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1. Introduction 

1.1. Let G be a group. A G-module A is said to be of type (FP),, if A admits 
a resolution 

�9 . . - - - , F , - - , F , _ , ~ . . . ~ F l - - , F o ~ A - - , O  (1.1) 

by free G-modules F~ which are finitely generated for all i -  < m. If the trivial 
G-module 7/is of type (FP)m - and this is indeed the most interesting situation - 
we say also that the group G is of  type (FP)m. 

If a G-module A is of type (FP)m then subgroups U -< G may or may not have 
the property that A is of type (FP)m when regarded as an U-module. Our paper 
aims to shed some light on the distribution of the subgroups U with respect to this 
dichotomy. We find that the situation is rather complex but not totally out of 
control if we assume that U contains the commutator  subgroup G'  of G. The 
main results have been announced in [6]. 

1.2. Our approach is based on and extends the "geometric invariant" XA 
which was originally introduced by Ralph Strebel and the first author for modules 
A over finitely generated Abelian groups Q[3], [4]. XA is a subset of the unit 
sphere S n-~ c ~n, where n is the 7/-rank of Q, and it was designed to contain the 
information as to whether a group G, which is an extension of Q by A, admits a 
finite presentation. Under  joint effort with Walter D. Neumann [5] much of the 
theory grew up to the case when G is an arbitrary finitely generated group and A 
a normal subgroup containing G '  and acted on by conjugation. 

The present paper adds a generalization in a new direction. We introduce, for 
an arbitrary finitely generated group G and any G-module A, a chain of higher 
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geometric invariants 

S " -  I D ~ ' ~  A )  _D - Y ~ ( G ;  A )  _~- �9 �9 D ~,k ( G  ; A )  _~" �9 �9 

containing the previous invariants as the special cases -Y~ and 
~'I(G; 7/). ~k(G; A) contains complete information as to which subgroups U -< G 
containing G'  have the property that A is of type (FP)k over U. 

1.3. We briefly give the definition of the higher invariants. By a character of 
G we mean a non-zero homomorphism Z : G ~ [~ into the additive group of the 
reals. Two characters are equivalent if they coincide up to multiplication by a 
positive real number. The equivalence class of a character x:G--* ~ thus is the 
straight ray from 0 through X in Hom(G,  ~ ) ~ " .  Hence the set of all 
equivalence classes [X] of characters X has the structure of a sphere which we 
denote by S(G). Attached to every point IX] E S(G) we consider the submonoid 
Gz = {glx(g)>-O} of G. Then, if A is an arbitrary left G-module and m an 
integer ->0, we put 

~v"(G;A) = {[Z] I A is of type (FP),, over 2eGz}. (1.2) 

The precise relationship with the invariants of [3] and [5] is the following. 1) 
To say that a module A is of type (FP)o means simply that A is finitely generated. 
Hence ~Y~ coincides with the invariant "YA of [3] by definition. 2) The 
invariant ~'N(G) of [5] is defined for an arbitrary finitely generated group G and a 
right G-operator group N: it consists of all points [X] e S(G) with the property 
that N is finitely generated as an operator group over a finitely generated 
submonoid of G x. It turns out that if N is the commutator subgroup G'  of G, 
acted on by conjugation from the right, 

7/ )  = (1.3) 

(see Proposition 6.1). The funny sign stems from the fact that 7/, on the left hand 
side, is a left module, whereas in [5] we have been using right action. It would 
disappear if one only could agree to consistent action. 

1.4. The main results of our paper are extensions of [5], Theorems A and B. 

T H E O R E M  A. ~ 'm(G;A) is an open subset of S(G) for every finitely 
generated group G and every G-module A. 
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T H E O R E M  B. Let G be a finitely generated group, N a subgroup of G 
containing G', and A a G-module. Then A is of  type (FP)m over N if and only if 
~ " ( G ;  A) contains the great subsphere S(G, N) = {Ix] ~ S(G) I x (N)  = 0}. 

The conjunction of Theorems A and B allows a similar application as in [5]. 
We note that the set ~ of all subgroups N with G ' -  < N-< G and rk~,(G/N)=j 
admits a natural map into the Grassmann space Gn,j of all j-dimensional linear 
subspaces of Hom (G, I~) ~ I~n; thus ~ carries the topology induced by ~---~ Gn.j. 
If A is of type (FP)m over N then S(G, N)~_ ~m(G', A) by Theorem B. But then, 
as Z " ( G ; A )  is open, it will also contain the subspheres S(G, N~) for Nl e ~  
sufficiently close to N. Hence we have 

C O R O L L A R Y  AB. The set of all N e ~ with the property that A is of  type 
(FP),, over N is open in ~. 

In particular, the set of  all groups of  type (FP)m in ~ is open in ~l. For m = 2 
this is closely related to a result of Fried and Lee. Indeed, groups of type (FP)2 
can also be characterized by the property that they admit presentations with 
finitely many generators and finitely generated relation module. Thus every 
finitely presented group is of type (FP)2-whether or not, conversely, every 
group of type (FP)2 is finitely presented is an open problem. The Fr i ed -Lee  
result [9] asserts that the set of all finitely presented groups in ~ is open in ~l. 

1.5. The crucial tools for the proof of both Theorems A and B are two 
descriptions of ~ ' ' ( G ;  A) in terms of a free resolution of the G-module A. One of 
these extends (and perhaps explains) the somewhat technical "equational 
definition" of Xc;,(G) in [5], Section 2. 

Before we give a brief sketch of these descriptions we make the following 
observation: the group ring 7/G is the ascending union of the free cyclic 
Gx-modules ~_Gxg k, 0 <- k c ~_, where g is an arbitrary element of G with x (g )  < 0. 
From this we infer that ~G  is flat as a Gx-module and that ~_G| is 
isomorphic to A for every G-module A. Consequently, we can apply the tensor 
product 7/G | x- to a finitely generated Gx-free resolution of A in order to obtain 
a finitely generated G-free resolution of A. This shows that if X"'(G;A) is 
non-empty then A is of type (FP)m over G. 

So we may assume that we are given a free ~G-resolution F ~ A  as in (1.1). 
For each i-> 0 we pick a specific basis X~ c_ F, (finite for 0 <--i-< m) and, without 
loss of generality, we may assume that ax d: 0 for all x e X~. In Section 2 we show 
how one can then associate to every character X : G ~ E a certain map v : F---* E U 
{oo} which formally behaves similar to a valuation on a ring and which we 
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therefore call the valuation on F extending X (with respect to the bases Xi). It is 
then natural to consider the "valuation complex" 

= {c  �9 F I v ( c )  >- 0}. 

Since v ( a c ) > - v ( c ) ,  for all c �9 F, F, is a subcomplex; but it is not, in general, 
exact. Its deviation from exactness in dimension j -> 0 is measured by the quantity 

Dj = sup inf {v(z) - v (  c ) l O =/= z �9 Fj, c �9 Fj + l , ac = z }. 
Z c 

It is convenient to extend this definition to the case j = - i  by using the 
augmentation map ~ : F,--~A, 

D_ 1 = sup inf { - v ( c )  I 0 =/= a �9 A ,  c �9 Fo, ~(c) = a }. 
a c 

T H E O R E M  C. The fo l lowing three conditions are equivalent  f o r  a non-  

negative integer m. 

(I) [ x l � 9  
(II) Dj < ~ f o r  each - 1 <- j < m; 

(III) The identity on A can be lifted to a chain endomorph i sm  cp :F---~F with 

the proper ty  that v ( ~ ( x ) )  > v(x) for  all x �9 Xi,  0 <- i <- m. 

Among the three descriptions of 2 " ( G ; A )  in Theorem C, Criterion (III) 
seems to be the most powerful one. In particular, Theorem A, the openness of 
E " ( G ;  A ) ,  is an immediate consequence. For the chain endomorphism q0 :F--* F, 
asserted to exist if [X] �9 E " ( G ;  A) ,  will also do for every point sufficiently close to 

[zl. 
The charm of Criterion (II), on the other hand, lies in the fact that it 

generalizes to a statement in terms of a project ive  resolution of A (cf. Section 
3.3); whence the consequence 

C O R O L L A R Y  D. I f  the G - m o d u l e  A admits a project ive resolution o f  length 

<-d then 

X ~ ( G ; A ) = X d ( G ; A )  

f o r  every m ~ d. 
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1.6. Some readers will probably find topological versions of Criteria (II) and 
(III) more attractive, and we do share these feelings. The topological version of 
(II) is stated in Proposition 6.1, and we use it to establish (1.3). 

The topological translation of (III), or rather of Theorem 4.2, is crucial for a 
homotopical version "27"(G) of the invariant, investigated by the second author. 
This will appear separately (see Section 6.5 and [12]). 

1.7. EXAMPLES.  In view of the ones given in [3], [4], and [5] there is 
certainly no shortage of examples for 27"(G; A) with m = 0 or 1. As to m -> 2 our 
computations of examples are still rather incomplete and technical; therefore we 
prefer here to confine with a few easy remarks, based on our general results, and 
hope to come back to a more systematic treatment of examples elsewhere. 

