
Comment. Math. Helvetici 52 (1977) 357-371 Birkh~iuser Verlag, Basel 

O n  the Banach  algebra A(F) for smooth  sets F ~ R" 

By YNCVE DOMAR 

0. The main part of this investigation is devoted to the problem of estimating 
11 e *'rllA ~r), as t--~ ~. Here t ~ R, F c R", and f ~ A (F) is re al-valued. A (F) is the quotient 
Banach algebra A(R") / I (F) ,  where I(F) is the ideal in A(R ") = ~rLI(R~) of all 
functions, vanishing on F. We shall discuss only very regular situations. F is thus 
in general a well-behaved compact subset of a smooth manifold in R ", an interval 
on R, a curve in R", a surface in R 3 etc., and f has high differentiability 
properties. In order not to complicate the discussion and obscure the principal 
ideas, we shall be very generous with our regularity assumptions. Thus we assume 
that all manifolds and functions f involved are infinitely differentiable. It can 
however be shown that each particular result holds as well, if we only require 
differentiability up to a certain order. The principal object of our work is to show 
that very simple, straightforward and seemingly rough methods give very precise 
estimates. In the concluding section we show how our results can be used to 
determine, for the sets F considered, all those homomorphisms of A(R ~) into 
A (F), which are given by C ~ mappings of F into R ". 

1. Let  F be a compact interval of R and let f e C~(F) be real-valued. The 
following theorem is well known, even under much weaker ditferentiability 
assumptions on f: 

T H E O R E M  1.1. I f  f is non-linear, there are positive constants C, and C2 such 
that 

C~ #2  ~ ile,~llA<r,>_ C2t,/~, (1.2) 

for t >- 1. For f linear, Ile"ellA(r) = 1 for every t ~ R. 

The inequality to the left in (1.2) is due to Leibenzon [9], while the right hand 
inequality is an easy corollary of the inequality of Carlson [1]. We shall give a 
proof of Theorem 1.1, not the shortest one, but a proof which can serve as a 
model for the deduction of estimates in more general situations. 
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Proof of Theorem 1.1. The only non-trivial part is the proof of (1.2) for 
non-linear f. Let  us start with the inequality to the right. Instead of applying 
Carlson's inequality, we base the proof on three elementary observations. 

Firstly, we observe that a partitioning of the unit in A ( F )  shows that it suffices 
to prove that there exists a constant C such that 

[[e"~llA(r,~-< C, (1.3) 

for every subinterval F, c F of length t -1/2. 
Secondly, the norm of a function in any algebra A ( E ) ,  E c R " ,  does not 

change after multiplying the function with a constant of norm 1 or with a bounded 
continuous character on R" (restricted to E). Hence, with Xo denoting an endpoint 
of Ft and x standing as symbol for the variable, we obtain 

[]e'r (r,~ = [[exp (it(f  (x) - f ( xo) - ( x - xo) f '  ( xo) )lL~ (r,) 

= Ilexp (it(x - X o ) 2 g t , x o ( x  - Xo))L<r,>, 

where g,,~oe C=([0, t-1/2]), and where gt,~o and all its derivatives have bounds that 
are uniform in t and Xo. 

Thirdly, the norm of a function h in any Banach algebra A ( E ) ,  E c R n, is not 
affected by affine bijections of R" and corresponding mappings of E and h. Thus, 
putting x = Xo+ ut -~/2, with u as new variable, we obtain 

Ile"ellA(r,) = [lexp ( iu 2 g,,,~( ut-  "2)ltA <to, a l). 

But the right hand member is the norm of a function on [0, 1], bounded uniformly 
in Xo and t, for t - 1 ,  as well as all its derivatives. Hence (1.3) is proved. 

