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Let F(S") denote the space of self-maps of the n-sphere with the compact-open 
topology and the identity as its basepoint. Results of Dold and Lashof [10] and 
Stasheff [27] show the importance of F(S") in the classification of fiber spaces with 
fiber (homotopically equivalent to) S", and because of this the topological properties 
o fF (S" )  yield (or should yield, at least) considerable information about the topology 
of manifolds. Actually, for purposes of studying manifolds it is preferable to replace 
the spaces F(S") by a so-called stable version. To construct this, we embed F(S") in 
F(S "+1) via the unreduced suspension functor and set 

F =  inj limkF(sk). 

(In the literature, this space is usually called G; however, we shall soon find it conve- 
nient to let G designate a compact Lie group). 

If  we are given an action of a compact Lie group G on S", we shall let Fo(S") 
denote the subspace (submonoid, in fact) of all self-maps of S" that are equivariant 
with respect to the given actions of G; we shall restrict our attention to group actions 
given by free orthogonal representations (see w In this paper we shall study the 
homotopy properties of these spaces F~ (S") and their corresponding stable versions. 
Perhaps the most interesting consequence of our work is a relationship between the 
stable versions of the spaces Fo(S") and stable homotopy theory that generalizes 
the fundamentally important natural isomorphism 

OX: [X, F] ~-- {X, S ~ 

essentially due to G. Whitehead [32], where [ , ] and { , } denote homotopy classes 
of ordinary maps and S-maps respectively and X is a CW complex. 

Just as the spaces F(S") and F and the isomorphism OX are applicable to the 
topology of manifolds, the spaces F o (S"), their stable analogs, and the results of this 
paper are applicable to the study of manifolds with G-actions. Applications of our 
results along these lines appear in [35] and [36]. 

We wish to thank Mark Mahowald for suggestions which contributed substan- 
tially to the formulation of our results. 
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1 . ~ u ~ o n  

We shall describe some of our results more precisely in this section. Let G be a 
compact Lie group and W a free G-module (see w 3). Let S (W) denote the underlying 
unit sphere of W. If V is a submodule of W, we denote by F(V [ W) the space of 
G-equivariant maps S(V*)-~ S(W), where V* is the orthogonal complement of V 
in W. If W' is another free G-module, then S(WH W') is equivariantly homeomorphic 
to the join of S(W) and S(W');  furthermore, the orthogonal complement of V in 
WHW' is V*HW'. Hence the join functor induces an inclusion of F(VIW) in 
F(V [ WH W'). We define 

F(V) = inj lim~F(V[ kW), 

where k W denotes the k-fold sum of W with itself and V is included in the first 
factor. If V is the trivial G-module {0} we write F~ in place of F({0}). 

Our main result (Theorem (6.6)) gives a description ofF(V) as a space constructed 
from the classifying space of G in a natural way. For example, Fo is describable as 
follows: let Bo be a classifying space for G with total space Eo, let ~i be the Lie algebra 
of G and G act on ~ via the adjoint representation; the balanced product of Eo and 

is a vector bundle over BG which we shall call ~ and whose Thorn space we shall 
call/:o. Then Fo is homotopy equivalent to Q (Bb), where Q (Y) is defined for pointed 
spaces Yby 

Q (Y) = inj limkl2kSkY. 

The homotopy equivalence is best understood using its alternate stable homotopy 
theoretic interpretation. Namely, under the canonical natural isomorphism 

OX: [X, Q (Y)] ~ {X, Y} 

it takes the form of a natural isomorphism 

 0x: [x, --- {X, SGq.  

If G is the trivial group, then ~pX is essentially the same as the previously mentioned 
OX. 

There are many generalizations of the spaces F~, and it is natural to ask whether 
they too are describable as Q (Y) for suitable choices of Y. We mention two results 
in this direction: 

(i) If G is finite and acts orthogonally on its real group algebra via the regular 
representation, the homotopy type of F~ is essentially given by results of Graeme 
Segal [25, Prop. 2 and Corollary to Prop. 7]. Using the techniques of [24] one can 
derive special cases of Segal's results from some of our results and vice versa. 
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(ii) Suppose G is finite and acts freely and topologically on S"; results of R. Lee 
[17] and T. Petrie [22] show that some finite groups admit such actions (smooth 
actions, in fact) but not linear ones. In this case one can still define Fa and prove 
analogs of our results. Details will appear in Part II of this paper. 

Sections 2 through 4 contain preliminary material on ex-spaces, vector bundles, 
and the transfer map for fiber bundles. Our main results are stated in Sections 5 
and 6; some of the more technical arguments are postponed to Sections 7, 8, and 9. 
Finally, we consider the following problem: If  H is a dosed subgroup of G, there is 
an inclusion of F~ in Fn because every G-equivariant map is automatically H-equiv- 
ariant; determine the image of ~.  (FG) in rc.(Fn). The last three sections (10-12) 
contain some quantitative results on this problem. 

2. Sectioned Bundles 

Let B denote a locally finite CW-complex. In the terminology of James [14], an 
ex-space of B is an object 4=(Er162 Ar consisting of maps pr162 and 
A~:B~Er such that pcAr is the identity. If ~ and ~' are ex-spaces, we denote by 
[4, ~'] the set of homotopy classes of fiber and cross section preserving maps Er ~ Er 
Ex-spaces may be regarded as generalizations of pointed spaces and many of the 
standard constructions for pointed spaces, such as reduced join, wedge, etc., carry 
over to ex-spaces. This is usually done by performing the construction 'fiberwise'. 
For detailed accounts see [14], [15], [4]. 

An ex-space 4 will be called a sectioned bundle if it has the following local product 
structure. There is a pointed space F, with base point (say) Xo, a cover (U} of B by 
open sets, and homeomorphisms Cv: U• such that the following dia- 
grams are commutative. 

U x F - ~  p~-I (U) U x F ~-~ p~-1 (U) 

U U 

Here p is the projection and A is the cross section b ~ (b, Xo). We will also assume 
that F is a finite complex and (E O A r p~) has the homotopy extension property 
[4; section 2]. 

The fiberwise reduced join of 4 and ~ will be denoted by ~ ̂  ~. There is a sus- 
pension map 

~:[4,  4'] -" [4 ^ ~, 4' ^ ~] (2.1) 

defined by f ~ f A  1, and the following suspension theorem is proved in [15] (see 
also [14]). 
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(2.2) THEOREM. Suppose that ~ is a sphere bundle and the fiber of ~' is ( n -  1)- 
connected. Then a is injective if Er is ( 2 n -  1)-connected and surjective if Er is 2n-co- 
connected. 

If  Y and ]r are homeomorphic pointed spaces let H(Y, ~) denote the space 
of base point preserving homeomorphisms from Y to 1 r. If ~ = (E, B, p, A) and 

= (~,/~, p, z~) are sectioned bundles with the same fiber F, let 

n (6,  = U x u (b), : - I  
(b,~)~B 

and let q:H(E, E ) ~ B x  ~ denote the obvious projection. For each pair of coordi- 
nate maps 

$ t ~ : U x F - , p - l ( U ) ,  $ v : V x f f  ~ f f - l ( V )  

we obtain 

~kvxv:(U x V) x H(F, P) ~ q-1 (V x V) 

by (b, ~, (p)--* ~dP~b-~. Let H(E, ff~) have the smallest topology such that each ~k v • v 
is continuous. Then, with this topology, it is easy to check that (H(E, ff~), B x B, q) 
is a fiber bundle which we denote by H(r ~). Now the following bundle covering 
homotopy property is an immediate consequence of the covering homotopy property 
for H(r ~). 

(2.3) THEOREM. Let H: B x I ~ B and k: E--* E be such that/~k = Ho, k is cross 
section preserving, and k is a homeomorphism on each fiber. Then there is K: E x I ~  ft, 
such that pK= 1-1, K o = k, Kt is cross section preserving, and Kt is a homeomorphism 
on eachfiber. 

We conclude this section with some notation and remarks. If X is a pointed space 
with base point x o, let 2 denote the sectioned bundle (B x X, B, p, A ) where p (b, x) = b 
and A (b) = (b, Xo). If  ~ is a vector bundle over B, define ~ to be the sectioned bundle 
obtained by taking the fiberwise one point compactification of E~ and letting A~ be 

the cross section at infinity. Observe that ~ f l  is canonically equivalent to ~ ̂  ft. 
There is a functor T from sectioned bundles to pointed spaces defined by T(~)= 

EJAe(B). I f  ~ is a vector bundle, T(8) is simply the Thorn space of ~ which we vdll 
alternately denote by T(~) or B ~. More generally, if A c B  let 

(B, A) ~ = Ei/Ai (B) u p;1 (A). 