A point of the sphere S(G) is said to be rational if it can be represented by a 
character X : G---~ ~ with x(G)~_ E. If 2' is a subset of S(G) we write ~'~, for the 
set of all rational points in 27. Information on 27"(G; A)rat is often easily available 
from Theorem B. 

a) Let G be the fundamental group of a 3-manifold. Then 27~(G; 2V)rat 
coincides with its antipodal set (see [5]). So if [X] e 271( G,  7/)rat then , ~ ( G ;  E) 
contains the subsphere S(G, N ) =  {+Ix]}, N = k e r g ;  hence N is finitely gen- 
erated. Since N is a 3-manifold group this implies that N is, in fact, of type (FP)~. 
By Theorem B, it follows that +[X] e ~,m(G', 77) for each m >- 1. Whence 

27re(G; 7/)rat = E l ( G ;  ~7/)rat for all m - 1.* 

b) We find the same behaviour for G a one relator group. In fact, we then 
have even 

,T"(G; E) = ,TI(G; 7/), for each m -> 1, 

as was pointed out to us by Walter D. Neumann. Neumann's argument was based 
on K. S, Brown's explicit computation of 7,c,(G) for one relator groups [8]. In 
Section 7 we illustrate the techniques revolving around Theorem C, Condition 
III, by giving new proofs of both Brown's and Neumann's result. 

c) One relator groups and fundamental groups of non-closed 3-dimensional 
manifolds are prominent examples of groups of cohomological dimension <<-2. 
Because of their parallel behaviour in a) and b) above, the reader might wonder 
whether the assertion of Corollary D holds even for m = d - 1, perhaps at least 

* W. D. Neumann has shown that this holds without the restriction to rational points. 
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for A = 7/. This is not the case. Indeed, recall that a group N is of type (FP)~, if 
and only if N is finitely generated. Thus the assertion X2(G;7/)=.,w.,J(G;7/) 
implies, by Theorem B, that every finitely generated subgroup N <- G containing 
the commutator  subgroup G '  is also of type (FP)2. Now, let G = F(a, b)• 
F(x, y) be the direct product of two free groups of rank two on the exhibited 
generators. Then the subgroup N of G generated by {a, xb, yb} is normal with 
G/N ~ 7/. But Hz(N; 7/) is not finitely generated (N can be constructed by taking 
the free product of two free groups of rank two, amalgamated over a free 
subgroup of infinite rank [13]); hence N is not of type (FP)2. This shows that 
~ Y Z ( G ; 7 / ) ~ l ( G ; 7 / ) .  Straightforward calculation along the lines of Section 7 
shows that 272(G; 7/) is, in fact, empty. 

1.8. We are indebted to Ralph Strebel for a number of comments and an 
extended discussion on a preliminary version of this paper which have influenced 
our exposition. In particular, we use his comment that our original definition of 
[g] ~ 2;'= (via Criterion (II) of Theorem C) is equivalent to the (FP)m-property 
over the submonoid G x. The present concise version of (III), Theorem C, and the 
idea of extending our techniques to projective resolutions, in order to prove 
Corollary D, came up in the course of that discussion. We are also grateful to 
Walter Neumann and Ken Brown for discussions on the case of a one relator 
group, and to Ross Geoghegan for tutorials on his work with Michael Mihalik 
[10], which stimulated this research at an early stage. 

2. Valuations on modules and resolutions 

2.1. Throughout  this section X : G ~ E is a fixed character of the group G. We 
write E= for the reals supplemented with an auxiliary element ~ which, by 
definition, is greater than every real number and satisfies r + ~ = ~ = ~ + r for 
every r ~ E=. 

DEFINITION.  Let  A be a G-module.  A map v : A - - - ~ =  is said to be a 
valuation on A extending X if the following axioms hold 

v(a + b ) - m i n  (v(a), v(b)},  all a, b c A ,  (2.1) 

v(ga) = x ( g )  + v(a), all g ~ G, a c A ,  (2.2) 

v ( -a )  = v(a), all a c A ,  (2.3) 

v (0) = oo. (2.4) 
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Remark. 1) As usual one can deduce that (2.1) is an equality if v(a)4: v(b). 
Indeed,  if v(a) < v(b) then v(a + b) >- v(a) by (2.1); on the other hand, (2.1) and 
(2.3) applied to (a + b) - b yields v(a) >- v(a + b). 

2) If (p :A- - ,  B is a homomorphism of G-modules ,  then every valuation v on 
B extending g induces a valuation v* = v �9 (p on A extending X- 

2.2. Let F be a free G-module  with a fixed basis X. Given an arbitrary map 
v :X---, ~ ,  there is an easy way to extend v to a valuation v:F-- ,  ~ extending X. 

We put 

v ( 0 )  = 

v ( g x ) = x ( g ) + v ( x ) ,  for g e G ,  x c X ,  and 

v ( f ) = m i n  {v(y)  lny4:0}, if f =Zn,.y is the unique expansion of 04= 
f e F in terms of the Z-basis GX, ny e ~_. 

If we wish to express the dependence on the basis X we shall write ~'x : F---, R~ 
for the valuation v. Vx is thus defined relative to a choice of Vx(X) for all x �9 X. 
As we only consider cases where vx(X)  c ~ ,  our valuations Vx will always have 
the feature that 

v x ( f )  = = 0. (2.5) 

As a special case we have F=~_G with basis X =  {1}. Choosing v ~ ( l ) = 0  
yields the valuation v~2YG--,E= which is a valuation on the group ring in the 
usual sense provided 22G is a domain. 

We shall repeatedly need the following. 

L E M M A  2.1. Let F and F' be free G-modules on X and X '  respectively and 
let cp : F ~ F' be a G-homomorphism. Then 

Vx,(ep(f)) >- v x ( f )  + inf {Vx,(qJ(x)) - Vx(X)} 
x ~ . g  

for every f �9 F. 

Proof. The s ta tement  is obvious for f �9 X. For f = gx �9 G X  and f = Zn,y it 
follows by using the definition of Vx above.  
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2.3. We call two valuations v, v'  : A--~ ~ ~ equivalent if there are real numbers 
r , r '  such that v ' ( a ) < - v ( a ) + r  and v ( a ) < - v ' ( a ) + r ' ,  for all a e A .  As a 
consequence of Lemma  2.1 we have 

C O R O L L A R Y  2.2. I f  F is a finitely generated free G-module, then the 
equivalence class o f  the valuation Vx : F---~ ~ ,  defined in 2.2 does not depend on 
the choice o f  the basis X nor on the values Vx(X), x e X. 

Proof. A different choice of X amounts to composing v with an automorph-  
ism q~ :F---~ F. The corollary thus follows from Lemma  2.1 applied to qp and q~ 1. 

A similar argument  opens the possibility to define a canonical equivalence 
class of valuations on every finitely generated projective module P. Let t : P ~ F 
be a split embedding of P into a free G-module  F of finite rank, and choose a 
basis X of F. Then define v :P--+ ~ by putting v = Vx o t. 

L E M M A  2.3. The equivalence class of  v : P--~ ~ is independent of  the choice 

of  F, t, X,  and v(X) .  

Proof. Let F ' ,  t '  : P ~ F ' ,  and X '  ~_ F '  be a second choice, and let :r : F ~ P 
be a splitting of t. Then t ' =  qpt, where q~ :F---~ F '  is the homomorphism t ':r.  By 

Lemma 2.1 we obtain for every p e P, 

v~ ,O ' (p )  = v~ , (~ t (p ) )  

>- Vx( t (p ) )  + inf {Vx,(q~(x)) - Vx(X)}. 
X 

The inf term is independent  of p and < ~ .  Interchanging the r61e of F, t, X with 

F ' ,  t ' ,  X '  thus yields the result. 

2.4. We extend the notion of valuations on a (free) module F to free 
resolutions F - ~ A  of a G-module  A. We shall always assume that the resolution F 
is admissible, by which we mean that it has the following additional feature: For 
every i -> 0 the free G-module  F~ is endowed with a specific basis Xi c_ F~, and for 
this basis we have 8x 4= 0 for every x E Xi (here 80 is to be interpreted as the 
augmentat ion map F0- -A) .  Of  course, every G-module  A admits admissible free 

resolutions. 
We find it convenient to think of F as the free G-module  O g~n F, on the basis 

X = Ui>0 Xi. And we write F (m) for the m-skeleton F un) = I~) ~'I0 F, which is free 

with basis X (") = U~%0 Xi. 
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The resolution F is now equipped with the following valuation v : F---* IR ~. For 
each i >-0, the valuation v restricted to F/, denoted v,-: Fi---)E, is the valuation Vx. 
of Section 2.2, where the values of vi on Xi are chosen inductively by putting, for 
each x �9 Xi, 

0, if i = 0  
1)i(X) = Vi--I(C~X),  if i > 0 .  

One can then define the value on arbitrary elements of F by taking the minimum 
value on its homogeneous  components .  The reader can easily verify that the so 
defined map v : F---) ~ = satisfies (2.1)-(2.5) and has the additional property that 

v(Oc) >- v (c )  for every c �9 F. (2.6) 

Observe also that  v(F)  ~_ x ( G )  U {oo}. 

