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Introduction 

A metric space Y is in~ective if every mapping which increases no distance 
from a subspace of any metric space X to Y can be extended, increasing no 
distance, over X.  ARO~SZAJ~r and PANITCH-PAKDI showed [1] that  topologi- 
cally, every injective metric space is a complete absolute retract, and asked 
whether the converse is true. I t  is obviously true in 1-dimensional spaces. But 
in 2-dimensional spaces there are additional necessary conditions. First, every 
injective metric space can be contracted to a point/reely, i. e. by a path {ht} 
of decreasing deformation retractions. Conversely, for 2-dimensional finite 
polyhedra, this condition is sufficient. I t  is equivalent (for any triangulation) to 
collapsibility in the sense of WHITEHEAD [ 5 ] .  In infinite 2-dimensional poly- 
hcdra, collapsibility is sufficient and free contractibility necessary, and it may 
be that  these properties are (still) equivalent. 

Second topological necessary condition: a locally compact injective metric 
space is locally triangulable at every homotopically stable point (in the sense 
of HOPF and PANNWITZ [4]). 

Three geometric theorems. (1) Every metric space X has a smallest con- 
taining injective envelope eX, which is compact if X is compact. (2) A com- 
pact injective space Y has a boundary, the smallest closed subset B such that  
r Y. (3) An n-dimensional compact injective space has at  least 2n 
boundary points and has injective n-dimensional subspaces with exactly 2n 
boundary points. Those subspaces may be chosen to be isometric copies of 
closed cells in n-dimensional l~ space. 

I am indebted to T. GAmmA and to W. B. WOOLF for some conversations 
concerning this material. 

1. Polyhedra 

By a mapping between metric spaces we mean a function / : X -> Y such 
that for all x, x' in X,  the distance d(/(x),/(x')) < d(x, x'). Y is an 
in]ective metric space if every mapping from a subspace of any space X to Y 
can be extended (to a mapping) over X. AROI~SZAJIq and PA~ITCKPAKDI 
introduced these spaces [1], calling them hyperconvex because of the charac- 
terizations which follow. 
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I t  suffices to  require t ha t  eve ry  metr ic  space consisting of  Y and  one more 
point  can be r e t r ac ted  upon Y. This reduces to the condit ion t h a t  any  set of  
closed solid spheres S (y~, r~) in Y such t h a t  for each ~ and  8,  r~ -~ r~ 

d(y~, y~), has a common point .  Equiva len t ly ,  (a) Y is convex (any 2 
sufficiently large solid spheres meet)  and  (b) a collection of solid spheres has a 
common poin t  if  eve ry  2 of its members  have  a common point.  

Note  t ha t  eve ry  solid sphere in an in jec t ive  space is an inject ive subspace. 
A /tee de/ormation retraction of a topological space X upon a subspace 

A is a h o m o t o p y  {ht} , t e [0 ,1 ] ,  such t h a t  h l : X - + X  is the  ident i ty ,  
h 0 : X -+ X is a re t rac t ion upon A,  and  every  composi t ion hsh t is h~ where 
r = min (8, t). A free deformat ion  re t rac t ion  to  a point  is a / t e e  contraction. 

1 .1 .  Theorem. An  injective metric apace is freely contractible to each of its points. 

Proof.  Le t  p be a po in t  of  the  inject ive space Y. We const ruct  a free 
cont rac t ion  {ht} with each ht r e t rac t ing  Y upon S ( p , t ) ,  such t h a t  
d(hs(x), ht(y)) <_ m ax  (d(x, y),  I s - -  t I), using ZORN'S Lemma.  Wi th  this 
prescribed modulus  of cont inui ty ,  we need only  show th a t  when {ht} is a l ready 
defined on a subspace Z of  Y, and  q is a point  not  in Z,{ht}  can be 
ex tended  over  a subspace containing q also. We m a y  suppose Z is closed; 
and we m a y  confine a t t en t ion  to the  solid sphere S ~ S(p ,  u) just  large 
enough to include q. On S,  ht(x ) ~ x for  t >_u. The non-tr ivial  homo- 
t o p y  h : ( Z f 3 S )  x [0, u ] - + Z N S  c S can be ex tended  to a cont rac t ion  
j : S • [0, u] -+ S ,  not  free bu t  having the  prescribed modulus of cont inui ty .  
Here  j({q} x [0, u]) mus t  be a shor tes t  pa th  J f rom q to  p; so j yields a 
free cont rac t ion  defined on Z and on the  pa r t  of J f rom q to where J first 
meets  Z .  