If  X is a pointed space we have T(XA ~) = X ^  T(~). Note also that projection 
onto the second factor induces a bijection 

[r 3i'] --, IT  (r X] .  (2.4) 
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3. Vector Bundles 

Suppose that M is a compact differentiable manifold without boundary and G is 
a compact Lie group acting freely and differentiably on M. By a result of Gleason 
[11 ] the orbit map p: M ~ M/G has the structure of a principal G-bundle (in fact, a 
smooth bundle, compare [34]). The tangent bundles of M and M/G are related as 
follows. Let Ad(G) denote the G-module determined by the adjoint representation 
of G. The vector bundle with fiber Ad(G) associated with p:M~ M/G will be de- 
noted by (. One then has an identification 

(M)/G ~- ~ �9 �9 (M/G), (3.1) 

and this identification is natural with respect to smooth G-maps [28]. 
A G-module V will always be assumed to be real, finite dimensional, and equipped 

with a G-invariant metric. The unit sphere of  V will be denoted by S(V) and the 
quotient space S(V)/G by M(V). We say that V is free if G acts freely on S(V). In 
this case M(V) is a smooth manifold and p:S(V)~ M(V) is a principal G-bundle. 

Suppose now that W is a free G-module and V c  W is a submodule. Let Udenote the 
orthogonal complement of  V in W and let r/denote the balanced product vector bundle 

rl = (S(U) x V/G, M ( U ) , p )  (3.2) 

Let ~ be the sectioned bundle 

r = (S(U) x S(W)/G, M(U),p, A) (3.3) 

where A [u] = [u, u]. We have an identification 

r "" r l r  �9 (S(U))/G (3.4) 

given by 

�9 1 1  _ 

Combining this with (3.1) we have 

~'-' rt r ~ r  (3.5) 

where z is the tangent bundle of M(U). 
We will also need a description of the Thom space of r / ~  along the lines of 

[2, Proposition (4.3)]. The map 

s (u )  • ( g e  ad(C)) -, S(W) x ad(G) 
by 

(u, v, y) ~ ( x / 1  - -  (Ivlt(1 + 10t2))u r (1/(1 + Ivl v), y)) 
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is equivariant and its quotient extends to an identification 

M (V) "~: = (M (W), M (V)): . (3.6) 

4. The Transfer 

In this section we will give a brief description of the transfer or 'umkehr' map 
associated with a differentiable fiber bundle. Our account follows that of Boardman 
[6]. By a manifold we mean a compact differentiable manifold without boundary. 
Let N be a manifold and M a submanifold of N with normal bundle to. Choose an 
embedding E, o c N  of E,o as a tubular neighborhood of M. Let a be a sectioned 
bundle over N and consider the maps 

E,~ -~ E~,, 0~<t~<l .  (4.1) 

where Jt is the canonical homotopy given by j , ( x )=  ( 1 - t )  x, and k, is a sectioned 
bundle morphism covering jr such that k0 is the identity, k t is the identity on E, [ M 
(where McE~, is the 0-section), and k t is a homeomorphism on each fiber. Such a 
homotopy exists by (2.3). Define 

h,:~ I g,, ~ p~* (~ [M) (4.2) 

by h, (a) = (p, (a), kl (a)) and let 

/~,:~ lEo ~ ~ [ M  (4.3) 

denote the map kl. The Pontrjagin-Thom map 

c : T ( ~ )  --, T ( ~  ^ ~ ]M) (4.4) 

is then given by 

c(ax)= f x  A [i~,(a,:), xeE~ "t oo, if xq~E,~. 

It follows by a standard argument that the homotopy class of c does not depend on 
the particular choice of covering homotopy. 

Let p: M ~  N be a differentiable fiber bundle. Choose an embedding #: M ~ N x 
x R'  homotopic to p and let to denote the normal bundle. If  ~ is a sectioned bundle 
over N there is the product bundle ~ x 0  over N x R  3 and ~ x 0  1M'~p*(~). Since 
T(a x O) = T(a) x R3/R ~, the Pontrjagin-Thom map has the form 

c: :r(~,) x R'/R" --, r (p *  (~,) ~ to). 
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Representing S s as the one point compactification of R s, c may be extended to a map 

t: T(~) ^ S ~ -4 T(p* (a) �9 co). (4.5) 

In particular, if G is a compact Lie group acting freely on a manifold M and H 
is a closed subgroup, we have the fiber bundle p: M / H ~  M/G. Let Ca (respectively, 
Cu) denote the bundle over M/G (respectively, M/H)  having fiber Ad (G) (respec- 
tively, Ad(H)).  Now 

(M/H) @ co p* (M/G) @ R'). 

Adding Cn@P* (r to both sides and using (3.1) we have 

"r (M) I H  @ p* ( ~ )  ~3 co ,'; "r (M) fH  ~3 r G R' .  

For sufficiently large s we may cancel z ( M ) / H  obtaining an equivalence 

p* (r @ co ~- Cu @ R*. (4.6) 

Thus, the map t of (4.5) yields 

t: r (~  n ~ )  ^ S ~ ~ T(p* (~) ^ ~n) ^ S s. (4.7) 

The stable homotopy class of this map does not depend on the particular choice 
of embedding because of the following: (a) isotopic embeddings determine homotopic 
maps. (b) the effect of replacing/~: M/G ~ M/ H x R ~ by i/~: M]G ~ M / H  x R ~ + 1, where 
i is the usual inclusion, is to replace t by its suspension. (c) for sufficiently large s, 
any two embeddings homotopic to p are isotopic. 

We shall call t in (4.7) the transfer associated with the bundle p: M / H o  M/G. It 
is easily seen that t is functorial with respect to smooth G-maps. Moreover, if H has 
finite index in G (so that p is a finite covering map) t agrees with the transfer defined 
and axiomatized by Roush [23]. A proof of this fact will be given in the appendix. 

Consider now the situation of the previous section. If  V is a G-module write 
V= V a and let Vn denote its underlying H-module. Suppose that VG~ Ua = We. Let 
qa and r/11 be as in (3.2). We have the fiber bundle p : M ( U n ) ~ M ( U a )  and since 
p* (r/G)=r/n we obtain a transfer map 

^ s "  - ,  T( 11 @ ^ s ' .  

Making the identification (3.6) we have 

t : (M (Wo), M (V6)) ~'~ h S s -* (M (W.) ,  m (V11)) ~" A S ~. (4.8) 

s. The Spaces F(V I w) 

If  a and fl are sectioned bundles, let ~//(0t, fl) denote the space of fiber and cross 
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section preserving maps E~ ~ Ep, with the compact-open topology. Recall that if Y 
is a pointed space 

Q(Y) = inj limkdt'(S k, Y ^  sk). 

Let V and W be free G-modules such that Vc W and V:~ W. Let V* denote the 
orthogonal complement of V in W. We define F(V[ W) to be the pointed space of 
G-equivariant maps S(V*)~S(W) ,  the inclusion map being the base point. Our 
objective is to construct a map 

2: F(V I W) ~ Q ((M(W), M(V))~). (5.1) 

Let 

r = (S(V*) • S(W)/G, M(V*),p,  A) (5.2) 

where p and A are induced by the projection and diagonal respectively. From (3.4) 
we have an identification 

~_ t /~  ~ z ,  (5.3) 

where z is the tangent bundle of M (V*) and r/= (S (V*) x V/G, M (V*), p). The function 

O:F(V[ W) -,  ~ '  ($o, r (5.4) 

defined by sending f :  S(V*)~  S(W) to f ' :  S O • M(V*) ~ S(V*) x S(W)/G, where 
f '  (0, [y]) = [y, f (y)] and f '  (0% [3]) = [y, y] is easily seen to be a homeomorphism 
of function spaces, a) Making the identification (3.4), 0 becomes 

0: F (V I W) -~ ~ (~o, ~ ~ r ~ ~). (5.5) 

Choose an embedding M(V*)=R s and let v denote the normal bundle. Let 
~k:z~v~ R ~ denote the associated trivialization and e:SS--*T(v) the Pontrjagin- 
Thorn map. The map 2 is to be the following composition. 

0 "O F(V I r (5.6) 

. ~  ~,) ..r (~, tl ~ r ~) R~ ) r M[ (T (v), T (rl ~) r ^ S') 

.... ~(~),Mg(S', T(q t~ r ^ S ' )~  Q(TQ1 ~r 

, Q ( ( M ( W ) ,  M ( V ) ) r  

Here tr is suspension and the last map is given by the identification (3.6). It is easy 
to check that the homotopy class of 2 does not depend on the choice of embedding. 

a) We use S n to denote the one point r o f R  n. The sphere of unit vectors in R n+t 
will be denoted by S(Rn+t). 
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(5.7) THEOREM. 2 is an n-equivalence where n = d i m ( V ) + d i m ( W ) + d i m ( G ) -  
~2.  