2.5. We mention a rather useful alternative description of v : F---* ~ ~. 
For every element  c e F we define the support  suppx c of c with respect to X. 

suppx c is a finite subset of G defined by the following inductive procedure.  
If c = Znyy is the unique expansion of c in terms of the 7/-basis Y = GX, 

ny �9 7/, y �9 Y, then 

suppx c = U suppx y. (2.7) 
ny~O 

If c = y e G X .  with i > 0, then 

suppxy  = suppx (ay) .  (2.8) 

If c = gx ~ GXo then 

suppx (gx)  = {g}. (2.9) 

Remark. Note that this definition includes the case of a free G-module  F 
(concentrated in dimension 0). In particular, for F = 7/G and X = { 1 } one obtains 
the usual notion of support  in the group ring. 

We leave the proof  of the following formal propert ies and Lemma  2.4 as an 
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exercise: 

suppx (c + c ' )  ~_ (suppx c) U (suppx c') ,  c, c '  �9 F, (2.10) 

suppx (gc) = g suppx c, g �9 G, c �9 F, (2.11) 

suppx (ac) ~_ suppx c, c e F, (2.12) 

suppx c = 0 r  = 0. (2.13) 

L E M M A  2.4. The valuation v : F - * N =  defined in Section 2.4 can also be 
described by 

v(c) = min X(suppx c), 0 4: c e F. 

3. The valuation subcomplex 

3.1. We retain the notation and conventions of Section 2. In particular, F is 

an admissible free resolution of the G-module  A and v : F - - ~ E ~  the valuation 
defined in 2.4. Then we consider the valuation subcomplex F~ - F  defined by 

= {c �9 v I v (c )  >- o} .  

It is immediate from (2.1)-(2.6) that F. is a Gx-subcomplex of F. 

L E M M A  3.1. The Gx-module F,~ is free of rank equal to the G-rank of F~, 
i>_O. 

Proof. For every x �9 Xi the value v (x ) c  E is attained on a group element 

(here we use admissibility!). So pick gx �9 G with X(gx)= v(x) and put X~ = 
{ g ~ l x [ x � 9  Then v ( x ' ) = 0  for every x ' e X ~ ,  and it is easy to see that 

Fi~ = EGxX~ is free on X~. 

3.2. The situation becomes particularly interesting when the complex FI,---" 
A ~  0 is exact and hence provides a free resolution of A as a Gx-module. The 
deviation from exactness can be measured as follows: For every j - > - I  we 
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consider the reduced cycles 

f ker (Fj--~ Fj_,) 
Zj = ] ker (F0--~A) 

if j -  > 1 

i f j  = 0 

i f j  = - 1  

Moreover, we think of Z_~ as equipped with the trivial "valuation" v:A---~E~ 
(v(a) = 0, for all 0 4= a e A). Then we define the deviation of a cycle 0 4= z e Z r by 

dr(z ) = v(z)  - sup v( O-lz). (3.1) 

Note that dr(z ) >-0 for all j >--0 by (2.6); d_l(z)  is, in general, not bounded below. 
Clearly Fo--~A--->0 is exact in dimension j if and only if dr(z)<-O for all 
0 4 = z E Z  r. 

DEFINITION. We say that F,,---~A---~O is essentially exact in dimension 
j (j -> -1 ) ,  if the function d i :~ \{0}  --~ 0~ has an upper bound. 

Occasionally it is useful to have an explicit value for this upper bound; so we 
put 

Dj = sup {dj(z)[O4:z  ~ Zr}. (3.2) 

T H E O R E M  3.2. Let F--~A be an admissible free resolution with finitely 
generated m-skeleton. Then [X] ~ Z "  ( G ; A) if and only if F,, ---, A --* 0 is essentially 
exact in all dimensions j with - l < - j < m  (in other words, D j < ~  for all 
- l _ < j < m ) .  

Remarks. 1) In [6] we introduced the invariants Z ' ( G ; A )  (for A =2~) in 
terms of essentially exact valuation subcomplexes. The striking fact that our 
definition can be rephrased in terms of the (FP)m-property over G x was pointed 
out to us by Ralph Strebel. 

2) Theorem 3.2 establishes, in particular, that whether F,, is essentially exact 
in all dimensions <m is independent of the choice of F. 

3) It is useful to observe that Theorem 3.2 remains valid if one replaces the 
valuation v by an arbitrary valuation w :F--,  ~ which, when restricted to the 
m-skeleton, is equivalent to v. The fact that Fw = {c e F 1 w(c) >- 0} is, in general, 
not a subcomplex" need not concern us. 

4) We shall see later that if [ X ] e Z ' ( G ; A )  then there exist admissible 
resolutions F--~A with finitely generated m-skeleton such that the valuation 
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subcomplex F,,-~ A - *  0 is, in fact, exact, (see 4.5 Remark 1). This would yield a 
constructive proof of Theorem 3.2. The non-constructive proof below, however, 
is much simpler. 

Proof (of Theorem 3.2). Let g e G  with x ( g ) < 0  and put Ek=gkFv,  
k = 0, 1, 2 . . . . .  Since gG x = Gxg, Ek is a Gx-subcomplex of F and is isomorphic 
to Fo. By Lemma 3.1. {Ek} is a filtration of F by finitely generated free 
subcomplexes. It is convenient to write F,, and ~;k for the chain complexes 
Fv ---> A ~ 0 and Ek---> A ~ 0, respectively. The condition that Fo is essentially 
exact in some dimension j >- - 1  amounts to saying that for every k c N there is 
some k'-> k with the property that the homomorphism//j(l~k)--->//j(~;k,) is zero. 
In this situation a variant on K. S. Brown's (FP)m-criterion [7], Theorem 2.2 
applies, asserting that this is equivalent to the condition that A be of type (FP)m 
over G x. 

Appendix 

Because we are in a slightly more general but at the same time much easier 
situation than [7], Theorem 2.2, (arbitrary modules A but only free action on F) 
we repeat Brown's argument for the convenience of the reader. 

To say that the maps Hj(~;k)---> Hj(Ek,) are zero, for k '  - k sufficiently large, is 
equivalent with saying that lim H P/j(Ek)= 0 for arbitrary direct powers //.  We 

prefer to interpret this in tetras of Ek, and the translation is given by the short 
exact sequence of chain complexes A ~ l~k--~ Ek (A concentrated in dimension 
-1) .  This gives rise to the isomorphisms Hj(~;k)~ Hj(Ek) for j > 0 and the exact 
sequence 

0--) Ho(Ek) --> Ho( E~, ) ~ A ---> H_I (Ek) -> 0. 

Hence the condition that Fv is essentially exact in dimension j, for some j -> - 1, is 
equivalent to the conditions 

l i m H H j ( E k ) = 0 ,  if j ->l ,  
k 

A induces a monomorphism li_i_~mIIH0(Ek)~-,/TA, if j = 0 ,  
k 

zi induces an epimorphism lim H H0(Ek) ~ HA, if /' = - 1. 
k 
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Now, 

ToffCx( II _Gx, A) = ( FI _Gx) | F) 
= W_ m n j ( (nZ6x )  | 

l imHi(HEk ), if j < m ,  

= R 

where we have used that F--~A is a flat resolution over G x, that | and 
commute with lim, that I-I commutes with the tensor product by a finitely 
generated free module, and that 1-I commutes with/-/# Hence the condition that 
Fo ~ A ~ 0 be essentially exact in all dimensions - 1 - < j  < m is equivalent to the 
condition 

(II~_Gx) |  is epimorphic, if m =0 ,  

o r ,  

(I-IT/G x) | c,A ~ I I A  is an isomorphism and 

Toffa*(l-I~_Gx, A)=O for all l <-j <m, if m > - l .  

This is precisely the Tor-criterion for type (FP)m, see e.g. [1] or [2]. 

3.3. It is useful to reinterpret Theorem 3.2 in terms of a projective resolution 
P ~ A  with finite m-skeleton. Let us assume that P is admissible in the sense that 
for all i -> 0, aP~ q: 0 unless P /=  0 (with ao interpreted as the augmentation map). 
By carefully choosing projective complements Qi for P, we find an exact 
admissible projective complex Q such that P ~ Q = F is a free resolution of A 
with finitely generated m-skeleton and retains the admissibility condition above. 
Then it is also easy to choose suitable bases X~ c_ F/such that F is admissible in the 
sense of Section 2.4. Let us consider the valuation subcomplexes Pv = P N Fv and 

It is easy to observe that F~ is essentially exact in dimension j if and only if 
both P~ and Qv are essentially exact in dimension j. We claim that Fo is essentially 
exact in all dimensions < m  if and only if Po is essentially exact in all dimensions 
<m. And to prove this we have to show that Q~ is always essentially exact in 
dimensions <m. 

