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A note  on  Hayman's  t h e o r e m  on the bass n o t e  of  a drum 

ROBERT OSSERMAN 

Recently Hayman settled a long-outstanding problem in the theory of vibrat- 
ing membranes [9]. He showed, in effect, that in order for a drum to produce an 
arbitrarily deep note it is necessary that it include an arbitrarily large circular 
drum. 

We shall discuss later the background of this problem. To state Hayman's 
result precisely, let D be a plane domain; the inradius 19 of D is the maximum 
radius of a disk included in D. Define A-> 0 by 

A 2 = i n f l  [o IVf[2 (1) 

where F is the family of smooth functions f ~  0 with compact support in D. 
Hayman showed that if D is simply connected, then 

1 
A > - -  (2) 

3019 " 

If D has a smooth boundary, then A is equal (under suitable normalization) to 
the lowest frequency of a vibrating homogeneous membrane in the shape of D, 
fixed along the boundary of D, and (2) shows that this frequency has a uniform 
lower bound in terms of 19, independent of the total size and shape of D. 

One also denotes A 2 by hi, the smallest eigenvalue of the boundary-value 
problem 

A u + h u  in D, u = 0  on OD. (3) 

The purpose of this note is to derive an improved form of Hayman's 
inequality. Our argument also allows a number of extensions to multiply- 
connected domains, and to domains on surfaces. On the other hand, Hayman's 
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method generalizes to higher dimensions, which does not seem to be the case for 
o u r s .  

The result is the following 

T H E O R E M .  Let D be a two-dimensional Riemannian manifold. Denote by K 
its Gauss curvature, and by p the supremum of the distance to the boundary of points 
of D. If  A is defined by (1), then 

(a) if D is a simply-connected or doubly-connected plane domain with the 
euclidean metric, then 

1 
A - - -  ; (4) 

2p 

(b) if D is a plane domain of connectivity k >- 2 with the euclidean metric, then 

1 
A >__-- ; 

pK 

(c) the inequality (4) also holds if D is simply connected, and if K <-0 on D, or 
more generally, if SSD K+--<-21r; in particular, if D lies on a hemisphere; 

(d) the stronger inequality 

Ot 
A ~ (6) 

2 tanh ap 

holds if D is a simply-connected domain with K <- -or 2, a > O. 

The proof of the theorem uses a slight modification of Cheeger's estimate for 
A1 [4], together with appropriate isoperimetric inequalities. We consider the latter 
first. 

L E M M A  1. Let M be a two-dimensional manifold, and let D be a domain on 
M bounded by a finite number of smooth curves. Let A be the area of D, L the total 
length of its boundary curves, p the inradius, and K the Gauss curvature of D. Then 

(i) if D is a simply-connected plane domain with the euclidean metric, then 

pL >- A + ~rp2; (7) 

(ii) if D is a plane domain of connectivity k >- 2 with the euclidean metric, then 

pL >- 2A/k;  (8) 
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(iii) if D is simply connected, then 

pL >- A + ~r- ~ K + p ; (9) 

(iv) if D is a simply-connected domain with K < - - a  2, a > O ,  then 

a A + z c r  L >- tanh ap  (10) 
tanh ap ct 2 

COROLLARY.  I f  D is either a doubly-connected plane domain with the 
euclidean metric, or else a simply-connected domain satisfying SSD K +<- 2Ir, then 

L 1 
---->-.  (11) 
A p 

Remarks. 1. Inequality (11) is sharp for doubly-connected domains, with 
equality for a circular annulus. For simply-connected domains, inequality (11) is 
strict. However, as Santal6 has noted ([17], p. 155) no inequality of the same form 
with a constant greater than 1 on the right side can hold for all simply-connected 
domains: as one sees by considering long thin rectangles. 

2. Inequality (7) has a long and curious history. It was first stated explicitly by 
Bonnesen in 1921 ([2], p. 222), although an equivalent inequality appears earlier 
in Chisini ([7], p. 296). Both Bonnesen and Chisini gave proofs only for convex 
domains. The first proof of (7) for arbitrary (simply-connected) domains is 
contained implicitly in a review by Scherk [18] of a paper by Santal6 [17]. Santal6 
proved (11), and Scherk pointed out that the proof actually gives a stronger 
inequality, which turns out to be equivalent to (7). Later Besicovitch [1], appar- 
ently unaware that (7) was known, gave a new proof; he also gave the first 
characterization of domains where equality holds. Finally, Burago and Zalgaller 
proved (iii), which of course includes (i) as a special case, but they were 
apparently unaware of all the previous work in this direction. (1) 

3. Part (iv) follows from Theorem 1 in Ionin [12]. Thus the only new part of 
the lemma is (ii). We shall give a proof of (ii) by a method which also proves (i). 