Proof. It follows from the suspension theorem (2.2) that a is an n-equivalence. It 
remains to show that Jr' (c) Tis an n-equivalence for large s. Let a = q @ ( ~ R  ~. Choose 
a complementary bundle fl and let q~ :fl@~ ~ R t be a trivialization. We then have a 
duality map 

~ : s  ~+t -~ T(v @/0  ^ ~r(~) 

given by the composite 

S.+t c^i> T (v) A S t r(amr T (v G fl t~ a) 
A 

' , T ( v G f l )  ^ r ( a ) ,  

where d is the diagonal map. Let X be a finite complex such that dim(X)~<n. The 
associated correspondence 

D , : [ X A  r ( v ~ f l ) .  S'] ~ I X ^  S ~+t, T(a) A S'] 

defined by sending f : X ^  T(v@fl)--. S t to the map 

X A S ~+' '^U,X ^ T ( v ~ f l )  ^ T(a)  S^ ' ,St  A T ( a ) ~  T(a)  ^ St 

is bijective, provided we are in the stable range. Let us take t to be large enough so 
that this is the case. 

We have the following commutative diagram. 

[;r A ~, ~] T ~, ^c~, , [ X  A T (v), T (a)] 

[2 A 

EYe ̂  

UC A 

UC A 

, [ x  ^ s ~, T (~)] 

v ~ R'. a ~ R'] r [X  ^ T(v) ^ S t, T(a) ^ S'] (1 ̂ c^ i)* [X ^ S ~+t, T(o 0 ^ S'] 

l l ^ ( l ~ O - 1 )  # 

v @ / ~ @ e , e @ R  ~] 
t o.  

l ~ 
v f9 fl, R'] , [X ^ T(v @ fl), S t] 

For sufficiently large s the suspension maps in the above diagram are bijective 
and therefore (1 A c)*T is bijective as desired. 

We will now consider the functorial properties of the map 2. We identify the un- 

reduced join S ( V ) , S ( W )  with S ( V @ W )  by the map [v. w. t ] - - . t v~x /T-~2w.  If  
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Vc U c  W there is an inclusion map 

j:F(V[ V)-~ F(V[ W) (5.8) 

induced by the join operation as follows. Let V* denote the orthogonal complement 
of V in U and U* the orthogonal complement of U in W. Thcnj is defined by sending 
f : S ( V * ) ~ S ( U )  to f * l  :S(V*)*S(U*)~S(U)*S(U*). Let 

i: (M(U), M(V)) ~ ~ (M(W), M(V)) ~ (5.9) 

denote the inclusion, and let X denote a finite complex. 

(5.10) The following diagram is commutative. 

Ix, F(v[ u)] A-Z[x, Q((M(U), M(V))~)] 

I J, 1~.). 
w)]--, Ix, Q ((M(W), U(V):)]. [ x , v ( v  I A, 

Let 

r:F(V[ W)~ F(U[ W) (5.11) 

denote the map defined by restricting f :  S(V*)~ S(W) to S(U*), and let 

c: (M (W), M (V)) ~ ~ (M (W), M (U)) r (5.12) 

bc the collapsing map. 

(5.13) The following diagram is commutative 

A t  
[X, F (V I W)] --~ [X, (2 ((M(W), M(V))r 

1" 1 ~c'' 
IX, F (U ] W)] ~-~ [X, Q ((M (W), M (U))r 

Finally, if H is a closed subgroup of G there is the natural forgetful map 

q~:F(V~ [ We) ~ F(Vn [ WH), (5.14) 

and for sufficiently large s, there is a transfer map 

t:(M (w~), M(V~)) ~o ^ S s - . (M(w . ) ,  M (V.))~" ̂  S" (5.15) 

as in (4.8). 
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(5.16) The following diagram is commutative 

IX, F (V6 I We)] ~', [X, Q((M (W6), M(V~)):~)] 

l'" 1 Q(')" A~ [x, F (V. I Q ((M (W.), 

Proofs for (5.10), (5.13) and (5.16) are given in section 8. 

6. The Spaces F(V). 

Given a free G-module V, choose a free G-module W such that Vc W and V~ IV. 
Let kW denote the k-fold direct sum of W and define 

F(V) = inj limkF(VI kW ) (6.1) 

and 

B ( V) ~ = inj limk(M (kW), M (V)) ~ (6.2) 

If  X is a pointed finite CW-complex the map 

2 , :  IX; F(V[ kW)] ~ [X, Q ((M(kW), M(V))~)] 

is, by (5.10), compatible with the above inelusions. Hence we obtain 

2 (V): IX; F(V)]  ~ IX; Q (B(V)g)] (6.3) 

as the injective limit of the 2 , .  As a result of theorem (4.5) we have 

(6.4) THEOREM. 2(V) is a natural equivalence of homotopy functors on the cat- 
egory of fin#e CW-complexes. 

We next show that F(V) has the homotopy type of a CW-complex. To do this 
it is sufficient to show that the spaces F(V [ W) have the homotopy type of a CW- 
complex. Since F(V[ W) is homeomorphic to the space of cross sections to the 
bundle S(V*)x S(W)/G~M(V*),  the result for F(V I W) is a consequence of the 
following. 

(6.5) LEMMA. Let p : E ~  B be a Hurewicz fibration with fiber F. Suppose that B 
is compact and both B and F have the homotopy type of a CW-complex. Then the space 
of cross sections to p has the homotopy type of a CW-complex. 

Proof. Let ffa~ denote the category of spaces having the homotopy type of a 
CW-complex. First, suppose that p : E ~ B  is a fibration such that E and B are in 
~g.~. We will show that the fiber F i s  in ~9~'. If we replace the inclusion i :F~E by 
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a fibration i' :F '  ~ E  in the usual way, the fiber over e has the homotopy type of 
t2 (B, p (e)) [21]. By a result of Milnor [19], f2 (B, p (e))is in cggg'. Hence by a theorem 
of Stasheff [27], F' is in r Therefore F is in r 

Now let p : E ~  B be as in the statement of the lemma. By the exponential law, 
p ' :En~B n is also a Hurewicz fibration and since both E n and B B are in c~(r [19], 
the fiber over the identity is in cynics. This is just the space of cross sections to p. 

As a consequence of (6.4), we have proved the following: 

(6.6) THEOREM. The space F(V) is homotopy equivalent to Q(B(Vfi). 
Since the homotopy type of B(V) ~ clearly does not depend on the choice of am- 

bient G-module W, Theorem (6.6) has an obvious consequence. 

(6.7) COROLLARY. The homotopy type ofF(V) depends only on the representa- 
tion V. 

There are two functorial properties of the transformation 2 (V). Firstly, if V is a 
submodule of U we obtain from (5.13) the following commutative diagram 

IX: F(V)]  ~<v)IX; Q(B(V)r 

t "  a(v), 1~2(r (6.8) 
[X; F(U)]  [X; Q(B(U)~)]. 

Secondly, if H is a closed subgroup of G, we have a transfer 

t ,  : IX; Q (B (Vn)r --+ IX; Q (B (Va)~)] (6.9) 

defined to be the injective limit of the maps Q ( t ) . ,  where Q (t) is the map appearing 
in (5.16). Then by (5.16) we have a commutative diagram 

Ix; Ix; 
l +" t '* (6.10) 

[x; F (V.)] [x; 

Actually, by the methods of [6], one can construct in a natural way, a map 
t: O Q which realizes the transfer t , .  Since we will not need 
such a map, we do not carry out the construction here. 

I f  V is the trivial G-module {0} we shall ~vrite Fo in place of F(V) and Br in 
place of B(V) r Thus, Fo is the injective limit of the space of G-equivariant self maps 
of S(kW) and B~ is the Thorn space of the bundle with fiber Ad(G) associated to 
the universal principal G-bundle. 

We shall now examine some special eases of the preceding results. First, if G is 
the trivial group we write F in place of F~. In this ease Br = S + + may be identified 
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with S O by collapsing S | to a point. Let us write Q(~176 (respectively, Q(~)(S~ 
to denote Q (S ~ with the constant map (respectively, the identity map) as base point. 
We will relate 

2: [X; F]  ~ IX; Q(O)(SO)] (6.11) 

to a more familiar map. Let 

T: [X; QO) (SO)] ~ [x ;  QCO) (sO)] (6.12) 

be defined as follows. First let T':f2 k (S k) ~ f2k(s k) send f to the composite 

S ~ S  k v S k I~R~ s k v  S ~ s  k, 

where h is the pinching map, R is the reflection (xl, x2 ..... xk)~  ( - x l ,  x2 .... , Xk), 
and g is the folding map. (With respect to loop addition T' sends f to 1 - f ) .  Let 
H: S k x  1 4  S k denote the canonical homotopy from T' (1) to the constant map. Then 
T is to be the injective limit of 

[X,~k (sk) ] r ' ,  [X; ok (sk)] ~ [X; ~ (sk)] 

There is also a natural inclusion t : F ~  Q ~ 1 7 6  defined by sending f : S ( R k ) ~  
-~ S ( R  k) to its radial extension f :  S* ~ S* given by f (tv)= tf (v), t>~O, Ivl >>- 1. 

(6.13) THEOREM. The triangle 

[X, F] z , [X; Q(~ (S~ 

[x; Q")(s~ 
is commutative. 

