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Generic  finite s chemes  and Hochsch i id  cocycles 

GUER1NO MAZZOLA 

Introduction 

Let k be an algebraically closed field of characteristic different from 2 and 3. In 
this paper  we investigate the schemes N,, n e N, whose k-rational points are the 
k-algebra structures ~ on k" which are commutative,  associative and satisfy 
al �9 a2 . . . . .  a ,+l  = 0 for any al ,  a2 . . . . .  a ,+l  ~ k". Our  main result is the fol- 
lowing 

T H E O R E M .  For n = 1, 2, 3, 4, 5, 6, the schemes N, are irreducible and rational 
of dimension n 2 -  n. The structures isomorphic to the maximal ideal of k[ T]/(T "+1) 
define a smooth, open subscheme of N,. 

Hence every finite local k-scheme X of k-rank n<-7 can be deformed to 
Spec (k[T]/(T")). This implies that X admits a desingularization, i.e. a deforma-  
tion to Spec (k~). 

For n ->_ 7, we show that  there are structures ~, e N,, of embedding dimension 
[n + 1/2] which are not specializations of the maximal ideal of k[T]/(Tn+l). From 
this it follows that for n >- 10, there are finite schemes which cannot be  "desing- 
ularized." 

In contrast to the Hilber t-scheme method used by A. Iarrobino and J. 
Emsalem [2, 3, 4, 5], our technical tools are Nn-scheme Sn parametrizing the 
commutative Hochschild cocycles associated with structures in N,. The descrip- 
tion of S,,/N,, is discussed in w and in w where we list explicitely the cocycles we 
are interested in. 

w is entirely devoted to the proof  of the above theorem. 
w presents the above structures ~,, showing that for n >-7, N ,  admits at least 

two irreducible components .  
w is an appendix, including two deformation criteria also valid for non- 

commutative,  associative k-algebras,  as well as the Hasse-diagram of the defor- 
mations of five-dimensional commutative,  associative, unitary k-algebras. 

I want to express my gratitude to P. Gabriel  for careful reading and in 
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particular for some suggestions concerning w which made it possible to avoid two 
very ugly deformations, one of which I include as a curiosity. 

w Cocydes 

Let k-Alg be the category of associative, commutative k-algebras with unit 

elements. We consider the following scheme N.  (n ~ 1)" for each A e k-Aig, the 
A-points of N.  are the multiplications ~ : A"  • A" ~ A"  of commutative, associa- 
tive A-algebra structures on A n such that ala2" �9 �9 a . + l = 0  for any 
al, a 2 . . . . .  a.+~ e A". Being bilinear, such a multiplication map ~ may clearly be 
identified with an element of HOmA (An@AA ", A " ) - ~ A  "~. In this way N.  is 
identified with a closed subscheme of the scheme underlying k "~. 

We denote by el . . . . .  e. the canonical base of A" and often write ~ instead of 
A n, when the space is considered in relation with the multiplication ~. For 
instance, we write tj "~ for the i-th power of A ~ under ~. If ~:e N,(k) is a k-rational 
point of N,, e(~) denotes the embedding dimension dimk (~:/~.2) of ~. 

By structural transport, g e G L ,  (A) acts on N,(A) from the right in such a 
way that g:s163 becomes an A-algebra isomorphism: s  
g-l(~:(g(x), g(y)). If ~: and "0 are two k-rational structures on N,, we shall write 
~>-r/ if ~ belongs to the Zariski-closure of the orbit ~GL of ~. 

In order to proceed from N.  to N. + 1, we set C(,~) = 
{B e HomA (A" | A",  A) :/3 = symmetric and ~-associative}. For every ~ e 
N. (A) ,  this means that B e  C(~) iff B(x, y )=  B(y, x) and B(xy, z ) =  B(x, yz) for 
any x,y,  z e A " ,  the products xy, yz being taken in ~. We call such a B a 
symmetric Hochschild cocycle. 

If geN,,(A) and r / e N d ( A ) ,  then a homomorphism f-:~:----~ r/ of A-algebras 
induces a homomorphism of A-modules  C(f) : C(r/) ~ C(~) by the usual formula 
C(f)(B)(x, y) = B(f(x), f(y)). In particular, if "O = ~/~.2, f being the projection of 
onto ~:/(2, then we may identify C(~/~ "2) with its C(f)-image in C(~), the subspace 
of C(~) consisting of all symmetric forms vanishing on ~ • ( 2 +  ~.2• ~. 

We define the N.-scheme S. of symmetric Hochschild cocycles over N. by its 
functor S.(A) = {(~, B) : ~ e N.(A), B ~ C(~)}, the structural morphism p : S. ~ N. 
being the projection (~, B)~--~. Observe that S. is a commutative group scheme 
over N., the p-fibre S(~)= {~} • C(~) being "isomorphic" with C(~). Again, G L .  
acts on S. from the right by (~, B) g = (~g, C(g)(B)). 

EXAMPLES.  (1) Let  ~'. e N.(k) be the uniserial structure, for which e~ = ep if 
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p<=n and e ~ = 0  if p>n. Then C(I".)-% ~])~=a klj, with 

0 . . .  0 1 0 - - -  0 \  
1 

I,: 01 

/ 
0 

(2) Let ~ ~ N,~(k) be the final structure: e~ej = 0, all i, j. Then C(q~.) -~ M~(k), the 
set of symmetric n • n-matrices with coefficients in k. 

Let  Ex:S~--~ N~+~ be the morphism sending the couple (~, B)e S~(A) to the 

structure r /=Ex(~ : ,B)  on A~+~=~'~2]Ae~ such that e~+ l ; e~=0  for i =  
1,2 . . . . .  n + l ,  and e~.;ej=e~ej+B(e~,ej)e.+~ for i , j = l , 2  . . . . .  n. Clearly, 

Ex : S. ~ N.+I induces an isomorphism between S. and the closed subscheme S. 
of N.+~ formed by the structures ~ such that ~:e.+l = 0 and ~("+~)c Ae,,+~ (the last 
condition holds automatically if ~eN.+~(k) is k-rational). Moreover, Ex is 

(g ~) Finally, equivariant with respect to the embedding GL.- -~  GL.+I,  g ~-9 0 " 

the composed morphism Exgl: S. x GL.+~ ex• , N.+~ x GL.+~ ~ Nn+ 1 is surjec- 
tive since every k-rational structure r t e N.+a(k) contains a one-dimensional ideal. 

In order to show that N.+~ is irreducible for n + 1 = 1, 2, 3, 4, 5, 6, we shall 
construct irreducible curves F in N.+~ such that rl ~ contains some non empty 
open subset of F. If this holds, we shall say that F lies generically in r/~ This 
will imply r/>- ~ whenever F f3 ~:oL +~ ~ ~ .  

PROPOSITION 1. Let  ~, rl ~ Nn+~(k). Then n > ~  ifl there is a curve F in S. 
whose image Ex(F) lies generically in .qoL +, and satisfies Ex(F)f3 ~L+~ ~ ~ .  