NOW, Q can be regarded as a projective resolution of the trivial module 0. 
Again we find an admissible projective complement R such that Q ~ R = E is an 
admissible free resolution of 0 with finitely generated m-skeleton. Let w : E---~ E~ 
denote the corresponding valuation. Then Theorem 3.2 asserts that Ew is 
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essentially exact in all dimensions <m, hence so is Q~ = Q N Ew. But by Lemma 
2.3 v and w, when restricted to Q(m), are equivalent. Hence Q,, is essentially 
exact in all dimensions <m. Thus we have proved that whether F,, is essentially 
exact in all dimensions < m  can be read off from P~. 

We summarize: 

T H E O R E M  3.3. Let P- - -A  be an admissible projective resolution with finite 
m-skeleton; consider a valuation v :P('~)-+ ~ by choosing valuations ui on each 
finitely generated projective module P~, i < - m, as in Section 2.3. Then P~T ) is 
essentially exact in all dimensions <m if and only if [g] ~ ~v"(G;A).  

The effort to establish Theorem 3.2 for projective resolutions is rewarded by 
the following application: Let A be a G-module of projective dimension - d .  If 
Z d ( G ; A )  is not empty then A must be of type (FP)d and so has a projective 
resolution which is both finitely generated and of finite length -<d. Then P,, is 
obviously exact in all dimensions ->d. Whence 

C O R O L L A R Y  3.4. I f  the G-module A has a projective resolution o f  finite 
length <-d then 

Z m ( G ; A ) = ~ a ( G ; A ) .  

for every m >- d. 

4. Criteria for Z ' ( G ; A )  

4.1. We keep the notation and conventions of Section 2; in particular, F is an 
admissible free resolution of the G-module A, and v : F - - - ~ =  is the valuation 
extending X: G---~ R defined in Section 2.4 (or 2.5). 

The main technical result of this paper, which makes ,~m(G;A)  to some 

extent accessible, is 

T H E O R E M  4.1. Assume that F--~,A is an admissible free resolution with 
finitely generated m-skeleton F (m). Then [X] eZra(G; A)  if and only if there is a 
chain endomorphism cp :F---~ F, lifting the identity o f  A,  such that v(cp(x)) > v (x )  
for every basis element x ~ X (m). 

Proof. Let  us first assume that a chain endomorphism cp : F--+ F as mentioned 
in the Theorem,  exists. Since tp lifts the identity of A we can choose a chain 
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h o m o t o p y  o : q0 = Idv. For m > i - 0 we consider  the two real numbers  

r = min { v ( ~ ( x ) ) -  v(x)} ,  
x~XI+I 

s = min { v ( o ( x ) )  - v(x)}.  
xeX, 

By assumpt ion we have r > 0. Let  z e F,_ t be a cycle. Then z = Oc for some c e F,. 

We claim that  c can always be chosen with v ( c ) > - v ( z ) +  s. Indeed,  if v ( c ) <  

v ( z )  + s we replace c by c '  = c + Oo(c) = q0(c) - o(Oc) = q0(c) - o ( z ) ;  and find 

v ( c ' )  >- min {v(q0(c)), v ( o ( z ) ) }  

- > m i n { v ( c ) + r , v ( z ) + s } ,  by L e m m a  2.1. 

Hence  ei ther  v ( c ' )  >- v ( z )  + s or  v ( c ' )  >- v (c )  + r. In the first case we are done;  in 
the second case we have at least increased the value of  v (c )  by the positive 

quant i ty  r. Hence  repeat ing the procedure  will eventually produce  c ~ F, with 

Oc = z and v ( c )  >- v ( z )  + s. By definition this means that F,, is essentially exact in 
dimension i - 1. Hence  [X] r -Y"(G;  A) by T h e o r e m  3.2. 

Now we assume,  conversely,  that  [X] e X " ( G ;  A) .  Then  T h e o r e m  3.2 asserts 
that  Dj, as defined in (3.2), is finite for all - 1 - - < j  < m. Hence  every real number  

D > Dj has the proper ty  that  for  every z e Zj there is c e P~+t with 3c = z and 
v(c )  >- v ( z )  - D. 

We pick an e lement  g e G whose  value x ( g ) =  l will be specified later. For  

each x e X0 we apply T h e o r e m  3.2 for j = - 1  to choose  G e F, with acx = g-~ ax 

and v ( G )  > - - D o  (Oo is to  be in terpreted as the augmenta t ion  map) .  Putt ing 
q)(x) = gcx then yields a h o m o m o r p h i s m  q9 : F~--* F~ lifting the identi ty of  A,  with 

v(cp(x))  >- l - D-1 for every x e X0. Using L e m m a  2.1 we deduce that  even 

v(qo(c)) > v ( c )  + inf (v(qo(x))  - v (x ) )  
Xo 

> - - v ( c ) + l - D _ l ,  

for  every c e Fo. 
Assume ,  inductively,  tha t  a chain map  cp : F(J)---~ F u) has been  cons t ruc ted  with 

the  p roper ty  tha t  

j - - I  

u(cp(c)) >- v (c )  + l - ~ D,, 
i = - - I  
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for every c �9 F# We apply Theorem 3.2 again, in order to find, for each x �9 
a chain cx �9 Fj§ with Oc,, = cp(ax) and with v(cx)>--v(q~(Ox)) - D# Then,  putting 
q~(x) =Cx yields a chain endomorphism q~ :F(J§ with the property that 

for every x e Xj+l 

>- v(q (ax)) - o ,  

>- v(Ox) + inf (v(cp(x)) - v(x))  - D i 
x , ,  

J 
>- v(x ) + l - ~ Oi, 

i = - - I  

where we have used L e m m a  2.1, (2.6), and the induction hypothesis. Using 

Lemma 2.1 again we find 

J 
O,, 

i = - - 1  

for every c �9 Fj+l. 
It suffices now to choose l > D _ j  +Do+ "'"  +Dm_~. Since D;->0 for all i> -0  

we then have I > D _ ~ + D c ~ + . . . + D  i_~, for all j with 0 - < j < m ,  whence 
v(ep(x)) > v(x)  for every x �9 X (m), as asserted in the theorem. 

4.2. We shall also need a variant on Theorem 4.1 which makes a stronger 
conclusion at the expense of modifying the given free resolution F by e lementary 
expansions in the sense of simple homotopy theory of J. H. C. Whitehead. 

We recall that an elementary expansion F depends on the choice of an 
element u c Fj, ] -> 1, and is defined as follows: adjoin a new basis element e to Xj 
and define ae = 9u. Then,  in order to kill the j-dimensional homology created by 
the first move,  adjoin a new basis element e '  to Xi+t and define 0e '  = e - u. It is 
easy to check that ~' is again a free resolution (of the same G-module) ,  and if 

au :/: 0 and F is admissible, so is ~'. 

T H E O R E M  4.2. Let A be a G-module of  type (FP),,. Then [X] �9 X " ( G ,  A)  if  
and only if there exists an admissible free resolution F--~A with finitely generated 
m-skeleton, a chain endomorphism r F, and a chain homotopy o'q~ = Idv, 

such that 

v(cc(x)) > v(x)  for every x e X ("') (4.1) 



480 ROBERT BIERI AND BURKHARDT RENZ 

and 

o(Xi) ~_ Xi+l U {0} for every 0 <- i <- m. (4.2) 

The resolution F is obtained by performing a finite sequence of  elementary 
expansions on an arbitrary admissible free resolution of A with finitely generated 
m -skeleton. 

4.3. Before we prove Theorem 4.2, we draw some consequences of (4.1) and 
(4.2) which will be needed both for the inductive proof and for later applications. 

LEMMA 4.3. Under the assumption of Theorem 4.2 there is a real number 
t > 0 with the property that we have for every chain c �9 F <m) 

suppx o(c) ~_ suppx c U Go(c)+,, (4.3) 

where G,, for any r �9 ff~, stands for the set {g e G ] x (g )  >- r}. Consequently 
v(o(c))  >- v(c). Moreover, the largest possible value for t is 

t =  min { v ( ~ ( x ) ) - v ( x ) }  (4.4) 
x~X~m~ 

Proof. Assume, for the moment ,  that (4.3) holds for all c = x �9 X (m), Then, as 
is clear from (2.11) and (2.2), it holds also for c = y  �9 G X  (m). And using (2.10) 
and (2.1) one obtains the assertion for arbitrary c �9 F (m). 

It remains to prove (4.3) for c = x �9 X (m) and we do this by induction on m. 
For every x �9 X (m) we have 

suppx a(x)  = suppx ao(x),  by (4.2) 

= suppx (qg(x) - x - a (3x) )  

_~ suppxx U Go(x)+, [._) suppx o(3x),  

by (2.10) and (4.1) 

For x e Xo, o(ax)  is to be interpreted as 0. The induction is now obvious. 

4.4. Proof (of Theorem 4.2). Assume first that F, q0 : F---~ F and o : q~ - IdF as 
in the theorem exist. Then we observe that the real number s, defined in the first 
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part of the proof of Theorem 4.1, is now ->0. The proof of Theorem 4.1 then 
shows that Fo ~ A ~ 0 is, in fact, exact in all dimensions <m. Hence A is of type 
(Fe)m over G x, that is, [%] �9 Z'm(G; A). 

