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On the Gauss image of a spacelike hypersurface with 
constant mean curvature in Minkowski space 

Y. L. XIN* 

I. Introduction 

To generalize Bernstein's theorem on minimal surfaces Chern [5] proposed to 
study the distribution of normals to complete constant mean curvature hyper- 
surface in Euclidean space. In this direction there is a remarkable theorem given 
by Hoffman, Osserman and Schoen [7]. The author also considered more general 
cases of  this kind of problem in a previous work [2]. 

In [10] Palmer studied the analogous problem in the ambient Minkowski 
space. 

Let M be an oriented spacel~ke hypersurface in a Minkowski space ~7+t.  Let 
be the timelike unit normal vector field to M in R~ '+1. For any point 

p e M l ~ ( p ) [ 2  = - 1 .  By parallel translation to the origin in ~7 § ~ we can regard 
~ ( p )  as a point in the n-dimensional hyperbolic space H " ( -  1) which is canoni- 
cally embedded in ~7+ 1. In such a way we have the Gauss map y : M  ~ H " ( -  1). 

Palmer proved the following result: 

T H E O R E M  A [10]. For H #O there exists a number z ( n , H ) > O  with the 

following property: Let M ~  R7 +t be a spacelike hypersurface with constant mean 

curvature H. I f  ~ ( M )  is contained in a geodesic ball o f  radius zl < z in Hn( - 1) 
then M is not complete. 

We observe that in the case when M has constant mean curvature the CJauss 
map y is a harmonic map into the hyperbolic space [8]. Then the Liouville 
theorem of harmonic maps is applicable provided one can show M has nonnega- 
tive Ricci curvature [3]. This can be done by using the maximum principle [2]. 
Therefore, by a totally different approach we generalize the above quoted Theo- 
rem A as follows: 
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T H E O R E M  B. Suppose M is a complete spacelike hypersurface with constant 

mean curvature in Minkowsk i  space ~ +  ~. I f  the image under the Gauss map 

: M ~ Hn( - 1) is bounded then M has to be a linear subspace. 

In view of the famous C a l a b i - C h e n g - Y a u  result [1], [4] of non-existence of 
nontrivial complete maximal spacelike hypersurface in Minkowski space, any 
complete spacelike hypersurface with nonzero constant mean curvature in 
Minkowski space must have boundedless Gauss image. 

It should be mentioned that Choi-Triebergs also study the Gauss maps of 
constant mean curvature graphs in Minkowski space [6]. 

In this note we will firstly give an estimate for the squared length of the second 
fundamental form in terms of mean curvature and Gauss image diameter and then 
prove Theorem B. 

II. Preliminaries 

Let N be an (n + 1)-dimensional Lorentzian manifold with Lorentzian metric 
of signature ( - ,  + . . . .  , +).  Let {eo, el . . . . .  e,} be a local Lorentzian ortho- 
normal frame field in N. Let 09 0, 09~ . . . . .  09, be its dual frame field so that 

= -09~ + Yi o9~. We agree the following range of indices: 

l ~ i , j  . . . .  Kn ,  

0 < ~ , f l , . . .  <n .  

The Lorentzian connection forms 09~ of N are uniquely determined by the 
equations 

d09o = ~ O)Oi ^ O)i~ 

d o, = - Z 0 9 -  ^ 0 9 0 + E  09,j ^ 09j, 
i 

w~ + w~ = 0. 

The covariant derivatives are defined by the following equations 

Deo = ~ 09oiei, 

Dei = ~. 09oej - O)~oeo. 
(2) 
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The curvature forms ~q~B of N are given by 

~Oi  ~- d0)oi - ~ COOk A (.I)ki , 
i 

~ij = d0)ij + O')iO A (.t)Oj - -  ~ (A)ik A (.Okj , (3 )  
J 

1 -  
0 ~  = - -~  R ~ 0 ) ~  ^ 0)~, 

where /~ar~ are components of the curvature tensor/~ of N. 
Let M be a spacelike hypersurface in a Lorentzian (n + l)-manifold N. We 

choose a local Lorentzian orthonormal frame field e0, el . . . . .  e, in N such that, 
restricted to M, the vectors el, �9 �9 �9 en are tangent to M. When we restrict their dual 
forms to M, then 

09o=0 

and the induced Riemannian metric g of  M is written as g = ~-~'i 0002 and the induced 

structure equations of M are 

do) i = 000ik A (.Ok, 000ij "~ 000ji = O, 

d0)u = ~ 0)ik ^ 0)kj -- 0)i0 ^ bgoj + Oij, (4) 