Clearly the condition is sufficient. In order to prove the converse, consider the 
subscheme 7". of N.+ 1• P .  such that T.(A)= {(~, ~-) : ~ - r = 0 and ~j("+ 1)c ~-}; here 
~ N.+I(A) is an algebra structure on A "+1 and ~- is a direct summand of A "+1 of 
rank 1. Clearly, the canonical projection v:T.---~N.+I is proper and surjective. 
Therefore we have v(v-~(rl~ rl ~ If r l~  ~, it follows that there is some 
(~, o')~ v-~(rl ~L-+I) lying over ~. Let  A be a curve in v-a('q ~ running through 
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(~, tr) and cutting V-~(rl6L'§ Replacing if necessary (~, tr) by some (~ ,  g-~cr) 
with g ~ GL,+I ,  we may assume that tr = ke,+~ and that A c N,+~ • U, where U is 
the open subscheme of P ,  whose A-points  are the supplements of Ae~ ~9 . . .  
Ae .  in A "+~. Replacing A by the image of A--~ T,, 8~-~8 "~) where /z: U---> 
GL,+~ is a morphism such that u "(") = ke,,+~ for all u ~ U(k),  we are reduced to 
the case where z~ ~ N,+I x{ke.+~}. In that case we set F =  Ex -~ (v(A)). QED.  

For  a k-rational ~ e N , ( k )  we put soc (~) = {x e ~ : x~ = 0} to denote the socle 
of ~. 

C O R O L L A R Y  1. Let r I ~ N,+~(k) and ~ ~ Ex (S , (k))  be such that rl> ~ and 
dimsoc (rl) = dimsoc (~). Then there is a curve F in S, such that Ex (F) runs through 
(; and generically lies in 71GL.*-. 

Proof. Keeping the notations of proof of proposition 1, we only have to show 
that the curve za c v-~(-0 GL~+~) constructed in that proof may be chosen in such a 
way that (~, ke,+O ~ A. For that it suffices to prove that (~, ke,+~)~ V-~('0OL~+'). In 
fact, consider any irreducible component V of v=~(n ~ which dominates 
~ S ~ .  Consider any point (r ~-)e V which is contained in no other irreducible 
component  and lies over ~CL +,. Then dim (v-~(r V ) =  dim v-~(r  dimsoc (r/). 
As v(V) is closed, v-~((~)AV is not empty; hence dim (v-l(~) N V) _- > 
dim (v-l(~) fq V) = dimsoc (r/) = dimsoc (~) = dim v-~(~) and v-l(~) fq V = v-l(~). 
We infer that v - l (~ )~  V c  v-I(T~ GL~§ = v-l(T~ L~+I) .  

Remark. The preceding proposition applies in particular to the case where 
rl =~,+~ and e(~)---2. This follows from a theorem of Brian~on [1] stating that 
Hilb "+: k{x, y} is irreducible (for the density we refer also to theorem 1 below). In 
fact, let the ideal I ~  k{x, y} in Hilb ~+~ k{x, y} define a local algebra isomorphic to 
k ~) ~. Then the theorem implies that I deforms to a "generic"  ideal -to defining a 
local algebra isomorphic to k ~9 ~-,+~. Consequently, in a neighbourhood o f / ,  this 
deformation may b e projected to a deformation of ~ to ,r,+~. 

PROPOSITION 2. Let ~, 71 ~ N , ( k )  be such that dim C(~)= dim C(rl) (resp. 
e(~) = e(n)). I f  r is a curve o[ N. through ~ lying generically in ~qCLo (SO that ~0 > ~), 
and if B ~ C(~) (resp. if B ~ C(~/~'2)) then there is a curve A in S, through (~, B) 
lying over F. 

Proof. We may suppose that dim C(7) = dim C(rl) for all 3' e F. Let  p : S, ~ N, 
be the canonical projection. The first statement to be proved is equivalent to 
S(~) = p - l ( ~ ) c  p-~(F f~ "0OL'). In fact we shall prove that p- l (F)  is irreducible. For 
this purpose consider an irreducible component  V of p- l (F)  containing the 
zero-section F x {0}c p-~(F). Let  (r o-) be a point of V, which is contained in no 
other irreducible component  and where p [ V has minimal fibre dimension. Then 
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p-~(~')--~ C ( 0  is contained in V; hence the minimal fibre dimension of p I V  is 

dim C ( O = d i m C ( r l ) .  It follows that d i m ( p [  V ) - l ( ~ ) > d i m C ( ~ )  for all 3 '~F,  
hence that (p[ V)- 1(7) = S(3,) and V =  p-~(F). (In fact we prove that a morphism 
of algebraic varieties which has a section, and whose fibres are irreducible of 
constant dimension, is universally open.) A similar proof holds for the second part 

of proposition 2. 

P R O P O S I T I O N  3. Let n ~ N , , ( k ) ,  ~ N , ( k )  and B ~ C ( n x ~ )  such that 
B l rl x ~ is non degenerate. Then there is an automorphism of 71 x ~ which maps B 
into C(rl) (~ C(~) c C('O x ~). 

Proof. Let H be the orthogonal projection of ~ onto "0 with respect to B, and 

set g =  0 ~ G L ( 7 1 ( t ~ ) .  Then g maps ~ identically onto r I and maps ~ 

bijectively onto the orthogonal supplement of 71 with respect to B. The formula 
Bg(x, y) = B(gx, gy) shows that 7/ and ~ are orthogonal with respect to B g. If we 
can prove that g is an automorphism of the algebra structure, it will follow that 

B ~ e C(n) �9 C(~). 
In order  to prove that g is an automorphism, we first prove that the socle of ~? 

is the orthogonal subspace of ~.2 in ~ with respect to B: in fact, we have sx = 0 
for all x e ~ if[ B(sx, y) = 0 for all x, y e ~1, and this holds iff B(s, xy) = 0. 

Then we prove that H maps ~ into the socle of ~: indeed, if x, y e ~ and z e 
we have B(Hz,  xy) = B(z,  xy) = B(zx,  y) = 0. Finally we observe that H(~ 2) = 0. 
In fact, if x, y e ~, we have B(z, H(xy))  = B(z,  xy) = B(zx,  y) = 0, for all z c ~. 

Now take x e ' q  and y e ~ .  Then ( g x ) ( g y ) = x ( y - H y ) = - x H y = 0 = g ( 0 ) =  
g(xy). Similarly, if x, y e ~, we have (gx)(gy) = (x - Hx)(y - Hy)  = (Hx)(Hy) + xy = 
xy = xy - H(xy)  = g(xy). Finally, if x, y ~ rl, we have (gx)(gy) = xy = g(xy). 

Remark. Call an algebra-structure r  colocal if it has a socle of 

dimension 1. This is equivalent to saying that the algebra with unit k ~ ~ is 
symmetric ( = self-injective). Clearly, if ~ ~ N.(k) ,  a form A ~ C(rl) is non degen- 

erate iff Ex (r/, A ) ~  N,+l(k)  is colocal. 
We therefore say that ~ is presymmetric if there exists a non-degenerate  

A a C('0). The presymmetr ic  algebras are obtained by dividing the maximal ideal 

of a local symmetric algebra by its socle. 

C O R O L L A R Y  2. Suppose ~ N , ( k )  is such that S( ,~ )cS( r , )  ~ Then 
s ( ~  x ~) ~ s(To+~)~ 

Proof. By proposit ion 3, it suffices to show that 

{ ~  x ~} x ( c ( ~ )  ~ c(~)) ~ s(~.+~) ~ 
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But  our  assumpt ion  implies that  {~r,. • tj} x (C(~',.) ~ C(~)) c S('r., • T.) cL-+~, and a 
general  m e m b e r  ~r of Ex  (S(~-., • ~-.)) has e(~') = 2 and is colocal.  So by the r emark  
fol lowing corol lary 1, S ( I ' , . •  eL-+- (apply corol lary 1 to ~ and 

= T,.+.+~ ~ Ex (Sh' , .  +.))). 

