On the embedding of 1-convex manifolds with 1-dimensional exceptional set

MIHNEA COLTOIU

Introduction

Let X be a 1-convex manifold and $S \subset X$ its exceptional set. X is called embeddable if there exists a holomorphic embedding of X into $\mathbb{C}^k \times \mathbb{P}^l$ for suitable k, $l \in \mathbb{N}$. When X has dimension 2 a result of C. Bănică [1], proved also by Vo Van Tan [13c], asserts that X is embeddable (in fact in this case we may allow X to have singularities).

The purpose of the present paper is to generalize this result to higher dimensions. We consider a 1-convex manifold X such that its exceptional set S is an irreducible curve. Under the assumption that S is not rational (i.e. its normalization is not \mathbb{P}^1) we prove that X is embeddable. A similar result holds if we assume that $S \cong \mathbb{P}^1$ and dim $X \neq 3$ (see Theorem 5).

The technique of proof enables us to obtain also the following result:

If X is a complex manifold (not necessarily 1-convex) and $S \subset X$ is an irreducible exceptional curve with the above properties then the fundamental class of S in X does not vanish (see Theorem 6).

1. Preliminaries

Throughout this paper we shall not distinguish between holomorphic line bundles and invertible sheaves.

If X is a complex manifold and L is a holomorphic line bundle on X given by transition functions $\{g_{kl}\}$ corresponding to an open covering $\{U_k\}$ of X, a hermitian metric on L is a system $\{h_k\}$ of C^{∞} functions $h_k: U_k \to (0, \infty)$ such that $h_k/h_l = |g_{kl}|^2$ on $U_k \cap U_l$.

L is said to be Nakano semipositive if there exists a hermitian metric $h = (h_k)$ on L such that $-\log h_k$ is plurisubharmonic on U_k for any k.

Let now X be a 1-convex manifold and $S \subset X$ its exceptional set. X is said to be embeddable if it can be realized as a closed analytic submanifold of some $\mathbb{C}^k \times \mathbb{P}^l$.

The following theorem of M. Schneider [12], proved also by Vo Van Tan [13a], gives sufficient and necessary conditions for a 1-convex manifold to be embeddable.

THEOREM 1. Let X be a 1-convex manifold and $S \subset X$ its exceptional set. Then X is embeddable iff there exists a holomorphic line bundle L on X such that $L|_S$ is ample.

If X is a complex manifold we denote by $K = K_X$ the canonical line bundle on X. In order to prove our results we shall need also the following "precise vanishing theorems":

THEOREM 2 [10] [13b]. Let X be a 1-convex manifold with exceptional set S and let L be a holomorphic line bundle on X such that $L|_{s}$ is ample. Then $H^{q}(X, K \otimes L) = 0$ for $q \ge 1$.

THEOREM 3 [5]. Let X be a Kählerian manifold and L a Nakano semipositive line bundle on X. If $D \subset X$ is a relatively compact strongly pseudoconvex domain with smooth boundary then $H^{q}(D, K \otimes L) = 0$ for $q \ge 1$.

2. Main results

DEFINITION. Let S be an irreducible curve and $\pi: \tilde{S} \to S$ its normalization. S is called a rational curve iff $\tilde{S} = \mathbb{P}^{1}$.

The following theorem explains us the behaviour of the canonical bundle in the neighbourhood of an exceptional irreducible curve.

THEOREM 4. Let X be a 1-convex manifold and assume that its exceptional set S is an irreducible curve. Suppose that:

a) S is not a rational curve or

b) $S \cong \mathbb{P}^1$ and dim $X \ge 4$

Then $K|_{s}$ is ample.

The proof of Theorem 4 is based on several lemmas.

LEMMA 1. Let X be a 1-convex manifold, $S \subset X$ its exceptional set and $k = \dim S$. Then for every $\mathcal{F} \in Coh(X)$ it follows that $H^{q}(X, \mathcal{F}) = 0$ for q > k.

Proof. By a theorem of Narasimhan [9] $H^{q}(X, \mathcal{F}) \cong H^{q}(S, \mathcal{F}|_{S})$ for any q > 0.