To prove the left inequality of (1.2) we observe that the assumed non-linearity 
of f implies the existence of a subinterval F '  c F of positive length where f" does 
not vanish. Let  0 e ~ ( R ) ,  with S u p p ( r  and JR ~bdx= 1. We consider the 
function 0e -~, defined as 0 outside F, as an element in the Banach space 
PM(R) = 9;L=(R) of pseudomeasures on R. It follows from the definition of the 
norm in A ( F )  that 

= fr e"r(X)e-"r(~)qJ(x) dx <-Ile"rll~(r~ [[e"rq, llP~(R). (1.4) 1 

Thus the left inequality of (1.2) follows with C~ = C -~, if 

[[e-'%I[~,M(R) ~ C t - " 2 ,  (1.5) 

t-> 1, for some C. (1.5) can be.deduced from the lemma of van der Corput [2]. We 
shall, however, apply a more general lemma, Lemma 1.6 below, which is needed 
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in later discussions. It is well known that lemmas of this general type exist. This 
particular formulation is due to J.-E. Bj6rk (personal communication). We omit 
the proof of the lemma, since it is fairly close to van der Corput's proof. 

LEMMA 1.6. Let [a,b] be a compact interval on R, and ~ e ~ ( ] a , b [ ) ,  
k ~ CP([a, b]) with 

0 < C~ <-- I k'(x)[ + I k"(x)l + " "  + I k(~>(x)t-< C2, 

if x ~ [a, b], where C1 and C 2 are constants and p a positive interger. Then there 
exists a constant C not depending on k, such that 

f f  eiSk(~)r dx < CS - l /p ,  

for every s > O. 
In order to prove (1.5) we first observe that its left member is, by definition, 

the L | norm of the function with values 

fr" exp ( -  irf(x) - iux)~b(x) dx, u ~ R, 

with the Fourier transform defined properly. Taking s=t+[u[ ,  we can apply 
Lemma 1.6 with [a, b ]=  F',  p = 2, and 

k(x)  t f (x)  u = . . . .  X, X E F ' ,  
s s 

C1-- Min (l(1-1rl)f'(x)+rl+(1-lrl)lf"(x)l), 

C2 = 1 + sup  (If'(x)l + If"(x)l). 
x E r '  

From this we obtain (1.5). 

2. Now we assume that F is a curve in R 2, representable as the graph of a 
real-valued function g ~ C-~([a, b]), where -oo < a < b < o~. As always we have 

f e  C~(F), and f is real-valued. 

T H E O R E M  2.1. Let F have non-vanishing curvature. I f  f is not the restriction 
of a linear function on R 2, there exist positive constants C1 and C2 such that 

f i t  1/3 ~ l l e ' ~ l l ~ ( r ) -  C2 t  1/3, (2.2) 

for t ~ 1. I f  f is the restriction of a linear function, then He~tq[A(r) = 1, for every t e R. 
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Proof o[ Theorem 2.1. The only non-trivial part is the proof of (2.2). A 
detailed proof of the right hand inequality has been given in [5], and we shall here 
give only a brief outline. The proof uses the same technique as the corresponding 
proof in Section 1. This time we observe that it suffices to obtain a uniform bound 
for 

Ile'qllA(~,), (2.3) 
where F, is the graph of g, restricted to a subinterval It c [ a ,  b] of length t -1/3. 
Denoting by Xo an endpoint of I,, we can now use the assumption g"#  0 and the 
presence of a two-parameter family of bounded characters to obtain 

Ile'~ll~(~,)-Ilexp (it(x - Xo)3 g,,~o(X - Xo))llA(~,), 

where gt,xo has the differentiability and boundedness properties specified in 
Section 1. The transformation x = Xo+ u t  -1/3 proves the uniform boundedness of 
(2.3). 

To prove the left inequality, we first observe that there is a subinterval 
[a',  b ' ] c  [a, hi, of positive length, where the function h = fog  satisfies the condi- 
tion 

h" g"l 
h "  g" # 0. (2.4) 

For otherwise the condition g"#  0 implies that h" and g" are linearly dependent, 
i.e. 

h(x) = A x  + Bg(x) + C, x e [a, b], 

for some constants A, B and C. But this means that f is the restriction to F of the 
linear function 

(x, y ) - - ~ A x + B y + C ,  (x, y ) e R  2. 