1 
Oij = d0)ij - ~, 0)ik ^ 0)lrj = - -~  Rijkl0)k A 0)l, 

k 

where f2 u and Rijkt denote the curvature forms and the components of  curvature 

tensor of M, respectively. 
By Cartan's lemma, we have 

0)io = huogj, (5) 

where hij are components of  the second fundamental form of M in N. From (3), (4) 

and (5) we obtain the Gauss formula 

R i j k l  = R i j k l  - -  (hikhjt - hithjk) �9 (6) 

The Ricci tensor is 

Rik = Rik + ~ huhkj - nHhig, 
J 
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where H = (l/n) Zi hii is the mean curvature of M in N. If N has Ricci curvature 
bounded below by CN then M has Ricci curvature bounded below as follows: 

>- C N -- ~m2H 2. (7) Ricc 

Let hijk denote the covariant derivative of hii so that 

E hijkOgk = dhij -1- E hikfOkJ "b ~ hkjfOki. (8) 
k 

Then by exterior differentiating (5) and using (4) we obtain the Codazzi equation 

hijk - hikj = Roijk. (9) 

Define the covariant derivative of hijk by 

hijklfDi ~- dhij k -k- 2 hljk ('Oli "~- 2 hilkfDli "~ ~ fDijlO)lk" (10) 
l I I l 

Then by exterior differentiating (9), one obtains the Ricci formula 

h~jkz -- hijlk = E hmjRmikl d- ~ h~,,,R,,,jkt. (11) 
m m 

From (9) and (11) it follows that the Laplacian satisfies 

Ahij = E hkkij "k 2 hmkRmijk + Z himRmkjk + ~ &ijkk "~- L Rokikj, (12) 
k k,m k,m k k 

where 

& i j k l  (l)l = d & i j k  - -  L & l J  k('Oi' --  L &ilkO')lJ - -  L Roij l  ('Olk" 
l 1 1 1 

Let S = Y.~,j h 2 be the squared length of the second fundamental form of M in 

N. Then (12) gives 

1 
h2k + n E hi.iHij + $2 - n H  E hijhjkhki + E hqhk,nl~,,ok 

A S  = i,j,~k i,] i,j,k i,j,k,m 

"k L hijhimRmkJk + L hiJff'Oijkk-b s hul{okik j. (13) 
i,j,k,m i,j,k i,j,k 
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If  M has constant mean curvature in Minkowski space N then 

1 
- ~ s  > Z h~.~ + S~-nlHI S~j~. (14) 
2 i.j,k 

III. A proof  o f  the main  result 

Let r, ~ be the respective distance functions on M and H ' ( -  1) relative to 
fixed points x0 e M, x0 e H " ( -  1). Let B(a) and /~(a) be closed balls of  radius a 
around x0 and s respectively. Define the maximum modulus of Gauss map 
y : M ~ H " ( - - 1 )  on B(a) by 

def 
#(7, a) = max {F(7(x)); x e B(a) c M}. (15) 

For a fixed positive number a choose b > ch(#(7, a)). Define f :  B(a) ~ R by 

(a2 -- r2)2S (16) 
f =  (b - h o 7) 2' 

where S is the squared length of the second fundamental form of  M in R7 + ~, 

h = ch~. 
Since fles(a) =- O, f achieves an absolute maximum in the interior of  B(a), say 

f ~ f ( z ) ,  for some z inside B(a). By using the technique of support functions we may 
assume that f is c 2 near z. We may also assume S(z) # O. Then from 

Vf(z) = O, 

~f(z) ~ o 

we obtain at the point z the following: 

2Vr 2 VS 2V(h o 7) 
- -  = O, (17)  

a 2 _ r  2 b S - + b _ h o y  

o 2[V(h o ~,)[z -2[Vr212 2At 2 AS Ivsl 2 2d(h y) _b ~ _ _ h _ s ~  < 0. 
( a  2 - -  r 2 )  2 a 2 - -  r 2 ] S S ~ + b - h ~  

(18) 

The Schwarz inequality implies that 

Ivsl' ~ 4 X hi-,. (181 
S i,j., 
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Hence (14) and (19) give 

]VS] 2 
A S  >_ 5 ~ -  + 2S3J2(Sl/2 - ~IHI) 

so that  

AS IVSl >_ 
S S 2 

- 2 l V ( h  o y)l 2 4lV(h o  )llVr=l 
(b - h o ~))2 (b - h o ? ) ( a  2 - r 2)  

21Vr t 
(a 2 -- re) 2 § 2 8 ' / 2 ( 3  '/2 _ nlH]). 