Here $\mathscr{F}|_{S}$ denotes the topological restriction of \mathscr{F} to S, hence $\mathscr{F}|_{S}$ is not a coherent sheaf on S. However, by a result of Reiffen [11 Satz 2] the cohomology groups $H^{a}(S, \mathscr{F}|_{S})$ vanish for q > k and the lemma is proved.

LEMMA 2. Let X be a 1-convex manifold such that its exceptional set S is 1-dimensional. Then S has a Kählerian neighbourhood.

A proof of this lemma can be found in [10 p. 165]. In fact it is shown that S has an embeddable neighbourhood.

If S is an irreducible curve we denote by $\pi: \tilde{S} \to S$ its normalization. There is an injective morphism of sheaves $\mathcal{O}_S \stackrel{i}{\hookrightarrow} \pi_* \mathcal{O}_{\bar{S}}$ where $\pi_* \mathcal{O}_{\bar{S}}$ is the 0-direct image of $\mathcal{O}_{\bar{S}}$ (i.e. the sheaf of weakly holomorphic functions on S). Let \mathbb{R}_S be the sheaf on S of locally constant real valued functions and similarly define $\mathbb{R}_{\bar{S}}$ on \tilde{S} . If $\mathbb{R}_S \stackrel{i}{\hookrightarrow} \mathcal{O}_S$ is the natural inclusion map then $k = i \circ j$ is an injective morphism of sheaves. Let $k^*: H^1(S, \mathbb{R}_S) \to H^1(S, \pi_* \mathcal{O}_{\bar{S}})$ denote the induced map on cohomology.

LEMMA 3. The map k^* is surjective.

Proof. Consider first the commutative diagram

$$\begin{array}{c} H^{1}(\tilde{S}, \mathbb{R}_{\tilde{S}}) \xrightarrow{\alpha} H^{1}(\tilde{S}, \mathcal{O}_{\tilde{S}}) \\ \uparrow & & & \\ \uparrow & & & \\ H^{1}(S, \pi_{*}\mathbb{R}_{\tilde{S}}) \xrightarrow{\beta} H^{1}(S, \pi_{*}\mathcal{O}_{\tilde{S}}) \end{array}$$

Remark that:

the map δ is bijective since $R^{q}\pi_{*}(\mathcal{O}_{\tilde{S}})=0$ for q>0 (π is a finite morphism).

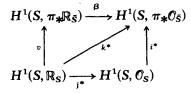
the map γ is bijective since $R^q \pi_*(\mathbb{R}_{5}) = 0$ for q > 0

(if $U \subset S$ is contractible it follows easily that $H^{q}(\pi^{-1}(U), \mathbb{R}_{\bar{S}}) = 0$ for q > 0; since any point in S has a fundamental system of contractible open neighbourhoods we deduce that $R^{q}\pi_{*}(\mathbb{R}_{\bar{S}}) = 0$ for q > 0).

the map α is bijective since \overline{S} is Kählerian.

It follows from the the commutativity of this diagram that β is bijective.

Consider now the commutative diagram:



460

The map v is surjective because supp $(\pi_* \mathbb{R}_S / \mathbb{R}_S)$ is a finite set. Hence k^* is surjective and Lemma 3 is proved.

LEMMA 4. Let S be an irreducible curve and $\pi: \tilde{S} \to S$ its normalization. Let L be a holomorphic line bundle on S which is topologically trivial. Then there exists a holomorphic line bundle L' on S which can be given by constant transition functions $\{g_{kl}\}$ with $|g_{kl}| = 1$ and such that $\pi^*(L \otimes L')$ is the trivial line bundle on \tilde{S} .

