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l~tale descent for Hochschild and cyclic homology 

CHARLES A. WEIBEL 1 AND SUSAN C. GELLER 2 

Abstract. If B is an 6tale extension of a k-algebra A, we prove for Hochschild homology that 
HH,(B) ~- HH,(A) | B. For Galois descent with group G there is a similar result for cyclic homology: 
HC,(A) ~- HC,(B) 6 if Q c A. In the process of proving these results we give a localization result for 
Hochschild homology without any flatness assumption. We then extend the definition of Hochschild 
homology to all schemes and show that Hochschild homology satisfies cohomological descent for the 
Zariski, Nisnevich and 6tale topologies. We extend the definition of cyclic homology to finite-dimensional 
noetherian schemes and show that cyclic homology satisfies cohomological descent for the Zariski and 
Nisnevich topologies, as well as for the 6tale topology over Q. Finally, we apply these results to complete 
the computation of the algebraic K-theory of seminormal curves in characteristic zero. 

This paper studies three related topics: &ale descent for Hochschild homology 

and cyclic homology,  and the algebraic K-theory of seminormal  curves. Our  results 

are simplest for Hochschild homology. Let k be a commutat ive  ring with identity, 

A a k-algebra,  M an A-bimodule ,  and R = A  |176 Then  the Hochschild 

homology of A and  M is H H , ( A ;  M) = T o r ,  R/k (A, M)  as in [Mac, IX.8]. We write 

H H , ( A )  for the Hochschild homology H H , ( A ; A ) .  If A is commutat ive,  it is 

well-known that H H , ( A )  is a graded A-module.  

I~TALE D E S C E N T  T H E O R E M  (0.1). Let A c B be an btale extension of  
commutative k-algebras. Then 

H H , ( B )  ~- H H , ( A )  | B. 

For  example, any localization B = S-~A is 6tale over A, so (0.1) yields the 

formula H H , ( S - t A ) ~ - S - ~ H H , ( A )  without  the extra hypothesis of [BI], [Bry], 

and [GRW] that A be flat over k. This formula also holds when A is noncommuta -  

tive; see w Another  immediate consequence of (0.1), which breaks up the long 

exact sequences in loc. eit. as well as removing the spurious hypotheses (i) A flat 

over k and (ii) B~ = S -  ~A, is the following. 
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COROLLARY 0.2. Suppose that X = Spec (A) is covered by affine open subsets 
Ut = Spec (Bl) and U2 = Spec (B2). Then there is a short exact sequence 

O-=, HH,(A)  --* HH,(BI)  x HH,(Bz)  --* HH,(B  I | B2) -*0. 

Indeed, Bl, B2, and B~| are &ale over A, so this arises from (0.1) upon 
tensoring HH,(A)  with the exact sequence 0 --* A ~ Bt x B2 ~ Bt | B2 ~ 0. 

The other typical &ale extension is the Galois extension ([KO]). In this case we 
can also say something about cyclic homology. (See 2.2 and 3.2 below.) 

GALOIS DESCENT THEOREM (0.3). Let A c B be a Galois extension of 
commutative k-algebras with Galois group G. Then G acts on H H , ( B )  and 

H H , ( A )  "~ H H , ( B )  (7. 

In addition, if  A contains a field of  characteristic zero, then the action of  G on the 
cyclic homology HC, (B )  is such that 

H C , ( A )  ~ HC, (B )  ~. 

Let us explain why we call (0.1) a "descent theorem." There are two relevant 
notions of descent in the literature. One is the notion of faithfully fiat descent 
([TDTE], [KO]). Let F be any functor from k-algebras to abelian groups, and 
A ~ B be a faithfully fiat extension. We say that F satisfies nai've descent for A ~ B 
if the augmented Amitsur complex 

E 

O ~ F ( A )  ---, F(B) ~ F ( B  | B) ~ F ( B  | B | B) ~ . . .  

is exact. The HH, satisfy naive descent for all faithfully flat 6tale extensions by 
(0.1), and the HC, satisfy naive descent for all Galois extensions by (0.3). 