In  this paper ,  a polyhedron is a topological  space which is the body  of  a 
finite-dimensional simplicial complex,  wi th  the  metr ic  topology induced by 
defining the distance between two points  as the  m a x i m u m  difference in their  
barycent r ic  coordinates.  We remark  tha t ,  since the  complexes are finite- 
dimensional,  all reasonable distance funct ions  give the same topology;  and 
some rout ine  detai ls  concerning the  global t r ea tmen t  of  infinitely m a n y  
simplexes will be omi t t ed  below (1.6). 

A finite simplicial complex K is called collapsible [5] if  it  can be buil t  up 
f rom a point  by  successive adj unct ions of  single closed simplexes s such t h a t  s 
intersects  the  complex so far cons t ruc ted  exac t ly  in all bu t  one of  its maximal  
proper  faces. The ordered  set of  simplexes s, in the order of  their  adjunct ion,  
beginning wi th  a ve r t ex  s 0, is an  expansion of  K f rom s 0. For  infinite com- 
plexes, the  definitions are the  same, with the  provision t h a t  the  adjoined 
simplexes are well-ordered. 
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By finite combination of steps one can show, at least in dimensions ~4 ,  
that every complex built up from a point by attaching simplexes s each by a 
contractible subcomplex of its boundary is collapsible. On the other hand, 
since the elementary steps never add a vertex except when a 1-simplex is 
adjoined, one shows by a trivial induction that  a collapsible simplicial complex 
can be expanded from any vertex. 

We define a collapsible cubical 2-complex as a (cell) complex built up from a 
point by successive adjunction of edges and 2-cubes so tha t  (i) the intersection 
of any two of these cells is a common face or the empty set; (ii) no three 
2-cubes abcd, aden, a ~ b  occur; and (iii) each edge is attached to its prede- 
cessors by one vertex, each 2-cube by two adjacent edges. Again, we could 
admit 2-cubes attached by one edge or one vertex, by combining steps. (It 
is not clear whether the concept generalizes usefully to 3-complexes composed 
of cubes, or of octahedra, or not at all.) 

The next proposition is essentially outside the main argument, though it 
can be used in proving 1.3. 

1.2 .  A 2-dimensional polyhedron freely contractible to one of its points is 
freely contractible to each of its points. 

Details will be omitted; the special feature of 2-polyhedra is that  every arc is 
tame. In particular, every arc is a free deformation retract of a neighborhood of 
itself. Then to change a free contraction upon p to a free contraction upon q, 
consider the path followed by q in the contraction upon p. I t  is a monotone 
continuous image of an arc; hence it is an arc J .  Some neighborhood U can 
be deformed freely upon J ,  and some neighborhood V of q is contracted to 
p within U. Then using a real-valued continuous function that  is 0 at  q and 
1 outside V, damp the contraction so that  q does not move. One still has a 
free deformation retraction into U, and the rest is obvious. 

1.3.  I f  a freely contractible triangulated 2-polyhedron P consists of two 
subeomplexes Q, R ,  intersecting in a point or arc, then Q and R are freely 
contractible. 

The proof is omitted. 2-dimensionality is not needed. 

1.4 .  A freely contractible 2-dimensional finite polyhedron is collapsible in any 
triangulation. 