Proof. Let $\mathcal{U} = \{U_i\}$ be a finite open covering of S such that $L|_{U_i}$ is trivial and all intersections $U_{i_0} \cap \cdots \cap U_{i_i}$ are connected and contractible. Let $h_{kl} \in \mathcal{O}^*(U_k \cap U_l)$ denote the transition functions for L. Since L is topologically trivial and the covering \mathcal{U} is topologically acyclic we can find holomorphic functions $\lambda_{kl} \in \mathcal{O}(U_k \cap U_l)$ such that $\exp(2\pi i \lambda_{kl}) = h_{kl}$ and $\lambda_{kl} + \lambda_{ls} + \lambda_{sk} = 0$ on $U_k \cap U_l \cap U_s$ for any k, l, s. Hence $\{\lambda_{kl}\}$ defines a cocycle in $Z^1(\mathcal{U}, \mathcal{O}_S)$. Set: $\hat{U}_i = \pi^{-1}(U_i)$, $\hat{\mathcal{U}} = \{\hat{U}_i\}$ and $\hat{\lambda}_{kl} = \lambda_{kl} \circ \pi \cdot \{\hat{\lambda}_{kl}\}$ is a cocycle in $Z^1(\mathcal{U}, \pi_*\mathcal{O}_S)$. Consider now the commutative diagram:

Note that:

the map k^* is surjective by Lemma 3

the map m is bijective because \mathcal{U} is topologically acyclic

the map n is injective

It follows that p is surjective. This implies that one can find a cocycle $\{c_{kl}\} \in Z^1(\mathcal{U}, \mathbb{R}_S)$ and holomorphic functions $f_k \in \mathcal{O}(\hat{U}_k)$ such that $\hat{\lambda}_{kl} - f_k + f_l = c_{kl}$ on $\hat{U}_k \cap \hat{U}_l$ for any k, l.

If L' is the holomorphic line bundle on S with transition functions $g_{kl} = \exp(-2\pi i c_{kl})$ it follows from our construction that $\{\exp(2\pi i f_k)\}$ defines a nonvanishing section in $\pi^*(L \otimes L')$, hence $\pi^*(L \otimes L')$ is the trivial line bundle and Lemma 4 is completely proved.

LEMMA 5. Let S be an irreducible curve and $\pi: \tilde{S} \to S$ its normalization. Suppose that there exists a holomophic line bundle L on S such that $H^1(S, L) = 0$ and π^*L is the trivial line bundle on \tilde{S} . Then S is a rational curve.

Proof. There is a canonical morphism of sheaves $L \xrightarrow{s} \pi_* \pi^* L$. If we set $\mathscr{F}_1 = \ker \phi$ and $\mathscr{F}_2 = \operatorname{Im} \varphi$ we get an exact sequence

$$0 \to \mathcal{F}_1 \to L \to \mathcal{F}_2 \to 0$$

Since $H^1(S, L) = 0$ by hypothesis and $H^2(S, \mathcal{F}_1) = 0$ because dim S = 1 it follows from the long exact sequence of cohomology that $H^1(S, \mathcal{F}_2) = 0$.

Consider now the exact sequence

$$0 \to \mathscr{F}_2 \to \pi_* \pi^* L \to \frac{\pi_* \pi^* L}{\mathscr{F}_2} \to 0$$

Since supp $(\pi_*\pi^*L/\mathscr{F}_2)$ is a finite set it follows that $H^1(S, \pi_*\pi^*L/\mathscr{F}_2) = 0$, hence $H^1(S, \pi_*\pi^*L) = 0$. But $H^1(S, \pi_*\pi^*L) \cong H^1(\tilde{S}, \pi^*L)$ because π is a finite morphism. We deduce that $H^1(\tilde{S}, \mathcal{O}_{\tilde{S}}) = 0$ and consequently $\tilde{S} \cong \mathbb{P}^1$, i.e. S is a rational curve. Lemma 5 is completely proved.

We are now in a position to prove Theorem 4.

a) Suppose first that S is an irreducible curve which is not rational. We prove that $K|_{S}$ is ample.

It is easy to verify that $H^2(S, \mathbb{Z}) \cong H^2(\tilde{S}, \mathbb{Z}) \cong \mathbb{Z}$ for any irreducible curve and if F is a holomorphic line bundle on S then F is ample iff c(F) (the Chern class of F) corresponds under the above isomorphisms to a strictly positive integer. Consequently we have to prove that $c(K|_S) > 0$.