Our original proof of (0.1) used the theory of faithfully flat descent; after 
hearing it, Brylinski ([Brylet]) sent a simpler argument to us, and we give a 
modification of his argument in Section 2. Another proof  of (0.1) has been found 
independently by C. Kassel and A. Sletsjoe [KS] using Harrison homology, at least 
when Q ___ k and A is flat over k. 

In Section 3 we show that the individual HC, do not satisfy naive descent for 
all faithfully flat 6tale extensions, but that instead there is a fourth quadrant descent 
spectral sequence 

E~ q = HP(B/A, HC_q) =~ HC_p_ q(A) 
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converging in the usual good cases. (See 3.4 below.) The E~ q terms are the Amitsur 
cohomology groups of F = HC q, i.e., the cohomology of the Amitsur complex. 

The second notion of descent in the literature is cohomological descent (for 
presheaves of chain complexes) in the sense of Grothendieck ([Hart]), Thomason 
([AKTEC]), et al. In Section 4, we extend the definition of Hochschild homology to 
schemes over k, and show that H H ,  satisfies cohomological descent for the Zariski, 
Nisnevich, and &ale topologies. We also extend the definition of cyclic homology to 
finite-dimensional noetherian schemes over k. (This restriction arises from our 
insistence that HC, (Spec  (A)) be the same as HC,(A) . )  Then we show that H C ,  
satisfies cohomological descent for the Zariski and Nisnevich topologies, and for 
the &ale topology over Q. The main result needed for this is the following 
description of the Hochschild homology sheaves. 

COROLLARY 0.4 (HOCHSCHILD SHEAF). Let X be a scheme over k, and 
~ J g ,  be the Zariski sheafification of the presheaf U ~ HHn(F(U, Cx )) on the big 
Zariski site of X. Then 

(i) ~ ,  is a quasicoherent sheaf on X; 
(ii) ~tO~, is also a sheaf for the btale topology on X; 

i (iii) Hi,(X; a ~ g . )  ~ Hzar(X, Yt%'ug.) for all i; and, 
(iv) i f  X is affine, i.e., X =  Spec(A), then H~ ~o.ug.) _~ HH.(A) and 

Hi(X; 9r = 0 for i ~ O. 

Proof. Our &ale descent theorem (0.1) implies that ~ ,  is an &ale sheaf and 
that it is quasicoherent. Parts (iii) and (iv) follow from [M, III.3.8]. [] 

In w we complete the calculation of the algebraic K-theory of an arbitrary 
seminormal curve over a field l of  characteristic zero. This calculation was begun in 
[GRW], and our desire to finish the calculation was the original motivation for this 
paper. In [GRW, w 8] the problem was reduced to the computation of the 
K-theory of the affine "linear" seminormal curves Spec (A), A = ! ~ t(Hl~)[t], where 
Hli is a finite product of  finite field extensions of 1. This reduction follows from the 
fact that every seminormal curve singularity has this analytic type ([D]). Therefore 
the following calculation completes our program. 

THEOREM 0.5. Let Ii, 12 . . . . .  l, be finite extension fields of  a field l of 
characteristic zero. Let A = l ~ t(llli)[t]. Then: 

K.(A) ~- K.(l) ~ V., 

and 
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HC~(A) ~- HCQ. (I) @ V. + ~ @ (A/l | 12 7 ). 

Here V .=O if n < 2 and, for n >2: 

vo=IIlr  I /  r -2, 
c(b,n) c(b,n I) c(b,2) 

where b = - 1  + E dimt(li), and the combinatorial numbers c(b, i) are given in 
[GRW, 3.13]; c(b, 2) = (b z + b)/2 and c(b, n) is approximately b"/n for large n. 

w Localization without flatness 

The goal of  this section is to prove two localization results without the 
customary hypothesis that A be flat over k. Proposition 1.1 was proven with the 
additional hypothesis that A be flat over k in [GRW, A.3], [B1] and [Bry]. We shall 
write H H , ( A ; M )  for the Hochschild homology of an A-bimodule M. 

PROPOSITION 1.1 ( L O C A L I Z A T I O N  FOR H O C H S C H I L D  HOMOL-  
OGY). Let C be the center of a k-algebra A. Then for every multiplicatively closed 
set S in C, 

S I H H , ( A ; A ) ~ - H H , ( A ; S  ~A)_~HH,(S-~A;S-~A) .  