Let D be a plane domain of connectivity k. Let A(t )  be the area of the 

1 (Added March 8, 1977). The history is in fact still longer and more curious. Mention should also 
be made of papers by H. Hadwiger and F. Fiala in Commentarii Math. Helvetici 13 (1940/41). 
Hadwiger, on page 199, proves yet another inequality equivalent to (7); Fiala, on page 336, proves not 
only (7), but also (9), for the case of analytic Jordan curves, assuming that the metric is also analytic. 
These and related matters will be discussed in more detail in a forthcoming paper of the author on 
Bonnesen-type inequalities. 



5 4 8  ROBERT OSSERMAN 

subdomain of D consisting of points whose distance to the boundary is less than t. 
Then one knows that A'( t )  exists for almost all t, A ' ( t ) < - L + 2 ~ ( k - 2 ) t ,  and 

i 
p 

A = A'( t )  dt<_oL+~r(k-2)O a. (12) 

(see Sz-Nagy [19], p. 46, Hartman [8], p. 722, Ionin [12], Lemma 1.) 

When D is simply-connected, k = 1, and (12) reduces to (7), thus proving (i). 
When /9" is doubly-connected, (12) reduces to (8) for the case k = 2. 
When k > 2, we consider two cases. 

Case 1. A > 7rkp z. Then by (12), 

pL>_ 1 - zr(k - 2 ) 0 2 >  1 - ~r(k -2 )02  _ 2 
A A "lrko 2 k " 

Case 2. A <- zrko 2. Using the fact that D includes a disk of radius 0, and that 
the outer  boundary curve of D surrounds this disk, one has L>-2~rp. Thus (8) 
holds in both cases, and the lemma is proved. 

We next prove Cheeger's inequality, in the form that we shall need. 

L E M M A  2. Let D be a plane domain of connectivity k endowed with a 
Riemannian metric. Let Fk be the family of relatively compact subdomains of D 
having smooth boundary and connectivity at most k. Let 

L'  
h = inf ~ ; ,  (13) 

D '~Fk 

where A '  is the area of D', and L' the length of its boundary. Then if A is defined 
by (1), 

h 
A > . 

2 (14) 

Proof. First of all, it follows immediately from the definitions (1) and (13), that 
if one proves (14) for all domains in a regular exhaustion of D, then (14) will also 
hold for D. Since every finitely-connected domain has a regular exhaustion by 
domains of the same connectivity, we may assume that D has a smooth boundary. 
Then the boundary-value problem (3) has a solution f corresponding to h = hi, 
and one has 

A2=AI = (15) 

Furthermore f cannot change sign in D, and we may assume that [->0. 
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Following Cheeger, we set g =  f2. Then I Vgl=2flvft, and by Schwarz's 
inequality, 

( f i b  IVgl]2-<4IIr~ f2"I ID IVf'2" 

From (15) we deduce that 

A ~  (16) 

For regular values t of the function g, we set 

De = {p ~ D : g(p) > t}. 

What we must show is that the connectivity of De is at most k. Since t is a regular 
value of g, the boundary C, of De consists of a finite number, say m, of smooth 
curves along which Vg# 0. If m were greater than k, then some component C' of 
C, would not contain any component of the boundary of D in its interior, so that 
the interior D' of C' would lie entirely in D. But the function [ satisfies 
a f = - h l f  < 0 in D, hence f is superharmonic. Since f =  x/t on C', it follows that 
f>-~/t in D'. But this contradicts the fact g <  t in the part of D '  near C'. 