Choosing [a',  b'] as above we can now continue as in Section 1. Let ~ ~(R)  
with Supp (~) c [a', b'] and with SR #J(x) dx = 1. Ix is the Borel measure on F for 
which the projection on the x-axis is the Lebesgue measure multiplied with ~. We 
consider Ix as a pseudomeasure on R 2 and obtain 

1= fb e'g(s(~))e-'q('('))ql(x) dx = ~ e-ige -'q dg <_lle"fllA(r)lle -i'~ d].g[lPM(R2). 
Ja Jr 

Thus it suffices to show that 

lie -''~ dt, ll~M(.2) -< Ct -1/~, (2.5) 
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t -  1, for some constant C. But the left member  is the supremum of the absolute 
value of 

I r e x p  ( -  itf(x, y) - ivy) dl~(x, y) iux 

]) = . exp ( -  ith(x)- iux-  ivg(x))O(x) dx, 

as (u, v)E 112 Taking s = t+  lu[ + [v[, and observing the relation (2.4), we can apply 
Lemma 1.6 with p = 3  and 

k ( x ) =  t h(x) Ux v . . . .  - -  ~(~o,X,,_ 
s s s 

and this gives (2.5). 

Remark. Theorem 2.1 has analogues for curves in 11", n-->3, now with t - 1 /3  

replaced by t -1/("§ As for the right hand inequality we refer to [5]. The 
inequality to the left can be discussed as in the proof of Theorem 2.2, using 
Lemma  1.6. 

3. In this and the next section we are concerned with cases when the dimension of 
F is two or higher. In order to avoid complications at the boundary of F we prefer 
to change our setup in the following way. 

Let  O be a C ~ manifold in 11" and f a real-valued function in C~(O). We say 
that a positive function M on [1, oo[ is a ma]orant if, for every compact K c / 2 ,  
there is a constant C > 0 such that 

Ile"ql,,(,:~-< CM(t), (3.1) 

t >--1. A positive function m on [1, oo[ is a minorant if there exists a compact 
K c I2 and a constant C > 0 such that 

Ile'~llA<~ ~ Cm(t), (3.2) 

t_>l. 
In this section we assume that O is an open non-empty subset of 112, and 

denote by k the maximal rank in O of the Hessian 

f,~ f , , / "  

Then the following theorem holds. 
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T H E O R E M  3.3. The function t--->t k/2, t >- 1, is both majorant and minorant. 

Proof of Theorem 3.3. We first prove that the function is a majorant. In the 
case when k = 0, all second order  derivatives of f vanish, and thus f is linear on 
every component of /2. It is obvious that the theorem holds in this case. In the 
discussion of the case when k = 2, it suffices to consider the case when K is a 
square contained in/2. We can then argue exactly as in the proof of Theorem 1.1. 
By a partitioning of the unit it follows that it suffices to show that 

is uniformly bounded for the family of squares contained in K, with sides parallel 
to the sides of K, and with side length t -1/2, t -  > 1. The proof of this is quite 
parallel to the corresponding part of the proof of Theorem 1.1, and is omitted 
here. 

The proof that M(t)=t  1/2, t>-l, is a majorant when k = l  is similar, but is 
more complicated. If suffices to show that every given point P = (Xo, yo)e/2 has a 
compact neighborhood K such that (3.1) holds for some C. 