A proof of (6.13) will be given in Section 9. 
Now let K denote one of the fields R, C or H, the real, complex, or quaternionic 

numbers and let d denote the dimension of K over R. Let G=  S d-1 and let V denote 
the standard representation of G on R d given by scalar multiplication. Then the space 
F(k V), which we shall now denote by L,, is the injective limit over n of the spaces 
L~, where L~ is the space of Sa-  1-equivariant maps Sd("-k)-I ~ S d"-1. 

Let S a- 1 act on S d.- x • S d- 1 by (x, y) ~ (gx, gyg - 1), g e S a - 1. The quasi-projec- 
tive space P.  defined by James [12] is the space obtained from S dn-1 • Sd-a/S  d-1 by 
identifying the section S d"-I • {1}/S a-1 to a point (see [2; section 5]). It is easy to 
see that fin is the Thorn space of the bundle with fiber Ad (S d- l) associated with the 
bundle S a,- 1 ~ p. ,  where P.  is the projective space S d,- X/S d- 1 [2]. Let ff~o = inj limn P. 
and let Po be the base point of  if| Then with these changes in notation we obtain 
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from (6.6) a homotopy equivalence 

Lk " Q (P~o/Pk). (6.14) 

In particular, 

Vsd-, ~ Q (ffoo). (6.15) 

Note that RPoo = RP o~ + and CP ~ = ( CP o~ +) A $1. 

7. Morphisms of Sectioned Bundles 

In this section we take up some properties of the mapping set [~, fl] which will 
be needed to establish the functorial properties of the transformation 2. 

Suppose that N is a manifold and M e N  is a submanifold with normal bundle o9. 
Let E,~cN as a tubular neighborhood. Then if ~ is a sectioned bundle over N we 
have 

h~,:~IE,,,-~p*(~IM), ~,:~IEo-,~I M 

as in (4.2) and (4.3). Let fl denote another sectioned bundle over N and define 

e: [~  A a I M, fl ] M]  ~ [a, fl] (7.1) 

by 
e ( f )  (ax) = ~,h-Pl (x, f ( x  A /~,(ax))), x~E,~ 

Op(x), xeEo. 

The map e is easily seen to be natural with respect to suspension. That is, if 7 is 
another sectioned bundle over N, the following diagram is commutative. 

[~ A ~ I M, fl I M] L [~ A (~ A e) I M, (fl A ~') I M] 
le le (7.2) 

[~, t~] ~ , [~ ^ ~,/~ ^ ~]. 

The relation between e and the Pontrjagin-Thom map c : T ( a ) ~  T(~  A a i M )  is 
given by the following commutative diagram. 

[~ ^ a l M, fl l M] r-' [T (~ A a I MI, T (fl I M)] 

1o . 
~ [ r  (~), r (~ I M)]  (7.3) 

[a, fl] r , IT  (a), T (fl)]. 
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Here i: T(fl [ M ) ~  T(fl) denotes the inclusion. To prove (7.3) we have 

~ h ; l ( x , f ( x A ~ ( a x ) ) ) ,  xeEo, 
T e ( f )  (ax) = ( oo, x (~ E,o, 

and 

i : T ( f )  c(ax)= I f ( x  A ~(ax),  x~Eo, 
too, xCE~. 

A connecting homotopy H is given by 

H (ax, t) = ~ hf1(tx' f (x A /7t~(ax))), 
( oo , xCE~. 

x e E,o 

Now consider the restriction map 

r: [a, fl] ~ [m [ M,/3 [ M ] .  (7.4) 

Note that for f : ~  ~/3 we have htjf"~f[ Mh, since both are the end of a homotopy 
from a[E,~ to f i l E  o, which begins a t f  and covers the homotopy jt of (4.1). From 
this observation and a straightforward calculation we obtain the following commuta- 
tive diagram. 

[~,/3]_ r , [T (~ ) ,  T ( /3 ) ]  

I, F 

[~ I m ^ ~,/3 1 m ^ ~3 Z [ r  (~ I M ^ ~), T (/3 I m ^ ~)3. 

(7.5) 

Suppose now that p:M-* N is a map and ~,/3 are sectioned bundles over N. There 
is then the induced map 

p*: D,/3] -,  [p* (~), p* (/3)] (7.6) 

defined by p* ( f  ) (m, a) = (m, f (a)), meM, a~E~. Suppose further that p : M ~  N is 
a differentiable fiber bundle. Let p: M ~ N x R ~ be an embedding homotopic to p, let 
o9 denote the normal bundle, and let n: N • R s--, N denote the projection. Let us also 
choose p so that nff =p. Then p* (a)= n* (~) [ M and under this identification the map 
p* of  (7.6) corresponds to 

E~,/32 -* D* (~), ~* (/3)2 * - ,  [p ( ) ,  v* (/3)2. 

where r is the restriction map. Hence by the commutativity of (7.5) and the definition 
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of the transfer t, we have the following commutative diagram 

[a, fl] L [T(a), T (fl)] 
[.- 

* a  p* [~ ( ) ,  (~)] 

~' , [ T  (a) ^ S ~, T (fl) A Sq 
[. 

[ r  (0 ^ s', r (~,* O) ^ ~)] 

[p, (~) ^ N, p,(fl) ^ ~] r [T(p*(a) ^ ~), T(p*(fl) ^ N)]. 

(7.7) 

8. The Funetorial Properties of 2 

We will first establish property (5.10). Let U, V, and W be free G-modules such 
that Vc  U c  W. Let V* denote the orthogonal complement of V in W and V** the 
orthogonal complement of V in U. We then have M(V**)cM(V*). We let q, ~, t 
denote the bundles over M(V*) which appear in the definition of , t (V I w) and qo, 
~o, % those over M(V**) which appear in the definition of 2(V I U). Let ~o denote 
the normal bundle of M(V**) in M(V*). 

Let X be a finite complex. Since the restriction of t to M(V**) is %@co, we have 

[~, 'to r ~o �9 to] ~ [ ~  ^ ~, 'to r ~o r ~o �9 d]  -~ [~r 't r ~ �9 t ] .  

and we denote this composite by & A lengthy but straightforward calculation shows 
that the following diagram is commutative. 

Ex, v (v  I v)]  - ~  Ix ,  'to �9 r �9 to] 

t t" l '  (8.1) 

[X,F(V] W)]Z-~[;r 't r r r ~] 

Now let M(V*)=R ~ with normal bundle v and let v o denote normal bundle of 
the composite embedding M(V**)cR'. Then Vo-~Co~(v ] M(V**)) so that, by (7.2) 
and the definition of 6 we obtain a commutative diagram 

[~, 'to �9 ~o r ~o] L Br ^ 90, ,to r r r ~o r Vo] 
l '  I e (8.2) 

[ ~ , ' t e C r  " , [ ~  ^ ~ , ' t e c e ~ e v ] .  

Let ~ : ~ v  ~ R' and ~bo:to~)V o ~ R" denote the trivializations associated with the 
embeddings. Since ~k o is the restriction of ~b we have the commutativity relation. 

[-r ^ ~o, 'to r ~o �9 ~o �9 Vo] . ~ o ) .  IX ^ ~o, 'to r ~o r Rq 
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Now, by (7.3) we have a commutative diagram 

[~" ^ Vo, r/o + (o O) R ~] r [X ^ T (Vo), T (r/o + ~o) ^ S~] 

l e [X ^ T (v), T (qo + (o) ^ Sq 

T 
, [X A T(v), T ( q + ( )  ^ Sq.  

(8.4) 

Property (5.10) now follows easily from the commutativity of the diagrams (8.1) 
through (8.4), together with the relation 

j ?  
s '% lc (8.5) 

T (Vo). 

We turn now to the proof of (5.16). Let V G and W o be free G-modules such that 
VGc WG and let V~ and Wu denote their underlying H-modules. Let p:M(V~)--.  
-~ M(V~)  denote the projection and choose an embedding p: M ( V ~ ) ~  M(V*)  x R ~' 
such that nil=p, where z~:M(V*)x R~l--r M(V*)  is the projection. Let co denote the 
normal bundle to this embedding. The bundles over M(V*)  which appear in the 
definition of 2 will be denoted by a subscript G and those over M(V*)  by a subscript 
H. We then have p* Qlo) = t/n and p* ( ( ~ G )  = ~u@l:n �9 

We have the following commutative diagram 

[X, F (V G [ Wo)] o [~,/7o + ~G+TO)] 
l* 1"  (8.6) 

[X,F(V,, I W~)] L [8, nx + (n + ~n] 

�9 C $1 Now choose an embedding M(VG) R with normal bundle v G and let vn denote 
the normal bundle of the composite embedding 

M (Vff) ~ M (Vff) x R " ~  R ''+s*. 