ProoI. Such a polyhedron P must have either a free vertex (lying on 
exactly one edge) or a free edge (lying on exactly one triangle); this is clear 
from considering a small open set in which the free contraction differs from the 
identity as soon as possible. Now if P is a closed simplex, it is collapsible (in 
that triangulation). Inductively we may suppose every freely contractible 
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proper subcomplex of P is collapsible. We shall be done when we find a 
vertex or an edge-path separating P into subcomplexes Q, R, for they are 
freely contractible by 1.3, so collapsible by inductive hypothesis, and in 
particular collapsible to a vertex of Q 13 R. In case there is a free vertex, the 
vertex joned to it  by an edge separates P .  Otherwise there is a free edge ab ; 
it lies on one triangle abe, and some subcomplex K of the pair of edges ac, 
bc separates P .  I f  K is connected it is a point or arc. I f  K is disconnected, 
its components are points or arcs, and each component separates because P 
is simply connected. 

I do not know whether 1.4 holds for infinite polyhedra. 

1.5.  A collapsible 2-dimensional simplicial complex can be subdivided to a 
collapsible cubical 2-complex. 

Proof. We define the subdivision by induction relative to some expansion 
{s~}. The 1-simplexes s~ will not be subdivided. Each triangle s~ will be 
subdivided into a number of quadrilaterals, with new vertices occurring only 
on the edge e~ by which s~ is not attached to its predecessors. There may 
be finitely many new vertices v~ previously introduced on the other edges of 
s~. From each vj, and from the (old) vertex opposite e~, draw two new 
edges to e~, none of these edges meeting except at  their origins vj. This 
subdivides s~ into several quadrilaterals and triangles; make each triangle into 
a quadrilateral by introducing a new vertex on e~. Clearly the resulting cubi- 
cal complex is collapsible. 

1.6.  Remark. To draw topological conclusions from 1.5 (which we mean 
to do), one should define a standard metric on these cubical complexes (e. g. as 
in 1.7) and add some details to the proof of 1.5. 

The next construction involves a standard 2-cube Q which it is convenient 
to present as the square in l~ space spanned by the four points ( •  1,0), 
( 0 , •  1). We may mention the center (0,0) and the 1-skeleton Q1 (the 
boundary) and the 0-skeleton Q0 (the four vertices). Note that  every two points 
of Q0 are joined by a segment in Q1. 

1.7. Every collapsible cubical 2-complex admits an injective metric. 

Proof. Metrize the complex L so that  each edge is a segment of length 1 
and each 2-cube a copy of Q ; define the distance between two points not in a 
common cell as the length of the shortest path joining them. Then L is at 
least a convex metric space. I t  will be convenient to note tha t  the 1-skeleton 
/~ is an even graph in which any two vertices are joined by a segment; thus the 
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sum of the  distances among any  tr iple  of vert ices is an even integer.  F u r th e r  
preliminaries: a subspace of  L isometric with Q0 lies in L ~ ff three of  its 
points are in L ~ (even if  one of  its points is in L ~ bu t  we do not  need tha t ) ;  
and it  is then  the 0-skeleton of  a 2-cube of  L .  (Easy inductions prove all this.) 

We must  prove  t ha t  a collection of solid spheres has a common point  if  
every two of  its members  have a common point.  Suppose first t h a t  L is a 
finite complex. Then  it  suffices to  consider spheres with rat ional  radii. More: 
since regular rec tangular  subdivision of all cells of L with mesh 1/n yields 
again a collapsible cubical complex,  homothet ic  to L ,  i t  suffices to  consider 
spheres whose centers are vert ices and whose radii  are integers. We shall prove  
by induction t ha t  when such spheres meet  pairwise, t hey  have a common point  
which is a ve r tex  or the center  of  a 2-cube. 

L,  being collapsible and  finite, consists of  a last cell q a t t ached  b y  haf t  of  
its boundary  to a collapsible subcomplex M .  As the  induced metr ic  on M 
agrees with the  metr ic  defined by  applying the present  construct ion to  M ,  the  
inductive me thod  is applicable. The  induct ive  step is t r ivial  ff  q is 1-dimen- 
sional. Then  suppose q is a 2-cube abcz, a t t ached  to  M b y  ab and  bc. 
Given an integer-valued funct ion / on some of  the  vert ices of L ,  sat isfying 
](x) + It(y) > d(x, y), we want  a ve r tex  or center  within ](x)  of  eve ry  x.  
Clearly it  exists in case It (z) ~ 0. 