We shall use a result of Hartman and Nirenberg [6] (Theorem A), which states 
that the surface z =f(x, y) in R 3 is locally developable at P when k = 1, in the 
following sense: There exists an e > 0 and a continuous real function h on f - e ,  e] 
such that the line segments 

L~ = {Xo- s sin h(s)+v cos h(s), yo+s  cos h(s)+v sin h(s)) 1 ve[-e, el}, 

s ~ f - e ,  el,  are disjoint and have a compact neighborhood K of P as their union, 
and are such that the tangent plane of the surface is common for all (x, y, f(x, y)) 
with (x, y) on the same segment L~. The property that the segments L~ are disjoint 
implies evidently that h is Lipschitz continuous. This implies that if e is chosen 
small enough, we have for every so , f - e ,  e] and t - 1 ,  that 

IS-SoJ~t -~2 

is contained in the rectangle 

Rt:o = {(Xo-S sin h(so)+ v cos h(so), yo + s cos h(so)+ v sin h(so))t 
I JS-Sol<-2t -1/2, Ivl_< 2~}, 

whereas 

U L, 
[S-Sol~St -~:2 
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is d i s jo in t  f rom the rec tangle  

S,.so = 2R,.~o- (Xo-  So sin h(so), Yo + So cos h(so)). 

Now there  exists a cons tan t  Co such that  we can find, for every  choice of t -> 1 and  

S o e [ - e ,  e],  a funct ion q~ e A(R2) ,  with q~(x, y ) =  1 on  R,.~o, q~(x, y ) = 0  outs ide  St,~o, 

and  Co. These  funct ions can be used for  a par t i t ion ing  of the  unit ,  and  

this shows that  

Ile"qlA(K~--< Ct -1/=, t -> 1, 

for  some C, fol lows if we can find a cons tant  C1 such that  

]]e ][A~R,,~o--< C1, (3.4) 

for  t>---l, S o e [ - e , e ] .  
Using  the p rope r t i e s  of the  t angen t  p lane  of  z = f ( x ,  y), we obta in  for  

(x, y) e R, .... 

d(x, y) = f(x,  y) - f ( X o -  So sin h(so), yo + So cos h(so)) 

- (x - Xo + So sin h ( so ) ) f ' ( xo -  So sin h(so), Yo + So cos h(so)) 

- (Y - Yo - So cos h(so)) f~(xo-  So sin h(so), Yo + So sin h(so)) 

= ((x - Xo) sin h ( s o ) -  (y - Yo) cos h(so) + So) 2 

g,.s,,(x - Xo + So sin h(so),y - Yo + So cos h(so)), 

where  gt.,o is b o u n d e d  uni formly  in t and So as well  as all its par t ia l  der ivat ives .  

Hence  by the affine t rans format ion  

= ((x - Xo) sin h(s)  - (y - Yo) cos h(s)  + So)t 1/2 

r I = (x - Xo) cos h(s)  + (y - Yo) sin h(s),  

we ob ta in  as in the ea r l i e r  sect ions  

ir e,a ex "i " 2 -  "~t -1/2 lie I1~,~--1 ,,~,~ = P t ~ nt,,otg , ~I))[[AtS), 

where  S = [ - 2 ,  2 ] x [ - 2 e ,  2e l ,  and  where  ht,~o is un i fo rmly  b o u n d e d  in t and So as 

well  as all its par t ia l  der ivat ives .  Hence  (3.4) holds.  
In  the  p roo f  of ou r  claim tha t  t--~t k/2, t>-l ,  is a minoran t ,  it  suffices to 

cons ider  the  case  when  k = 1 or  2. W e  first obse rve  that  there  is a n o n - e m p t y  

open  subse t  O1 of O where  the  max imal  rank  of the  Hess ian  is a t t a ined  at  eve ry  
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point. We form a function qJ e ~ ( R  2) with support contained in ~-~1 and satisfying 

I I  $ d x d y  = 1. 

R 2 

~e -ie is considered as a pseudomeasure on R 2, vanishing outside O. Arguing as in 
Section 1 we find that (3.2) holds with K = supp (~), re(t)= t k/2, if for some C 

II~Oe-"qlP~(~- Ct -~'~, (3.5) 

for t - -1 .  But on Supp (~), the minimal rank of/c is k, and hence (3.5) follows 
from the following lemma, easily deducible from the results in Littman [10] (cf. 
[11] and [4] p. 25). 