C O R O L L A R Y  3. We have S(q~.)c S(~" )C'L.. 

This results f rom q~.---% ~-~ x ~'1 x �9 �9 �9 x ~-1, n t imes.  

Remark. This corol lary m o r e  directly follows f rom the fact that  the curve 
(At., In), A e k, is in S. (think of r .  ~ H o m k  (k" |  k", k")  to define AT.), and for  
A = 0, this is (q~., I . ) ,  which has an open  orbi t  in S(q~.) under  Au t  (~ . )  = G L . .  

P R O P O S I T I O N  4. Suppose r l~N,+,(k) .  Let " o = E x ( ~ , B ) ,  (Id, B ) c S , .  Then 
e(~) <= e('o) <= e(~) + 1, and e('o) = e(~) + 1 iff the algebra extension 0 ~ ke,+l 
n--~r is trivial, i.e. iff B(x, y ) =  f(xy)  for some f:~---~ k. 

Proof. The  only point  is the implicat ion e ( r  1) = e(~5)+ 1 ~ ~1---~ Ex (~, 0). Now,  
since e ( ~ q ) = e ( f ) + l ,  ~ 2 N k e , + l = ( 0 ) .  T a k e  a supp l emen t  U of ke,+~ in k "+1 
conta ining r/"2. Then  U is a suba lgebra  of rt which is i somorphic  to ~ and 

rl --~ U x ken+l, Q E D .  

In general ,  the uniserial  s t ructure  furnishes one irreducible c o m p o n e n t  for  Nn 
and for  Sn according to the following 

T H E O R E M  1. Let .r. c N . ( k  ) be the uniserial structure. 
(i) The orbit "r.GL. is an open, smooth, rational subscheme of Nn with dimension 

n2-n. 
(ii) Let p : S. ~ IV. be the canonical projection. Then p-I(rGL") is a smooth open 

subscheme of S. with dimension n 2. 
(iii) Let O = {g e G L .  : all diagonal minors of g invertible} be the big cell of G L .  

with respect to the Borel group B(n)  of upper triangular matrices and the torus T(n) 
of diagonal matrices. Call f (resp. fo) the orbit morphism s --* S. : g ~ ('r., I.) g 
(resp. g2 ~ N .  : g ~ T g) restricted to [2, the notation I. being that of example (1). 
Then fo admits a section s such that the multiplication A u t  (~-.) x I m  (s o fo) ~ g2 is 
an isomorphism. I f  char  (k)  = p => n + 1 or p = O, then f is quasi-finite and the orbit of 
(r., I.) is dense in p-l(r?L"). 

Proof. W e  first show that  the orbi t  m o r p h i s m  q : G L .  ~ N .  : g ~ ~-g is smooth .  
W e  verify the functorial  cr i ter ion (formal  smoothness) .  Cons ider  a c o m m u t a t i v e  
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S p e c ( * )  ~ , G L .  

"/ [q 

Spec ( A )  ~ N,, 

whe re  A = A/1, 1 2 =  0,  and m is a mul t ip l ica t ion  on A" .  W e  have  to find 

t :Spec  (A) - -~  G L ,  such that  both  t r iangles  b e c o m e  commuta t ive .  The  d a t u m  of s 

is equ iva len t  to tha t  of a basis  gl . . . . .  g~ of A n such that  gp = g~. W e  have to lift 

this basis to an a p p r o p r i a t e  basis of A "  : l if t  g~ to s~ and set  sp = s~! 

F r o m  this the  first two asser t ions  of (i) fol low. F o r  the  third asser t ion  of (i), 

oL is this: for  any A ~ k - A l g ,  U(A) is no te  that  a functor ia l  desc r ip t ion  of U = % ~ 

f o r m e d  by the A - a l g e b r a - s t r u c t u r e s  on A "  which are  i somorph ic  to ~o ~ o~| 

�9 " G ~o | oJ an inver t ib le  A - m o d u l e .  To see that  p~(U)  is smoo th  of d i m e n -  

s ion n 2, let  Spec (A)---~ U be  any morph i sm.  W e  descr ibe  Spec ( A ) x N  S,  as 

fol lows.  Le t  ~o be an inver t ib le  d i rec t  s u m m a n d  of A "  such that  (A  ", m) is 

i somorph ic  to coO w |  ' ' "  ~ o  | Then  S p e c ( A ) x N S ,  is the  scheme over  

Spec ( A )  a t t ached  to the  A - m o d u l e  of Hochsch i ld  cocycles re la t ive  to o) ~ to ~2 q) 

�9 �9 �9 �9 ~o | This  m o d u l e  is ident i f ied  with O~'= l HOmA (w @A w| A )  = 

~o | O " " �9 ~ w |  To  see that  d im (U)  = n 2 -  n and hence  d im (p-l(U)) = n 2,  

obse rve  tha t  

a2 q~ 
A u t  ( r , )  = 

rt "~ 1 

a I inver t ib le ,  a2 . . . . .  a ,  a rb i t r a ry  

*~1 = po lynomia l  in a l  . . . . .  an 

A u t  ( 'r.) is a subg roup  of B - ( n ) ,  the  Bore l  g roup  oppos i t e  to B(n) re la t ive  to 

c B-(n).  Then  the mul t ip l i ca t ion  T(n). Iden t i fy  B - ( n - 1 )  wi th  0 B - ( n - 1 )  

A u t  (1"~) x B--(n - 1) x Bu(n) --~ 12 is an i somorph i sm,  where  Bu(n) is the  u n i p o t e n t  

pa r t  of B(n). The  res t r ic t ion  of fo to  B - ( n -  1) x Bu(n) is an i somorph i sm on to  U 

and  its inverse  s is the  sec t ion  we are  look ing  for  in asser t ion  (iii). T h e  ra t iona l i ty  

of U fol lows f rom this i somorph i sm.  

F ina l ly  A u t ( % ,  I , ) =  G:4/xn+l ,  where  G is a smoo th  un ipo ten t  g roup  of 
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dimension [n/p], p = char (k), with [n/p] = 0 for p = 0. Here  we embedd the group 
tZ.+l of (n + 1)-th roots of unity in G L ,  by 

x 2 0 

�9 ~ �9 

0 "x 

The subgroup G of Aut (7~) is identified with k t~/pl by the map 

a2 1 
g = v---> (aq)pln+2_q,  

* ~i "1 

whereas ar is a polynomial in the aq, q < r and p I n + 2 -  q, whenever p ;c n + 2 -  r, 
as is easily verified inductively with decreasing indices. This implies that the orbit 
of (,r,, / , )  has dimension n 2 - [ n / p ] .  QED.  

w Description of Sn and N,, for n _-< 5. 

For n--<5, N, contains a finite number  of orbits. We are going to list one 
(k-rational) structure a for each orbit, writing a as quotient of the maximal ideal 

I = ( X 1  . . . .  , Xe) of k[X1 . . . . .  Xe] plus basis ( X 1 , . . . ,  X~ . . . .  ), e = e ( a ) .  Let J =  
(fl . . . . .  fs) c I be an ideal defining a as quotient, and suppose that {[l . . . . .  fs} is a 
minimal set of generators for J. Then the numbers  n, e, s, dim C(a)  are related by 

the equation 

dim C( a ) = n + s - e. 

