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Univalent  functions and the Schwarzian derivative 

F. W. GEHRING <I) 

Dedicated to Professor A. Pfluger on his seventieth birthday 

1. Introduction 

This paper  is concerned with the problem of extending to an arbitrary simply 
connected plane domain D the following two well known results relating the 
univalence of a function f analytic in the unit disk B with the magnitude of its 
Schwarzian derivative 

(f"~" l (f '~ 2 
s ,  = V ' /  " 

T H E O R E M  1. If  f is analytic and univalent in B, then 

I SAz)l-< 6(1 - [ z  12) -2 

in B. The constant 6 is sharp. 

T H E O R E M  2. I f  f is analytic with 

tS (z)l- 2(1 -Iz12) -2 

in B, then f is univalent in B. The constant 2 is best possible. 

Theorem 1 is due to Kraus [7] and Theorem 2 to Nehari [10]. 
Suppose next that D is a simply connected proper  subdomain of the finite 
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complex plane C. Then the hyperbolic metric in D is given by 

o o ( z )  = Ig'(z)l 
1 - I g ( z ) l  2 '  

where g is any conformal mapping of D onto B. The inequality 

dist (z, OD) -1 <- Po (z) <- dist (z, OD) -~ (1) 

follows immediately from well known results due to Koebe and Schwarz. (See, for 
example, page 22 in [12].) 

A Jordan curve 7 in the extended complex plane C is said to be a K-  
quasiconformal circle, 1 <-K < o% if there exists a K-quasiconformal mapping f of 

onto C which maps the unit circle onto 7. The curve 7 is said to be a 
quasiconformal circle if it is a K-quasiconformal circle for some K. 

The following analogues of Theorems 1 and 2 for simply connected subdo- 
mains D of C are due to Lehto  [8] and Ahlfors [1], respectively. See also [3]. 

T H E O R E M  3. I f  f is analytic and univalent in D, then 

ISAz)l ~ 12pr,(z) 2 

in D. The constant 12 is sharp. 

T H E O R E M  4. Suppose that OD is a K-quasiconformal circle. Then there exists 
a positive constant a which depends only on K such that f is univalent in D 
whenever f is analytic with 

ISf(z)l ~ a ~ ( z )  = (2) 

in D. 

Remark. Ahlfors actually proved more than the conclusion given above, 
namely that one can choose a = a(K) so that [ has a quasiconformal extension to 

whenever [ is analytic and satisfies (2) in D. 

In view of the above remark, it is natural to ask if the hypothesis that 0D be a 
quasiconformal circle is necessary in Theorem 4. We shall show that this is indeed 
the case by establishing the following result. 

T H E O R E M  5. Suppose there exists a positive constant a such that [ is 
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univalent in D whenever f is analytic with 

ISf(z)l-< apo  (z)  = 

in D. Then OD is a K-quasiconformal circle where K depends only on a. 
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2. Schwarzian univalence criterion 

We obtain Theorem 5 as a corollary of an analogous result for proper 
subdomains D of C with arbitrary connectivity. For such domains D we have the 
following consequence of Theorem 1. 

C O R O L L A R Y  1. If f is analytic and univalent in D, then 

ISe (z ) l -  6 dist (z, 0D) -2 (3) 

in D. The constant 6 is best possible. 

Proof. Fix Zo e D, choose r so that 0 < r < dist (Zo, OD) and let g(z) = f(rz + zo). 
Then g is analytic and univalent in B, 

lSr(zo)l = ISg(0)tr -2 ~ 6 r  -2 

by Theorem 1, and we obtain (3) for z = Zo by letting r ---> dist (Zo, 0D). There is 
equality in (3) when [ is the Koebe function z ( 1 -  z) -2, D = B and z = 0. 

Corollary 1 and inequality (1) suggest that d i s t (z ,0D)  -1 is a reasonable 
substitute for the hyperbolic metric po(Z) in the case where D is multiply 

connected. 