Consider the  case /(z) ~ 2. The  sphere S(z,  /(z)) meets  M jus t  in the  
union of S(a,  / ( z ) -  1) and S(c, / ( z ) - - 1 ) .  Replacing S(z,  /(z)) with  
either of these subsets of  it, we get  a family  of spheres in M which would have  
a common point  (ver tex or center)  if  every  two of  t hem met .  We m a y  suppose, 
then, t ha t  there  are vert ices u and v with d(u, c) > ] (u) ~ It (z) - -  1 and 
d(v, a) > ](v) + ](z) - -  1. Of course d(u, a) and d(v, c) are smaller, and  
therefore smaller by  2. Then  there  is a ve r tex  or center  m within distance 
d(u, a) of  u, d(v, c) of  v, and  1 of  b, in view of  d(u, a ) ~ d ( u ,  c ) - -  

2 > / ( u )  ~- / (z )  - -  2 ~ / (u). Because of  the  large distances d(u, c), d(v, a) ,  
the distances of m f rom u,  v, and  b are exac t ly  the numbers  indicated,  and 
d(m, a ) =  d(m, c )~-2 .  

I f  m is no t  a ver tex,  we can replace i t  by  a ver tex .  For  m is the  center  of  a 
2-cube brst and is closer to  u and v than  b is. brst has a ve r tex  even 
closer to u ,  which can only  be s ; we get  d(u, s) ~ d(u, b) - -  2 and  likewise 
d(v, s) ~_ d(v, b) __ 2. Then  r is exac t ly  d(u,a) f rom u ,  d(v,c) f rom v, 
and 1 from b. 

There is a ve r tex  or center  x within d(u, a) - -  1 of  u ,  within 1 of  a ,  
and within 1 of  m. I t  follows t h a t  {m, x,  a ,  b} is a copy  of  Q0 and  thus  t h a t  
there is a 2-cube mxab in L .  Similarly there  is a 2-cube mycb in L. Wi th  
a b c z, this violates condit ion (ii) of  the  definit ion of  a collapsible complex.  
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In  case ~(z) ~ 1, consider the  th ree  possible points in S(z, 1), namely  
a, c, and the  center  h of  abcz. E v e r y  S(x , / ( x ) )  includes at  least one of 
them.  The  subset  of  (a,  h, c} lying in S(x , / ( x ) )  is order-convex in this 
order,  i .e .  i t  is not  (a,  c}. I f  i t  were, we would get an  impossible 2-cube abcz ~ 
f rom the  requi rements  t ha t  z' is within 1 of  a and  c and within / (x)  - -  1 
of  x. (Condit ion (i) of  the  definition is violated in t h a t  case.) 

I f  S(u , / (u ) )  meets  S(z, 1) in a and S(v, / (v))  meets  S(z, 1) in c, 
the  a rgument  of  the  case /(z) > 2 can be repeated ,  for we still have  d(u, a) = 
-~ d(u, c) - -  2 = /(u)  and the  corresponding condit ions on v. The remaining 
cases to  consider are {a} and {h, e} and the  similar case {a, h} and {c}; it 
will suffice to  t r ea t  the  first of  them.  Then  we have u closest to a ,  v closest 
to  c , / ( u ) : d ( u , a ) , / ( v ) - ~ d ( v , c ) ~  1. There  is a center  or ve r tex  m 
within /(u) of  u , / ( v )  of  v, 1 of a and 1 of b; and these distances are 
exac t  because of  d(u, b) and d(v, a). Since m is equidis tant  f rom a and  b, 
i t  is no t  a ve r tex  bu t  the  center  of a 2-cube abnx.  Since v is equidis tant  
f rom m and  b, and fu r the r  f rom a ,  it  is closer to  n ;  d ( v , n ) - ~ / ( v ) - - l .  
Then  there  is y within / ( v ) - - 2  o f  v, 1 of n ,  and 1 of  c; and these 
distances are exact .  This makes  cbny a 2-cube of  L ,  violating (ii) of  the 
definition, and  proving 1.7 for  finite complexes. 

For  the general  case, there  is a finiteness lemma.  

