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S m o o t h  so lut ions  of  the heat  and w a v e  equat ions  

By STEPHEN SMALE 

Section 1 

The motivation for this work was to try to give proofs for the existence of C ~ 
solutions of the heat and wave equations on bounded domains by Fourier 
methods. I wanted to show that the Fourier series (i.e., eigenfunction expansion) 
of solutions would converge not just in L 2, but smoothly to smooth solutions. In 
contrast to more abstract methods, eigenfunction methods bring the existence 
theory closer to the practice of physics, and also to ordinary differential equations 
and numerical methods as well. 

In fact I found that by the addition of an extra term generated by the 
boundary of the domain, one could obtain this smooth convergence. For this 
proof one needs no significant estimates beyond those needed for the elliptic 
theory. And in general, our proof below gives sharp results by simple conceptual 
arguments. 

The difficulty with Fourier expansions can be seen in the problem: (Ou/Ot)- 
(02u/Ox2)=f satisfying u(0, x ) = v ( x ) ,  u(t,O)= u(t, 1)=0 .  Here the data 
f:R+x[O, 1]---~R and v: [0 ,  1]--~R are given, and u:R+x[O, 1]---~R is to be 
found. If f(t, x)=Y.,Ez+ a , ( t ) s in  nTrx is a Fourier expansion which converges in 
C2[0, 1], then if(t, O) = f"(t, 1) = 0. This is a special condition on f. 

We state now our problem in general for the heat equation. Let  O be a closed 
bounded set of R" with smooth (i.e., C ~) boundary 0/2 and let R += [0, oo). Let  
L = - A ,  A the usual Laplacian, or more generally any self-adjoint real elliptic 
(smooth) operator on C~(f~) with no eigenvalue equal to 0 (see Section 2). 
Suppose the following C ~ data are given: f :R§ initial condition 
Uo : f l  ~ R and Dirichlet boundary data g : R § x I] ~ R with g(0, x) = 0. We seek 
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a solution, a C -~ function u : R + x 12 ~ R such that  

a u  
- - + L u = f  on R+x12 ,  
at 

u(O,x)=uo(x), all x ~ O  and (1) 

u( t ,x )=g( t ,x )  all x ~ a O .  

W e  may  incorpora te  the data  into [. More  precisely let v = u - u o - g  and 
h = f -  (ag/at)- L g -  Luo. The main p rob lem becomes:  Find C-~v : R + x 12 ~ R 
such that  (av/at)+ Lv = h, v(O, x)= O, x ~ 12 and v(t, x)= O, x ~ a12. Thus  we may 

take Uo=0 ,  g = 0  in (1) and ask: 

Given  f :R+xO---~R,  C -'=, when  is there a 

C ~ funct ion u : R + x O ~ R such that au+ Lu = f 
at 

on R + x O ,  u(t ,x)=O if t = 0  or  x ~ a O ?  

(2) 

For  the answer  define a sequence of  polynomials  in 2 variables by: 

k 

P k ( L , T ) = ~ ( - 1 ) ' L k - ' T  i for k = 0 , 1 , 2  . . . . .  
i = 0  

Thus  

P o = l ,  P I = L - T ,  P 2 = L Z - L T + T  z, etc. 

Main theorem 

A necessary and sul~cient condi t ion for  the solution of (2) is that  
Pk (L, ,=o T)f]x~aa = 0, all k where  T =  (a/at). Similarly, for the wave equat ion.  A 

N A S C  for the existence of  a C -= funct ion u : R • O ~ R satisfying (a2u/at 2) + Lu = 
[ on  R • 12 with u(0, x) = (a/at)u(O, x) = 0 all x and u(t, x) = 0, all x ~ a12 is that  

Pk(L, T ) f l ~ o = 0  and Pk(L, T)f' [ '=~ for all k = 0 ,  1 . . . .  

where  T =  (02~at2). H e r e  [ '  denotes  (of~at). 
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The condition of f in this theorem is a kind of compatibility condition which 
can be translated to non-trivial initial data via the previously defined function h. 
While the necessity of the condition comes out of the proof, one can test directly 
for the necessity as follows. Suppose u is a solution, given f as in the first part of 
the main theorem. Then Pk(L, T)(L + T)u = Pk(L, T)f so 

(L~§177 T~')u = P~(L, T)f. (3) 

But by the boundary conditions, if x e 00, then Tk+lu(t, x ) =  0 all t. Similarly if 
t = 0 ,  Lk§ all x. Thus if both t = 0  and xeOO, the left hand side of (3) 
vanishes and so does Pk(L, T)f. The same argument works for the second part 
noting first that ( T +  L)u'= f'. Thus only the sufficiency has to be proved. 