LEMMA 3.6. Let K be a compact subset of an open set U c  R n. ~ ~ ~(K) ,  and 
h e C~(U). For some 8 > 0 we assume at every point of U that at least k eigenvalues 
of the Hessian of O have absolute value >- & Then there exists a constant C such 
that, if $e -ith is defined as 0 outside K, 

IIq~e-"hllPM~R~> ~ Ct -k/=. 

The constant C depends on K, U, ~o, k, 6, and of the bounds of the partial 
derivatives of h of all orders. 

Remark. Theorem 3.3 has extension possibilities to the case when /2 is an 
open non-empty subset of R ~ and k is the maximal rank of the Hessian of the 
real-valued function f ~  C~(12). By the same arguments as in the later part of the 
proof of Theorem 3.3, we find from Lemma 3.6 that t--*t k/2, t -  > 1, is a minorant. 
The function is also a majorant in all cases when the first part of the proof can be 
copied, i.e. if we have a local representation corresponding to the local developa- 
bility, now by a k-parameter family of (n -k ) -d imens iona l  affine manifolds. 

4. In this section we study the case when O is a C ~ surface in R 3, of non- 
vanishing Gaussian curvature. We restrict ourselves to the situation when I2 is the 
graph of a real-valued function g, defined and infinitely differentiable on some 
open subset U of R 2. Then the Hessian of g has rank 2. [ is a real-valued C ~ 
function on O. We can thus think of f as a C ~ function on U. For every (x, y )e  U 
and A ~ R, RA(x, y) denotes the rank of the Hessian of the function f - A g  on U, 
and 

k = Max Min R~(x, y). (4.1) 
(x, y ) E U  X ~ R  
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Since the Hessian of g has rank 2, the subset of U where the maximum in (4.1) is 
attained is an open set Uo. It is easy to see that k -< 1 if 12 has positive Gaussian 
curvature, k = 2 for instance if U = R 2, g(x, y)  = x 2 -  yZ, f (x ,  y) = xy. 

T H E O R E M  4.2. In the sense precised in Section 3 t----)t k/2, t>-l,  is both 
majorant and minorant, if k = 0  or 2. I f  k =  1, t---~t 5/6, t -> l ,  is a majorant and 
t---~t 1/2, t>-i is a minorant, and there are examples when the first function is a 
minorant and other examples when the second function is a majorant. 

Proof of Theorem 4.2. Let  us first consider the case when k = 0. Then there 
exists a function h on U such that 

fxx = Agx~, [xy = Agxy, [yy = Agyy 

for every (x, y)~ U. Since the Hessian of g has rank 2, b e C k ( U ) .  Taking the 
partial derivatives, we obtain 

Ayg~ = A~g~y, Ayg~y = A~gyy 

and since the system has non-vanishing determinant, we find that h is constant on 
every component  of U. Hence 

f(x, y) = hg(x, y) + A x  + By + C, 

on every component,  for properly chosen constants A, B and C, which shows that 
f is, on every component,  restriction of a linear function o n  R 3. It follows from 
this that the function with constant value 1 is a majorant,  and it is trivially a 
minorant.  

We continue with the cases k = 1, 2. Let C be a compact subset of U, and K 
the corresponding compact subset of O. We have 

Ile"t[[A (n)--< Ile"ellA(c~, (4.3) 

where in the left hand member  f is considered as function on K c R 3, and in the 
right hand member  f is considered as function on C c R 2. This is seen by choosing 
extrapolations of f to the left, which only depend on (x, y). Hence it follows from 

Theorem 3.3 that t---~t is always a majorant.  Furthermore,  choosing U = R  2, 
f(x, y ) =  x z, g(x, y ) =  x2+ y2, we have a case when k = 1, and since the maximal 
rank of f is 1, it follows as above from Theorem 3.3 that t--~ t 1/2 is a majorant.  