Substituting (21) into (18) gives 
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(20) 

(21) 

It is easily seen that  

7 , e i  = hijej, (23) 

[V(h o 7)[ 2 = (g rad  h, 7 ,e i  ) ( g r a d  h, ? , e ,  ) < (sh2r')S. 

Since 

Hess ~ = coth 7(~ - dF | dr"), 

we have 

Hess h = (chr3~, (24) 

where g is the metric tensor o f  H " ( -  1). It follows that  

A(h  o 7) = Hess (h)(?,ei ,  ? , e i )  + (g rad  h, Ve~?,ei) 

= (chr")S + (g rad  h, h~j,ej > 

= (chr')S. (25) 

The last equality follows f rom the Codazzi  equat ion (9) and the assumpt ion  of  
constant  mean curvature.  

o 2A(h  o ?) - - 2 d r  2 4lVr2l 2 4[V(h  )llVr21 + - -  4_2S, /2(S, /2_nlHi)  ~ o .  
a 2 - r  2 (a z - r z )  2 ( b - h o T ) ( a  2 - r  2) b - h o T  

(22) 
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Since the Ricci curvature of  M is bounded from below by -n2H2/4 we can use 

and 

I (  4(shr')r 2 
s ~ k (b - chr~)(a 2 - r ~) + n l n l )  

b--ch~ ~1 

I ( ~ + n a 2 l H ' )  2 

Choosing b = 2ch# we have 

< F(4(shl~)a + n(chl~)a2lHI) 2 
I(z) k ,  L + 

+ 
2(n + (n -- 1)cr)(a 2 -- r 2) + 8r2[ 

J \ ~  + 1 (a ~ - r~) 2 

2(ha 2 + (n -- 1)ca 3) + 8a] . 

(~  + 1)(b -chl~) 

(n + 4)a 2 + (n - -  1 )ca  3 ] 

1 + 2chl~ J 
(28) 

the Laplacian comparison theorem and obtain 

Ar 2 -< 2 + 2(n - 1)cr(coth cr) < 2n + 2(n - 1)cr, (26) 

where c = (n/2)lH[. Substituting (23), (25) and (26) into (22) we have 

(2(n + (n -- l)cr) _8r 2 
- -  a2  _ r2 -~ (a 2 _ r 2 ) }  <-- O. (27) 

It is easily seen that if ax 2 - bx - c < 0 with a, b, c all positive, then 

x 2 ~  ~ + a  ' 

where k is an absolute constant  and in what  follows k may be different in different 

inequalities. Thus, we obtain at the point z, 
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S(x )  - 
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(b - chr')f(x) <_ (b - chr')f(z) < 2ch~ 
(a 2 _ r 2 ) 2  ( a  2 _ r2 )2  ( a  2 _ r2 )2  f ( z )  
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where c = (n/2)[H[ and /~ is defined by (15). We state the above estimate in the 
following theorem. 

T H E O R E M  B'. Let M be a spacelike hypersurface o f  constant mean curvature H 

in Minkowski space ~ + ~ such that for  a certain Xo ~ M, the geodesic ball o f  radius 

a centered at Xo is compact. Let  S = Zi, j h~j be the squared length o f  the second 

fundamental  form M in ~7 + ~. Then we have the estimate (29). 

N o w  we are in a position to prove the main result stated in the introduction.  

A proof  o f  Theorem B. I f  the image under the Gauss  m a p  is bounded,  then the 
max imum modulus  #(7, a) is bounded.  We also have bounded smooth  function 
h = ch~(7(x)) on the complete manifold M of  Ricci curvature  bounded  below by 
-nZH2/4 .  Thus the O m o r i - Y a u  [9], [11] max imum principle is applicable to h. For  
any e > 0 and Po ~ M there exists a point p such that 

h(p)  >- h(po), Igrad hip < e and Ahlp < ~. (30) 

By (25) 

Ah = (ehr")S, 

which means 

inf S = 0. 

On the other  hand 

S 
H 2 ~ --  

n 

<_ k( (4(shp)a  + n(eh~)a2lgl) 2 (n + 4)(ch#)a 2 + (n - l)ca3. "] 
\ -~ i -+~c~)~ -~  + ~ i + 2 c ~ ) ( a = Z r 2 )  2 /, (29) 



598 v.L. XIN 

and H is constant.  This forces H = 0. F rom (29) it follows 

I 16(sh 2#)a 2 
S(x) <- k (1 + 2ch#)2(a 2 - r:) 2 

(n + 4)(ch#)a 2 ] 
-I (1 + 2ch#)2(a 2 - r 2 ) 2 j .  (31) 

Hence we may fix x and let a tend to infinity in (31). Then we obtain S(x) = 0 for 
all x e M. This completes the p roof  o f  Theorem B. 
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