This follows from the exact sequence ( V * =  k-dual of V) 

0 ~ (~/oe':)  * --> a *  - - ,  C(oO ~ / - / ~  (oe) ~ 0 

of k-vectorspaces and f rom the k-linear isomorphism (J /H)* --~ H~(a,  k)  sending 
a form f :  J/IJ--~ k to the class of the extension 0 ~ k ~ k ~])j I --'- a --~ 0, where 

k ~ j I  denotes the fibre sum defined by the maps J---~J/IJ ( ~ k and JC-~L 

Observe  that s => e by the theorem of Krul l -Cheval ley-Samuel ,  equality holding iff 
a is a complete  intersection. I t  follows that dim C ( a )  >-__ n for all a ~ N, , (k) .  In  each 
N~, n -  5, we order the structures by increasing cocycle-space dimension. 
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Structure Space of cocycles 

oq = rl kI1 

{31 = r2 kI1 ~ kI2 

132 = ~P2 M;(k) 

3 

w = r~ ~ k/j 
i=1 

(!) 3'2 = (X, Y ) / ( X  2, y2); M~(k) 
(X, Y, X Y )  

\ 0  0 

T3 = (X, Y ) / ( X  3, X Y ,  y2); /~a12 0 
(X ,  X 2, Y)  , % e k . 

kXa13 0 a331 ., 

q"4 = q~3 n ; ( k )  

4 
81 = ,r4 q~) k/j j=l 

N1 

N2 

N~ 

N4 

8 2--- (X, Y ) / ( X Y ,  y 2 + x 3 ) ;  
(X~ X 2, X 3, Y) 

83 = (X, Y ) / ( X Y ,  X 3, y3); 
(X, X 2, Y, y2) 

8 4 = (X~ Y ) / ( X Y ,  V2, X4); 
(X, X 2, X 3, Y} 

a12 0 0 0 
0 0 0 0 

kal,~ 0 0 o,14) 

i I all a12 a13 0 1 
b I 0 0 0 
[~O3 0 a33 a3a 

0 a34 0 ) 

[a12 a13 0 a24 

i :  ~ 1 7 6 1 7 6  . a24 0 0 } 

I a o ~ k  ' 

, a o ~ k , 
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Structure Space of cocycles 

N~ 

65 = (X, y) / (y2 ,  X 3, XZy) ;  
(X, X z, Y, X Y )  

~6 = (X, Y~ Z)/(XV~ XZ, YZ, 
X 2 _ y2,  X 2 _ Z 2) ; 

(X, Y, Z, X ~) 

67 = (X, Y, Z) / (XY ,  XZ,  YZ,  X z, 
y2 _ Z 2); 

(X, Y, Z, y2) 

68 = (X, Y, Z)/(XY, XZ, YZ, Y:, 
Z 2, X3); 
(X, Y, Z, X 2) 

I1 
( a ~  a12 a13 a14~ 
ala 0 ~/14 0 

a13 a14 a33 0 
ka14 0 0 0 j  

(o o o o) 

t ij �84 ~0 0 0 

aii E k 

( O' (0 0 0 1~ 
i M~(k) o ioooo, 

0 ( ~ k o  0 0 0 
~0 0 0 O] kl 0 0 0) 

~9 = ~ 4  M~(k) 
5 

~1 = T5 ~ k / ]  
j=l 

ez = (X, Y ) / (XY ,  X 4 -  yZ); 
(X, X 2, X 3, X 4, Y) 

/~ 
a~2 a13 0 0 

b 
'|l a130 O0 O0 O0 O0 ) % ~ k  

~kal5 0 0 0 a55 

�9 / a l l  a12 0 ax4 

a12 0 0 a24 

* 0 0 0 0 

k al4 a24 0 a44 

. \ 0  0 0 0 

e3 = (X, Y ) / (XY ,  X 3 -  y3) ;  
(X, X 2, X 3, Y, y2) 0 a~j ~ k 
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Structure Space of cocycles 

E 4 = (X ~  Y) / (X 3, y2); 
(X, Y, X 2, XY,  X 2 Y) 

e5 = (x ,  Y)/ (x  5, x Y ,  v2); 
(X~, X 2, X 3, X4.~ Y) 

E 6 = (X ~  Y) / (X  4, XY ,  y3); 
(y ,  y2,  x , x  2, X 3) 

e7 = (x ,  Y, z ) / ( x  2, y2, z 2, 
X Y -  X Z -  YZ); 
(X, Y, Z, XZ, YZ)  

E 8 = (X, Y) / (X  4, X 2 y ,  y 2 - X 3 ) ,  
(X, Y, X 2, X 3, X Y )  

a12 a22 a14 0 O j k' 
* a13 a14 0 0 0 % ~ , 

~ a14 0 0 0 0 

~ \ 0  0 0 0 0 

"/all I~112 "1.3 a14 05~ 
~a l2  a13 al4 0 

i ][ a13 a14 0 0 0 % e k 
L a 1 4 0  0 0 0 ) 

xa15 0 0 0 a55 

�9 / a l l  a ,2  a13 0 
f -a12 0 0 0 

a13 0 a33 a34 

~k 
0 0 a34 a35 

. 0 0 a35 0 

M;(k) 0 0 

0 0 0 0 0 i 

\ o  o o o o/ 

" /a~l  a12 a13 a14 a23~ 

t a12 a22 a23 0 a14 ~ 

, a13 a23 a14 0 0 aij E k 

~ a 1 4 0  0 0 0 /  

- xa23 a14 0 0 0 i 
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Structure 

•9 = (X~, Y~ Z)/(X2~, Y=, Z 2, YZ + XZ);  
(X, Y, Z, XY, XZ) 

e~o = (X, Y)/(X', X2Y, y2); 
(x, Y, x ~, x ~, xY) 

e l l  = (X,  Y, Z ) / ( Y  2, Z 2, X Y ,  
X 2 -  Y Z ) ;  

(x, Y, z,  x 2, x z )  

el: = (X, Y, Z)I(X:, Y:, Z 2, YZ); 
(X, Y, Z, XY, XZ) 

el3 = (X:, Y~, Z ) / ( X  2, y2 ,  X Z ,  Y Z ,  
X Y  - Z 3); 
(x, Y, z, z ~, z ~ ) 

Space of cocycles 

( o o~ 
0 0 

q o o M~(k) \oooooj 
0 0  0 0 0  

" ( a l l  a12 a13 a14 a23~ 

a12 a22 a23 0 0 

' a13 a23 a14 0 0 

~a14 0 0 0 0 ) 
. \ a23 0 0 0 0 

o o~ 
0 0 

n~(k) 0 O" 

0 0 0 0 0  

0 0 0 0 0 

( o o~ 
0 0 

M~(k) 0 0 t 

~k ~ ~ ~ ~ ~ ) 
0 0 0 0 0 

i" (a~ a~2 a~a 0 O~ 
a12 a22 a23 0 0 

, '  a13 a23 a33 a34 0 

0 0 a34 0 0 

. \ o  o o o o/ 

a~j ~ k 

a~j ~ k 
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Structure Space of cocycles 

E'14 -~- (X~, Y~ Z)/( Y 2, XY, YZ, XZ, X2 + Z3); 
(X, Y, Z, Z 2, Z 3) 

e,5 = (X, Y, Z)/(Z 2, y2, XY,  XZ,  X3); 

(X, Y, Z, X 2, Y Z )  

El6 = (X ,  Y ) / ( X  3, X2y, X Y  2, y 3 ) ;  