D E F I N I T I O N .  Suppose that D is an arbitrary proper subdomain of C. We say 
that D satisfies tl~e Schwarzian univalence .criterion if there exists a positive 
constant a such that f is univalent in D whenever f is analytic with 

ISf(z)l ~ a dist (z, aD) -2 

in D. 

The purpose of this paper  is to establish the following result. 
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T H E O R E M  6. I[ D satisfies the Schwarzian univalence criterion with constant 
a, then each component o[ OD is either a point or a K-quasicon[ormal circle where 
K depends only on a. 

Proo[ o[ Theorem 5. Suppose that D is a simply connected proper  subdomain 
of C which satisfies the hypotheses of Theorem 5. Then by inequality (1), D 
satisfies the Schwarzian univalence criterion with constant all6. Since 0D is 
connected and contains at least two points, Theorem 6 implies that 0D is a 
K-quasiconformal circle where K depends only on a. 

C O R O L L A R Y  2. Suppose that D is a simply connected proper subdomain o[ 
C. Then D satisfies the Schwarzian univalence criterion i[ and only i[ OD is a 
quasicon[ormal circle. 

Proo[. Theorem 4 and inequality (1) imply that D satisfies the Schwarzian 
univalence criterion whenever OD is a quasiconformal circle. The converse follows 
from Theorem 6. 

3. Proof of Theorem 6 

The proof of Theorem 6 depends on five lemmas given below. In what follows 
we let D denote an arbitrary domain in (2, B(zo, r) the open disk with center 
z o e C  and radius r e  (0, oo), and b a constant in (1, ~). Next we say that two points 
z~, z2 can be joined in a set E c (2 if there exists an arc a c E with z~, zz as its 
endpoints. Finally for each set E c (2 we let OE, if, and C(E)  denote respectively 
the boundary, closure and complement of E in (2. 

L E M M A  1. Suppose that [or some Zo and r there exist two points in D N 
B(zo, r) which cannot be joined in D A B(zo, br). Then there exist finite points zl,  z2 
in D and wl, w2 in C(D)  such that 

h(z)  = log z - w______ 2 
Z - -  W 2  

is analytic in D with 

Ih (z l ) -  h ( z2 ) -  2~ ' i l -  b 4 i"  (4) 

~Proof. By hypothesis there exist two points z[, z[  in D A/~(Zo, r) which 
cannot be joined in D fq B(zo, br). Let  ~t' denote the dosed  segment from z~ to z~ 
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and let Bo = B(zo, br). Since z~, z~ e D, there exists an open polygonal arc/3 '  from 
z~ to z~ in D which meets a '  in at most a finite set of points; when z~, z~ ~ Zo, we 
choose /3' so that it lies in D-{zo} .  Then / 3 ' - ( a ' n / 3 ' )  is the union of a finite 
number  of open subarcs/3 with endpoints in a ' .  Since z~, z~ cannot be joined in 
D N/~o, we can choose a /3  whose endpoints cannot be joined in D n/~o. Let  z~ 
and z2 denote respectively the terminal and initial points of/3, and let a denote 
the closed segment from z~ to z2. Note that zl, z2 ~ Zo whenever z~, z~ ~ Zo. 

We want next to find finite points wl, w2e C(D) so that the function h is 
analytic in D and satisfies (4). Now zl and z2 are separated in/~o by the closed set 
C(D). Using Theorem VI.7.1 in [11] it is easy to show that Zl and z2 are 
separated in/3o by a component  Co of C(D). Let Do = C(Co). Then Do is a simply 
connected domain by Theorem IV.3.3 in [11], D c D o ,  and the points zl, z2 
cannot be joined in DoN/3o. Hence by replacing D by Do, we may assume 
without loss of generality that D is simply connected. 