One can reasonably ask: to what extent is our main theorem a new result in 
partial differential equations (apart from the methodology introduced here)? I 
have not seen it explicitly in the literature and the mathematicians in partial 
differential equations I've talked to were unaware of it. However,  it overlaps and 
is close to, e.g., the work of Solonnikov in [5] and Rauch-Massey [9]. On the 
other hand Solonnikov doesn't  discuss the wave equation and has a different 
generalization of the classic heat equation so that his compatibility conditions 
don't come out so neatly; they are only given by a recurrence relation. 

Rauch-Massey treat only the hyperbolic case, first order  hyperbolic systems 
explicitly, and again these conditions are given by a recurrence relation. Also they 
suppose t i> 0 in contrast to our treatment (in the hyperbolic case) where R • 
has no corners. They state that their methods can be applied to hyperbolic 
equations of higher order than one. 

In texts where heat and wave equations on bounded domains are treated, e.g., 
Friedman [2], [3], Lions [8], Treves [10], the results presented are not so sharp 
and the proofs seem more complicated. Treves does use eigenfunction expansions, 
but only to obtain weaker solutions. 

Also some of the PDE literature is not very clear as to what are natural initial 
value problems for the heat and wave equation on bounded domains. For 
example, in the well-known paper of Lax and Milgram [7], p. 182, it is stated: "if 
the initial function U0 is sufficiently differentiable, u(t) approaches u0 as t tends to 
zero not only in the L2 sense but pointwise." But later, p. 184, " . . .  if u0 is 
sufficiently smooth, i.e., belongs to the domain of A m . . . "  The domain of A m is 
basically one of our H~. And u0 can be even Coo and not in H~. 

Section 2 is devoted to the elliptic theory and section 3 gives the proof of the 
main theorem. Extensions and generalizations of the main theorem are discussed 
in section 4. 
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Section 2 

Our methods depend heavily on the Sobolev spaces H ~ ( O ) = H  ~, s =  

0, 1, 2 . . . .  With D c R"  as in section 1, recall that H ~ consists of all real valued 
functions on D with (generalized) derivatives up through order s in L2(D). A 
complete norm on H ~ is given by 

0~ l a l ~s  

where a is a multi-index, a = ( a  1 . . . . .  a n ) ,  ai is a non-negative integer, ~ot i = tat, 
and D~u = (O"l/Oxl) . . . . . .  (O'~~ The norm is induced by a inner product and 
H ~ coincides with L2(D). 

The Sobolev imbedding theorem asserts that H ' §  CS(O) if k > n/2 (where 
n = dim O) and the inclusion is continuous for all s i> 0. Here  CS(O) is the Banach 
space of C * functions on O, natural norm. See e.g. [3] or [10] for this and other 
background on Sobolev spaces. The Rellich theorem states that the inclusion 
H s --~ H s- ~ is compact.  

Let  HA be the closure of C~o in H 1 where C~0 is the subset of C~(D) of 
functions which are zero on 00. 

Let  J :H"- - -~  H 1 be the natural inclusion and H " A  HA = J- t (H~) .  Since H0 ~ is 
a closed linear subspace of H 1, and J a continuous linear map, H m n  HA is a 
closed linear subspace of H m. This space H "  n HA is the set of all functions in H m 
which are essentially zero on 00. It  is a natural space for the Dirichlet boundary 
conditions for second order elliptic operators  that we will consider, with m 
independent  of the order  of the opera tor  or  the dimension of O. 

These elliptic operators  are linear maps L : C~(D) --~ C~(D) of the form 

(Lu)(x)= Y. a (x)O u(x) 

where a is a multi-index, k is the order  and a , , : O  ~ R are C ~ functions (all 
functions are real valued here). We will assume k = 2, for our notation. Our  

standing hypotheses on L are 

L is elliptic. (1) 
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For each x e l 2  the polynomial ~t.l=k a , , ( x ) ~  :0  all s reR ", if ~:~0, where 
~o = ~ 7 ~  . . .  ~ .  