We remark first that $c(K|_S) \ge 0$. Indeed, if $c(K|_S) < 0$ then K^{-1} (the dual of K) is ample when restricted to S. By Theorem 2 we obtain $H^1(X, K \otimes K^{-1}) = 0$, hence $H^1(X, \mathcal{O}_X) = 0$. If \mathcal{T} denotes the ideal sheaf of S there is an exact sequence of sheaves on X:

$$0 \to \mathcal{T} \to \mathcal{O}_X \to \mathcal{O}_X/\mathcal{T} \to 0$$

Since $H^1(X, \mathcal{O}_X) = 0$ and $H^2(X, \mathcal{F}) = 0$ (by Lemma 1) we deduce from the long exact sequence of cohomology that $H^1(S, \mathcal{O}_S) = 0$ which implies $S \cong \mathbb{P}^1$. This contradicts our assumption that S is not a rational curve. So we must have $c(K|_S) \ge 0$.

In order to prove Theorem 4 in case a) we have only to verify that $c(K|_S) \neq 0$.

Suppose that $c(K|_S) = 0$, hence $L := K|_S$ is topologically trivial. If $\pi : \tilde{S} \to S$ denotes the normalization of S from Lemma 4 there exists a holomorphic line bundle L' on S which can be given by constant transition functions $\{g_{kl}\}$ with $|g_{kl}| = 1$ and such that $\pi^*(L \otimes L')$ is the trivial line bundle on \tilde{S} .

By Lemma 2 S has an open neighbourhood U which is Kählerian and shrinking U if necessary we may assume that there exists a continuous retract $\rho: U \to S$. Let $S \subset U' \subseteq U$ be a strongly pseudoconvex neighbourhood of S with smooth boundary and let $\mathcal{V} = \{V_i\}$ be an open covering of S such that L' is given on $V_k \cap V_l$ by the constants g_{kl} with $|g_{kl}| = 1$. Set $\tilde{V}_k := \rho^{-1}(V_k) \subset U$ and on $\tilde{V}_k \cap \tilde{V}_l$ consider the transition functions $\tilde{g}_{kl} := g_{kl}$. Since g_{kl} are constants it follows that

462

the cocycle $\{\tilde{g}_{kl}\}$ defines a holomorphic line bundle \tilde{L}' on U and $\tilde{L}'|_{S} = L'$. Moreover \tilde{L}' is Nakano semipositive because $|\tilde{g}_{kl}| = 1$ for any k, l. From Theorem 3 of Grauert and Riemenschneider we get $H^{1}(U', K \otimes \tilde{L}') = 0$.

Now consider the exact sequence on U':

 $(*) \ 0 \to \mathcal{T} \to \mathcal{O}_{U'} \to \mathcal{O}_{U'} / \mathcal{T} \to 0$

where \mathcal{T} is the ideal sheaf of S. From (*) we get the exact sequence on U':

$$(**) \ 0 \to K \otimes \tilde{L}' \otimes \mathcal{T} \to K \otimes \tilde{L}' \to K \otimes \tilde{L}' \otimes \mathcal{O}/\mathcal{T} \to 0.$$

By Lemma 1 $H^2(U', K \otimes \tilde{L}' \otimes \mathcal{T}) = 0$. Since $\tilde{L}'|_S = L'$ the long exact sequence of cohomology implies that $H^1(S, K|_S \otimes L') = 0$. But $\pi^*(K|_S \otimes L')$ is the trivial line bundle on \tilde{S} and from Lemma 5 it follows that S is a rational curve which contradicts our hypothesis. Consequently a) is proved.

b) Assume that $S \cong \mathbb{P}^1$ and $n = \dim X \ge 4$. We shall prove that $K|_S$ is ample.

Let $N_{S|X}$ denote the normal bundle of S in X and K_S the canonical line bundle of S. If we use the adjunction formula $K|_S = K_S \otimes \det(N^*_{S|X})$ we obtain the following formula for the Chern class of $K|_S$:

 $c(K|_{\mathbf{S}}) = c(K_{\mathbf{S}}) - c(\det(N_{\mathbf{S}|\mathbf{X}}))$

Since $S \cong \mathbb{P}^1$ we have $c(K_S) = -2$. On the other hand a result of Laufer [6] gives the following estimation: $c(\det(N_{S|X})) \le -n+1$. Hence we obtain $c(K|_S) \ge n-3 > 0$ and Theorem 4 is completely proved.