(X, Y, X 2, XY, y2) 

el7 = (X, Y, Z ) / ( Y 2 , Y Z ,  XZ,  Z 2 - XY ,  X3); 
(x, Y, z, x 2, z 2) 

e,8 = (X, Y, Z ) / ( X  2, y2, XY, XZ, YZ, Z4); 
(x, Y, z,  z ~, z ~) 

I" 'all a12 at3 0 i ~  
a12 a22 a23 0 

i 
4 i a13 a23 a33 a34 

0 0 a34 0 0 
/ 

/ ~0 0 0 0 0 

�9 r a12 al3 a14 O~ 
i l  alE a22 a23 0 0 

'1 ~ a13 a23 a33 0 0 
al4 0 0 0 0 

0 0 0 0 O/  

" / a l l  al2 al3 al4 a15~ 

a12 a22 a14 a15 a25 

, a13 a14 0 0 

a14 a15 0 0 

�9 \ al5 a25 0 0 

i./o. o13 
! a12 a22 a23 0 0 

~ a14 0 0 0 

~ . \ 0  0 0 0 

' / a l l  a12 a13 0 O~ 

ra12 a22 a23 0 0 

013 ~23 033 a34 035 

0 0 a3a a35 0 / 

I \ o  o o . o  o .  

aq~ k 

t 

0 aiiEk 

0 

O / 

i 
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Structure Space of cocycles 

e19 "~ (X., Y..,. Z ) / ( Z  2, XZ ,  YZ ,  XY~ 
X 3 ' y3); 

(X, Y, Z, x ~, Y~) 

820 = (X, Y, Z) / (Y  2, Z 2, YZ, XZ,  X 3, 
X2y);  

(x ,  Y, z ,  x ~, x Y )  

e21 = (X, Y, Z, W)/(X 2, y2,  Z 2, W 2, XY,  
XZ, YW, ZW, X W -  YZ); 
(x ,  Y, z ,  w,  x w )  

e22 = (X, Y, Z, W)/(X 2, Y2, XZ, 
XW, YZ, YW, ZW, W ~, X Y -  Z:); 
(X, Y, Z, W, Z ~) 

e23 = (X, Y, Z, W)/(X 2, y2, Z 2, W 2, 
XZ,  XW, YZ,  YW, ZW); 
(X, Y, Z, W, X Y )  

r / a l l  a12 a13 a14 O~ 

a12 a22 a23 0 a25 

' a13 a23 a33 0 0 

~a14 0 0 0 O /  

�9 \ 0 a25 0 0 0 

a~j ~ k , 

t, o 
0 0 0 0 O/  

( 0 

M~ 0 

\oooo 

( 
0 

M~(k) 0 

0 0 0  0 0  

r / a : :  a:2 a:3 a:4 0 5  ~ 

[ a12 t222 a23 a15 

a13 a23 a33 0 0 aq E k ~, 

�9 xa l5  0 0 0 0 
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St ruc tures  

e24 = (X, Y, Z, W)/(Y2, Z 2, W 2, XY,  
XZ,  XW, YZ, YW, ZW, X3); 
(x, Y, z, w, x ~) 

I / a l l  a12 a13 a14 a l s~  

a12 a22 a23 a24 0 

a13 a23 a33 a34 0 

~a14 a24 a34 a44 0 / 
0 0 0 0 

e2s = q~ M~(k) 

aii ~ k , 

w The irredudbili ty ot N~, N2, N~, N4, Ns, N6. 

We proceed in three steps. In the first, we show that $1, $2, $3 are irreducible, 
and hence so are N1, N2, N3, N4. In the second, resp. third we show that Ns, resp. 
N6 are irreducible. 

First step. It is clear that St, $2 are irreducible since a~ = z~, 131 = 1"2, ~2 = ~2, 
and corollary 3 applies. In $3, observe ~'3>" 72 and dim C(~'3) -- dim C(Tz), hence 
by proposition 2, every cocycle over Y2 is a specialization of a cocycle over ~'3. 
Since a general member B ~ C(73) is non-degenerate,  Ex (73, B) is colocal with 
embedding dimension two. Hence by corollary 1 and the remark following this 

GL 3 corollary, there is a curve F in $3 through (7)/3, B) and generically over T 3 . 
Finally, 74 = ~3, so by corollary 3, we conclude that $3 is irreducible. 

Second step. The cocycles of S(62) are specializations of cocycles over ~'a since 
by the first step 1"4> 82 and dim C(82) = dim C(~'4) and proposition 2 applies. 

Each C(6s) and C(65) contain non-degenerate forms, so the argument used for 
S(73) above works again: The cocycles of S(63) and of S(85) are specializations of 
those over ~'4- 

Observe that 64---% ~'3 x lh, so corollary 2 applies to S(84). The cocycles in S(87) 
are specializations of those in S(86). We have 68 --% ~03 x ~'2, so the cocycles in S(68) 
are specializations of those lying over ~'4 by corollary 2. We are left with C(86). 
We shall show within the third step that the structure e7-% Ex (66, B) for general 
B e C(86) is a specialization of ~'5. From this it follows that N5 is irreducible. 

Third step. Let ~c  Ns(k) be of embedding dimension _-<2. Then either an 
extension Ex (~, B), B e C(s is trivial or its embedding dimension is still <=2. In 
the latter case, by the remark following corollary 1, Ex (~, B) is a specialization of 
%; in the first case, this is trivial. Since by corollary 3, all cocycles over ~5 are 
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specializations of cocycles over 75, we are left with the investigation of cocycles 
lying over structures ei with e(ei)= 3. or 4. 

In embedding dimension four, note that C(e2l) = C(e22) = C(e23) --% M~(k). So 
by proposition 2 and since e21> e22> e23 for trivial reasons, it is sufficient to 
consider a general cocycle in C(e2~). Look at the specialization ~'5 ~ e21 defined 
by the base change X = el, Y =  e2/h, Z = e3/h 2, W =  e J h  3, XW= es/h 3. Call this 
variable structure ~'5(h), so ~'5(1)= ~'5 and zs(O)= e2~. We have 

bl b2 b3 b4  15) 
b2 b3 b4 b5 

C('rs(h))--~ b3 b4 b5 0 

[~ b4 b5 0 0 

hb5 0 0 0 0 / 

bi ~ k t , 

whence all the structures Ex (e21, B), where (bl b b3 b4 ) 
b2 b3 b4 b5 

B = b3 b4 b5 0 

b4 b5 0 0 

0 0 0 0 0 /  

are specializations of ~'6. They are described as follows: Let X, Y, Z, W, be the 
canonical basis of E = k 4 and S, T the canonical basis of F = k z. Identify 14 and B 
with the bilinear forms they define on E x E with respect to X, Y, Z, W. Then 
Ex (e21, B) is this multiplication: 

(i) EF = FF = O, 
(ii) For x, y r E ,  we have xy=L(x, y)S+B(x, y)T. 
Write B(x, y )=  14(crB(x), y), o'b ~ G L ( E ) .  With respect to the basis X, Y, Z, 

W, tr B has the matrix 

b b 5 0 41 b3 b4 b5 
OrB= b2 b3 b4 b5 

b 1 b 2 b 3 b 
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whose characteristic polynomial is 

283 

XB = det (tr B - /~1)  = (b 4 - - / . I , )  4 - -  3b3bs(ba - ~)z + 2bzb~(b4-  I~) + b3b52 2 _ bl b 3. 