L is self-adjoint. (2) 

I.e., (Lu, v)=(u ,  Lv) for all u , v ~ o o  where (u, v) denotes the L 2 inner 
product. 

L:C~0---~ C~(O) is injective. (no "eigenvalue" is zero) (3) 

Condition (3) just make things go more simply. If L satisfies (1) and (2) it can 
be "translated" to satisfy (3). 

As we remarked above, we use second order notation for L throughout. This 
comes into the boundary conditions in particular. But the proofs go over im- 
mediately to arbitrary order. Thus we suppose L is second order and so 

(Lu)(x)= 1~.i~, ~" a ~ j ( x ) ~ +  k ~=~ bk(x) O0~ +c(x )u(x )  

where (a~j(x)) is a negative definite matrix for each x, negative definite rather than 
positive definite by our convention. 

The map L : C~o --~ C~(D) extends naturally to L : H "  fq H i  ~ H"-2 .  

Fundamental theorem ot elliptic theory 

For each m = 2, 3 , . . .  L : H "  f') H i  ~ H m-2 is an isomorphism. That is, L has a 
bounded linear (2-sided) inverse G : H m-2 ~ H "  N Hi .  

This could be considered as a regularity theorem, including boundary regular- 
ity. For a proof see e.g. [3]. 

The maps, L, G and inclusions J described above make sense with various 
domains; sometimes will use them without specifying this domain if the context 
makes it clear. 

A second theorem from the elliptic theory is that providing L with eigenfunc- 
tions. 

Eigenfunction theorem 

Suppose given an elliptic self-adjoint operation L : Co---~ C ~ as above. Then 
there exist a non-decreasing sequence of real numbers )tl, )t2 . . . .  called eigenvalues, 
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with Ai ~ oo as i ~ ~, and a sequence of elements cbi of C~o called eigenfunctions so 
that Lcbi = hi~kl. Furthermore the c~ i constitute a Hilbert basis for L2(1'2) = / 4  ~ 

We sketch how the proof of the eigenfunction theorem follows from the 
Fundamental theorem. Consider 

H 2 A H  ~ Oo H 2 A H  ~ 

\ /  
H o 

Then Go = GJ is compact using Rellich and self-adjoint relative to a Hilbert 
structure on H2A HA induced from that on H ~ via L. Apply the spectral theorem 
for compact self-adjoint operators (the simplest spectral theorem, see e.g. [6]) to 
Go to obtain real /z  i, 0i e H2 N H i  with Gotki =/xiOi. Take hi = 1//xi indexed so that 

the hl are non-decreasing, and tki = hiqJi. The d A are a Hilbert basis for H2O Ho ~ 
and L~b i = h~i = thi a basis for H ~ Finally, the repeated use of the Fundamental 
theorem applied to L~i = hi,hi implies that ~b i e H m n Hi  every m and thus ~b i ~ C ~ 
by the Sobolev theorem. 

Define H~,  m = 0, 1 , . . .  as the closure of the subspace of H "  spanned by the 
eigenfunctions 4~i. For  example it follows from the above t h a t / ~ .  = H ~ H~, = H~, 
H~ = / - ~  n Ho ~ and that H~' c H m n Ho for m t> 1. But H~ is a proper  subspace of 
H 3 A H ~  since H~ is a proper  subspace of H 1 and L : H 3 A H ~ - - - ~ H  1 is an 
isomorphism. In fact H~ = L-~(H~). Since in general H ~  is not all of H m O  H~, 
the simple expansion by eigenfunctions is not sufficient to give smooth solutions 
for the heat and wave equation. 

It follows from the eigenfunction theorem that (the restriction) L : H~' ~ H~-2  
is an isomorphism with inverse G : H~'-2 ~ H~', m/> 2. Actually one may define 
H ~  without the use of eigenfunctions by 

H~"+2=G'(H~)=L-m(I-I~, ) ,  H~"+~=Gm(H~), m>~O. 

Consider the composition 

G o : H  m n Hol --~ H m n H o  1, 

H ,~A H ~ J , H , , - 2  O ,  H m AH~ 
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PROPOSITION.  The image of G~ is contained in H ~  for s > - [ m -  1/2], the 

largest integer in ( m -  1/2). This is false for s < [ m -  1/2]. 