Now 3' = a U/3 is a Jordan curve. Let  D~ and D2 denote respectively the 
bounded and unbounded components  of C(3"). We shall show that there exist 
points Wl, w2 such that 

w~ ~ C(D) n OBo N D~ (5) 

for i = 1, 2. Fix i. Since zl, z2 cannot be joined in D n/~o, /3 and hence 3' must 
mee t  aBo in at least two points. From Ker6kj~trt6's theorem it follows that each 

component  of 

C(3") N C(OBo) = C(3" 00Bo) 

is a Jordan domain, and hence that each component  of D, N Bo is bounded by a 
Jordan curve. (See page 168 in [11].) Next since D~ is a Jordan domain and since 
Zl ~ OD~ n B0, there exists a neighborhood U of za such that points of D, O U can 
be joined in D, n Bo. Hence Di n U is contained in a component  D* of D i n  Bo, 

D*  N U = D i n  U, (6) 

and OD* is a Jordan curve 3'*. 
Choose z ~ a -{zl}.  Since a lies at a positive distance from aBo, we can choose 

an open crosscut 8 of Di from zl to z which lies in Bo. Then (6) implies that 
c D*,  that z ~ 3"*, and hence that a c 7". Thus /3"= 3 ' * - a  is an open arc 

joining z2 to zl in/3o, and there exists a point 

w, e /3* n C(D). (7) 
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Since 

3"* c O(D, O Bo) c 3" U (OBo n D,), 

we have 

[3* c [3 U (OBo A D~) c D U (OBo N D~), 

and (5) follows from (7) and (8). 
Since D is simply connected, we can define an analytic branch of 

h(z) = log ~ L wl 
W2 

in D. Then 

Ia dz Io dz 
h(zO- h(z2) = z -  wl z -  w2 

= 27ri(n(3" wO-n(3" w2))- I~, z-dZwl jl_ fc~ z-dZ 

(8) 

n(3', w0 = n = +1, n(% w2) = 0, 

and we have 

I. Idzl I~ Idzl 
Ih(zl)- h(z2) -  2nTril ~ [z - w + Iz - w2l" (9) 

(See [2].) Then 

I. Idzl <lzl-z21< 2 
(10) 

I z - - w , l - ( b - 1 ) r - b - 1  

for i = 1, 2, and (4) follows from (9) and (10) when n = 1. When n = - 1 ,  we obtain 
(4) by interchanging Wl and w2. 

L E M M A  2. Suppose that for some Zo and r there exist two points in D -  
B(zo, r) which cannot be joined in D -B(zo,  r/b). Then the conclusion of Lemma 1 
again holds. 

where n(3', wi) is the winding number of 3' with respect to wl. Since D1 is the 
bounded component  of C(3"), 
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Proof. By hypothesis there exist two points z~, z~ in D - B ( z o ,  r) which cannot 
be joined in D - B ( z o ,  r/b); we may assume without loss of generality that 
z~, z~ ~ ~. Next let A and ~ denote the images of D and z~ under 

1 
f(z)= +zo. 

Z - -  Z o  

Then ~'~, ~'~ are points in AO/~(Zo, 1/r) which cannot be joined in AOB(zo,  b/r). 
By the argument for Lemma 1, there exist finite points 

~'1, r e a-{Zo}, to1, to2e C(a)nOB(zo, b/r) 

such that 

~ - - 0 )  1 
g(r = log - -  

- -  0 )  2 

is analytic in A with 

4 
Ig(r g(r 2~ri[ <-- b - 1 "  

Let  zi, wi denote the images of ~, to~ under f-1. Then 

h(z) = g o f (z)  + log Zo-  wl = log z - wl 
Z 0 - -  W 2 Z - -  W 2 

is analytic in D and satisfies (4). 

DEFINITION.  A set E in C is said to be b-locally connected if[or all Zo and r, 
points in E n/~(Zo, r) can be joined in E n B(zo, br) and points in E - B ( z o ,  r) can 
be joined in E - B ( z o ,  r/b). 

See [5] and [6] for other applications of this concept. 