Let Z be the 20-dimensional affine space consisting of pairs of symmetric 
4 • 4-matrices. Consider the morphism z : A 5 • GL4 ~ Z :  (bl, b2, b3, b4, bs; g) 
(I~, Bg). We show that z is dominant. This implies that for general B we get the 
general extension Ex (e2~, B) of e21. Now, if (I4 g, B g) = (I4, B'), B' being defined 
by b'l, b~, b~, b4, b~ (like B), then XB = XB'. Hence, for fixed B, the possible B' 
define a one-dimensional variety in A 5. On the other hand, the stabilizers of 14 
and of B have a finite intersection, if B is sufficiently general. So the generic fibre 
of z is one-dimensional, and z is dominant. 

Remarks  
(1) With the above notation, it is easily seen that the multiplication 
(i) E F  = F F  = O, 

(ii) For x, y c E ,  x y = B l ( x ,  y ) S + B 2 ( x ,  y)T  with 

(i ~  ~ ~ i) 
h 2 -  ih 0 ih 0 

B1= 0 0 , and B2= 0 0 

0 0 h 0 

defines a one-parameter  family (/3x)x~k of structures which is generic among the 
extensions of e21. By an elementary but very long calculus, one finds the following 
curve Fx = {~'6(t) : t e k\{0}} in N6 which defines a specialization T 6 ~ ~3 h : If el, e2, 
e3, e4, es, e6 is the canonical basis of k 6 w e  derive z6(t) from T 6 by the new basis 

X ~ 

Y =  

Z =  

W =  

X W  

Z 2 

a l e  I .d- a2e  2 q.- a 3 e  3 q- a4e 4 + a s e  5 

b2e2 + b3e3 + b4e4 + bses 

c3e 3 q- c4e 4 -I- c5e 5 

d4 e4 + d5 e5 
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a I = t 24 

a 2 = h 2 ( h  - i ) t  3 

a3 = �88 - i ) t -14-  �89 - i)2t -~s 

a4 =-~,~4(1 + ih)2t -~5 +�89 T M  + ~h 3(,X - i ) ( 2 x  - i ) t  -~5 +~h6(h - i)3t -39 

a5 = ~h6(a - i)3t -46 +~6h2(148h 2 -  148ih + 3)t -52 

17 5 + ~ h  (h - i )2( i -  2 h ) t - 5 6 - ~ h s ( h  - i)4t -6~ 

b 2 = t 7 

b 3 = 2 A 2 ( A  - i ) t  - 1 4  

b4 = 2A2(h - i)t -21 +�89 T M  

bs 2 4 . = g h  (A- t )"  2t-42_gh t l  -48+ghl 3 ( h _ i ) ( 8 h + 5 i ) t  52+�89 

C 3 ----- t - 1 2  

C 4 = 2 h 2 ( h  - i ) t  - 3 3  

c5 = 2h2(h - i ) t - 4 ~ 1 8 8  2,k)t-5~ 3h4(h - i)2t -54 

d 4 = A t  T M  

d5 = 3 h 3 ( h  - i)t -52 

(Check!) 
(2) In contrast to this complicated specialization, it is easy to desingularize the 

local k-algebras k[/3A] having /3~ as maximal ideal. 
Call a k-algebra A weakly coupled iff A - ~  k[X1 . . . . .  X~]/I + J + 

( X ~  +~ X ' '  +~ where 
(j) all the m~ satisfy ml > 1, 
(j j) the ideal I is contained in the ideal Im~x generated by the monomials in 

several variables, 
(jjj) for i r  X t X ~ , - ~ I ,  
(iv) the vectorspace J is contained in Y~=I kX'~,. 

PROPOSITION 5. A weakly coupled k-algebra A with e(A)  = s is a speciali- 
zation of the direct product of s + 1 algebras. In particular, if I --/mix, then A is 
desingularizable. 

Proof. Write A as set of the k-linear combinations formed by 
1A, X~, X~ . . . . .  XT', i =  1 . . . . .  s, by mixed monomials A , . . - ,  fr defining a basis 
for Im~x/I. The relations among these generators are determined by J. 
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Choose in C k s x k [ X . . .  Xs]/(XI . . . . . .  , )+I the system of generators 
lc,  X~,=AI,+X~,  X~,2=X2-AX,, X ~ _ , -  " - "  , , - X ~ '  - A X 7  '-2, Xi , ,  �9 . . . ,  . , = - A X  i , , 

i =  1 . . . . .  s, and fl . . . . .  [ ,  where A e k\{0} and 1~ denotes the i-th primitive 
idempotent  of (7. The relations from 3" are transported into this system of 
generators by the isomorphism X'~, ~-~ Xi,,,,. Now it is clear that the structure AA 
gotten from C by dividing through these relations among the Xi,,,, tends to A if 
A--~0. For /=/mix,  either m~>2,  all i, and the ( s + l )  ~' factor of AA is again 
weakly coupled with ! = Imi~. Or  else, we have m~ = 2, without loss of generality. 
Then either XI is linearly dependent  of X2 . . . . .  X~, and the embedding dimension 
diminishes, or XI is independent,  and the ( s+  1) ~' factor can be deformed to a 
non-local structure by deforming the subalgebra k[X~]/(X~) to k x k. In either 
case, the induction works since new weakly coupled algebras with I =  Im~x are 
produced. Finally, we get a specialization of k" to A, n = r a n k  of A, if I =  

/mix" QED.  

In particular, the generic extensions of e21 which may be defined by the two 
bilinear forms 

1 A2 
B~ = and B 2 =  

1 A3 

0 1 A 

as above, are desingularizable. 
In embedding dimension four we are left with the cocycles B c S(e24). We 

have e24 ~ 7- 2 • q~3, so corollary 2 solves this case. This concludes the discussion of 
embedding dimension four.- 

The most interesting case is embedding dimension three. We first discuss the 
algebras e13, 814, e18 having non-vanishing third powers. 

An extension c r=Ex(e13,  B) on e13f~ke6 has multiplication ~e6=0 ,  a,~ b =  

a �9 b 4-  B ( a ,  b ) e  6 fo r  a, b r el3.  Choose the basis X, Y, Z, Z~_ Z, Z ;  Z ~  Z, e 6 in ~r. 

Now, this new structure 0-' has Z 3 : = Z . Z , Z  in its socle, so 

a ' - -~  Ex (cr'/kZ 3, 7) where e (o" /kZ  3) = 3, and (o"/kZa) "3= O. So the algebras 

lying over  e~3 (i.e. coming f rom S(e13)) are structures coming from cocycles lying 
over algebras of embedding dimension three and having vanishing third powers. 

These are discussed below. 
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Since 614--% 62 x q'l, by corollary 2, and because 82-cocycles are specializations 
of ~-4-cocycles (cf. 2 nd step) we recognize the cocycles over 614 as specializations of 
cocycles over ~'5- 

As 618 --% tp2• 'r3, corollary 2 applies to view cocycles over 618 as specializa- 
tions of cocycles over Ts. 

We are left with the structures of embedding dimension three and having 
vanishing third powers (together with their cocycles). There are two subsets I s' 
set={e15, 817, 619, 620}, and 2 "o set={e7, 69, 611, 612 } of this set of algebras which 
we treat differently. 