In order to prove this result, we need to recall the notion of relative torsion 
products, Tor ,  R/k (M, N), from [Mac, IX.8]. Here R is a k-algebra, M is a right 
R-module, and N is a left R-module. The reason for our interest in Tor ,  R/~ is the 
fact [Mac, X.1.4, p. 280] that if we take R = A | A ~ and consider an A-bimodule 
N as a left R-module, then 

HH, ( A ;  N) ~- Tor ,  R/k (A, N). 

D E F I N I T I O N  !.2. [Mac, IX.8, p. 273] An R-module P is called a relatively 
projective R/k-module if it has the projective lifting property relative to the class of  
"k-split epis", i.e., the R-module epimorphisms L ~ M  which have k-module 
splittings. 

For example, if V is a k-module, then P = R | V is easily seen to be relatively 
projective. In fact, it follows from the standard proof  of [Mac, IX.8.4] that every 
relatively projective R/k-module P is a direct summand of some R | V (take 
V = P, for example). 
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By [Mac, IX.8.5] we may compute Tor, n/k (M, N) by forming any k-split 
resolution P. of M by relatively projective R/k-modules and taking the homology 
of the complex P. | N. Equivalently, we may compute Tor, a/k (M, N) by forming 
any k-split resolution P. of N by relatively projective R/k-modules and taking the 
homology of the complex M | P.. 

DEFINITION 1.3. Call M a relatively flat R/k-module if Tor, R/k (M, N) = 0 for 
* ~ 0 and for all left R-modules N. 

The usual homological yoga (see [Mac, p. 276]) shows that we can compute 
relative torsion products using a k-split resolution of M (or N) by relatively flat 
R/k-modules. 

LEMMA 1.4. Let V be a right R-module and S a flat R-algebra. Then 
P = V | S is a relatively flat R/k-module. 

Proof (Cf. [Mac, IX.8.3].) We have to see that P | sends a k-split exact 
sequence N. of left R-modules to an exact sequence. Since k is commutative, by 
k-linearity we have: 

P |  = V |  |  |  | V. 

Now N. | V is exact because N. is split exact as a sequence of k-modules. 
Applying S | after that retains exactness because S is flat in the usual sense. [] 

COROLLARY 1.5 (cf. [BX, 6.6]). Let B be a flat A-algebra. Then 
T = B | B~ is flat over R = A | A~ For every right T-module M and left 
R-module N, 

Tor, r/k (M, T | N) ~ Tor, R/* (M, N). 

Proof Since (B | B~ | | a op M ~ B | M | B, flatness of T over R is 
immediate. To prove the second statement, find a k-split resolution P. of M with 
Pi = Vi | T for some k-modules Vi. For example, P. could be the bar resolution 
fl(M) = M |  fl(T) of [Mac, IX.8.2]. Then Tor r/k (M, T | N) is the homology of 
the complex P. |  (T | N). But P. |  (T | N) ~ P. | N, whose homology 
is Tor. R/k (M, N) since P. is a k-split resolution of the R-module M by relatively flat 
R/k-modules. [] 
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Proof of 1.1. (cf. proof of [GRW, A.3].) Let R = A |  ~ and 
T = S  IA|176 Then by Corollary 1.5 with M = S - I A  and N = A ,  

H H , ( S - I A ;  S-~A) ~ Tor,  r/k (S-1A, S IA) ~ Tor,  R/k (S-IA, A) 

Tor,  a/k (A, S -  J A) _~ HH , (A ; S -  I A). 

Finally, let P. be a k-split, relatively projective resolution of the left R-module A. 
Since localization is exact, we have 

S ~H, (A;A)~-S  ~TorR,/k(A,A) '~S-IH,(A |  

~ H , ( S - ~ A  | ~-Tor~/k(S-IA, A). [] 

Another localization result that we need in order to prove +tale descent for 
Hochschild homology concerns localizations of relative Tors, and is similar to 
Proposition !.1 (cf. [BX, 6.5 and 6.6]). 