We then have the relation 

v n '~ p* (vo) ~ co, (8.7) 

and from (4.6), 

(//if) RS' --~ P* ((G) ~ co. (8.8) 
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_.~ 55 r --0. lrl51 Let ~o:to(gv~ R and ~n:zn vn _~ *52 denote the trivializations associated 
with the embeddings. Making use of the identifications (8.7) and (8.8) we have the 
following commutative diagrams 

[;8, go (9 ~o (9 to] "*+~)':> [;8 ^ ~ ,  go (9 ~o (9 R'q l 1," 
P* [;8 ^ P* (vo), nn (9 p* (~o) (9 r '2] (8.9) 

[;8, nn (9 ~n (9 vii] (l@,n),~) [;8 ^ vn, nn (9 ~n (9 R51+51] 

Next, by the commutativity of (7.8) we have (see (4.7)) 

[;8 ^ vo, no (9 ~o (9 Rs*] r > IX ^ T (vo), T (go (9 ~6) ^ $52] 

1 1. p* 

[ x  ^ r (vo) ^ S% 7" (no (9 ~o) ^ s 5' § 

[ ;8 ^ 1'" P* (9o), tin (9 P* ((o) (9 R':] 

i~, [X ^ T (vo) ^ S 5', T (nn (9 ~H) ^ $5' +'2] 

l (1 ^ / )  

[;8 ^ Vn, nn (9 r (9 R"+52] L [x  ^ T (Vn), T (n. (9 Cn) ^ S:'+:q 

(8.10) 

Finally, from the relation 

f l i T ( % )  
SSi + 52. ~ t 

x , ~  T (vn) 

A S 51 

we obtain the following commutative diagram. 

IX ^ T (vo), T (t/o (9 ~o) ^ SS'] ~" , [X ^ S 52, T (no (9 ~ )  ^ S 5.] 

IX  ^ T(vo) ^ S 5', T (nn(9(u)  ^ S 5'+5=] ,,~ (8.11) 

l (1 At) # N N ~ ( 1  AC) # 

IX ^ T(vn), T (~/n (9 (n) ^ S 5'+5"] tI^O#;[X ^ S 5'+52, T(nn (9 ~n) ^ S ''+52] 

Property (5.16) now follows from the commutativity of the diagrams (8.6) through 
(8.11). 

Property (5.13) requires a similar analysis but we will leave the details to the 
reader. The key relation needed here is given in (7.5). 
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Let X be a finite complex such that d i m ( X ) < n - 1  and let P2 denote the projec- 
tion X x S n ~  S". The proof of (6.13) is based on the following commutative diagram 

[ x  x s (R"), S (R")] IX x S", S"]-G IX x S", S"] 

IX, F] ' , IX, Q(') (sO)] r [X, Q(O)(sO)] 

Here s is defined by s ( f )  (x, t v )=t f (x ,  v), t>~O, Iv[ = 1. The vertical maps are given 
by the obvious exponential correspondence and T' is the map T' (u)= [ P 2 ] -  u. Since 
we are in the stable range [Xx S n, S ~] has a natural abelian group structure. 

Let f :  X x S (R n) ~ S (R ") represent an element of [X, F]  and let 

2 ( f ) : X  x S n ~ S ~ (9.2) 

represent its image under the equivalence 2: [X, F]  ~ [X, Q(O)(SO)]. From the com- 
mutativity of the above diagram it is sufficient to show that 

[2 ( f ) ]  = [P2] - -  Is ( f ) ] .  (9.3) 

To do this we will give an explicit description of 2 ( f ) .  The standard embedding 
S ( R ~ ) c R  ~ has a trivial normal bundle and a tubular neighborhood map S(R  ~) x 
x R ~  R* is given by (v, t ) ~  etv. Hence, the associated Pontrjagin-Thom map 

c:S  ~ ~ S 1 x S (R~) /S (R  ~) 

is given by c(v)= (loglvl, v/Ivl). (It will be understood throughout this section that a 
point for which a formula is not defined is to be mapped to the base point.) 

Let •: y@/~ ~ R ~ denote the standard trivialization ~, ((v, w)@t)= tv+ w. If  v is a 
non-zero vector let o=v/Ivl. Using this data to construct 2, we have 

2 ( f )  (x, v) f (x, ~)) -- (0" f (x, ~))) ~) = + log Ivl O. 
1 -- O ' f  (x, O) 

Let 

h: S * • S" ~ S n (9.4) 

be defined by 

- (0. ~) 
h ( v , w ) =  1 - 0 " ~  +loglvlO.  

Let ae l t ,  (S ~) denote a generator and let al, a2 e nn ( S ' x  S ") denote the image of 
a under inclusion onto the first and second factor respectively. 
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(9.5) LEMMA. Suppose that n is odd. Then h, ( a l ) = a  and h, (a2)= - a .  
Proof. Since h maps the diagonal to the base point we have h ,  (al +a2)=0 .  Now 

let d: S"-~ S" •  S" send v to (v, - v )  and consider the composite hd: S " ~  S". Its ad- 
joint (hd)': S(R")-, 12 (S") is given by 

.J'log (t) V, t > O  
(hd)' (v) (t) = [ _ log (t) v, t < 0. 

Let i:S(R")~ I2(S") denote the adjoint of the identity. Evidently, (hd)' represents 
[i] - [iA], where A:S(R")~ S(R") is the antipodal map. If  n is odd [iA] = - [i] and 
(hd)' represents 2[i] .  Therefore hd has degree 2. Since d, (a)=al-a2 we have 
h .  (al - a 2 ) = 2 a .  The lemma follows now from this and the relation h# (as +a2)=0 .  

We suppose now that n is odd.  The map 2 ( f )  admits a factorization 

X X snLsn X sn h-~sn 

where f (x, v)= (v, s ( f )  (x, v)). Because of the dimensional restriction on X we may 
deform f into S ~ v S". That is, there exists a homotopy commutative diagram of the form 

xxs"Ls"xs"Ls" 

t s " v 

It now follows from the lemma and an elementary diagram chase that h f = 2 ( f )  
represents [p 2] - Is ( f ) ] .  

10. The Image of n,  (F~) in n ,  (F), G = Z r 

The stable homotopy theoretic interpretation of  the forgetful homomorphism 
from F G to Fn yields considerable information on the image of lr, (FG) in re, (In). 
There is a natural division into two cases depending on whether G is finite or infinite; 
we defer the infinite case to the next two sections. 

We begin with an easy observation. 

(10.1) PROPOSITION. Suppose G is finite and admits a free linear representation. 
Then the induced homomorphism 

~.  (FG) | Z [IGI-X] __, ~,  (F) | Z [ Ia l -a]  

is an isomorphism. 
Proof. According to (6.10), the above map is equivalent to the transfer homo- 

morphism 

** : s ,  ) - .  s ,  ( s  
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tensored with Z i 'IGI- 1-]. However, ifp: S ~o__, Ba is projection, the composite (p § o z, 
is an isomorphism when tensored with Z[IGI-1-] (see [23]). By a spectral sequence 
argument, (p§ is an isomorphism when tensored with Z[IGI-1-]. Hence the same 
is true of z,. 

As one might expect, considerably stronger results hold for suitable choices of G. 
We limit our discussion to the following 

(10.2) THEOREM. Let G=Zp, where p is a prime. Then the forgetful map from 
n, (Fa) to n,  (F) is surjective in positive dimensions. 

Proof. By (10.1) the image of the forgetful map contains all torsion in n, (F) of 
order prime to p. Since n, (/7) is finite in positive dimensions, it suffices to prove that 
the p-primary component of n,  (Fa) maps onto the p-primary component of lr, (F) 
in positive dimensions. We shall establish this using results of D. S. Kahn and S. B. 
Priddy [16]; the cases p = 2 and p # 2 require separate treatment. 

Case 1. p=2,  In this case Ba=RP ~~ Embed RP ~~ in the infinite special ortho- 
gonal group via the reflection construction; since SO is contained in Fa (linear maps 
are Z2-equivariant ) and Fz2 is homotopy equivalent to Q(RP ~176 +), this yields a map 
from RP | to Q (RP ~ § The results of [18] imply the existence of a unique map 

h:Q(RP ~176 ~ Q(Rp ~176 (10.3) 

which is a map of infinite loop spaces and makes the following diagram commute: 

n, ( R P ' )  , ~, (Q (RP ' ) )  

1" I h" 
~ , ( S O )  ~* | -- n,  (Fz2) ~ n, (Q (RP +)) 

\ 1  1," 
(F)  , (S~ 

(1o.4) 

It is well-known that 21J p induces an isomorphism of fundamental groups. Thus by 
[16, Theorem 4.1] its adjoint induces a surjection of 2-primary components in po- 
sitive-dimensional homotopy. But this adjoint induces t ,h ,  in homotopy by standard 
adjoint functor formulas, and hence t ,  must also induce a surjection of 2-primary 
components in positive-dimensional homotopy. 

Case 2. p ~ 2. Suppose f :  X ~  Q Y is continuous where X and Y are pointed CW- 
complexes. Then there is an essentially unique factorization of f through Y as an 
S-map (i.e., in the category of CW-spectra). Hence for any cohomology theory h* 
there is a canonical induced homomorphism 

f *  :h*(Y) ~ h* (X) (10.6) 
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making the following diagram commutative 

h* (Q (Y)) h* (x) 

h*(Y)/ 

Furthermore the correspondence f ~ f *  is functorial. Let L = Bzp and let t: Q (L +) --, 
Q (S ~ denote some map which realizes the transformation 

t ,  : [ ; Q (L+)] --* [ ; Q (SO)]. 