As for the majorant  properties claimed in the theorem, it only remains to 
prove that t--~t 5/6, t >- 1, is a majorant  when k =  1. It  suffices to show that 

t-5/6[[eiq[lA(s), t -- 1, (4.4) 
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is bounded for every fixed square S c U with sides parallel to the coordinate axis. 
Here the norm in (4.4) is interpreted in the same sense as the right hand member 
of (4.3). By a partitioning of the unit we find that it suffices to show the existence 
of a constant C such that 

Ile'~llA(s,~o,o) ~ Ct ~/6, (4.5) 

for every square St.~o,yo C S with center Xo, Yo, with side length t -1/3, and with sides 
parallel to the coordinate axis. At every (Xo, Yo) there exists a )to such that the 
Hessian of f - ) t o g  has rank <-1. By the assumptions on g, the values of Ao are 
uniformly bounded in S. Thus, for every (Xo, Yo) we have a representation 

f(x, y) - hog(x, y) = A + Bx + Cy + D(E(x  - Xo) + F(y - yo)) 2 

+ Gt,  xo,yo(X - Xo, y - Yo), 

(x, y)~ S,,x,,~o, 

where A, B, C, D, E, F are uniformly bounded, and where Gt.~o,yo has uniformly 
bounded partial derivatives of all orders, and where 

a,,xo.yo(~, ~i)= 0((~ 2+ ~12)3/2), 

as (~, ~)--)0, uniformly. Thus, by the same arguments as in the earlier proofs, 

Ile'gllA(s,. ..... )= [[exp ( i t (O(E(x -Xo)+ F ( y -  yo))2+ Gt,~o.yo(X -Xo, y - yo))llA(s, ...... ) 
= ]lexp (itl/a(D(E~ + F,I) 2 exp (itGt.,~.yo(t-1/3~, t-l%7))llA(so), 

where So is the square with corners (+�89 4-�89 By the submultiplicativity of the 
norm in A(So), 

Ile'~llA (~. . . . . .  ) -< Ilexp it 1/39 (Ee + Frl )211A (So)" Ilexp (itG,,~o.yo( t- 1/3 ~, t -  1/3 1"/))IIA (So)" 

The first factor is -- Ct lz6, for some constant C. This is seen from Theorem 3.3, or 
from Theorem 1.1, or by a direct estimate. The function in the exponent of the 
second factor is uniformly bounded and so are all its partial derivatives, hence the 
second factor is bounded. Thus (4.5) is proved, and we have shown that t---~ t 5/6 is 
a majorant, if k = 1. 

The discussion of the minorant properties can be performed as the corres- 
ponding parts of the proofs of Theorems 2.1 and 3.3. We fix ~,~ ~ ( R  2) with 

L~ ~b(x,y) dy 1, dx 

and Supp (0) included in the set Uo (the open set where k is attained). /z is the 
measure on O for which the projection into the xy-plane is the Lebesgue measure 
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multiplied by ~. Arguing as before we find that it suffices to show that 

lle -"r d~IIPM~R3)<-- Ct -k~2, (4.6) 

t >- 1, for some constant C. But the left hand member is the supremum of the 
absolute value of 

~ exp ( -  itf(x, y) - iux - ivy - iwg(x, y))O(x, y) dx dy, 

as (u, v, W) E R 3. The rank of the Hessian of the exponent is - k on Uo, and the 
rank of the Hessian of g is 2. Using Lemma 3.6 one sees directly that (4.6) holds. 

Now it only remains to give an example when k = 1, and t--->t ~:6, t>-'l, is a 
minorant. We take U = R  2, [(x, y ) = x 2 + x 3 - - y 2 + y  3, g(x, y ) = x 2 + y  2. It suffices 
to prove that 

t -5 /6  He"r[[A(K), t----- 1, 

has a positive lower bound, if S is the dosed square with corners (+ 1, + 1), and 

K = {(x, y), g(x, y)) I (x, y) ~ S}. 