PROPOSITION 1.6. Let C be the center of a k-algebra A. Let M be a right A 
module and N be a left A-module. Then for every multiplicatively closed set S in C, 

S -  l TorA,/k (M, N) ~ TorA,/k (M, S IN) ~ Tor s- ~A/k (S-  ~M, S-~N). 

Proof. Let P. be a relatively flat S - I A / k  resolution of S-IN.  Then P. is a 
relatively flat A/k resolution of S-~N. Thus 

Tor~/k (M, S IN) ~- H , ( M  | P.) ~- H , ( M  | S -IA | P.) 

~- H , ( S  - IM | P.) -~ Tor s 'A/k (S - IM,  S- IN) .  

Now let P. be a relatively flat k-split resolution of M. Then 

S -I TorA,/k (M, N) ~ H,(P.  | N) | S - IA  ~- H, (P .  | S - I N )  

~- Tor~/k (M, S -  IN). [] 

w l~tale descent for Hochschild homology 

The following proof of the l~tale Descent Theorem (0.1) is an adaptation of a 
proof by J.-L. Brylinski ([Brylet]) under the assumption that A is fiat over k. We are 
using his elegant approach rather than our original descent-theoretic proof which 
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was straightforward but unenlightening. We are most grateful to him for communi- 
cating it to us. 

Recall that if A --, B is a map of commutative k-algebras, then there is a natural 
map H H , ( A ) |  B ~ H H , ( B ) .  Our descent result will be that this map is an 
isomorphism when B is 6tale over A. We first give a related result for fiat 
extensions. 

THEOREM 2.1. Let A ~_ B be a flat extension of commutative k-algebras. Then, 

HH, (A)  | B "~ HH,(B;  B | B). 

Proof. Let R = A | A op and T = B | B ~ Let P. be a k-split, relatively projec- 
tive resolution of the left R-module A. Then 

HH,(A)  | B _~ Tor ,  m~ (A, A) | B ~-- B | H , (A  | P.) 

~- H , ( B  | A | P.) since B is flat over A 

_~ H ,  (B | R P.) ~- Tor ,  mk (B, A) 

= Tor ,  r/k (B, T | A) by 1.5 

Tor ,  r/k (B, B | B) ~- HH,(B;  B | B). [] 

Proof of [~tale Descent (0.1). Since B is an 6tale extension of A, it is unramified 
over A. Thus B | B ~ B x C for some &ale extension C of B, and 

HH,(B;  B | B) "~ HH, (B)  ~ HH,(B;  C). 

By Theorem 2.1 we need only show that HH,(B;  C) = O. 

Let T = B | B, and let m be a maximal ideal of T. Since T surjects onto the 

ring B | B ~ B x C, either B,, or Cm is zero. Hence 

HH,(B;  C) |  Tm ~- Tor ,  r/k (B, C) |  7",, 

= ~ T o r , r , . / k  (Bin, C,n) 

= 0  

by 1.6 

Since H H , ( B ; C )  localized at every maximal ideal of T is zero, 

HH,(B;  C) =0. [] 
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EXAMPLE 2.2 (GALOIS  DESCENT). Galois extensions are a special class of 
&ale extensions. Recall ([KO, p. 46]) that if G is a finite group of ,4-automorphisms 
of a faithfully flat A-algebra B, then B/,4 is a Galois extension with group G if and 
only if B | B ~ FIg~ B by the map whose gth coordinate is b | c ~ b . g(c). Note 
that ,4 ~ B G follows from this definition and faithfully fiat descent. G also acts on 
H H , ( B ) ,  and the isomorphism H H , ( B )  _~ HH,( ,4)  | B is G-equivariant. There- 
fore, 

H H , ( B )  C~ ~ [HH,(,4) | B] ~ ~- HH,( ,4)  | Be; ~- HH,(,4) .  

EXAMPLE 2.3 ( F A I T H F U L L Y  FLAT t~TALE DESCENT). If B/A is not 
only 6tale but also faithfully flat, then (0.1) implies that the augmented Amitsur 
complex 

e. 

O ~  H H , ( A )  ~ H H , ( B )  --, H H , ( B  | B) ~ H H , ( B  | B | B) --*... 

is exact ([A], [TDTE, I, p. 18], [KO, p. 30], [M, p. 16]). This is called "naive 
descent" in the introduction and "faithfully flat &ale descent" in the literature. 