For any such choice of t we have the following commutative diagram (where H* 
denotes singular cohomology with Zp coefficients). 

H* ( f ) ,  H* (Q (S~ 

H* (U) *- H* (Fz,) ~---- H* (Q (L+)) (10.7) 

Let ~(qi)eH 2~tp-1)-1 (F) represent the loop-suspension of the i-th Wu class 

q ~ H  2ffp-1) (BF) (10.8) 

and let r~=2 *-1 (a(q~)). By the results of Kahn and Priddy [16, Remark 4.3] together 
with a lemma of Tsuchiya [30, Lemma 6.3], in order to show that the adjoint of the 
composite 

L + ~ Q (L +) ~ Q (S ~ 

induces an epimorphism of p-primary components in stable homotopy (in positive 
dimensions) it is sufficient to show that the images of the r, in H 2~(p-1)-1 (L +) are 
non zero. From the diagram (10.7) this will follow by showing that the classes a (q~) 
map non-trivially into H*(U). Now the image of a(qf) in H*(U) is the loop-sus- 
pension of the i-th Wu class in H* (BU) which is a non zero multiple of the Chern 
class of dimension ( p -  1) i modulo decomposables (see [33] or [30, p. 120]). Hence 
it is non zero in H* (U). 

11. The Image of 7r, (F~) in 7r, (F), G Infinite 

In contrast to the above results for G = Zp the image of  nk (Fo) in ~k (F) is always 
a proper subgroup if G is infinite and k -  ___ 1 rood 8 with the exception of  k = 1 if 
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Gv~S 3 (since Fs3 is 2-connected by (6.6), clearly the generator of ~zl(F)=Z 2 does 
not come from n.  (Fs3)). The proof has two basic ingredients - an investigation of 
the image of n .  (U) in n,  (F)  and a computation of the Adams e-invariant of elements 
in n .  (F) which come from torsion in n.  (FsO. 

In [8] Browder essentially proved that rc.(U)~rc,(Fsl  ) is monic. Using his 
methods one can prove a much stronger result. 

(11.1) THEOREM. The map from n , (U)  to lr,(Fs,) is an injection onto a direct 
summand, and the complementary summand of  the latter group is finite. 

We shall need the notion of G-equivariant fiber bundle as defined by Tom Dieck 
[29], however, all of  our equivariant bundles will be over trivial G-spaces, and hence 
the formulation of equivariant local triviality is easily understandable. In particular, 
if Top (X, cp) is the group of  G-equivariant homeomorphisms of the G-space X with 
action cp:G x X ~  X, then equivariant (X, cp) bundles over a trivial base are classified 
by maps from the base into B Top (X, cp). 

The Dold-Lashof classification of  ordinary fiber bundles up to fiber homotopy 
type [10, Theorem 7.5, p. 303] generalizes to equivariant fiber bundles over trivial 
G-spaces with only minor changes. 

(11.2) PROPOSITION. Let (X, q~) be as above, and let F(X, tp) be its space of 
equivariant self-maps. Two equivariant fiber bundles over a C W  complex with fiber (X, qJ) 
are equivariantly fiber homotopy equivalent if and only if the composites of their classi- 
fying maps with the induced function 

B Top(X, cp) ~ BF(X, cp). 

are homotopic. 
The following result generalizes the main step in Browder's argument. It is ap- 

parently well-known but (to our knowledge) unpublished. 

(11.3) LEMMA. (i) Let ~ be an n-dimensional complex vector bundle over a finite 
complex, and assume that its unit sphere bundle is equivariantly fiber homotopically 
trivial (with the obvious free S 1 action). Then the complex K-theoretic Chern classes of ~ 
are trivial. (ii) Let ~ be an n-dimensional quaternionic vector bundle over a finite complex, 
and assume that the unit sphere bundle of ~ is equivariantly fiber homotopically trivial 
(with the obvious free S a action). Then the real K-theoretic symplectie Pontrjagin 
classes of ~ are trivial. 

The characteristic classes mentioned above are defined in [9]. 
Proof. (i) Let S(~) be the associated S 2n-1 bundle of ~ and let e (~)  be the 

associated CP ~-~ bundle. Then S (~ )~P(~ )  is a principal S 1 bundle projection we 
shall call the canonical line bundle of  ~. An equivariant fiber homotopy equivalence 
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from S (4) to B x S 2,- 1 induces a fiber homotopy equivalence from P (r to B x CP "- 1 
under which the canonical line bundle over B x CP "- 1 (namely, id x p:  B • S 2 , -  t 
~ B x  (pn-x)  pulls back to the canonical line bundle on ~. Since K-theoretic Chern 
classes satisfy an analog of the Grothendieck relation for ordinary Chern classes 
(compare [9, pp. 45-48] or [3, pp. 84, 109], Browder's argument [8, p. 33] works for 
complex K-theory as well as singular cohomology. 

(ii) This follows from a virtually identical argument with canonical quaternionic 
line bundles replacing complex line bundles and KO-theoretic symplectic Pontrjagin 
classes [9, pp. 45-48, 52-58] replacing K-theoretic Chern classes. 

(11.4) COROLLARY. If  ~ satisfies the hypotheses of Proposition 8.3, it is stably 
trivial. 

Proof. The results of  [9, Section 9] show that the first K-theoretic Chern or 
symplectic Pontrjagin class of ~ is its stable equivalence class in K 2 ( X ) ~ . ( X )  or 

KO4(X)~-KSp(X). 
Proof of Theorem (11.1). Since U and Fsl are both arcwise connected, the result 

is trivial for zco. We shall first prove the result for zq and use the low-dimensional 
cases in providing the higher-dimensional ones. 

Let F(CP n-1) be the space of  self maps of CP n- 1. Regarding C n as an S 1 module 
we have the space FsI(C~). A result of  James [13] states that the 'passage to orbit 
space' homomorphism 

Fsl (C n) ~ F(CP ~-t) (11.5) 

is a fibration whose fiber is homeomorphic to the space of  functions from CP ~- t to S t. 
It  is easy to show that the latter is a K(Z, 1) and the inclusion of S t as the set of 
diagonal matrices is an explicit homotopy equivalence. Thus we have the following 
commutative diagram whose rows represent fibrations and whose left-hand vertical 
map is a homotopy equivalence; 

S t ~ Un , PSU~ 

1: I 1 (..6) 
X ~ F s , ( C " ) ~ F ( C t  m-t) 

as usual, PSU, denotes the projective group. Consider the induced mappings of  
fundamental groups; in the first row one obtains the short exact sequence 0 ~ Z 
--* Z ~  Z~ ~ 0 .  By (11.4), the induced map from r q ( U ~ ) = Z  to zq(Fs,(Cn))is 
monic. Thus the induced map from rq (X) to 1q (Fs~ (C*)) is also monic; notice that 
rq (Fs, ( C * ) ) = Z  holds if n~>2 by Theorem (5.7). An application of [26, Theorem 
4.11, p. 452] shows that zq (F(CP"-t))~ Z~, and it follows that the bottom row of the 
above diagram also yields the short exact sequence 0 ~ Z ~ Z ~ Z~ ~ 0 in funda- 
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mental groups. But this forces the map from nl (U.) to rc 1 (Fs, (C")) to be an iso- 
morphism. Since zq (U.)~rq (U) and zq (Fs, (C"))---tel (FsO if n is large, the proof 
of the theorem in dimension 1 is complete. 

Consider the following extended fibration sequence 

f h U. ~ Fsl (C n) ~ Y. ~ BUn -~ BFsl (Cn). (11.7) 

By the results of the previous paragraphs, Y. is 1-connected. Thus Lemma (6.5) and 
results of Stasheff [27] and Milnor [19] imply Y. has the homotopy type of a CW 
complex with finitely many cells in each dimension. 

Let W~ be the 2n-skeleton of such a complex homotopically equivalent to Y., 
and let j :  W, ~ Y, be the 'inclusion' map. Then hfj is homotopically trivial, so that 
the composite o f f ,  with the canonical map from BU, to BUis homotopically trivial by 
Corollary (11.4). Since (BU, BU,) is (2n + 1)-connected and dim W, ~<2n, it follows that 
fj  is homotopically trivial. Since f is a fibration, this means tha t j  factors through g up 
to homotopy. Since g is a fibration, this means that the induced fibration 

U, ~ j*Fs~ (C") ~ W. 

has a cross section. Therefore 

, ,  (j*F s, (C")) '~ , ,  (147.) • , ,  (U.). 