By the usual arguments it suffices to show that for some ~b ~ fl~(R 2) supported by S 
and with 

~ O(x, y) dy = 1, dx 

~ exp (-itf(x, y ) - i u x - i v y - i w g ( x ,  y))0(x, y ) d x d y [  <-Ct -5/6, 

for some C, when (u, v, w ) s R  3, t -  > 1. We choose ~(x, y) of the form q~(x)q~(y), 
where q~ e ~(R) ,  and find that we have to prove that the product of 

A ( t , u , w ) = ] ~  exp(-i t(x2+x3)-iux-iwx2)q~(x)dx I 

and 

B(t, v, w ) =  ~ exp ( - i t ( - y 2 +  y3)_ ivy-  iwy2)q~(y) dy 

is -< Ct -5/6. By Lemma 1.6 there exists a constant Co such that 

A(t, u, w)<-Cot -1/3, B(t, v, w) <- Cot -1/3. 

By the same lemma, we have, for some constant C1 

A(t, u, w)<-C1t -1/2, if tw>--O, 



3 6 8  

and 

B( t ,  v, w ) < - C ~ t  -1/2, if tw<-O,  

and hence 

A ( t ,  u, w ) .  B ( t ,  v, w)  < - CoClt  -5/6 
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H={(x, O) l lxl~ l}. 

Let 

[e i~, (x, y ) e  G 

f(x,  y) = t l ,  (x, y) e H. 

is proved. This concludes the proof of Theorem 4.2. 

5. Here  we collect some minor observations, which may illuminate the earlier 
theorems. 

A. Let  F be the graph of the function g, defined by 

~e -(x-1)-1, x > 1 
/ 

g(x) l O, -1- -~x-<l  

e ( x + l ) - ~ ,  x <~ - -  l 

If x is considered as parameter on F, and f on F is defined by 

( 2e -(*-1)-', x > 1 

f ( x )  = ~0,  - 1 <-- x <- 1 

l e (x+~)-~, x < - 1 .  

Then f is locally at each point of F the restriction of a linear function on R 2. 
Hence there exists a constant C such that 

[le'WllA(r)-< C, t -> 1, (5.1) 

although f itself is not the restriction of a linear function on R 2. 
B. We shall now give a set F c  R z and a function f on F such that (5.1) holds 

while f is not even locally a restriction of a linear function on R 2. 
Let  F = G t.) H, where 

G ={(x, y) I Ixl-< 1, y = g(x)}, 

where g is real, g e C~([-1,  1]), g(0)= 0, g' positive, g"(0)# 0, and where 
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Then there is no neighborhood of (0, 0) where f is the restriction of a linear 
function. But it is easy to prove that 

lteirqtA(r)<--3 for every t~ R. 

C. Let us now change the setup of Example B so that H instead is defined by 

H = {(x, y) I lxl-< 1, y = h(x)}, 

where h is real, h e C~([-1,  1]), h(0) = h'(0) = 0, h"(0) # 0. Then we have instead 

Ile"ellA(~)~ o~, (5.2) 

as t - -~  oo. 

We shall show this by an indirect proof. If the norms in A(F)  of e "t are 
bounded, as t--*% we can find a sequence (t~)l, tending to infinity, and extensions 
(g~)~ of e "f to R 2 such that (gv)] ~ converges weakly* in B(R2), where B'(R 2) is 
considered as the dual of the Banach space X of Fourier transforms of functions 
in Co(R2). We denote the limit function by F. 

Let  ~ ~ ~(R)  have support in the set where g"#  0, and le t /x  be the measure 
on G for which the projection on the x-axis has density function ~. Then, by 
Lemma 1.6, p. c X, for its Fourier-Stieltjes transform /2 is given by 

/2(t, u) = i exp ( - i t x -  iug(x))O(x) dx, 

Thus 

0 = ~-~lim/2(t~, O) = ~-.~lim (g~,/x) = (F,/~) = L 

t ~ R .  

F(x, g(x))~b(x) dx. 