Now we assume, conversely, that [X] �9 Zm(G; A). We start with an arbitrary 
admissible free resolution F--~A with finite m-skeleton, and aim to construct q0 
and tr step by step while modifying F in terms of elementary expansions. 

First we follow the proof of Theorem 4.1 to find a homomorphism ~ : E~---~ Fo, 
lifting the identity of A, and such that (4.1) holds for all x �9 Xo. Then we perform 
for each x �9 Xo an elementary expansion by adjoining, in first move, a new basis 
element e~ to X1 with Oex= qv (x ) -x .  Note that qg(x)-~x by (4.1), so that F 
remains admissible. Then we define o:  Fo---~ F~ by putting o ( x ) =  ex. 

Now we assume, inductively, that we have already constructed F, q0 :F---~ F 
and o:  q9-~ IdF in dimensions --<m - 1 with the property that (4.1) and (4.2) hold 
in these dimensions. In order to construct ~ : F m ~  F,, we then consider the real 
number 

r =  m i n  {v(cp(x))-v(x)}, 
X E X m -  1 

which is positive by assumption. Using Lemma 2.1 we find that v(q0(t~))- > 
v(t~) + r, for every E �9 Fm_~. Hence we have for c �9 Fm and k �9 ~,  

V(cpk( Oc)) >-- V(cpk-I(OC)) + r 

>-- V( aC ) + kr. 

q~k(Oc) is, of course, an ( m -  1)-cycle; and since [ X ] � 9  we know, by 
Theorem 2.3, that there must be some m-chain ~ �9 F,, with O6 = q0k(ac) and 
v(6)>--v(cpk(ac))-D,  for any D > D m _ I .  Hence,  by choosing k larger than 
Din_Jr, v(E) > v(ac) .  In this fashion we find for each x �9 Xm a chain cx �9 with 
OCx = cpk(Ox) and v(c~) > v(Ox). 

Now we put 

~ ( x )  = c ,  - o ( c ;  + q~2 + . . .  + cpk-~)(ax), x �9 Xm. (4.5) 

With this choice of q0(x) we have, for x e Xm, 

v(cp(x)) >- min {v(cx), v(crcpi(ax)) I 0 < i < k} 

-> min {v(cx), v(cpi(Ox)) [ 0 < i < k},  
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by induction and Lemma 4.3. By induction, again, it follows that v(qg(x))> 
v(ax)  >_ v(x) ,  as required. The homotopy property of o in dimensions -<m - 1 
together with atpi(~gx) = 0 yields 

ao '(ax). 

Hence, by (4.5), 

a (x) =  k(ax) - ao(  + + - - -  + 

=  o(ax), 

which shows that (p :F('~)--~ F ('~ is indeed a chain map satisfying (4.1). 
It remains to perform, for each x e X,, with q;(x) :/:x + o(ax),  an elementary 

expansion the first move of which being adjunction of ex to X,,+~, with 
ae~ = q ; ( x ) - x  - o(gx). Then we define o:Fm--~F,,+I by putting o(x) =e~, if 
qg(x) 4:x + o(3x) ,  and o(x) = 0 otherwise. This completes the proof of Theorem 
4.2. 

4.5. Remarks. 1) The proof of Theorem 4.2 shows, in particular, that if 
[X] e Z ' ( G ; A )  then there is always an admissible free resolution F---A whose 
valuation complex F,,---~A---~0 is exact. This yields a proof of Theorem 3.2 
avoiding Brown's (FP)m-criterion. 

2) The proofs of Theorems 4.1 and 4.2 yield somewhat stronger necessary 
conditions for IX] e Zm(G; A)  than the statements of the theorems, namely 

PROPOSITION 4.4. Let F--~A be an admissible free resolution with finitely 
generated m-skeleton. If [X]E~,m(G;A) then every chain endomorphism 
(p :F~-l)--~ F ~m-t~, with v(q~(x)) - v(x)  > D,,,_j for all x e X , , - i ,  can be extended 
to a chain endomorphism qv:Ftm)---*F ('~), with v ( q g ( x ) ) - v ( x ) > O  for every 

X E,;~rn. 

PROPOSITION 4.5. Let F--~A be an admissible free resolution. Let cr : F,--~ 
Fi+l, 0 <--i < m  be a sequence of homomorphisms such that v (o (x ) )>-v (x )  and 
v(x + o(ax) + go(x))  > v(x)  for every x e X tra-la. I f  Ix] e Z " ( G ;  A)  then o can 
be extended to o:Fm ~ Fm+ j such that v (x + o(ax)  + a o(x)) > v (x) for all x e X,,,. 

Proposition 4.5 is immediate from the proof of Theorem 4.2 and the 
observation that the chain endomorphism q7 can always be expressed in terms of 
O. 



Valuations on free resolutions and higher geometric invariants of groups 483 

4.6. We shall now have to consider more than just one fixed character 
z:G--* ~ at a time. Thus, from now on we write v x for the valuation v :F---~ ~ 
extending X defined in Section 2.4 (or by Lemma 2.4), in order to express its 
dependence on X. 

Using Lemma 2.4 we make the elementary but crucial observation that 
evaluation at an element c � 9  yields a continuous map e : H o m ( G ,  ~ ) - - - ~ ,  
e(X) = vx(c). This has, in particular, the consequence that if a chain endomorph- 
ism q0:F---~F, with the properties stated in Theorem 4.1, exists for some 
X � 9  (G, [~), then the very same q~ will do for all characters sufficiently close 
to ;t. Hence Theorem 4.1 has the immediate 

C O R O L L A R Y  4.6. Zm(G; A) is an open subset orS(G) ,  for every G-module 
A and all m >- O. 

4.7. We close this section by extending Theorems 4.1 and 4.2 from the 
singleton {[X]} to a compact subset of S(G). 

T H E O R E M  4.7. Let F--~A be an admissible free resolution with finitely 
generated m-skeleton. Then the following three conditions are equivalent for a 
compact subset F c S(G). 

(i) F c _ Z " ( G ; A )  
(ii) there is a finite set q9 of chain endomorphisms ~:F---> F, lifting IdA, with 

the property that for each point [X] �9 F there is some q~ �9 dR with 

vx(tp(x)) > vx(x), for every x �9 X ('). (4.6) 

(iii) After replacing F by a suitable admissible free resolution, obtained by 
performing on F a finite sequence of elementary expansions, we can find a set dp as 
in (ii) and for each cp c (p a chain homotopy o:  q9 ~- IdF with o(Xi) ~_ Xi+l U {0} 
for every i with 0 <- i <- m. 

Proof. ( i ) ~  (iii) Following the proof of Theorem 4.2 we find for each point 
[X] �9 F a homomorphism q~z :F0---~ Fo, lifting IdA, such that (4.6) holds for q~ = q9 x 
and m = 0. But if (4.6) holds for some q~x then the very same q9 x can be used in an 
open neighbourhood of [X]. Hence,  by compactness of F, there is a finite set q~o 
of ~x's such that for each [X] �9 F there is some q9 �9 q~o satisfying (4.6) for m = 0. 

Now we perform for each x e Xo and each q~ �9 qhJ an elementary expansion 
adjoining a new basis element to X~ with 3ex,~ = ep(x) - x  (note that qg(x) - x  is a 
cycle in the sense that its augmentation image is zero). Then we replace F by the 
new resolution which is again admissible since q~(x)4:x for each x �9 Xo. And we 
define a~ : Fo---~ F~ by putting a~o(x) = ex,~ for every x e X0. 
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Assume now, inductively, that we have already constructed a finite set r 
of chain endomorphisms of Y r such that for each IX] e F there is tp e tP,,_1 
satisfying (4.6) for m replaced by m - 1, and a chain homotopy o : ep - IdF with 
o(Xi) ~_ Xi+t t2 {0), 0-< i - < m -  1. According to Proposition 4.4, q9 can then be 
extended to a chain endomorphism ~x :F(m)---> F (m) satisfying (4.6). But if this is 
so for some q9 x, the very same q9 x will do for an open neighbourhood of [X]. 
Hence,  again by compactness of F, it follows that there is a finite set tp,,, of  qgx's 
(finitely many extensions of the endomorphisms in r such that for each 
[X] e F there is some tp e q~,~ satisfying (4.6). 

It remains to perform for each r e r  and each x e X,, with qg(x):/:x + 
o~o(ax) an elementary expansion in order  to extend the chain homotopy cr~ to 
dimension m. 

The implication (i) ~ (ii) is similar and easier than (i) ~ (iii) and can be left as 
an exercise. The converse implications ( i i ) ~  (i) and ( i i i ) ~  (i) are obvious from 
Theorems 4.1 and 4.2. This completes the proof of Theorem 4.7. 

5. Type (FP)m over normal subgroups 

5.1. In this section we consider a finitely generated group G and a normal 
subgroup N<3G with Abelian factor group Q = G/N. As before A will denote a 
G-module of type (FP)m. Then A may or may not be of type (FP)m over N - the 
information as to whether or not it is of type (FP)m is contained in the invariant 
~m(G;A). For we shall prove 

THEOREM 5.1. A is of type (FP)m over N if and only if S(G, N)c_ 
27~(G; A). 