In the 1-skeleton o/a collapsible cubical 2-complex metrized as above, any two 
vertices are joined by only finitely many shortest paths. 

The  m a x i m u m  number  is the  m a x i m u m  number  of  maximal  chains between 
two plane lat t ice points.  To prove  mere ly  the  italicized assertion, i t  suffices to 
show t h a t  if a and  b are vert ices a t  dis tance n ~- 1 there  cannot  be three 
ver t ices  c, d,  e a t  distance 1 f rom a and  n f rom b. I f  there  were, there 
would be a ve r t ex  or center  of  a 2-cube f a t  distance 1 f rom each of c, d, e 
and  n - - 1  f rom b. Then  ( a , c , d , f } ,  ( a , e , e , [ } ,  ( a , d , e , f }  would all 
be 0-skeletons of  2-cubes, a n y  two o f  which have too m a n y  common faces. 

To app ly  this, we want  two more lemmas.  First ,  i t  suffices to establish the 
intersect ion p r ope r ty  for spheres wi th  integral  radii centered a t  vertices. Tha t  
will imply,  by  subdivision as before, t ha t  a n y  set of  conditions d(p, x) <_/(x) 
(where [ (x)  ~ / ( y )  2 d(x, y)) can be satisfied to within an arbi t rar i ly  small 
error  e > 0. To reduce the  error  to  0, find Pl with error  el; adjoin 
d(p, Pl) g el to  the  condit ions;  find p~ satisfying all these condit ions to 
wi thin  hal f  as large an error,  and  so on  to the  limit. 

Second, i f  a fami ly  of  spheres meets  pairwise then  every  finite subfamily 
meets.  Perhaps  the  simplest way  to prove  this  is to  use the sublemma:  i f  ~ 
- -  {%, ql . . . .  } is an expansion of  L and t = {%, q~l . . . .  } is a subsequence 
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of ~ and an expansion of a subcomplex M,  then f followed by the remainder 
of ~ in the given order is an expansion of L.  Then it is clear tha t  M is an 
injective subspace. As every finite set of points of L lies in a unique smallest 
such M, which is finite, the intersection property follows. 

Now given a function / on the vertices of any collapsible cubical 2-complex 
L such that  /(x) + / ( y )  ~ d(x, y), replace / by a minimal function satis- 
fying these inequalities; we shall still call it /. For each x, there is y such 
that /(x)-4-/(Y) = d(x, y), since f is minimal and integral. From the 
finiteness lemma, the set H = S ( x , / ( x ) )  fl S ( y , / ( y ) ) ,  for any such x and 
y, is compact. The traces of the other spheres on H are a family of closed sets 
having the finite intersection property; so the total intersection is not empty. 

The principal conclusion: 

1.8. Theorem. A 2-dimensional finite polyhedron is injectively metrizable if 
and only if it is freely contractible, and this is if and only if it is collapsible (in any 
triangulation). 

It  may be that  this generalizes to infinite polyhedra. Straightforward combi- 
natorics prove that  a simplicial complex is collapsible if and only if every 
finite subcomplex is in a collapsible finite subcomplex (by means of the lemma: 
any expansion of a subcomplex of a collapsible complex K is an initial segment 
of an expansion of K). Perhaps straight forward, delicate simphcial approxi- 
mation will prove a corresponding reduction for free contractibility, and that  
would complete the generahzation. 

I t  may be that  1 �9 8 generalizes to arbitrary polyhedra, but the present 
results scarcely suffice to suggest such a conjecture. 

2. Envelope and boundary 

We call a mapping of metric spaces e : X -+ E an in]ective envelope of X 
if E is injective, e is an isometric embedding, and no injective proper 
subspace of E contains e (X). Two injective envelopes e : X -+ E,  / : X --~ F 
are equivalent if they are related by an isometry i :  E -+ F .  