Remark. If dim X = 3 and $S \cong \mathbb{P}^1$ it may happen that K is trivial in the neighbourhood of S. If $N_{S|X} = \mathcal{O}(c_1) \otimes \mathcal{O}(c_2)$, $c_1 \le c_2$, is the decomposition of $N_{S|X}$ into line bundles and K is trivial in the neighbourhood of S then $(c_1, c_2) \in \{(-1, -1), (-2, 0), (-3, 1)\}$ (see Laufer [6]). Hence Theorem 4 does not hold if dim X = 3 and $S \cong \mathbb{P}^1$. If dim X = 2 and $S \cong \mathbb{P}^1$ easy examples show us that $K|_S$ may even be negative.

THEOREM 5. Let X be a 1-convex manifold such that its exceptional set S is an irreducible curve. Assume that:

a) S is not a rational curve or b) $S \cong \mathbb{P}^1$ and dim $X \neq 3$.

Then X is embeddable.

Proof. In case a) it follows from Theorem 4 that $K|_S$ is ample. By Theorem 1 X is embeddable. A similar argument shows us that X is embeddable if $S \cong \mathbb{P}^1$

and dim $X \ge 4$. If X has dimension 2 then S is a divisor and if we denote by [S] the corresponding line bundle it follows that $[S]^{-1}$ (the dual of [S]) is ample when restricted to S. Again by Theorem 1 we deduce that X is embeddable.

Remark. It seems very likely that Theorem 5 should hold for any curve S.

Let now X be a complex manifold, $S \subset X$ an irreducible, compact curve and $\pi: \tilde{S} \to S$ its normalization. The image of the fundamental class of \tilde{S} in $H_2(X, \mathbb{Z})$ is called the fundamental class of S in X. A straightforward consequence of Theorem 4 is the following topological result:

THEOREM 6. Let X be a complex manifold and $S \subset X$ an irreducible exceptional curve such that:

a) S is not a rational curve or

b) $S \cong \mathbb{P}^1$ and dim $X \neq 3$

Then the fundamental class of S in X does not vanish.

Remarks. i) In [13b] Vo Van Tan has proved that any 1-convex manifold with 1-dimensional exceptional set is Kählerian. Unfortunately, as we shall see, there is a gap in a main step of his proof.

According to his notations let $\pi: X \to Y$ be the Remmert reduction of X. We assume also that the exceptional set S is a smooth curve and let T be any point of S and set $Z:=X\setminus T$, $\check{S}:=S\setminus T$. If \hat{E} is a holomorphic line bundle on Y we set $E:=\pi^*(\hat{E})$ and $L:=E|_Z$. The author asserts that if \hat{E} is positive then there exists a metric $\{h_i\}$ on L such that:

$$(*) \begin{cases} -\partial\bar{\partial}\log h_i(x) > 0 & \text{on } T_{\bar{S},x} \\ -\partial\bar{\partial}\log h_i(x) \ge 0 & \text{on } N_{\bar{S},x} \\ -\partial\bar{\partial}\log h_i(z) > 0 & \text{on } T_{Z,z} \text{ if } z \in Z \setminus S = X \setminus S \end{cases}$$

where $T_{\check{S},x}$ is the tangent space to \check{S} at x and $N_{\check{S},x}$ is the complement space of $T_{\check{S},x}$ in $T_{Z,x}$.