Here,  S(G, N) stands for the subsphere of S(G) consisting of all points 
IX] e S(G) with x(N)= 0. Note that the canonical projection n : G  ~ Q induces 
an embedding ~r* : S ( Q ) ~  S(G) which maps S(Q) isomorphically onto S(G, N). 
Also, S(G, N) remains unchanged if we replace N by a subgroup N1 of finite 
index in N. Since type (FP),, over N is equivalent to type (FP),, over N1 for the 
G-module A, we can thus replace N by the preimage of the torsion subgroup of 
Q and assume that Q is free Abelian of  finite rank n. 

5.2. We start with the easy direction of Theorem 5.1, which is the assertion 
that A of type (FP)m over N implies [g] e Xm(G;A)  for every character x:G--~ 
with x(N) = 0. We first have to establish a very special case 



Valuations on free resolutions and higher geometric invariants of groups 485 

L E M M A  5.2. I f  G is a group of  type (FP)m with centre Z then Z'm(G; ~) 
contains the complement of  the subsphere S(G, Z)  in S(G). In particular, if G is a 
finitely generated Abelian group then 2 " ( G ;  2e) = S(G) for all m >- O. 

Proof. Let F--~2' be a G-free resolution with finite m-skeleton,  and let 
X : G ~  R be a character not in S(G, Z). Then there is an element  z ~ Z with 
X ( z ) > 0 ,  and multiplication by z yields a chain-endomorphism q~:F--->F as 
required in Theorem 4.1. This shows that [X] 6 Xm(G; Z). 

Now we take the short exact sequence N ~ G --~ Q and the G-module  A as in 
Theorem 5.1 and assume that A is of  type (FP)m over N. Let F--~A be an N-free 

resolution with finite m-skeleton,  and let X : G---, E be a character with x(N)  = O. 
Then N ~_ G x and ZG x |  F is a 2~Gx-free resolution with finite m-skeleton of the 
Gx-module Y-G x |  The Gx-action on the tensor product is given by the action 
on the left hand factor. Since A is a G-module  we have a Gx-isomorphism 

7/Gx @NA ~ 7/Qx @ A, 

given by g | a ~--~ n (g)  | ga, g ~ G x, a ~ A, where n : Gx --~ Q x is the canonical 
projection and with the diagonal Gx-action on the right hand side. By L e m m a  
5.2, there is a Qx-free resolution E--~ 7/with finite skeleta, whence a resolution of 
the Gx-module A by modules Ei | A ~ (2~Q x | A) m. Each of these modules is of 
type (FP),, over G x, hence so is A by the usual mapping cone argument.  The 

easy direction of Theorem 5.1 is thus established. 

5.3. Before we can prove the more subtle direction of Theorem 5.1 we need 
some further notation. We identify the free Abelian group Q with the integral 
lattice of the Euclidean space En, n = rkQ. We do this for two purposes. On the 
one hand, the inner product of E n allows one to identify the sphere S(G, N) with 
the unit sphere Sn-lc_ R n by assigning to each u ~ S n-1 the point [X,] c S(G) 
represented by the character Xu, 

zu(g) = (u, n (g ) ) ,  g C. 

We shall f rom now on identify u with [X,] and write v ,  : F-- ,  E ~ for the valuation 
extending Xu on a free resolution as defined in Section 2.4 (or formula (2.5)). On 
the other  hand,  we can also consider the norm map II'" "ll : G - - * ~ ,  where the 
norm on a group e lement  g ~ G is simply defined to be the norm of its image 

under the canonical projection :r:  G -~ Q ~ R", tlgll = I I n ( g ) l l .  
The norm map  G---*~ is, of course, not a character,  but it still satisfies 

tlghlt - Ilgll + Ilhll for all g, h e G, so that one could call it a "semi-character" .  
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Much of what we have been doing in Section 2 for characters and valuations can 
be extended to semi-characters and semi-valuations. For the sake of exposition, 
however,  we prefer  to treat the norm as an ad hoc notion. 

For every admissible free resolution F--~A we define the "'norm map" 
11" " "11 : F---, ~ U {-0~} by putting, for each c �9 F, 

- 0% if c = 0, (5. t)  
Ilcll = max Ilsuppxcll, if c :/:0. 

If we wish to emphasize the basis Xm_F, we write licllx for tlcll. The formal 
propert ies  of the norm map are highly analogous to those of the valuations in 
Section 2.4. 

IIc+c'll<-max{llcll, tlc'll}, all c , c ' ~ F  (5.2) 

Ilgcll - Ilgll + Ilcl[, all g �9 G, c �9 F (5.3) 

II-cl l --  IIcII, all c �9 F (5.4) 

IlOcll-< tlcll, all c � 9  (5.5) 

Remark. 1) (5.2) is an equality if c ~ YTX, c ' � 9  2~T'X, where T and T '  are 
disjoint subsets of G. 

2) The definition (5.1) applies also when F is the group ring ZG concentrated 
in dimension 0. In this sense (5.3) can be generalized to 

II~.cll - I1~-II + Ilcll, all 2. �9 ZG,  c �9 F. (5.6) 

For 0 4: 2, �9 ~N, (5.3)' is an equality. 

5.4. Let F--~,A be an admissible free resolution with finitely generated 
m-skeleton.  We consider for each real number  r -  0, 

E - -  {c �9 F I Ilcll -< r) .  (5.7) 

By (5.2)-(5.5) ,  F r is an N-subcomplex of F. We claim that its m-skeleton,  
~ ' )  = Fr N F ~"), is a free N-module  of  finite rank. 

Observe first that Fr is free Abelian on the set {y �9 GXIIIYI] <-r}. Since N 
acts freely on G X w e  find that Fr is a free N-module  on B = {y �9 TXI ItYll-<r}, 
where T stands for a transversal  modulo N. We have to show that B ~") = B n F ~") 

is finite. So let y - tx �9 B ~"). Then II/gll -< r for every g �9 suppx x. Hence 

[It[[ < IItgll + IIg-~ll ~ r  + max  IIxl[, 
X 
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which shows that Iltll is bounded. Since the canonical projection ~ r : G - - - Q  maps 
T bijectively onto the discrete subset Z" of ~",  it follows that B (m) is finite. 

So we have shown that (5.7) defines a free N-subcomplex of F which is finitely 
generated in each dimension -<m. We shall establish Theorem 5.1 by showing 
that if we choose F carefully and r sufficiently large then Fr---~,A is, in fact, exact 
in all dimension <m.  

5.5. Now we choose an admissible free resolution F--~A with finite m-  
skeleton satisfying condition (iii) of Theorem 4.7 for the compact  subset 
F = S(G, N)  ~_ S(G).  Thus we are given a finite set q~ of chain endomorphisms 
q~ : F--* F, with the property that for each u �9 S ' - t  = S(G, N) there is q~ �9 q~ and a 
chain homotopy  o : q9 ~ Idv such that we have 

v,(q)(x)) - v , ( x )  > O, for all x �9 X (m), (5.8) 

and 

o(Xi)  c__Xi.,U{O} for a l l 0 < - i < - m .  (5.9) 

We shall need the following two real parameters .  On the one hand, we 

consider, for each u �9 S(G,  N), the positive real number  

p(u) = max min ( v , ( q o ( x ) )  - v , , ( x ) ) .  
q~@ x ~ X  ('r) 

This defines a continuous and positive real function S(G, N)---~ JR; since S(G, N)  

is compact  it attains a positive infimum 

r = inf (p (u)  I u �9 S(G, N)} > 0. (5. lo) 

On the other hand we put 

s = max {llcr(y)ll l Y �9 GX(m), 1 �9 suppxy}  > 0 .  (5.11) 

Note that, since G operates  freely on GX, only finitely many translates of the 
finite set suppxx ,  x �9 X, can contain the unit element 1 c G. Hence s is well 

defined. 

The crucial technical lemma is 

L E M M A  5.3. For every cycle z �9 Fj_ l with 0 <- j <- m there is a chain c �9 F~ with 

3c = z and Ilcll <- max ([Izl[, s2/2r). 
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The lemma shows that if t is a real n u m b e r > s 2 / 2 r  then every ( j -  1)-cycle z 
of F, is the boundary of a / -cha in  of  F with Ilcll ~ t; that is, c is, in fact a / -chain  in 
Ft. Hence  F,---*A---~0 is exact in all dimensions < m ,  whence the required result 
that A is of type (FP) , ,  over N. 

5.6. P r o o f  (of L e m m a  5.3). We take any c �9 Fj with Oc = z and assume 

Ilcll = a > max ( l lz l l ,  sZ/2r). We shall show that c can be replaced by a chain of 
smaller norm. The idea to prove this is the following. We consider the support  

suppx c =_ G and pick g �9 G with Ilgll = a. Then we modify c so as to remove this 
e lement  from the support ,  at the expense of introducing new elements h with 

IIh II < a. This reduces the number  of elements with maximum norm in suppx c by 
one - thus repeating the argument  will eventually yield a chain of smaller norm. 
Since the values of norms attain only square roots of integers, 0 is the only cluster 
point of  norm values. Hence the procedure yields eventually a chain c with 

Ilcll <-sZ/2r. 