The proposition is a kind of spectral theorem for the opera tor  Go : H m n H~ --~ 
H "  OHm. It implies for example if m > 2 ,  there is no Hilbert  structure on 
H m A H~ so that Go is self-adjoint. On the other hand modulo H~,  Go is 
nilpotent, and on H~', Go has the spectral theory defined by G0~b~ = (1/A~)~bv 

The proof of the proposition can perhaps best be seen by studying the 
following diagram for m even (m odd goes similarly): 

n 2 �9 

u~ 
L 

n 6 ~ . . .  

U 

H a ~ L H 6 A H I ~ . . . . .  

L 
H 4 n H ~  ~ F ~- -  �9 �9 �9 

U U 

H,~ , H~ ~ - - . . .  
L 

Here F = L - I ( H n N H ~ )  with L : H 6 N H ~  ~H a etc. Now G o : H 4 N H ~  ---~ 

HnNH~ t) is of form Go = GJ = L- I J .  So i m (G o)c  H~,. Similarly Go: H 6 N H ~  ---~ 

H 6 N H ~  is given by Go = G J G J = G 2 j  2 and i m ( G ~ ) c  im(G2H~,) or H~. Con- 

tinue in the same way to finish the proof. 

Section 3 

The goal of this section is to prove the main theorem of section 1. We do that 
first for the case that the data can be expanded in a Fourier series. More  precisely: 

P R O P O S I T I O N .  Suppose t --~ w,, t >t 0 is a C ~ curve in H'~ and f2 ~ H'~. Let 1 
satisfy m - 2 1 ~  2, / > 0 .  Then there is a unique C ~ curve t---.~ v, in H ~  -2~ such that 
Jl(OvJOt) + Lv, = J j w ,  with Vo = Jr;. 

Here J1 : H ~  '-2~---~ H ~  -2~t+1) and J : H ~ - - - ~ H ~  -2t are all inclusion maps. One  
may relax the C ~ condition on t ~ wt as the proof  shows. 
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C O R O L L A R Y .  Under the same hypotheses, there exists a unique C ~ curve 
t--> vt in H~  -21 such that Vo = Jf~ and (I+ GoT)vt = Jw,. 

Here  I:H'~-2i---~ H ~  -21 is the identity and T=O/Ot. For the corollary simply 
apply G to the equation of the proposition. 

The main part of the proposition is contained in the following lemma. 

L E M M A  1 (of Fourier type). Under the hypotheses of the proposition, there is 
a unique C ~ curve v, in H'~ -2 such that Vo = J~f~ and 

Jl ~t v, + Lv, = Jl w,, (1) 

where J1 : H'~ ---> H'~-2 is the inclusion. 

Postponing momentarily the proof of the lemma, we see how the proposition 
is a consequence via a simple induction. Say v, is a C k curve in H~ '-2k satisfying 
(1), J1 the appropriate inclusion. Apply Jo: H ~  -2k---~ H~ '-2k-2 to both sides to 
obtain that v, is c k§ in H ~  -2k-2. 

For  the proof of the Lemma, first examine just what convergence in H~' 
means. Say m = 2k (we only use these results for m even; and for m odd, the 
proofs are similar). Then since L k :H~---~ ~ is an isomorphism, ~7=1 c~bi con- 
verges in H~  if and only if ~ qA~tb~ converges in H.~= L 2 or equivalently 

Ic,X 12< 
Now expand the data of the lemma in a Fourier series, i.e., we may write 

t3 = ~.S=1 c~4~ and w~ =~S=1 a~(t)cbi in H~.  Hence the q are constants and the a~(t) 
are real valued functions of t. In fact, a~(t) is C ~ since it is the projection of a C ~ 
function. For  u, =~7=1 b~(t)ck~, the equation of the lemma is 

Y. bl(t)6, + 5". X,b,(t)6, = Y. 

or for each i, 

b~(t)+a,b,(t) = a,(t), hi(0) = c,. 

