L is topologically trivial
and the covering 4 is topologically acyclic we can find holomorphic functions
A € O(U, N Uy such that exp 2midy) = by and A+ A+ A =0 on U, NU N U;
for any k, I, s. Hence {A,} defines a cocycle in Z'(&, Os). Set: U,=="YU),
@ ={0) and Ay =Ay ° 7 {Ay} is a cocycle in ZY (%, 7%05). Consider now the
commutative diagram:

H'(A, Rg) —> HY(AU, 7405)

|

HI(S, RS) ?—)Hl(s, 'TT*Og)

Note that:

the map k* is surjective by Lemma 3

the map m is bijective because AU is topologically acyclic

the map n is injective
It follows that p is surjective. This implies that one can find a cocycle {c,}e
Z'(%,Rg) and holomorphic functions f, € 0(U,) such that Ay —fi+fi=cq on
ﬁk N f]l for any k, L.

If L' is the holomorphic line bundle on S with transition functions g =
exp (—2ricy) it follows from our construction that {exp (2wif, )} defines a nonvan-
ishing section in 7#*(L®L’), hence w*(L®L'") is the trivial line bundle and
Lemma 4 is completely proved.

LEMMA 5. Let S be an irreducible curve and m:8 — S its normalization.
Suppose that there exists a holomophic line bundle L on S such that H YS,LY=0
and w*L is the trivial line bundle on S. Then S is a rational curve.

Proof. There is a canonical morphism of sheaves L -5 mem*L. If we set
F,=ker ¢ and ¥, = Im ¢ we get an exact sequence

0->%F, >L>%,—>0
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Since HXS, L) =0 by hypothesis and H*(S, %,)=0 because dim S =1 it follows
from the long €xact sequence of cohomology that H'(S, %,) = 0.
Consider now the exact sequence

T L

0> F, > men*L > -0

2

Since supp (wym*L/%,) is a finite set it follows that H'(S, mem*L/%,) =0, hence
H\(S, mem*L)=0. But H\(S, myen*L)= H'(S, m*L) because = is a finite morph-
ism. We deduce that H'(S, 0s) =0 and consequently S=P! ie. S is a rational
curve. Lemma S is completely proved.

We are now in a position to prove Theorem 4.

a) Suppose first that S is an irreducible curve which is not rational. We prove
that K|g is ample.

It is easy to verify that H%(S, Z) = H?(S, Z)=Z for any irreducible curve and if
F is a holomorphic line bundle on S then F is ample iff ¢(F) (the Chern class of F)
corresponds under the above isomorphisms to a strictly positive integer. Conse-
quently we have to prove that ¢c(K|g)>0.

We remark first that c(K|s)=0. Indeed, if ¢(K|g) <0 then K! (the dual of K)
is ample when restricted to S. By Theorem 2 we obtain H'(X, KK 1)=0,
hence H'(X, Ox)=0. If 7 denotes the ideal sheaf of S there is an exact sequence
of sheaves on X:

0>9 > 04> 04T -0

Since HY(X, 0x)=0 and H*(X, 7)=0 (by Lemma 1) we deduce from the long
exact sequence of cohomology that H'(S, Og)=0 which implies S=P'. This
contradicts our assumption that S is not a rational curve. So we must have
c(Kls)=0.

In order to prove Theorem 4 in case a) we have only to verify that c(K|g) # 0.

Suppose that ¢(K|s) =0, hence L:=K]|s is topologically trivial. If 7#:§ — S
denotes the normalization of S from Lemma 4 there exists a holomorphic line
bundle L’ on S which can be given by constant transition functions {g.;} with
|gel =1 and such that #*(L®L’) is the trivial line bundle on S.

By Lemma 2 S has an open neighbourhood U which is Ké&hlerian and
shrinking U if necessary we may assume that there exists a continuous retract
p:U— 8. Let Sc U ' €U be a strongly pseudoconvex neighbourhood of S with
smooth boundary and let ¥ ={V}} be an open covering of S such that L' is given
on V, NV, by the constants g, with |gu|= 1. Set V,:=p (V)<= U and on V, NV,
consider the transition functions g, := g,. Since g, are constants it follows that



1-convex manifolds 463

the cocycle {g,} defines a holomorphic line bundle L' on U and L'|g=L".
Moreover L’ is Nakano semipositive because || =1 for any k, . From Theorem
3 of Grauert and Riemenschneider we get HY(U’, K ®LY=0.

Now consider the exact sequence on U’
(x) 0>3 > 0y —> O0y/T >0

where 7 is the ideal sheaf of S. From (*) we get the exact sequence on U’:
(x*x) 0 > KQL'®F — KQL' - KQL'®Q0/T — 0.