Thus m -  k, and by the definition (13), 

L(t) >- hA(t) (17) 

for all regular values of t, where L(t) is the length of C, and A(t) the area of De. 
Since the set of singular values of g is a closed set of measure zero, its 
complement is a countable union of open intervals I,. The domain En defined by 

En = {p ~ O : g(p)  e L }  

is foliated by the level lines of g. Using arc length along these level lines and along 
their orthogonal trajectories as parameters, one finds 

I I~ IVgl= Ix t(t) dt. (18) 
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On the other hand, one has 

I Io  g= ~ ~176 (19) 

since both sides of (19) represent the volume of the three-dimensional domain 

G={(x ,y , z ) : (x ,y )~D,  0< z < g(x, y)}, 

A(t) being the area of the cross-section of G with the plane z = t. 
Combining (17), (18) (19) yields 

I Io  IVgl->,~=l.II~. [Vgl=,~l Ix. L(t) dt 

>- h ~ A (t) dt = h A (t) dt = h g. (20) 
r t = l  

In view of (16), the lemma is proved. 
Finally, combining the various parts of Lemma 1 and its corollary with Lemma 

2, together with the observation that for all subdomains D'  of D, p(D')<_ o(D), 
one obtains the statement of the Theorem. 

Concerning the proof of this theorem, we note that Cheng [5] has made 
similar use of Cheeger's inequality together with the isoperimetric inequality (9) 
of Burago and Zalgaller to obtain a lower bound for the first positive eigenvalue 
of a compact surface of non-negative curvature. He neglects to mention the need 
of some modification of Cheeger's result, such as Lemma 2 above, to make the 
argument complete. 

We note next a number of related results. 
First of all, by the definition of A, it is immediate that A (D)-< A (D') whenever 

D' c D. Since the value of A for a disk of radius'O is known explicitly to be frO, 
where ] is the first zero of the Bessel function J0, one has a trivial upper bound for 
AO for arbitrary plane domains. Combined with (4), this gives 

~<oA <-j--2.4 (21) 

for all simply-connected or doubly-connected plane domains. 
In the case of convex plane domains, Hersch [10] obtained the sharp bounds 

~<pA-<j ,  (22) 

where the left-hand side is the limiting value of pit for long thin rectangles. 
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I t  is poss ib le  tha t  (22) holds  for  all s imply-connec ted  p lane  domains ,  bu t  it  is 

no t  t rue  for  s imp ly -connec ted  doma ins  with vanishing Gauss  curvature .  (2) F o r  

example ,  the  d o m a i n  D def ined  in po la r  coord ina tes  by  

D :T r<  r < 2 7 r ,  0 <  0 < 2 7 r ,  

can be  cons ide red  as a doma in  lying on the R i e m a n n  surface of log z. I ts  in rad ius  

is p = ~r/2, and  its lowest  f r equency  is A = 1, co r respond ing  to  the  e igenfunct ion 

f sin r 0 
= -x/'-r- sin ~ .  

Thus  #A = 7r/2. Ex t end ing  D pas t  0 = 2~r, for  example  by  adding  a semicirc le  of 

rad ius  ~r/2, one  ob ta ins  a l a rger  doma in  D '  with s a m e ' v a l u e  of #, for  which 

pA < ~r/2. 

The  le f t -hand  side of (22) is also cons ide rab ly  too large for  d o u b l y - c o n n e c t e d  

domains .  F o r  example ,  if D~ is the  annulus  e < r < 1, and  D the  unit  disk,  then  

A(D~)--->A(D)=j as e--->0, (23) 

whe reas  p(D~) = (1 - e) /2 ~ �89 so that  

<J 
inf 011 - ~  1.2 

for  d o u b l y - c o n n e c t e d  domains .  
T h e  val idi ty  of  (23) is a specia l  case of the  fol lowing l emma ,  whose  s t a t e m e n t  

and  p r o o f  were  sugges ted  by  W a l t e r  H a y m a n .  

L E M M A .  Let D be a plane domain, and De the domain obtained by removing 
from D a finite number of disjoint circular disks of radius e centred at a fixed set E 
of points in D. Then 

lim A(D~)= A(D). (24) 
e"-*0 

2 The referee has kindly pointed out that even for simply-connected plane domains, the constant 
on the left of (22) must be reduced. Namely, the function f = r -1/2 sin r sin �89 is also an eigenfunction 
corresponding to the eigenvalue h z = l  in the domain 0<r<~r, 0<0<2~r, for which p=~r/2. 
Extending this domain to the fight preserves 0 and decreases A. 
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Proof. Using the definition (1) of A, we show that for any competing function f 
with compact  support  in D, we can construct corresponding functions f~ with 

support  in D,, such that 

l i m s u p / f O  ]Vf~'2 f i b  1~7f12 
" -< ( 2 5 )  

Since D~ c D ~ A(D~)>-A(D) ,  (24) follows from (25). 