The unique solution is (see practically any book on ordinary differential equa- 

tions) 

~ ds+c,] 
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We claim that the curve u, defined above in terms of the b~(t) converges in H ~  

and satisfies the propert ies in the lemma. 
Since for each t~>0, e-;` , '~ < 1  except for a finite number  of i, and ~ c~tb~ 

converges in H~,  it follows that ~ c~e-X.'th~ also converges in H~' for each t. The 
continuity in t of this sum is an easy check which we leave to the reader.  

Next we show that ~ d~(t)~b~ converges to a continuous function of t in H ~  
where m = 2k and 

d~(t) = ai(s)e ;`,~-~ ds. 

First estimate by Cauchy's  inequality, 

]d,(t)l 2= [a,(s)[ 2 ds e 2;`,~-0 ds 
) 

Io ' 1 2;, = la,(s)l =dsv:-~ [ l - e -  ,q 
z^ i  

Thus 

Id,(t)12X~"~ < ~ la,(s)12h~kds<~g 

where 

K = max ILkw~[~0 
0 ~ S  ~ ; t  

Thus Y di(t)d~ converges in H~' and so does u, = Y~ b~(t)@~. The continuity in t 
is proved similarly. The rest of the proof of l emma 1 follows from the definition of 
b,(t) obtaining u, C ~ in t in H m-2 . 

Now consider the general problem of section 1. Thus C ~ f : R + •  ~ R is 

given and the problem is to find C ~ u : R + •  satisfying zero boundary 
conditions such that 

T u + L u = f  on R+x~Q (2) 

where T=O/Ot. Let f , ( x )=f ( t ,  x); then it is easily seen that the map R + - o  H k 
given by t--~f, is a C ~ curve in H k any k. Let  J : H k §  k be the 

inclusion and consider the following version of (2). 

T J u + L u , = f .  u, a curve in H k+2fqHi, Uo=0. (3) 
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Let  m = k + 2 and apply G : H k --~ H m Iq H i  to both sides of (3) to obtain 

( I+ TGo)u,=g,,  u , ~ H m N H i ,  Uo=0 (4) 

where the datum g, = Gf, is now a curve in H " N  Hi .  
This form suggests trying to invert I+ TGo or to look at: 

u, = [ I -  (GOT) + (GOT) 2 . . . .  + ( - 1)~(GoT)~]g, + v, 

( I+ TGo)v, = ( -  GoT)~+~g, = w, 

(5a) 

(Sb) 

For  s large enough w, ~ H g  by the proposition of section 1. We may apply the 
above Corollary to solve (5b) for v,, and with an appropriate  boundary condition 
at t = 0, put this in (5a) to obtain our  desired solution u,. 

Motivated by the above,  we proceed more  formally. 
Set m = 2k = 41, l some positive integer. The data f define a curve t + f, in 

H m-2. Let  g, = G[, be the corresponding curve in H m N HI ,  C ~ in t. Define 
3', = [ / - ( G O T ) +  . . .  + ( -  GoT)k-2]g,, which is a C ~ curve in H "  f q H i  for 0<~ t<  
00. 

L E M M A  2. 3'0 e H ~  

Proof. Denote  by Cq(f) the condition of the theorem Pq(L,T)fl ,=ocC~o, 
q = 0, 1 . . . . . .  We will show that if Cq(f) for q <~ k -  2, then ~__-o 2 ( - T G o ) ' g ,  [,=o 
H~.  Let  J :  H 1 ~ H J-2 be the inclusion for various ] and suppose f, is the curve in 
H m-2 defined by the inclusion C~---~ H m-2. Define Rq =Y~q=o ( -TJ) iLq-~f ,  [,=o 

and note R q = ( - T J ) q f ,  [,=o+LRq_l. This latter could be used as an inductive 
definition of Rq starting with R_I = 0. Rq lies a priori in n m-2(q+l), but Cq(f) 
implies that Rq lies in Hm-2(q+l)NHi.  Now suppose Cq(f) is true for q<~ k - 2 .  
Then Rk-2e  H 2 N H i  =/-~. ,  so Gk- lRk_2e  H~.  By the inductive definition of Rq 
above,  the L used in the definition of Rk-2 have domain some H ~ f ' lH~ so 
GL = identity. Thus G k-aRk_2 = y,~-2 ( _  TGo)'g, I,=o ~ H~.  