However, the pair (Fs~ (C"),j*Fs, (C")) is 2n-connected, and hence it is immediate 
that u,(U,)-~rr,(Fs~(C"))is an injection onto a direct summand if i<2n. Since 
(U, U,)is 2n-connected and (Fs~, Fs~(C"))is (2n-Z)-connected by 5.5 and 6.6, an 
obvious diagram chase shows that u ,  ( U ) ~  re, (Fs~) is also an injection onto a direct 
summand. The finiteness of the complementary summand follows because rank 
~, (FsO is 1 if  i is odd and 0 if i is even, the same as the corresponding rank of u, (U). 

(11.8) Addendum to 11.1. A completely analogous argument shows that n .  (Sp) 
rt. (Fs3) is an injection onto a direct summand with finite complementary summand; 

we shall omit the details. 

(11.9) THEOREM. Let n be odd, and let uen.(Fs,) have finite order. Then the 
image of u in lr ,(F) has trivial complex e-invariant. 

See [1, w 3] for the definition and properties of the complex Adams e-invariant. 
Proof. Let T:S2m+I(CP'+)~S2m(S2"+I+) be the transfer, where r>>n and 

2m >> r. Let u ' :S2m+"~ S 2"+1 (CP "+) correspond to u. The image v of u in re, (F) 
corresponds to cTu', where c:S2m(S2"+~+)~S2m collapses the S 2m+2'+a wedge 
factor. 

To show ec (image u)=0,  it suffices to prove t h a t  g(C(1)))~-~(s2m)(~.(S2ra+n+l) 
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as modules over the Adams ~k operations (compare [1, w Consider the following 
diagram 

s2m+ n v ) s2m__l. C (u) _.~ s2m+n+ l .._...~ s2m + 1 

1 "" . 1  1 I s"' l = (11.9) 
S 2m+1 (Cpr+)__._~S 2m ~ y..-.~ S 2m+2 ( C e  r+)  ~ S 2m+1 

Apply R to this diagram; since R(X)= 0 if X is a finite complex with cells of only odd 
dimensions, we have the following commutative diagram: 

0 ~ - R ( s 2 m ) ~ R ( y )  < R(s2m+2cp'+)~O 
$ $ J, (11.10) 

O,(--.R(s2ra) 4 - - g ( C ( v ) ) 4 - . R ( S  2m+n+l) r 0 

Let a generate R(S2")=Z,  let ~'~/~(Y) map to a, let r denote the image 
of ~'. 

It sufficeS tO show that if* (~)= km~. By naturality, 

~kk(~) = / ~  + ~, (11.11) 

where ~Image(u')*. But the order of (u')* is finite since the order of u' is; since 
R(s2m+"+I)=Z, this means (u')* must vanish. Therefore R(C(v)) splits as a ~b- 
module. 

Theorems (11.1) and (11.9) readily yield the following result: 

(11.12) THEOREM. ( i)Let  #k(k~>l) denote the Adams-Barratt element in 
:r (F). Then #k is not in the image of Trak+l (Fs,). 

(ii) Let tr k (k >I 1 ) denote the generator of the image of J in dimension 8 k -  1. Then trk 
is not in the image of na~-l (Fs,). 

(iii) In the notation of (ii), twice irk is not in the image of riSk-, (Fs3). 
Proof. The results of Adams show that / t  k and 2a k have nontrivial e-invariant 

[1, pp. 68 and 4d d5]. Thus they can only come from elements of n.  (Fs3) or n. (Fs,) 
having infinite order. An easy application of Theorem (11.1) and its addendum 
shows that if they come from n.(Fs3) or n.(Fs~), they also come from lr.(Sp) or 
n, (U) respectively. Since Pk is not in the image of J, conclusion (i) follows. On the 
other hand, the Bott periodicity theorems imply that nak-I (G)=Z if G=0, U, or Sp 
and the canonical maps 

~8~-1 (V) - ,  ~s~_, (0) 
~_, (sp) -+ ,~_, (0) 

are multiplication by 2 and 4 respectively (for example, see [7]). This shows that (r k 
and 2ak do not come from ~sk-, (Fs,) and z%k _, (Fs3) respectively, proving (ii) and (iii). 
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12. The Image of 7r, (Fs~) in 7~, (Fsl) 

The pathologies discussed in Section 11 are definitely 2-primary in nature. For 
example, if p is odd the generators of the p-primary components of the image of J 
always come from n,(Fs3); in fact, they come from n,(Sp) because the canonical 
map from n, (Sp) to r~, (0) is an isomorphism rood (graded) finite 2-groups. Thus one 
is led to ask whether the induced map from rc,(FsO|189 ] to rc,(F)|189 is 
surjective in positive dimensions. Although we cannot prove this, we can prove that 
the images of It, (FsO|189 and ~, (Fsl)|189 ] in 7~, (F)|189 are the same. 

By Theorem (5.15) the above statement is equivalent to saying that the images of 
the transfer homomorphisms 

S,  ((HP) +) | Z[�89 -- S ,  (S ~ | Z[�89 
s ,  (s(cP++)) | z[�89 s ,  (s ~ | z[�89 

are equal. We shall deduce this using the following result. 

(12.1) THEOREM. Let k be the involution of CP ~~ given by conjugation. Then 
the transfer from S, (HP~~174189 to S,  (S(CP~~174189 is surjective, and its image 
is the subgroup left fixed by S(k+),. 

Assuming this, we state and prove the fact mentioned above. 

(12.2) THEOREM. The images of S, (HP~)| Z[�89 and S,(S(CP~176 + ))|189 in 
S,  (S~174189 are equal. 

Proof. Let S ~~ be the total space of the universal S 1 bundle over CP ~~ Then k 
lifts to an involution I of S ~176 and by the naturality of the transfer we have the follow- 
ing commutative diagram: 

S (CP~+)--} S~+ ~_ S O 

s~§ '+1 ldl 
S(CP ~~ ~ S ~176 ~_ S O 

It follows that if yeS,(S(CP~176 then y and S(k+),y have the same image in 
S, (SO). Clearly this remains true after tens| with Z[�89 

Consider the element �89 y) in S ,  (S(CP ~~ +))|189 By the discussion 
of the preceding paragraph its image in S,  (S~174189 is the same as the image ofy. 
On the other hand, it is clearly left fixed by S(k+),, so that it lies in the image of 
S ,  (H/~ ~ ) |  [�89 by Theorem (12.1). 

Let N be the normalizer of S 1 in $3; then the transfer from HP ~ to S(CP ~+) 
factors through BN ~. The proof of Theorem (12.1) has two parts - an examination 
of the image of S,  (HP~)|189 in S,  (BNr174189 and an examination of the image 
of S ,  (BN~)|189 in S,  ((CP ~ +))| [�89 
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(12.3) PROPOSITION. The induced homomorphism from S,(HPC~174 to 
S, (BNr174 is an isomorphism. 

Proof. Let k 1> 0 be given, and let n be large with respect to k. It suffices to prove 
that 

t,Sk ((HP n- ,){(s3)) --+ Sk (( S'*"- I /N) r 

is an isomorphism when tensored with ZI-�89 
The Atiyah-Hirzebruch spectral sequence for stable homotopy theory yields a 

spectral sequence map converging to the homomorphism under consideration. On 
the E 2 level it takes the form 

t,  : Hp ((tip n- 1)~; Sq) | Z [�89 ~ Up ((S'"- 1/N)r Sq) | Z ['�89 

The homology groups of X ~ are isomorphic to unreduced cohomology groups of X 
(where X = H P  "-1 or $4"-1/N) by the Thom isomorphism and Poincar6 duality. 
Techniques of Boardman [6, w 6] show that under these isomorphisms t ,  corresponds 
to the cohomology map induced by the projection 

p: $4"-1/N ~ Hp n-1 " 

Therefore it suffices to know that p* is an isomorphism in Z [�89 coefficients. 
This follows from the Serre spectral sequence; for p is an orientable fiber bundle 
projection whose fiber is RP 2, a Z [�89 space. 

We shall need a slight generalization of a familiar result on the transfer in singular 
cohomology. 

(12.4) PROPOSITION. Suppose p : X ~  Y is a regular n-sheeted covering ( Y  is 
a CW complex) and G is the full group of covering transformations. Let ~ be a k-plane 
bundle over Y whose pullback to X is trivial, and let pC: SkX + ~ Yr denote the induced 
map of Thom spaces. 

O) I f  t: Yr ~ s k x  + is the transfer, then pet is an isomorphism in any homology 
theory taking values in the category of Z[1/n]-modules. 

(ii) Let h, be a homology theory taking values in the category of Z [ 1/n]-modules. 
Then t,  is injective and its image is the stationary set of h, ( skx  +) under the action of G 
induced by covering transformations. 

The proof of the first part is an exercise in the techniques of [6, w and [23]. The 
proof of the second part is an elementary algebraic exercise based on the canonical 
isomorphism from h, (skx+)/G to h, (Yr induced byp ~. 

The following result and Proposition (12.3) imply Theorem (12.1). 