As a special case, suppose that ~ = {Spec (B~) . . . . .  Spec(B,)} is a cover of 
Spec (`4) by affine open subsets. Then B = HBi is faithfully flat and &ale over A, 
and the Amitsur complex computes (~ech cohomology of the cover ql ([TDTE, I, p. 
14], [M, p. 97]): 

~m(q/, o,r , )  = { H H ,  (A) i f m = 0  
otherwise" 

When B = B~ x B2, this yields the short exact sequence of (0.2). 

w Naive descent for cyclic homology 

The purpose of this section is to analyze naive descent for the functors F = HC,.  
Because the cyclic homology groups HC,(A)  are not ,4-modules in general, we 
cannot apply faithfully fiat descent theory to the HC,.  Indeed, the following 
example shows that nai've descent fails for HC,,  even for faithfully fiat 6tale 
extensions. 

EXAMPLE 3.1. Let A = k[x, y ] / ( y (y  - x 2 "~ X)) be the coordinate ring of a line 
and a parabola in the plane. The elements x and t = x - 1 are relatively prime; so 
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B=A[1/x]  x A[l/t] is faithfully flat and 6tale over A. Furthermore, 
B | B = B x A[ 1/xt]. Using the calculations of [GRW] we can show that if n > 0, 
then 

HC. (B) ~- HC. (k x k) (~ HC. _ ~ (k x k x k x k) (~ V. ~ II. 

H C . ( A [ l l ) ' ~ H C . ( k  x k ) ( ~ H C . _ t ( k  x k  x k  xk ) ,  

where V. is k if n is odd (n > 0) and 0 otherwise. The long exact sequence of [GRW, 
A.2] yields the (split) exact sequence for n > 0 

O ~  HC.+ t(k)--* HC.(A)  o HC.(B)--* H C . ( A I l  l ) o  HC.(k)  oO. 

Since HC.(A)  does not inject into HC.(B) for n odd, nai've descent fails for B/A. 
We remark that 

HC.(A)  ~- HC.(k)  (~ HC.+ ,(k) (~ V. (~ V,. 

Galois extensions provide one case in which the HC, satisfy naive descent. 
Recall ([KO, p. 121]) that if A ~_ B is a finite Galois extension and if F is any 
functor, then the Galois group G acts on F(B), and the Amitsur cohomology 
H*(B/A; F) is the same as the group cohomology H*(G; F(B)). Clearly naive 
descent implies that F(A) ~- F(B) c. I f  F(B) is a Q-module (or more generally if [G[ 
acts invertibly on F(B), so that Hi(G; F ( B ) ) =  0 for i 4: 0), then nai've descent is 

equivalent to the isomorphism F(A) ~ F(B) ~. Therefore the cyclic homology part 
of our Galois Descent Theorem (0.3) is equivalent to the following result. 

PROPOSITION 3.2. Every cyclic homology group HC, satisfies nai've descent for 
finite Galois extensions A ~_ B, assuming that Q ~_ A or more generally that the order 
of the Galois group G is a unit in B. Moreover, 

H C , ( A )  ~- H C . ( B )  ~. 

Proof  Consider the commutative diagram 

H C . _ , ( A )  ~ HH.(A)  -~ HC.(A)  --* HC._2(A)  ~ H H . _ , ( A )  

HC.  _ ~(B) ~ ~ HH.(B)  G -~ HC.(B)  ~ ~ HC.  _ 2(B)  6 --~ HH.  _ ~(B) ~ 
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The top row is the SBI sequence, which is exact. I f  IGI is a unit in B, then [G[ acts 
invertibly on H H . ( B )  and HC.(B) ,  so the bo t tom row is exact. The theorem 
follows from induction on n and the 5-1emma. [] 

The following is another example in which naive descent holds for a piece o f  

cyclic homology.  Let A = Ao ~ A ~ 0) A2 G �9 �9 �9 be a graded k-algebra containing Q, 
and write F§ for the kernel of  F ( A ) ~ F ( A o )  so that F ( A ) ~ - F ( A o ) ~ F + ( A ) .  
The usual SBI sequence of  cyclic homology breaks up into short exact sequences 

([G]) 

B I 

0 --* HC+,, _] (A) ~ HH+~ (A) ~ HC~ (A) --* O. 