The  curve w, = ( - G o T ) k - a g ,  lies in H ~  by the proposit ion of section 2. Let 
J :  H "  f ' l H i  and J :  H ~  ~ H~, denote  the inclusion. Apply the Corollary of the 
proposit ion in this section to obtain v, in H~  of class C z in t such that 

(I  + Go T) v, = Jw,, Vo = - J3,o. Now define u, in H k fq H i  by u, = J3,, + v,; so u, is C t 

in t, Uo = J3,o + vo = O and (I  + GoT)u, = Jg, in Hk N HI.  
If  different l, say 11, 12, above are chosen, the corresponding u defined by the 

above process agree in H k fl H i  where k = 21, l = min (l~,/2) using the uniqueness 
in the Corollary. Thus we obtain a u, which lies in each H k N  Hi .  Thus by the 
Sobolev theorem, ut is C ~ and we have proved the first half of the main theorem. 
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For the second part, the above proof, with a couple of modifications which we 
state, is applicable. 

The first modification is in lemma 1 and its consequences. One obtains a 
different ordinary differential equation, namely 

b'[(t) + A,b,(t) = a,(t), i = 1, 2 . . . .  

with b~(0) = c~, b,'(0) = d~ 

where u, =Y~ bi(t)4a~, is to be found and ~ cicki = Uo, ~, did~i = U'o, Y~ ai(t)dai =/ t  are 
prescribed. This differential equation has as its unique solution, if A~ > 0 

_ sin t4Ai f '  
bi(t) = b, cos tx/A, + d,-"-'77----. + | 

Jo 

a~(s)Sin ( t -  2)x/A~ 
4X~ 

all t. 

The finite number of equations with A~ < 0  are handled as easily. Now one 
proceeds as before, with similar estimates to get convergence of ~ bi(t)cb~ -- u,. 

The other modification relates to Lemma 2; but here just apply that construc- 
tion of [ and [ '  as well. 

Section 4 

This section is a series of remarks on extensions and relations to other 
problems of the above. 

Section 3 of this paper could be considered as a theory of separation of 
variables for boundary value problems in PDE.  It works well for problems which 
are the product of understood problems. Thus the evolution problems above are 
the product of space and time problems. We give more examples to illustrate this 
point. 

Consider A u = f  on the rectangle O = O ~ •  where g~ =[0 ,  a], Ob =[0 ,  b]. 
Given C=f:D- - -~R ,  find a C = solution u:g2--->R such that u = 0  on 012. Write 
(t, x ) e I ~  x D b and zau = (02u/Ot 2) + (02u]Ox 2) = T u -  Lu  and proceed as before to 

obtain NASC on f for the existence of a solution u. The Fourier lemma and 
proposition at the beginning of section 3 must be replaced by a simple spectral 
analysis of T (similar to that of L). 

A second example is the wave equation on the same domain, ( T +  L ) u  = f on 
O with Dirichlet boundary conditions u = 0 on 0~(!).  This problem has been 
considered By Fritz John [4], V. Arnold [1] and others. Now the above analysis 
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applies. Besides the compatibi l i ty condi t ion on [, one  needs in general  that  the 
ratio a/b be not  rat ional  (or not  even close to rational?).  

Finally we list some ways in which the main theorem might be extended.  

(A) If condit ion (3) on the elliptic ope ra to r  is d ropped ,  i.e., some eigenvalues 

are al lowed to be zero,  the methods  extend easily to yield similar results. 
(B) If L is not  self-adjoint ,  one  could no doubt  replace the Fourier  lemma of 

section 3 by a different existence proof ,  the rest being the same as before.  

(C) The  extension to complex coefficients or  systems should not  require 
substantial  changes.  

(D) The  opera to r  T in the theorem of section 1 could be replaced by any 

ord inary  linear differential ope ra to r  with leading coefficient 1. Then  the results 
would  have to be modified at the bounda ry  condit ion t = 0. SchrOdinger 's  equa-  

tion on bounded  spatial domains  thus can be included. 

(E) 1~ could be a compact  manifold  with bounda ry  

(F) Perhaps  one could obtain C solutions to  Navier-Stokes  on compact  
c R" ,  0 0  smooth ,  for small t ime via e igenfunct ion expansions this way. 

(G) In the main theo rem of section 1, L is time independent .  I am not  sure 

how the extension of  this result  to  the case of t ime dependen t  L should go. 
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