Varying ~b, we find that F vanishes in a neighborhood of (0, 0) on G. By a similar 
argument we find that F takes the value 1 on H in a neighborhood of (0, 0). The 
continuity of F gives a contradiction. 

6. Let F c R "  be compact, and let ct be a C ~ function from F to R" .  We are 
interested in the problem to determine those functions a which give a 
homomorphism of A(R m) into A(F)  in the sense that g ~ A  (R m) implies that 
g o a ~ A(F).  Let (al ,  a2 . . . . .  etm) be the representation of a by its real-valued 
components. Then the following theorem holds. 

T H E O R E M  6.1. ct gives a homomorphism of A ( R  m) onto A(F)  if and only if 

Ile"'llA~r), t~R,  (6.2) 

is bounded as t--.oo, for every i = 1, 2 . . . . .  m. 
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Proo[ of Theorem 6.1. If a gives a homomorphism, the closed graph theorem 
shows that 

IIg ~ c~llA,r> < CIIgllA~r>, 

for some constant C. Choosing g such that g e A(Rm), g(x) = e i~', x ~ F, where x~ 
is the i-th coordinate of x, we find that (6.2) is bounded. Conversely, if (6.2) is 
bounded for every i, I[g o atlA(r~ is uniformly bounded for all g which are bounded 
continuous characters on R m, and it follows from this directly that a gives a 
homomorphism. 

Theorem 6.1 shows that, with arbitrary m, and with F chosen as in Theorem 
1.1 or 2.1, or as in Example C of Section 5, then only linear functions a give 
homomorphisms. The same holds if F is a compact subset of the manifold O of 
Theorem 3.3 or 4.2, but  now assumed that a can be extended to a C = function on 
I~. On the other hand, in Example A of Section 5, all locally linear functions a 
give homomorphisms, and in Example B of the same section, c~ need not even be 
locally linear. 

Results can be obtained, in a similar way, concerning homomorphisms of 
spaces Aq(R m) into A(F).  Here q > 0, and Aq(R m) is the Banach space of Fourier 
transforms of functions g ~ R m with norm 

~ .  (l+[yl)"lg(y)[ ay. 

By duality we can also find results on the Fourier coefficients of a*(v),  where v is 
a pseudo-measure in the dual of A(F),  and c~* is the adjoint of a homomorphism 
Aq(Rm)--~ A(F),  given by a. It should be observed that the dual of A(F)  coincides 
with the space of pseudo-measures supported by F, if F is of spectral synthesis. 
This is the case for instance if F is given as in Theorem 2.1 (cf. [3] and [4]). 

We conclude by some remarks and state a few open problems. 
w Precise estimates for Ile'qllA~r), when F is an interval and [ has weak 

differentiability properties, have been given by Leblanc [7, 8]. 
w It would be of interest to determine the differentiability conditions needed 

to have the conclusion of Lemma 3.6. The extensions of Theorem 3.3 to higher 
dimensions deserves to be explored. At present it is not known whether the 
theorem holds without change for higher dimensions. 

w In Theorem 4.2, the gap between t 1/2 and t 5/6 is not yet explored. Nor is 
the possibility of high-dimensional generalizations. 

w In Example C, the exact rate of growth of (5.2) is not known. It has 
connections with the following problem: For positive weight functions oJ on R 2 
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such tha t  co(x) <- 1 + Ixl 1/2, x e R 2, we have in the  class of measu rab l e  funct ions g 

with g/co ~ L l a na tura l  way of def ining its Four i e r  t ransform ~ to vanish (or take  a 

cons tan t  value) a long a given curve with posi t ive  curvature  (s imply by  apply ing  

smoo th  measures  on the  curve,  and  observ ing  tha t  thei r  t ransforms are  O(Ix[-1/2)). 

Then  the p r o b l e m  is to dec ide  for  which to the  class conta ins  an e l e m e n t  g with 

tak ing  the value 0 on G and 1 on H, if G and H in the example  have  (0, 0) as 

only  c o m m o n  point .  
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