LEMMA 3. Suppose that D is a proper subdomain of C. I f  D satisfies the 
Schwarzian univalence criterion for some constant a, then D is b-locally connected 
where 

13)  11, 



568 F. W. GEHRING 

Proof. Suppose that D is not b-locally connected. Then there exist zoeC,  
re(0, ~) and two points in D for which the hypotheses of Lemma 1 or Lemma 2 
hold. In either case, we obtain finite points z,, z2 e D and wl, w2 e C(D) such that 

h(z) = log z - w, 
Z - -  W 2 

is analytic in D and satisfies (4). Since b >--3, inequality (4) implies that 

4 
th (z l ) -  h(z2)l-  27r-  ~--S-]- > 4. (12) 

Now set 

27ri 
f ( z )  = exp (ch(z)), c - 

h ( z , ) -  h(z2)" 

Then f is analytic with 

S d z )  = 
1 1 )2 

Z --  W 1 Z --~W 2 

in D. Next (4), (11) and (12) imply that 

211- c21<b 5 - - ~  a, 

and hence that 

[Sr(z) [ -< 2 [1 - c2[ dist (z, OD) -2 < a dist (z, OD) -2 

in D. Since D satisfies the univalence criterion, it follows that f must be univalent 
in D. But 

f(zO 
f (z2) = exp  ( c ( h ( z O -  h(z2))) = 1, 

and we have a contradiction. 

LEMMA 4. Suppose that D is b-locally connected and that OD is connected 
and contains at least two points. Then OD is a K-quasiconformal circle where K 
depends only on b. 
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Proof. Suppose  that  p is a poin t  in /5. With each ne ighborhood  U of p we 
associate a second ne ighborhood  V as follows. If p = Zo ~ C, choose r ~ (0, o0) so 
tha t  B(zo, b r ) c U  and let V = B ( z o ,  r); if p = ~  choose r~(0,  oo) so that  
C(B(O, r /b))c  U and let V = C(/3(0, r)). In each case, the fact that  D is b-locally 
connected  implies that  points  in D f~ V can be joined in D f~ U. Thus  D is 
uni formly locally connected and  aD is a Jordan  curve 3' by T h e o r e m  VI .16 .2  in 
[11]. 

W e  show next  that  for any pair  of  finite points  z~, z2 ~ % 

min (dia (%),  dia (3'2))-< b 2 Iz~ - z2[, (13) 

where  3'1, 3'2 denote  the componen t s  of 3 ' -{z~,  z2}. By a t heo rem of Ahlfors,  
inequali ty (13) will then imply that  3' is a K-quas iconformal  circle, where  K 
depends  only on b, thus comple t ing  the proof.  (See, for  example ,  T h e o r e m  I1.8.6 
in [9].) 

To  this end fix zl ,  z2 c % set  

Zo = �89 + z2), r = �89 Izl - zzl, 

and suppose  that  (13) does  not  hold. Then  there  exist t ~ (r, oo) and finite points  
wl, w2 such tha t  

Wi E Yl - B(zo, bZt) (14) 

for  i = 1, 2. Choose  s ~ (r, t). Since zl ,  z : ~  3' f~ B(z0, s), we can find for  i = 1, 2 an 
endcut  ai of  D joining zl to z ' ~ D  in /~(Zo, s). Next  since D is b-locally 
connected ,  we can find an arc a3 joining z~ to z~ in D N B ( z o ,  bs). Then  
oq U a2 U a3 contains a crosscut  a of  D f rom zl to z2 with 

a c / ~ ( z 0 ,  bs). (15) 

By  virtue of  (14), the same a rgumen t  can be applied to obta in  a crosscut  [3 of  D 
f rom wl to w2 with 

[3 c C(B(zo, bt)). (16) 

Bu t  (15) and (16) imply that  ot A[3 = O, contradict ing the fact tha t  zl and z2 
separa te  wl and w2 in 3'. Thus  (13) holds and the proof  of  L e m m a  4 is comple te .  