By Lemma 1 HX(U', K®L'®J)=0. Since L'|s =L’ the long exact sequence of
cohomology implies that H'(S, K|s® L") =0. But #*(K|s®L’) is the trivial line
bundle on S and from Lemma 5 it follows that S is a rational curve which
contradicts our hypothesis. Consequently a) is proved.

b) Assume that S=P' and n =dim X=4. We shall prove that K|g is ample.

Let Ngx denote the normal bundle of S in X and K the canonical line bundle
of S. If we use the adjunction formula K|g=K;®det (N%x) we obtain the
following formula for the Chern class of Klg:

c(Kls) = c(Ks)— c(det (Nsix))

Since S=P' we have c(Kg)=-2. On the other hand a result of Laufer [6] gives
the following estimation: c(det (Ngjx)) <—n+ 1. Hence we obtain c(K|g)=n—3>
0 and Theorem 4 is completely proved.

Remark. If dim X =3 and S=P' it may happen that K is trivial in the
neighbourhood of S. If Ngix = 0(c;)®0(c,), ¢1=c,, is the decomposition of Ngx
into line bundles and K is trivial in the neighbourhood of S then (¢, cy)e
{(-1,-1), (=2,0), (-3, 1)} (see Laufer [6]). Hence Theorem 4 does not hold if
dim X =3 and S=P". If dim X =2 and S=P" easy examples show us that K|g
may even be negative.

THEOREM 5. Let X be a 1-convex manifold such that its exceptional set S is
an irreducible curve. Assume that:
a) S is not a rational curve
or
b) S=P' and dim X+ 3.
Then X is embeddable.

Proof. In case a) it follows from Theorem 4 that K ls is ample. By Theorem 1
X is embeddable. A similar argument shows us that X is embeddable if S=P'
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and dim X=4. If X has dimension 2 then § is a divisor and if we denote by [S]
the corresponding line bundle it follows that [S]™! (the dual of [S]) is ample when
restricted to S. Again by Theorem 1 we deduce that X is embeddable.

Remark. 1t seems very likely that Theorem 5 should hold for any curve S.

Let now X be a complex manifold, § < X an irreducible, compact curve and
m:S — S its normalization. The image of the fundamental class of Sin H,(X,Z7)
is called the fundamental class of S in X. A straightforward consequence of
Theorem 4 is the following topological result:

THEOREM 6. Let X be a complex manifold and S < X an irreducible excep-
tional curve such that:

a) S is not a rational curve
or

b) S=P! and dim X#3
Then the fundamental class of S in X does not vanish.

Remarks. i) In {13b] Vo Van Tan has proved that any 1-convex manifold with
1-dimensional exceptional set is Kdhlerian. Unfortunately, as we shall see, there is
a gap in a main step of his proof.

According to his notations let 7: X — Y be the Remmert reduction of X. We
assume also that the exceptional set S is a smooth curve and let T be any point of
S and set Z:=X\T, S:=S\T. If E is a holomorphic line bundle on Y we set
E:=7*E)and L:=E |z. The author asserts that if E is positive then there exists
a metric {h;} on L such that:

—adlog h(x)>0 on Tg,
(*) § —d8dlog hi(x)=0 on Ng,
—ddlog h(z2)>0 on T, if ze Z\S=X\S

where Tg, is the tangent space to S at x and Ng , is the complement space of Ty,
in T,.

We shall show that (*) does not hold. We take E to be the trivial line bundle
on Y which is positive since Y is Stein. It follows that L is also the trivial line
bundle on Z and (*) implies the existence of a C™ function h:Z — (0, ) such
that —logh is strongly plurisubharmonic on Z\S and -loghls is strongly
plurisubharmonic. Since —logh is strongly plurisubharmonic on Z\S$ it
follows from the continuity of second derivatives that —log h is plurisubharmonic
on Z. By a well known result concerning the extension of plurisubharmonic
functions (see Grauert~Remmert [4]) there exists a plurisubharmonic function p
on X such that p|,=-logh. The maximum principle for plurisubharmonic
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functions implies that p|s = constant, hence —log h|s = constant. This contradicts
the fact that —log hl|s is strongly plurisubharmonic.

The gap in the proof of Vo Van Tan is the following: since $:=S\T is Stein
the metric {h;} can be suxtably modified such that L|s is Nakano positive [8] but
this can be done only on S and there is no control outside $.

ii) Under the assumptions of Lemma 5 it follows that S is a rational curve
with dimec HY(S, 0s)<1. This can easily be deduced from Riemann—Roch
theorem for singular curves. Consequently all our theorems hold if we assume
that S is a rational curve with dime H'(S, 05)=2.
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