2.1. Theorem. Every metric space has an injective envelope and all of its in- 
jective envelopes are equivalent. 

Proof. We define an extremal function on X as a real-valued function f 
which is pointwise minimal subject to 

/(x) + / ( y )  ~ d(x, y) (2.2) 
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for all x, y in X.  Then / also satisfies 

/(x) -k d(x, y) ~ / ( y )  (2.3) 

for all x and y.  I f  this were false, one would define g to coincide with / 
except at y,  where g(y) -~/ (x)  -k d(x, y). By the triangle inequality, g 
satisfies (2.2); as g < / ,  we must conclude g ~ / .  

Therefore the difference between any two extremal functions /, g is bounded; 
any number ](x) "-k g(x) is a bound. Thus th ~ set sX of all extremal func- 
tions on X is a metric space with d(/, g)---sup [ / ( x ) - - g ( x ) t .  An iso- 
metric embedding e : X--> sX is defined by e(x)(y) -~ d(x, y). 

By (2.3), every extremal function is continuous; in fact, all extremal 
functions are equicontinuous. As also every limit of extremal functions is 
extremal, hence eX is compact if X is compact. 

(2.2) and (2.3) together are equivalent to 

for all x.  /(x) -~ d(/ ,  e(x)) (2.4) 

2.5.  Every function satisfying (2.2) is greater than or equal to some extre- 
real function. 

2.6.  I f  X is compact, then for any / in e X and x in X there is, by 
minimality, some y in X such tha t  /(x) -k/(Y)  ~- d(x, y). In general we 
have only /(x) -[-/(y) < d(x, y) -k 0, where 0 is any positive number and y 
depends on 0. 

2.7.  I /  s is an extremal /unction on the metric space s X ,  then se is 
extremal on X .  

Proof. Suppose the contrary. We get h e e X ,  h ~ se, h(x) < se(x). 
Define t on eX by t ( / ) -~s( / )  except at  e(x); t e (x )~-h (x ) .  To show t 
satisfies (2.2), it suffices to show 

re(x) + t(/) > d( / ,  e(x)) (2.S) 

for all / in sX (as t agrees with s elsewhere in sX) .  For any 0 :> 0, pick 
a y such tha t  / ( x ) + / ( y ) < d ( x , y ) + O .  I f  y----x or / = e ( x ) ,  then 
(within an error of ~) 2.8) holds. Otherwise te(x) ~- te(y) = h(x) -~ se(y) 

h(x) + h(y) ~ d ( x , y ) >  /(x) + / ( y ) - - O - ~ d ( / , e ( x ) )  + / ( y ) - - O .  More- 
over, since t coincides with s at ] and at  e(y), ( 2 . 4 ) a n d  (2 .3 ) imply  
t(/) + / ( y )  ~ te(y). Adding, te(x) + te(y) -~ t(/) + / ( y )  > d(/ , e(x) ) + ~/ (y) 
- -  0 -~ te(y). Since 0 is arbitrary, the proof is complete. 

2.9.  e X  is injective. 
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Proof. We use the criterion f rom [1]; any  closed spheres S(fa,  r~) such tha t  
always r~ ~- r~ �89 d(/~,/~) mus t  have a point  in common.  We m a y  suppose 
r is a funct ion defined on all of  e X ,  satisfying (2.2). Le t  s be an ex t remal  
function ~ r .  Then se belongs to eve ry  r( /)-sphere about  ].  In  fact  
se(x) - - / ( x )  -~ se(x) - - d ( [ ,  e(x)) ~_ s(/) for each x,  b y  (2.3); and / (x)  - -  
- - se (x )  ----- d(/ ,  e(x)) - - s e ( x )  ~ s(/), by  (2.2). 

2 .10 .  e : X - +  ~X is an injective envelope o] X and is equivalent to every 
injective envelope o/ X .  

Proof. A mapping  of  e X  into itself leaving X pointwise fixed must  take  
each f to some g such t ha t  d ( y , e ( x ) ) ~  g(x) ~ / ( x )  for all x ;  thus  i t  is 
the ident i ty .  Then  eX  cannot  be r e t r ac ted  upon any  proper  subset S con- 
taining X ;  S is not  injective.  Finally,  for any  inject ive envelope / :  X - ~  F ,  / 
can be ex tended  over  e X and e can be ex tended  over  F .  The  composed 
mapping e X -~ F - +  e X is the ident i ty .  Hence  ~ X -+ F is an i somet ry  upon 
its image. Hence  the image is injective;  so it is all of  F .  This completes the 
proof of 2 .10  and of 2.1.  