L E M M A  5. Suppose that D is b-locally connected. Then each component of 
aD is either a point or a K-quasiconformal circle where K depends only on b. 
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Proof. Let Bo be a component  of OD, let Co denote the component  of C(D) 
which contains Bo, and let Do = C(Co). Then Dn is a domain with aDo = Bo. (See, 
for example,  the proof  of Theorem VI.16.3 in [11].) To  complete the proof we 
need only show that Do is b-locally connected. For then by L e m m a  4, ODo will be 
a point or a K-quasiconformal  circle where K = K(b). 

Fix z o ~ C  and r ~ ( 0 , ~ ) .  Given zl,  z2~DoOB(zo, r) we must find an arc 3" 
joining these points in Do O B(zo, br). For this let 0[ be any arc joining zl and z2 
in/~(Zo, r). If 0[ c Do, we may take 3' -- 0[. Suppose that 0[r Do and for i = 1, 2 let 
0[~ denote the component  of 0[ O Do which contains z~. Then for each i there exists 
a point wi such that 

wi e 01i N D. (17) 

If  zi e D, we may take wi = z,; otherwise z, ~ C~, a component  of C(D) different 
f rom Co, and the fact that 

,i~ n Co~0,  0 [ , n q ~ O  

implies that at must mee t  D and hence contain a point w, satisfying (17). Since D 
is b-locally connected and since 

wl, w2~0[ODc DnB(zo,  r), 

we can join wl and w2 by an arc/3 in D n/~(Zo, br). Then 011 U/3 U 0[ 2 will contain 
an arc 3' joining zl and z2 in Don/~(Zo,  br). 

Next the same argument  shows that each pair of points in Do-B(zo, r) can be 
joined in Do-B(zo, r/b). Hence Do is b-locally connected and the proof is 
complete.  

Proof of Theorem 6. Suppose that D is a proper  subdomain of C which 
satisfies the Schwarzian univalence criterion with constant a. L e m m a  3 implies 
that D is b-locaUy connected, where b is as in (11). Then Lemma  5 implies that 
each component  of OD is either a point or a K-quasiconformal circle, where "K 
depends only on b, and hence only on a. 

4. Universal Teichmiiller space 

We conclude this paper  with an application of Theorem 5 to Teichmiiller 
theory. 

Let  B2 = B2(L, 1) denote the Banach space of functions ~ analytic in the lower 
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half plane L with norm 
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I1 11 = sup pr(Z) -2 I (z)t < o0, 
z E L  

where pL(Z)= �89 -1 is the hyperbolic metric in L. Next let S denote the family of 
= Sg where g is conformal in L, and let T =  T(1) denote the subfamily of those 

~0 = Sg for which g has a quasiconformal extension to C. From Theorem 1 it 
follows that 11~11---6 for all r  and hence that T c S c B 2 .  The set T is the 
universal Teichmiiller space. (See, for example, [4].) 

Suppose that ~0 ~int (S). Then ~o = Sg where g maps L conformally onto a 
simply connected subdomain D of C. In addition, there exists a constant a > 0 
such that $ e S whenever I1~,-,1t-< a. If f is analytic with 

ISe(z)l ao (z) 2 

in D, then $ =  Sr is analytic in L, Ilq,-,it-< a, and hence f is univalent in D. Thus 
OD is a quasiconformal circle by Theorem 5, g has a quasiconformal extension to 
C, and ~0 ~ T. Hence 

int (S) c T. (18) 

Next using the Remark following Theorem 4, Ahlfors showed in [1] that 

T = int (T). (19) 

Combining (18) and (19) we obtain the following result. 

C O R O L L A R Y  3. T is the interior of S in B2. 

Unfortunately Corollary 3 neither implies nor is implied by the truth of the 
following interesting conjecture due to Bers. (See, for example, [4].) 

CONJECTURE.  S is the closure of T in B2. 

Lehto observed in [8] that one would settle the Bers conjecture in the negative 
if one could find a Jordan domain D and a positive constant a such that OD is not 
a quasiconformal circle and such that f has a quasiconformal extension to /2 
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whenever  f is analytic with 

ISf(z)l-< aoD(z) 2 

in D. T h e o r e m  5 shows, however ,  that  no  such doma in  D exists. 
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