The first set is easy, because 615 -% T3 X "Y2, 619 -% q'l X ~3, 620 -% 'rl X ~5- The 
cocycles in S(83), S(85) are specializations of S(~'4) by the discussion of $4. As $3 
is irreducible S(~'3) specializes to S(83). Hence by corollary 2, S(615), S(619), 
S(6zo) are specializations of S(o'5). As to 617, note that dim C(617) = dim C(615), so 
if we show that 615> 617, proposition 2 applies to get the cocycles over 617. For 
any 3̀  ~ k\{0}, consider the structure (X, Y, Z)/((Y z, X 3, XZ, 3`Z 2 -  YZ, Z 2-  YX) 
with basis (X,Y,Z,  XZ, Z2). If one puts X'=y+A2X-3`Z ,  Y '=Y ,  Z'= 
Z- (1 /23 ` )  Y, one sees that this structure is isomorphic to 615. But for 3  ̀= 0 we get 
617, as desired. This ends the discussion of the first set of structures. 

In view of m~(k)-% C(87/672) -% C(67) = C ( E 9 ) =  C(611 ) = C(612 ) and by prop- 
osition 2, it suffices to show that 

67 
u 

69 

Ell  612 

holds, and that Ex (S(~'5)) specializes to Ex (S(eT)) in order to handle this last set 
of structures. 

Consider the family 67(3`) -'% (X, Y, Z)/(X 2, y2, Z 2, 3`XY- X Z -  YZ) with 

67(3`)--% 67 for 3. ~ 0 and 67(0) --% 69, thus 67 > 69. The family 
69(3`)-~ (X, Y, Z)/(X 2, y2, Z 2, 3̀  YZ + XZ) specializes to 69(0) --% 612, and 
69(3`)--% 69 for 3`~0. To get 69~ ell  , note that 69"% (X  , Y, Z ) / ( Y  2, Z 2, XY,  X 2 -  
XZ) which clearly specializes to 611. 

To handle the structures in Ex (S(eT)), consider the specialization "rs---~ 67 
given by the family x = el, y = (1/3`)e2, z = (1/3`2)e3-(1/3`4)e5, u = (1/3`2)e4, v = 
(1/3`3)e5 of bases which define a family (~'5(3`))x~k of structures isomorphic to T5 
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for h # 0, and such that r5(0)= e7. The cocycle-spaces are 

bl 

b2 

C(75(h)) --~ 3 - b5 

~ ' \  hb5 

b3 b4 h b s i l l b i ~  k 
b4 b5 0 all i = 1, 2, 3, 4, 5 

hbs 0 0 

0 0 0 O /  

Hence we can lift the curve (~'(h))x~k in N5 to a curve in $5 passing through every 
couple 

t( 3~ ) b 2 b 3 b 4 0 

7, 3 - b5 b4 b5 0 

0 0 0 

\ 0 0 0 0 

,b ick ,  all i = 1 , 2 , 3 , 4 , 5 ,  

in S(eT). The algebra-extension defined by such a couple has the following 
description. Set E = kel ~ ke2~ ke3 and F =  ke 41~ ke5 ~ ke 6, such that k 6 = 
E ~ F. Call A, B, C the three symmetric bilinear forms on E • E defined by the 
matrices 

1 0 ,  1 0 , b2 b3 b4 

0 0 /  \ 0  1 b 3 - b s  b4 b5 

with respect to (el, e2, e3). Then the multiplication is FU=FF=O, x y =  
A(x, y)e4 + B(x, y)e5 + C(x, y)e6 for x, y e E. We want to show that it is sufficient 
for our purpose to consider the coefficients b2 = b3 = 0 ,  b 4 = 1 and b5 = bl. Call this 
structure a(bl). 

We now investigate the structures a(A, B, C) defined by an arbitrary triplet 
(A, B, C) of symmetric bilinear forms on E x E in the above way. Since Ex (S(e7)) 
is contained in this 18-dimensional irreducible set X of structures, we shall show 
that the set XN(Ub~k~ a(b.) GL6) is dense in X. Now, dim(a(b.)CL6NX) = 17 if 
b.~k 5 is sufficiently general. In fact, for general b. we have a(b.)6L6NX = 
a ( b . )  GL3• Viewing a structure or(A, B, C) as a three-dimensional vectorspace 

V of symmetric bilinear forms on E • E plus a basis of V, the action of GL3 x GL3 
on a(A, B, C) becomes this: the first factor acts canonically on V. For general V, 
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its orbit in the Grassmannian of all 3-dimensional subspaces of the space of the 
symmetric bilinear forms of E • E is 8-dimensional. The second factor simply acts 
as base-change.-  Clearly, the subspace V defined by a(b.) also has an 8- 
dimensional orbit for general b., whence a(b.)CL~• Hence it 

suffices to find a GL6-invariant rational function on X which is not constant on 
the set {a(bl):  bl ~ k}. If a = a (A ,  B, C) ~ X, consider the equation 

0 = f~ (h,/z, v) = det (AMA + tzMB + vMc), 

where MA, MB, Mc are 3 •  representing A , B ,  C in the basis 
(e~, e2, e3). For general a, this is the homogeneous  equation of an elliptic curve 
E,, c P 2. Clearly, all ~ Xl"lot GL6 define isomorphic curves. So " the"  modular  
invariant j(E~) is a GL6-invariant rational function. We calculate this function as 
a rational function of bl for structures a(bO in the following way: we have the 
cubic equation 

0 = f,~(b,)(h,/X, V) = 2A/~ 2 --4bl  p,2 v + 2htxv - 4b l / ,v  2 + 2blh2V - blv 3 - 3, 3 

For b~ r 0, the point P with homogeneous  coordinates (0, 1, 0) is not a point of 
inflection of E~(b~). Hence there are four projective lines through P which are 
tangent to E~(bl) in points different from P. Call P1, P2, P3, P4 the four points on 
the line /x = 0 cut out by the four tangents. Let  A = A(PI,  P2, P3, P4) be the cross 
ratio of these four points, then the rational function j = (A 2 -  A + 1)3/A(A - 1) 2 is 

a well-known paramete r  for the four-points set {P1, P2, P3, P4} on /~ = 0 yielding 
" the"  modular invariant of E~(b~). The homogeneous  coordinates (hi, 0, 1), i =  
1, 2, 3, 4 of Pi stem from the solution h~ of the equation 

0 = h 4 - 4blh 3 + (4b 2 + �89 b, h 

which means the vanishing of the discriminant of the quadratic equation 0 =  
2 1 f,(b~)(h,/~, 1) in /~. Putting u = - 4 b l ,  v = 4 b l + ~ ,  w = - b l ,  we get 

(v 2 - 3 uw) 3 

J = w((uv) 2 -  4(v 3 + u3w) - 27w 2 + 18uvw) 

which clearly is non-constant  in bl. QED.  

Together  with theorem 1, we conclude: 

T H E O R E M  2. The schemes N,, n = 1, 2, 3, 4, 5, 6 are irreducible, rational of 
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dimension n 2 -  n, the orbit of the uniserial structure r.  forming a smooth subscheme 

of N,. 