The proof  has shown also 

2 .11.  The injective envelope of a compact space is compact; the injective enve- 
lope of a finite space is a polyhedron. 

We define an end point of  a compac t  metr ic  space X containing more than  
one point  as a point  x such t ha t  for some point  y the  equat ion d(w, x) -~ 
§ d(x, y) ~ d(w, y) implies w : x.  (This implies y r x).  

2 .12.  I] x is an end point o/ X ,  then x is an end point o/the in]ective 
envelope ~ X ,  and every closed subset o[ e X not containing x lies in an in]eetive 
subspace o] e X  not containing x. 

ProoL The  definition gives us a certain point  y of X .  I f  x were between 
y and w in e X ,  we would apply  2 . 6 r o g e r  u in X s u c h t h a t  w i sb e tw een  
u and y.  Then  d(u, x ) ~  d(x, y) ---- d(u, y), a contradict ion.  I f  H is a 
closed subset of  e X  not  containing x,  so is K : H (J {y}. The  embedding 
of K in e X can be ex tended  to an embedding of  e K in e X ;  b u t  x cannot  
be in eK,  for the  funct ion d(x, k) on K is n o t e x t r e m a l .  

This proposi t ion is vacuously  t rue  in a space of 0 points, false in a 
space of  1 point .  I t  is t rue  for non-compac t  spaces if  we define an  end point  

x by  (~)(3 Y)(3 fl)[~ :> 0 ~ fl > 0] A [d(w, x) + d(x, y) < d(w, y) -~ f l - -> 
~ )  d(w, x) <: a] .  However ,  the not ion of  end poin t  is less interest ing in non- 
COmpact spaces, because the  following theorem fails. 
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2.13. Theorem. In  a compact injective space Y containing more than one 
point, the closure B of the set of end points is the smallest closed subset which is 
not contained in any injective proper subspace of Y .  

Proof. A closed set lying in no injective proper subspace must contain B, 
by 2.12. Supposing eB to be a proper subspace of Y, let y be a point not in 
eB  and consider /(x) ~ d(x, y) on eB.  By the triangle inequality, / satisfies 
(2.2). Since y is not an end point, for each x in eB  there is z in Y such 
tha t  y is between x and z; choosing z at  maximum distance past y,  z 
also is in eB because it is an end point. Hence / is extremal; y e e B .  

This set B will be called the boundary. 

3. Some other results 

The following remark will presumably be of central importance in any general 
theory of injective metric spaces. 

3.1.  Remark. Let Y be an injective metric space, and S a subspace 
such tha t  every point of Y is within 5 of some point of S;  then Y con- 
tains eS (by a non-unique embedding) and there is a retraction r :  Y--> eS 
which moves no point more than 8. I f  Y is compact, S can be taken to be 
finite. 

A converse : 

3.2. A complete metric space Y is injective i /[or every e ~ 0 there is an 
injective subspace S o/ Y such that every point o/ Y is within eo/  some point o/ S. 

Proof. Let / be an extremal function on Y. Select injective subspaces 
S~ coming within e n of every point of Y, where 27e~ < o~. There is p~ 
in S. within /(s) of each point s of S . ;  hence p.  is within / ( y ) ~  2e, of 
every point y of Y. Then since / is extremal, /(p,) < 2en, and the points 
p~ form a CAUCHY sequence converging to the required point p. 

Recall next tha t  a point x is homotopieally labile [4] if for every e > 0 there 
is a deformation of the identity mapping to a non-onto mapping, with the 
e-neighborhood of x deformed in itseff and the rest of the space remaining 
pointwise fixed. The weaker requirement that  no point moves more than E 
(rather, e/2) has the same effect, by an obvious damping argument. There is 
a stronger requirement in which "non-onto" becomes "omitting the value x"; 
if this is satisfied, we call x /reely labile. A non-labile point is homotopically 
stable; a point tha t  is not freely labile is weakly stable, or "stable in the sense of 
BOaSUK and JAWOROWSKI" [2]. 
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One sees a t  once 

3.3.  Every end point of an injective metric space is freely labile. Thus in a 
compact injective metric space, every boundary point is homotopically labile. 