It  is sufficient to construct f~ which are piecewise smooth rather than smooth. 
To do so, choose rz > r~ > e such that the disks of radius r2 with centers at the 
points of E are still disjoint. Define a function u equal to 1 outside the disks of 
radius r2, equal to zero inside the disks of radius rl and of the form 

log r / l o g  r-3 
r l /  rl 

in each of the annular domains in between. Let  f~ = uf. Then in each of the 

annular domains one has the estimates 

r f2 r2 2 

log (r2/rl) § log 
r l~r~r2  

(26) 

where M -  > {maxo l/I, maxo ]Vf]}. If the dependence of rl, r2 on e is such that 
r2 --~ 0 and rz/rl ~ ~ as e --~ 0 (for example,  rl = 2e, rz = 2~/e, for small e), then 
since f ,  =-f, Vf~ =-- Vf on D, 2, (25) follows from (26), and the lemma is proved. 

As an application of the lemma, let D be the unit square 0 < x < 1, 0 < y < 1, 
and let E be the set of (n - 1) 2 points (r/n, s/n), r, s = 1 , . . . ,  n - 1. Then 

A(D~)---~ A ( D ) =  7r~/2, 

p ( O~ ) ---> ~/___22 
2 n '  

while the connectivity k of De is k = ( n - 1 ) 2 +  1. Thus, if Fk is the family of 
domains of connectivity k, then for k >-2, 

1 q't 
- <  _ inf oA -7-:-. (27) 
k DeFk ~%//s ~ 
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where the left-hand side is from (5). This example shows that the right-hand side 
of (5) must tend to zero as k ~ 0% but it raises the question whether the bound 
can be improved to something of the order of 1/x/k. 

Concerning part (d) of the Theorem, one has a result for arbitrary (not 
necessarily simply-connected) domains D in the hyperbolic plane 

' ' 

--< 2 tanh R 2 ~/[  ~ (28) 

where # is again the inradius, and R is the circumradius: the radius of the smallest 
geodesic disk including D. In fact, the left-hand side of (28) holds for domains D 
on any complete simply-connected surface with K - < - 1 ,  while the right-hand side 
holds when K-->- 1. The left-hand side follows by noting that the method of Yau 
([20], p. 498) shows that for any subdomain D'  of D, one has the inequality 
L --> A coth R. The right-hand side follows from results of Cheng ([6], p. 290 and 
294). An equivalent form of (28), using A1 = A 2, is 

- - - a l - ~ -  ~ (29) 

Not directly connected with the inradius, but in a spirit related to the methods 
of this paper, are the inequalities 

~rL ~rL 
~ - < A < ~ x  (30) 

for certain plane domains D of area A and boundary length L. The left-hand 
inequality holds for convex domains, and was proved by Makai [14] using 
Hersch's inequality (22). The right-hand side was proved by P61ya [15] for convex 
domains, but the same argument can also be used for arbitrary simply-connected 
or'doubly-connected domains (see Hersch [11], p. 134). Both constants are best 
possible, the left as the limiting case of a narrow circular sector, and the right as 
the limiting case of a long thin rectangle. 

Finally, instead of the inradius p, one often considers the m a x i m u m  inner 
radius i" of D, defined via conformal mapping (see P61ya-Szeg6 [16], p. 2). It 
follows immediately from its definition, using Schwarz's Lemma, that ~ -  #. Thus 
it follows from (4) that 

A~>�89 (31) 
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for arbitrary simply-connected domains in the plane. In the book of P61ya and 
Szeg6 ([16], Table 1.21 on page 17) it is asserted that Af has a positive lower 
bound k for convex domains, and it is conjectured that k = 2. On the bottom of 
page 16 they say "Nothing is asserted about the lower bound for unrestricted 
plane domains; not even a conjecture is offered." Hayman's theorem settles the 
existence of a positive lower bound, and inequality (31) gives what may be a 
candidate for the best constant. 
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