C O R O L L A R Y  4. Let Alg. be the scheme of associative, unitary k-algebra- 
structures on k" (w Let Alcom. be the closed subscheme of commutative 

structures, and  denote by Alcomloc. c Alcom. the reduced subscheme of local, 
commutative structures. Then for n_-<7, Alcomloc. and (afortiori)  Alcom. is 

irreducible. 

w Counterexamples 

For n > 6, the schemes N.  are no longer irreducible. In fact, fix a subspace 
E c k n of dimension e. Let S c k" be any linear supplement (=  complement) of 
E. Suppose e ( e + l ) / 2 > - n - e ,  and pick a surjective linear map B :Sym2 (E)---~ S, 
where Sym2 (E) denotes the second symmetric power of E. Then we get a 
structure E(S, B) in N. by the rules: 

(i) The product Sk" vanishes. 
(ii) If x, y ~ E, then xy = B(x  o y), where x o y is the class of x | y in Sym2 (E). 
Since E(S, B) "2= S, the morphism 

E(?,  ?): G(E)  --~ N .  :(S, B) ~ E(S,  B) 

is injective, where G ( E )  denotes the irreducible scheme whose k-points 
are the above couples. Because of d i m G ( E ) = � 8 9  
dim(E(?,?)(G(E)))>--_n2-n means that we consider couples ( e , n ) ~ N •  
satisfying 

(i) the linear inequality n - e ->_ 0, 
(ii) the parabolic inequality e 2 + 3 e - 2 n  >___0, 

(iii) the elliptic inequality ne e - -  e 3 + 3ne - 3e 2 - 2n 2 + 2n >= O. 

These inequalities are clearly satisfied for any couple (e, n)=(e ,  2e) and 
( e , n ) = ( e ,  2 e - 1 )  for e>=4. Hence for any n->7, the irreducible subset 
E(?, ?)(G(E))  of N, is not dominated by the (n 2 -  n)-dimensional orbit of r,. So: 

PROPOSITION 6. For n >_-7, N,. and hence Alcomloc.+l is not irreducible. 

PROPOSITION 7. For n ~ 10, Alcom.  is not irreducible. 

Proof. Choose the fundamental affine neighbourhood U. c Grass._1,. consist- 
ing of the supplements of {0}• " . .  •215 k in k". This induces an algebraic 
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choice of a basis for any R e U,. Hence every R bears the nilpotent structure 
E(S,B)(R) defined by E(S, B) and by the base-choice. Finally, pick a vector 
1~ k"\R. These dates define a unique local structure (S, B)(R, 1) having 1 as 
unity and E(S, B)(R) as maximal ideal. The irreducible subset L(E) of Alcom, 
consisting of these structures has dimension n + ( n - 1 ) + � 8 9  
e(n - 1 - e). The condition dim L(E) ~ n 2 is the singular cubic inequality 

nZe- e3 + 3ne -4e2 -  2nZ- 3e + 4n -2_>0 (*) 

So L(E) is not dominated by the orbit of k • as soon as the following hold: 
(i) the linear inequality n - e - 1 ~ 0, 

(ii) the parabolic inequality e 2 + 3e - 2n + 2 >_-0, 
(iii) the cubic inequality (*) above. 
It is clear that all couples (e, n ) =  (e, e +4) for e->_6 satisfy these inequalities, 

and that (e, n ) =  (5,11) is a solution of minimal embedding dimension 
five. QED. 

w Two criteria for deformation of finite-dimensional algebras and the Hasse- 
diagram of the deformations of commutative algebras of dimension five. 

In this paragraph, we are dealing with the scheme Alg, whose functor on the 
category k-Alg takes the values 

/ ~ ( A " )  * @A (A"), ~ defines on A"  the structure} 
Alg. (A) = [of an associative, unitary A-algebra 

where (A")*  = A-dual of A". 
Like in w G L ,  acts upon Alg, by structural transport from the right. We 

carry over to Alg,  the notations of w concerning this action. 
The first deformation criterion is concerned with central idempotents. Let Zip, 

be the scheme whose functor on k-Alg takes the values 

=~(~, i), ~ A l g ,  (A), ieA",  and i is central / 
Zip,  (A) / and  idempotent for the structure ~ l 

LEMMA (P. Gabriel). The projection p :Zip,  ~ Alg, is an ~tale morphism. 
(For the definition of an &ale morphism, cf. [8; (IV, 17.1.1)].) 

Idea of proof. The only non-trivial point is the verification that p is formally 
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smooth, Let B be local, artinian in k-Alg. Take an ideal I c B with 12-- 0, and let 
be a B-valued structure in Alg,. The undirected graph of ~ has vertices S~ 

representing a complete system of simple ~-modules. For i~ j, there is an edge 
between S~ and Sj iff either Ext~ (S, Sj) or Ext~ (Sj, Si) doesn't vanish. The 
connected components of this graph correspond one-to-one to the primitive 
central idempotents of ~. The lemma now follows from the fact that Ext~m (S, Si) 
doesn't vanish if Ext~ (S, Sj) doesn't. QED. 

THEOREM.  Let ~, "O be two k-rational structures in Alg,. Let ~ l  • ~2, ~ 
being k-rational in Alg,,, i = 1, 2. Then rl > ~, iff there are k-rational structures rl~ in 
Alg,,, i = 1, 2, satisfying r h ~ ~, i = 1, 2, and such that ~1 = rh • rl2. 

Idea of proof. Let the structures rh, ~2 have the required properties. Then 
trivially 7/1 x r12>- ~:~ x ~2. For the converse, observe that there is a GL,-action on 
Zipn by (~, i)g: =(~g, g-l(/)) for g ~ G L ,  (A)  and (~', i )eZipn (A) such that the 
symbol >- of dominance makes sense on Zipn too.- Let rl ~- ~:. Call i~ the central 
idempotent corresponding to the factor ~:1. From the lemma it follows that there is 
a central idempotent i n in "0 with (rl, i,)>-(~, i~). Let ~li, denote the structure of 
the direct factor of r /generated by the central idempotent i,. Then it follows by a 
standard argument that r/in>-~i~ and that ~(1, - i , )>-~:(1~-i~) .  QED. 

The following criterion is concerned with semi-simple modules. It is quite 
useful while deforming non-commutative structures and has been used in [7]. We 
omit the proof since it is routine work in deformation theory. 

THEOREM.  Let ~, ~' be two k-rational structures in Alg,. Suppose that (i) to 
(iii) hold: 

(i) We have ~> ~'. 
(ii) Both structures ~ resp. ~' have subalgebras L resp. L' which are isomorphic 

to k r. Here we don't require coincidence of unities of L and ~ resp. of L' and ~'. 
(iii) There is only one equivalence class of subalgebras of ~ isomorphic to k ~ 

under the action of Aut (~:). Under these conditions, for every left-sub-L-module M 
of ~ there is a "lefl-sub-L'-module M' of ~' which is di-isomorphic to M. 

To finish this paragraph, we would like to include the Hasse-diagram of the 
deformations of commutative algebras of dimension five. Here an arrow X--~ Y 
means that Y deforms to X. Most of the deformations in the diagram are trivial. 
Let us merely point out two non-trivial ones: 

(1) As---~,A12. For A~k\{0}, take the As-base 1, z ~ = A2 ( 1 ,0 ) + X+ Y,  ~2, 
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.~3, ,~,= A ( X - Y ) .  The  re la t ions  a m o n g  X and Y are  def ined  by the s ingular  

cubic ~ 3 +  A 2 ~ 2 _  9 2 =  0 and the union  of two lines X Y =  0. 

(2) A9---~A12. Fo r  A 6 k \ { 0 }  we take  the  Aq-base  1, X = T ,  X 2, X 3, Y =  
)t3((T/)t2)2+(T/)~2)a+(T/)~2)4).  The  re la t ions  among  X and Y are  def ined  by the 

s ingular  cubic y 2  + X 3 _ ) ~ X Y  = 0 and by the  h y p e r b o l a  X Y -  )~2 y +  ) t X  2 = O. 
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