On the other  hand,  every  finite-dimensional separable metr ic  space has 
weakly stable points [3]. This shows 

3.4.  A finite-dimensional compact injeetive space containing more than one 
point is not topologically homogeneous. 

Even in the infinite-dimensional case, a compact  injeet ive space cannot  be 
geometrically homogeneous.  I f  the  d iameter  is (for convenience) 2 ~-- d(x, y), 
there is a point  z d is tant  no more t han  1 f rom any  point,  and no au to i somet ry  
can take  x to z. However ,  it  is not  clear how one can find s t ruc ture  in the 
inhomogeneity.  Easy  examples show tha t  eve ry  point  m a y  be a bounda ry  
point. I do no t  know whether  eve ry  point  can be an end point.  

Applying the  fundamenta l  r emark  3 .1 ,  we get 

3 .5 .  Theorem. A locally compact injective metric space is locally triangulable 
at each homotopically stable point. 

ProoL Le t  x be a point  of the inject ive space Y having a compact  
neighborhood N .  We m a y  suppose N is inject ive bu t  not  locally t r iangulable 
at x. Then  for eve ry  s > 0, there  is a finite subset of N coming within e 
of every  point  of N ,  and there  is an inject ive polyhedron P c N coming 
within e of  eve ry  point  of  N .  There  is a deformat ion re t rac t ion  of N upon P 
which moves no point  more than  s; as x cannot  be interior  to P ,  points 
arbitrarily near  x are uncovered.  We can modify  the deformat ion  re t rac t ion  
to a deformat ion of the  iden t i ty  to  a non-onto  mapping,  affecting only the 
2s-neighborhood of  x.  Thus  x is labile in N and in Y. 

The theorem leaves something to  be desired, par t icular ly  since there  need 
not be a ny  stable points.  The  proof  establishes a trifle more than  was s tated.  
However, i t  is easy to  see t ha t  the s t ronger  s t a t emen t  t h a t  the  space mus t  be 
locally t r iangulable except  a t  bounda ry  points is not  a theorem.  

An n-dimensional  compac t  inject ive space admits  s-deformations upon its 
subpolyhedra for all s > 0, and therefore  contains n-dimensional  po lyhedra  - 
in particular,  i t  contains n-cells. Ev iden t l y  an n-dimensional  locally compact  
injective space has n-dimensional  compac t  inject ive subspaces, so t h a t  these 
spaces also contain n-cells. We can say more abou t  some of  these n-cells. By  
construction, t he y  occur in inject ive envelopes of finite sets of points  xl , .  �9  x~.  
If  the set of  ex t remal  funct ions on {xl . . . . .  x,,} is n- timensional,  there  mus t  
be an ext remal  funct ion f for which there  are n l inearly independent  func- 
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t ions g such t h a t  / ~- 2g is ex t remal  whenever  i ~ t < 1. There  are not  less 
t h a n  m/2 constraints  /(x~) -~/(xk) ~ d(x~, x~) (since each x~ occurs in one, 
b y  2.6);  and  t he y  imply  g(x~) -~- -g (x~) .  Moreover,  these are the  only  
constraints  on g near  0. I f  n of the  variables g(xj~) are independent ,  there  
are n o ther  variables g(xk~ ) -~ - -g ( x~ ) .  B u t  this means t h a t  the  restr ict ion 
of  / to a subset  of  2n  points is ex t remal  and  there  are n degrees of  f reedom 
for ex t remal  funct ions near  it. A neighborhood of  / is isometric with an open 
set in the  l~ space of  all functions on the  set {xj~). 

3 . 6 .  Theorem.  A n  n-dimensional locally compact injective metric space 
contains n-cells, some of which are injective envelopes of sets of 2 n points and are 
isometrically embeddable in n-dimensional l~ space. 

A n  n-dimensional compact injective metric space has at least 2n boundary 
points. 
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