We shall show that (*) does not hold. We take \hat{E} to be the trivial line bundle on Y which is positive since Y is Stein. It follows that L is also the trivial line bundle on Z and (*) implies the existence of a C^{∞} function $h: Z \to (0, \infty)$ such that $-\log h$ is strongly plurisubharmonic on $Z \setminus \check{S}$ and $-\log h|_{\check{S}}$ is strongly plurisubharmonic. Since $-\log h$ is strongly plurisubharmonic on $Z \setminus \check{S}$ it follows from the continuity of second derivatives that $-\log h$ is plurisubharmonic on Z. By a well known result concerning the extension of plurisubharmonic functions (see Grauert-Remmert [4]) there exists a plurisubharmonic function p on X such that $p|_{Z} = -\log h$. The maximum principle for plurisubharmonic

464

functions implies that $p|_{s} = \text{constant}$, hence $-\log h|_{s} = \text{constant}$. This contradicts the fact that $-\log h|_{s}$ is strongly plurisubharmonic.

The gap in the proof of Vo Van Tan is the following: since $\check{S} := S \setminus T$ is Stein the metric $\{h_i\}$ can be suitably modified such that $L|_{\check{S}}$ is Nakano positive [8] but this can be done only on \check{S} and there is no control outside \check{S} .

ii) Under the assumptions of Lemma 5 it follows that S is a rational curve with $\dim_{\mathbb{C}} H^1(S, \mathcal{O}_S) \leq 1$. This can easily be deduced from Riemann-Roch theorem for singular curves. Consequently all our theorems hold if we assume that S is a rational curve with $\dim_{\mathbb{C}} H^1(S, \mathcal{O}_S) \geq 2$.

REFERENCES

- BANICA, C., Sur les fibres infinitésimales d'un morphisme propre d'espaces complexes. Seminaire F. Norguet. Fonctions de plusieurs variables complexes. IV Springer-Verlag Lec. Notes in Math. 807 (1980).
- [2] COLTOIU, M. and MIHALACHE, N., Strongly plurisubharmonic exhaustion functions on 1-convex spaces. To appear in Math. Ann.
- [3] GRAUERT, H., Uber Modifikationen und exzeptionelle analytische Mengen. Math. Ann. 146 (1962) p. 331-368.
- [4] GRAUERT, H. and REMMERT, R., Plurisubharmonische Funktionen in komplexen Raumen. Math. Z. 65 (1956) p. 175-194.
- [5] GRAUERT, H. and RIEMENSCHNEIDER, O., Kählersche Mannigfaltigkeiten mit hyper-q-konvexen Rand. Problems in Analysis (Lectures at the Sympos. in honor of Solomon Bochner, Princeton Univ., Princeton, N.J., 1969), Princeton Univ. Press, Princeton, N.J., 1970, p. 61-79.
- [6] LAUFER, H., On CP₁ as exceptional set. Recent developments in S.C.V. Ann. Math. Studies, Princeton, N.J. (1981) p. 261-275.
- [7] LOJASIEWICZ, S., Triangulation of semi-analytic sets. Ann. Scuola Norm. Sup. Pisa 18 (1964) 449-474.
- [8] NAKANO, S., Vanishing theorems for weakly 1-complete manifolds. II, Publ. Res. Inst. Math. Sci., Kyoto Univ. 10 (1974) p. 101-110.
- [9] NARASIMHAN, R., The Levi problem for complex spaces. II, Math. Ann. 146 (1962) p. 195-216.
- [10] PETERNELL, T., On strongly pseudo-convex Kähler manifolds. Invent. Math. 70 (1982) p. 157-168.
- [11] REIFFEN, H. J., Riemannsche Hebbarkeitssätze für Cohomologieklassen mit kompakten Träger. Math. Ann. 164 (1966) 272–279.
- [12] SCHNEIDER, M., Familien negativer Vektorbündel und 1-convexe Abbildungen. Abh. Math. Sem. Univ. Hamburg 47 (1978) p. 150-170.
- [13] VO VAN TAN, (a) On the embedding problem for 1-convex spaces. Trans. AMS 256 (1979) p. 185-197; (b) Vanishing theorems and Kählerity for strongly pseudoconvex manifolds. Trans. AMS 261 (1980) p. 297-302; (c) Embedding theorems and Kählerity for 1-convex spaces. Commen. Mathe. Helve. 57 (1982) p. 196-201.

National Institute for Scientific and Technical Creation Dept. of Mathematics Bd. Păcii 220 77538 Bucharest Romania

Received January 3, 1985