So let g �9 suppx c with Ilcll = Ilgll = a. We consider the expansion c = Xnyy,  
y �9 GXi ,  with 0 :/:n r �9 7/, and decompose  c = c ' +  c", where c '  collects all terms 
nyy with the property that hg �9 suppx y, for some h �9 N. Now let 

~(g) 
u =  - ~ � 9  

Ilgll 

The corresponding character X,,  when restricted to suppx c, takes its minimum 
value at elements of the form hg, h e N,  and this minimum value is equal to 

-[[g[I = - a .  Since both suppx z and suppx c" are contained in suppx c but do not 
contain such elements,  we have v , ( z ) > - a  and v , ( c " ) > - a .  Let q0 �9 q~ and 
a :  q~ ~ Idv as in (5.8) and (5.9). In view of the definition (5.10) we may assume 
that vu(q~(x)) - v , ( x )  >- r for every x �9 X C'). Our  aim is to replace c by 

e = c + a o ( c ' )  

= qJ (c ' )  - a ( ~ c ' )  + c". 

We have to show that Ilg[I -< [[cll and that the number  of elements of maximum 
norm in the support  has decreased. 

Note first, that by (5.10) and L e m m a  2.1, 

V,(Cp(C')) >>- V,,(C') + r ~ - a  + r. 



Valuations on free resolutions and higher geometric invariants of groups 489 

Also, 

v,,(o(ac')) >- v , (ac ' ) ,  by Lemma 4.3, 

= v . ( z  - a c " )  

- m i n  {v,(z), v,(c")} 

> - - a .  

Hence o,(6)-> min {v,(q0(c')), v,(~r(gc')), v,(c")) > - a ,  which shows that g is 
certainly not contained in suppx g. 

As suppx c3o(c') ~_ suppx cr(c') we have, by Lemma 4.3, 

suppx 6 ~_ suppx c U G-a+r. (5.12) 

Also, for each y ~ G X  i occurring in the expansion c' = Xnyy, g-I  suppx y contains 
an element of N. Hence, by the definition (5.11) 

IIg -1 suppx aa(c')ll <- IIg -1 suppx o(c')ll - s. (5.13) 

The conjunction of (5.12) and (5.13) then shows that the new elements of 
suppx ?, that is, suppx g\suppx c, is contained in the range exhibited in the 
following figure. 
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is 
By Pythagoras '  Theorem the maximum norm of points in the exhibited range 

((a - r) 2 + s 2 - r2) I/2 = (a 2 - 2ar + s2) '/z < a. 

Thus we have shown that II~ll ~ Ilcll = a and that the elements of norm a in 
suppx t7 are already in suppx c. Since g q suppx (Y, the number  of these elements is 
reduced by at least 1. This completes  the proof  of Lemma  5.3 and hence also of 

Theorem 5.1. 

6. Topological interpretation and connection with -Yc;, of [5] 

6.1. Let us assume that the G-module  A is a permutation module. Then the 
definition of Z 'm(G;A)  can easily be translated into more topological language by 
interpreting the admissible free resolution F as the cellular chain complex of an 
acyclic CW-complex Y with a free cellular G-action,  such that ?(/G has finite 
m-skeleton and H0(?s is isomorphic to A. The reader might find this translation 
sugges t i ve - i t  was certainly invaluable in the process of finding both the results 
and the proofs in the previous sections. It will also lead to a convenient 

connection to the invariant ~v M of [5]. 

6.2. For simplicity we assume that .:( is, in fact, given with a simplicial 
structure, Y =  tKI, and a simplicial free G-action.  Then,  given a character 

x :G- -*  ~ we find a continuous map f : .~ - -*  ~ as follows. We choose a set X0 of 
representatives of  the G-orbi ts  on the 0-skeleton .~" of ?/, and we put, for each 
x ~ y o, f ( x ) =  z (g ) ,  where g ~ G is the unique element with x ~ gX(). Then we 

extend the map f:Xo__> ~ linearly to the higher skeleta. The resulting map 
f : ~---, ~ is continuous, piecewise linear, and satisfies 

f ( g x )  = x ( g )  + f ( x ) ,  all g e G, x e ft. 

Let F = C ( K )  be the simplicial chain complex of K. F has the set K of all 
simplices as a canonical Y-basis acted on by G. Any choice of representatives X 
of the G-orbi ts  is a G-basis of F, and F is admissible in the sense of Section 2.4, 
with respect to this basis. Let  us choose X such that Xo coincides with the 
previously chosen representatives in K ~ = ~s Then we find that for every simplex 
(~ e K the support  suppx o and the valuation v(o) ,  as defined in Section 2, are 
given by 

suppx a = { g ~ G [ O CI gXo 4= f)} 

v ( a )  = min f (O) ,  
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where we write O c,:~ for the cell corresponding to o. This shows that the 
valuation subcomplex F~, of Section 3.1 coincides with the simplicial complex 
C(K~), where Ko stands for the full subcomplex of K generated by all 0-simplices 
x ~ K ~  ,~0 with f ( x ) > - 0 .  Instead of using the corresponding subspace IK~I of 
IKI = ,~ it seems more natural, in the present circumstance, to use the subspace 
Yx = ~x.0, where 

= {x z I f ( x )  -> - r } ,  r z 

PROPOSITION 6.1. [X] e Z'm(G; A )  i f  and only if  (the permutat ion modu le )  
A is f initely generated over  G x and there is a real number  r >- 0 with the property  

that the h o m o m o r p h i s m  

induced by inclusion, is the zero map  fo r  all i < m,  t7ti is the reduced homology ,  

i.e., t7-Ii = H~for  i > 0  and/4o  = ker (Ho---~ A) .  

Proof. Show that IK~I is a deformation retract of "Ex and apply Theorem 3.2. 

6.3. Let G be a finitely generated group and T c_ G a finite set of generators 
of G, 1 ~ T. Then Proposition 6.1 applies, for A = Z and m = 1, if we take for Y~ 
the Cayley graph F ( G ,  T)  (in dimension 0 there is no need to pass to a simplicial 
subdivision). Recall that F(G,  T)  is the graph with vertices G and edges G x T, 
where g is the origin and gt the terminus of the edge (g, t) e G x T. The condition 
in Proposition 6.1 for i = 0 asserts, that "~x is "essentially connected" in the sense 
that each pair of points in ff~ can be connected by an edge path of Yx,r for some 
fixed r ~ ~ .  Hence 

C O R O L L A R Y  6.2. [X] �9 -Y'I(G; Y) i f  and only i f  there is a real number  r >- 0 

with the proper ty  that every element  g � 9  G x can be written as a produc t  

g = qtzt3.  �9 .%, with t~ ~ T • and X(tlt2. �9 "ti) >- - r  f o r  every 1 <- i <-s. 

At the expense of adjoining to T an additional generator one can strengthen 
the condition in Corollary 6.2. Let  t �9 G with X(t) > r. If g �9 G z then t-~gt ~ G x, 

whence t - ~ g t = t l t 2 . . . %  as in the corollary. Hence g = t i l t 2 . . . % t  -~ is a product 
with all its initial segments t tl .  �9 .ti �9 G x. That is, we have 

C O R O L L A R Y  6.3. [ X ] � 9  i f  and only i f  G has a finite set o f  
generators T with the proper ty  that each g �9 G x can be written as a product  

g = tl tz .  �9 "ts such that all initial segments  ritz" �9 "t i, 1 <- i <- s, are in G x. 
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6.4. We are now in a position to prove 

PROPOSITION 6.4. f f  G is a finitely generated group, then ,U~(G;7/) 
coincides with -~ , c ' ,  the antipodal set o f  the invariant o f  [5], where G'  is the 
commutator  subgroup o f  G acted on by conjugation f rom the right. 

Remark .  The slightly unpleasant sign in Proposition 6.4 arises because the 
groups in [5] are acted on from the right, whereas in the present paper we use left 
modules. The sign disappears if one considers G' with the left action by 
conjugation or, alternatively, if one considers 7/as the trivial right G-module. 

Proof. If one is to prove that [X] �9 X~(G; 7/) by Corollary 6.2 or 6.3 it suffices 
to verify the corresponding conditions for g �9 G'  (since there are no problems to 
verify them modulo G'). Hence the "equational condition" (ii) of [5], Proposition 
2.1, shows that if Ix] �9  then [X] � 9  7/). Conversely, assume that the 
condition in Corollary 6.3 holds, and pick a � 9  Then g ( a ) = 0  and so 
a = t~t2. �9 �9 t= as in the corollary. But then 

a' = [t, t-(1][t, t~ l] ' 7 ~ . . . [t, t-ill O't=-') 'a, 

for all a �9 ~ = {[u, v] ] u, v �9 T • and all t �9 T, shows that Condition (iv) of [5], 
Proposition 2.1, is satisfied for -X. 