(12.5) PROPOSITION. The transfer map from S,  (BN~)|189 to S,  (S(CP ~o +)) 
|  [Jr] is injective and its image is the subgroup left fixed under S (k ),. 
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Proof. If ( is the line bundle over B N  given by the adjoint representation, then 
the pullback of ( to CP o~ is trivial. On the other hand, CP co is a double covering of 
BN, and an elementary argument shows that the covering involution of CP ~~ is 
homotopic to k. Thus the proposition follows from Proposition (12.4). 

APPENDIX 

13. The Transfer 

Let p : M ~  N be a finite covering space where M and N are compact smooth 
manifolds without boundary. In section 4, we described a well known method of 
associating with a sectioned bundle e over N an S-map. 

t: T(ct) ^ S ~ ~ T(p* (ct)) ^ S ~. 

For the purposes of this section we refer to t as the 'umkehr' map. On the other hand, 
there are general constructions of Roush [23] and of Kahn and Priddy [16] which 
associate with a finite covering pair a wrong way map called the 'transfer'. In partic- 
ular, for the covering pair (Ep.(~), M )  ~ (E~, N )  there is a transfer 

z :T(a)  ^ S ~ ~ T (p* (a ) )  ^ S ~. 

The object of this appendix is to give a direct proof that the umkehr map agrees with 
the transfer. In this direction Roush has shown that their induced homomorphisms 
agree for any (co) homology theory h for which N is h-orientable (taking ~ = 0). 

We begin by describing the transfer for finite coverings. Let c~ denote the sub- 
category of the stable homotopy category of CW-spectra [6,31] having pointed CW- 
complexes as objects. Let G be a finite group and H a subgroup. Let ~ denote the 
category whose objects are CW-pairs (X, A) with a free and cellulair action of G on 
X which leaves A invariant. The morphisms in ~'~ are to be equivariant maps of 
pairs. We will call (X, A) a free G-pair. There is the forgetful functor ~ : ~  ~ ~H 
obtained by restricting the action of G to H. There is also the quotient functor 
- ~ a : ~ a ~  defined by sending (X, A) to X/A/G.  As usual, we write X + for X / ~ =  
= X u  + } and, in general, + will denote the base point of a pointed space. If 

f :  (X, A ) ~  (X', A')  is a G-map, we also let f denote the quotient map f : X / A / G ~  

--, X ' I . 4 ' IG .  
There is a 'suspension' functor ~ 9 ~  defined by sending (X, A) to the pair 

(X, A) x (S 1, + ) with G acting on the first factor. Note that the quotient of (X, A) x 
(S 1, + )  is equal to X/A/GAS 1. 

Suppose that A : X / G - - , X / H  is a cross section to the covering p : X / H ~ X / G .  
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There is then a retraction q: X/A/H-~ X/A/G by 

~p(y) ,  if y =  A(p(y)).  
q (Y) = ( +,  otherwise. 

(13.1) DEFINITION. An H -  G transfer is a natural transformation ~ : .~  ~ .~n ~ 
having the following properties: 

(a) ~(X, A) x (S l, + )  = z(X, A) A 1. 
( b ) / f  A : X/U ~ X]H is a cross section. 

the composite 

X/A/G .L, X/A/H ~ X/A/G 

is the identity. 
Although our formulation of the transfer is slightly different than Roush's his 

results are easily translated. Hence we have 

(13.2) THEOREM. (Roush [23]). There exists a unique H - G  transfer. 
The construction of z that follows is equivalent to that of Roush and also of Kahn 

and Priddy. If Yis a pointed space let P(Y)  denote the space of functions or: G / H ~  Y, 
where G/H denotes the set of left cosets of H in G. Let G act on P(Y)  by g~r(wH)= 
= a(g-~wH), g, we G. We have an equivariant embedding 

(G/H) + A r-+ P ( Y )  

by w H A y ~ a ,  where a(wH)=y and a(w'H)= + if w'H#wH. Topologically, the 
pair (P(Y), (G/H) + ̂  Y) is simply the n-fold product of Y modulo the n-fold wedge, 
where n is the index of H in G. Hence it is a (2s-  D-connected pair if Y is ( s -  1)- 
connected. 

Now we may write 

P(Q (Y) = inj lim~fl'(P (Y ASk)) 

and 

Q((G/H) + ^ Y)=  inj limpf2k((G/n) + A (Y  A S~)). 

Moreover, the embedding (13.3) is compatible with the injective limit maps and so 
we obtain 

i: Y((G/H) + A Y) + P(Q(Y) ) .  (13.4) 

By the remarks of the preceding paragraph, the relative homotopy groups of the pair 
(P (Q(Y)), Q ((G/H)+^ Y)) are trivial. 
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Now let (X, A) be a free G-pair and set Y=X/A/H. Define 

tO: (X, A) ~ (P(Y), + )  (13.5) 

by tO(x)(wH)=[w-lx] .  Then tO is a G-map. We will also let tO denote the map 
(X, A ) ~  (P(Q(Y)), +) obtained by composing with the canonical inclusion e (Y)c  
P(Q(Y)). Consider the diagram 

(x, A) (P (Q(r)), +) 

(Q(( )§ +)---.Q(Y), 

where 2 is the 'folding map' (G/H) + ̂  Y--* Y defined by 2(wHAy)=y. There are 
no obstructions to equivariantly deforming tO relative to A into Q ((G/H) + ̂  Y). The 
end of such a homotopy is denoted by tO' in the diagram. Upon taking quotients 
Q (2) yields a map 

z' : X/A/G -., a (Y) = a (X/A/H). (13.7) 

Now the transfer z is the map in the stable homotopy category which is the adjoint 
of z'. It is easy to check that z is well defined and meets the requirements of definition 
(13.1). 

To obtain a transfer on the category of n-fold coverings let G = ~ , ,  the symmetric 
group on n letters, and let H=5:n_  1. If  p:(E, E')~(B,  B') is an n-fold covering 
pair let X denote the total space of the associated principal G-bundle. Precisely, X 
is tile space of maps a: {1 .... , n} ~ E such that o" is fiber preserving and one-one. Let A 
be the subspace of maps whose image lies in E ' .  If  G acts on X by t ~ a 0  -1, 0sG,  
we have a free G-pair (X, A) and the assignment which sends the covering pair to 
(X,A) is clearly functorial. Moreover p:(X/H,A/H)~(X/G,A/G) is naturally 
equivalent to the original covering pair. The identifications X/H--~E and X/G-.B 
are given by a - .  o (n) and o - . p o  (n) respectively. Hence the H - G  transfer yields a 
transfer for n-fold coverings. 

Now let p : M ~ N  be a finite covering of index n where M and N are smooth 
manifolds. By the preceding remarks, we may write it in the form p:X/H.-.X/G 
where G=.9~ H=~9~ and Xis  a smooth manifold. To define the umkehr map we 
will construct a particular embedding 

~:X/H--+ X/G x R s (13.8) 

Let V denote the G-module consisting of R" plus the action of G=Sa,  on R n through 
permutations. There is an embedding X / H ~ X x  V/G by [x]u~[x, e,,]o. Now for 
the vector bundle rc:Xx V/G.-*X/G there is, for large, s, a map 

o:X x V/G .-* R s (13.9) 
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which is a monomorphism on each fiber. Let/~ be the composite embedding 

X/H--', X x V/G ('~'"), X/G x R ~. 

Explicitly, /~([x])=([x] ,  a( [x ,  e,])). The embedding/~ has trivial normal bundle 
and for e sufficiently small we have a tubular neighborhood map 

p: X/H x Rs--', X/G x R s (13.10) 

by/~ (Ix], v) = (Ix], Q (x, v)), where 

o : X  x R ~ -'. R s (13.11) 

is defined by O(x, v)=a ( [x ,  era])+ ev/1 + Iv[. 

Let fl be a sectioned bundle over X/G and ct its pullback over X. Then fl=o~/G 
and p* (fl)= o:/H. Using the above tubular neighborhood embedding, the umkehr map 

t: T(ct/G) ^ S ~ ~ T(a /H)  ^ S ~ 

is given by 
j ' [g -aa ]  ^ v', if t ( [a]  I)) ^ 
( + ,  otherwise 

On the other hand there is the transfer 

z:T(a/G) ^ S= ~ T(a /H)  ^ S ~ 

associated with the free G-pair (E,, X). 

v=Q(g-ap~,(a),v ') 

We will show now that t =  z. To this end let Y= T(a/H) and define 

O:(E, ,X)  • (S ~, + ) ~  (G/H) + ^ Y ^  S ~ 

(13.12) 

(13.13) 

by 

O(a, v) = {gH+, ̂  [g-'a]otherwise ^ v', v = Q(g-'p~ (a), v') 

Consider the following diagram 

x) (P(r ^ sg ,  +) 
l' 

G/H + + ( r  +) (( ) ^ r ^ s  s, ^ s  

Since the umkehr map t is the quotient of  20, we will have n = t provided iO is equiv- 
ariantly homotopic to q~. The required homotopy Ft is given by 

[ [g-~a] ^ v', 
Ft (a, v) (gH) = ,  if v = tQ (g-  ap, (a), v') + (1 - t) v'. 

+ ,  otherwise. 
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