6.5. Remark.  Proposition 6.1 suggests that there is a homotopy version of the 
invariant Xm(G;Z), which is defined by replacing reduced homology, in the 
statement of Proposition 6.1, by homotopy. Let us write *2"m(G) for these new 
invariants of the group G; clearly *Xt(G)= XI(G; 77). For m > 2  the invariants 
*Xm(G) have been investigated by the second author. This will appear in a 
separate publication. It turns out that 

(a) *Xm(G) is an open subset of S ( G ) ,  
( b )  = n 

(c) if N<~G is a normal subgroup with Abelian quotient G / N ,  then N is 
finitely presented, if and only if S(G,  N )  c_ *~'2(G). 

Whether *~v2(G)=~2(G;7/) is open and related to the open problem as to 
whether every group of type (FP)2 is finitely presented. 

7. one relator groups 

7.1. Throughout this section we write Xm(G) for the invariant Xm(G; 77). 
Let F be a free group on a basis X c_ F, R = gpr(w)<~F the normal closure, in 
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F, of a single word w �9 F, and G the one relator group F/R. The invariant X~(G) 
has been determined by K. S. Brown [8]; and Walter D. Neumann showed us 
recently a (topological) argument, based on Brown's computation of X~(G) and 
the invariant *X 2, which proves Xm(G)= X~(G) for all m---2. Thus X' (G)  is 
known for all m. 

In this section we show how all this can rather nicely be obtained by our 
techniques of Section 4. 

7.2. We have to start with the preliminary 

LEMMA 7.1. If  G is a one relator group with XI(G;Z)~e0  then G is an 
ascending HNN-extension over a free base group. 

Proof. The set of all points of S(G) represented by an integral character is 
dense and hence intersects every open set non-trivially. So let x : G ~ Z ,  with 
[X] �9 X1(G), and consider the composite F---~ G~2~ .  Since the automorphism 
group of F acts transitively on the equivalence classes in Hom (F, Z) we can apply 
a free automorphism to the generators X so as to achieve that there is one basis 
element t �9 X with %(0 > 0 whereas %(x) = 0 for all remaining elements of X. This 
implies that the exponent sum of t in w is zero. Hence G admits the usual 
HNN-decomposition with stable letter t over a base group G~, which is again a 
one relator group (see [11]). Moreover, the associated subgroups are Magnus 
subgroups of Gl and hence are free. Since [X] �9 Xl(G) this HNN-extension must 
be ascending ([5], Proposition 4.4). Hence the base group G~ coincides with one 
of the (free) associated subgroups. 

7.3. Another immediate consequence of XI (G)~0  is that G is of type (FP)I 
and hence finitely generated. One could have a slightly closer look at the 
FINN-extension used above and deduce that G is, in fact, generated by 2 
elements (this argument is used by Ken Brown [8]). But the 2-generation will 
later drop out, essentially at no extra cost. 

Now we consider the Lyndon resolution of G, 

ZGew 02 81 t~ 7/Ge~ ~ ~_G--~ ~_--*O. (7.1) 
x ~ X  

The differentials 81, 82 are given by 

8 1 e x = x - 1 ,  all x � 9  

8w 
c32ew = E -~xex, 

x E X  
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where Ow/ax �9 Y_G stands for the image of the partial Fox derivative under the 
canonical epimorphism Z F - ~  Y_G. The resolution (7.1) is admissible if w 4: 1, and 
has finitely generated 2-skeleton. 

Let x:G---~ R be a character.  By replacing the basis elements x e X by x -~, if 
necessary, we may assume that X(X) >- 0 for all x �9 X, and Z(t) > 0 for one specific 
t � 9  Let v be the valuation on the resolution (7.1) extending X as defined in 
Lemma  4.2. Since 0ex = x -  1, with v(x)>-O, we find, by definition of v, that 
v(e~) = v(x - 1) = 0 for every x �9 X. 

We define oc~:Y_G---~ ~)ZGex, by putting o~(l) =e, .  Then v(1 + c3~ot,(l)) -- 
v ( t ) = X ( t ) > O ,  so that Proposition 4.5 applies for m = 1. It follows that 
[Z] �9 z 'a(G),  if and only if we are able to find. for each x �9 X, an element ~ E YG 
(which we need to define o~(ex)= I~e,,) such that 

v e~+izx ~ - - e v + ( x - 1 ) e ,  > 0 .  (7.2) 
v~x Oy 

This is certainly very easy for x = t, where it suffices to choose ~, = I). We can 

thus rephrase (7.2) by saying that IX] �9 Z~(G),  if and only if we are able to find, 
for each x � 9  x4: t ,  an element / ~ � 9  such that the following three 

inequalities hold 

(7.4) 

v /tx > 0  fo ra l l  y ~ X - { x , t } .  (7.5) 

7.4. Now we infer from L e m m a  7.1 that G is (locally free) -by-Z and hence 
the group ring Z G  has no zero divisors. The analysis of (7.3)-(7.5) is then greatly 
simplified by the observation 

L E M M A  7.2. If  the group ring Y_G has no zero divisors, then the valuation 
v : Y_G ~ ~ ~ extending X with respect to the basis { 1 } is multiplicative; that is, 

v(itt~) = v(it) + v(l~) for all it, l~ �9 2~G. (7.6) 

Proof. For each it �9 YG we define itx �9 2~G to be the first term in the unique 
decomposit ion it = itx + it+ with X(supp itx) = v(it) and v(it+) > v(it). Then it~ = 
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kx# x + k+# + kx#+. Now 
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v(z+u + zx#+) > v(,~) + v(#) 

and 

supp (3,x#x) c_ (supp ~,x)(supp #x). 

Moreover, )txl~ x 4:0 since 2~G has no zero divisors, whence X(supp(3.x#x))= 
v(3.) + v(#). This shows that one has 

(~#)x = )txl~x, all /l, # 6 7/G, (7.7) 

and this implies (7.6). 

7.5. The analysis of (7.3)-(7.5) is now easily completed. First we apply 
Remark 1 of Section 2.1 to the sums in (7.3) and (7.4). We obtain 

( TM) 
v t~x =v( l~x)+V =0,  

and 

v #x-~ =v(u~)+ \ a t ; = 0 ,  

showing that v(#x) = - v ( g w / a x )  = a is the same constant value for each x ~ X, 
x 4:t. This contradicts (7.5), unless (7.5) is empty, i.e., X =  {t, x}. Thus we have 
shown that X~(G):/:ft implies G to be a 2-generator group. 

It remains to analyse the two inequalities (7.3) and (7.4) with the single 
parameter # = #x E 77G. By the definition of 3.x in the proof of Lemma 7.2 above 
and formula (7.7), these inequalities are equivalent to 

#z = - 1, (7.8) 
x 

and 

#x(Cgw)-~x = ( 1 - X ) x '  respectively. (7.9) 

But since we have always the equality 

aW(x_ 1) aw 3--x- + ~ ( t - 1 ) = w - l = 0  (ind_G), 



496 ROBERT BIERI AND BURKHARDT RENZ 

which implies 

9x -x 

one can see that (7.9) is a consequence of (7.8). Hence [X] e Xl(G),  if and only if 
there is # e EG satisfying (7.8). 

Now (7.8) asserts, in particular, that (aw/ax)x is a unit in EG. The structure 
of G, exhibited in Lemma 7.1, makes it obvious that G is locally indicable (i.e., 
every finitely generated subgroup admits an infinite cyclic image), hence, by a 
result of G. Higman, 7/G has only the trivial units. Hence (aw/ax)x e +G. But if 
so, it is certainly very easy to choose # = #x e + G  so that (7.8) holds. Thus we 
have the final result 

T H E O R E M  7.3. Let G = ( t , x = x i , x 2  . . . . .  x,  ] w)  be a one relator group 
and x ' G - ' - ~  a character with X( t )>0  and X(xi)>-O for l<-i<-n. Then 
Ix] e ~:~(G), i f  a n d  on ly  i f  n = 1 and 

X 

It is, of course, an easy matter to verify whether the condition of Theorem 7.3 
holds in a specific situation. If one writes down the Fox derivatives for a general 
word one recovers Brown's explicit description of Z ( G )  in [8]. 

7.6. Let us now assume that [X] e ZI(G)  and choose the element/~ = #x e + G  
such that (7.8) holds. Then we define ol : �9 ZGex--~ ZGew by putting 

al(e,) = O, 

al(ex) = #ew. 

By using (7.3) and (7.4) one finds that v(#ew)>-0, so that the assumptions of 
Proposition 4.5 are fulfilled. Hence [X] e X2(G), if and only if 

v(ew + Ol(92ew)) > v(ew) 

(there is no choice for 02 left). This inequality is equivalent to 

v(1 c~w +Tx~)  >o, 
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hence to 

It is now obvious that (7.8) implies (7.10) since (aw/OX)x and #x are group 
elements inverse to one another up to a sign. This proves Walter Neumann's  
result that X2(G) = XX(G). 

To complete the picture, we note that Corollary 3.4 applies to G, whence 
2'm(G) = Z2(G) for every m -> 2. 

We summarize 

T H E O R E M  7.4. I f  G is a one relator group, then ,~"(G) = ,~I(G) for every 
m>_l. 
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