P R O P O S I T I O N  3.3. I f  A ~_ B is an btale extension of  graded k-algebras such 
that Q ~_ Ao and Ao ~ Bo is also btale, then the relative cyclic homology functors HC +m 
satisfy nafve descent for A ~ B. 

Proof. The following is a short exact sequence of  chain complexes. Note  that 

B |  �9 �9 | B is graded with B o |  " " | Bo in degree zero. 

0 0 0 

O~ + ~ HC~_ -" HC+m l(B "'" HCm_ ,(A) ](B) | B) 

,L J, J, 
0.-* HH+(A)  ---,'. HH+(B)  ~ HH+m(B | B) ~ " "  

,L ,t 
O~ HC+(A) ~ HC~(B)  ~ H C ~ ( B |  ~ . . .  

0 0 0 

Since the middle row is exact by (2.3) and HCm(A) = 0 for m < 0, the result 
follows by induction on m and a diagram chase. []  

A P P L I C A T I O N S  3.3.1. (i) I f  A =Ao[t] ,  then F§ is usually written as 
NF(Ao); (ii) if A = Ao[t]/(t p+ ~), then F+(A) is usually written as CpF(Ao). Propo-  
sition 3.3 state that the functors NHCm and CpHC,, satisfy naive descent for 

faithfully fiat 6tale extensions, assuming that Q ___ k. 

T H E O R E M  3.4 (I~TALE D E S C E N T  F O R  C Y C L I C  H O M O L O G Y ) .  Let A be 
a commutative, finite-dimensional noetherian k-algebra, and B an btale, faithfully flat 
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extension of A. Then there is a fourth quadrant spectral sequence approaching 
H C ,  (A), beginning with Amitsur cohomology: 

E~ u = HP(B/A; He_q)  =~ HCp+q(A). 

It converges if  any of  the following conditions are met: 
(a) Q ~ A ;  
(b) B = B 1 x �9 .. x B,, and each Bi is a localization of  A; 
(c) B is a Nisnevich cover of  A ([Nis]). That is, for every prime ideal p of  A, there 

is a prime ideal q of  B lying over p such that k(p) ~-k(q); 
(d) A = F[xl . . . . .  Xm]/I for some algebraically closed field F; 
(e) A is finitely generated over one of  the finite rings Z[�89 or Z[i]/n. 

Proof. These are all versions of the descent spectral sequence (A.5) obtained 
from the double complex C ~q = HC_u(B| ~). In case (a) we cite (4.9). In case 
(b) we cite (4.6.1) and (4.7). In case (c) we cite 4.8. In cases (d) and (e) we cite (4.9) 
and the remarks preceding it. [] 

Remark. If  B/A is a finite Galois extension, the E~ q term is HP(G; HC_q(B)). 
This provides a more high-powered proof  of  Galois descent (3.2), for the spectral 
sequence will then collapse when Q ~_ A. 

APPLICATION 3.5 ( ~ E C H  COHOMOLOGY) .  If  o//= {U, . . . . .  UN} is a 
finite covering of X = Spec (A) by affine opens, Ui = Spec (B~), then B = IIB~ is 
faithfully fiat and 6tale over A. In this case the Amitsur cohomology HP(B/A ; F) is 
the usual ~ech cohomology/4P(q/;  F), which vanishes for p > N ([TDTE], [M]). In 
this case we have a convergent spectral sequence 

E2q --~ H-P(~I~'~ O f _ q )  ~ OCp + q(A). 

In the special case N = 2, U~ n U2 is Spec (B~ | B2), and the spectral sequence 
degenerates into the long exact Mayer-Vietoris sequence (cf. [B1], [Bry], [GRW]) 

. . .  ~ HC, +, (B~ | B2) ~ HC,(A) ~ HC,(B~) �9 HC,(B2) 

HC~(B~ | B2) --*" " ". 

Example 3.1 shows that this sequence need not break up, as the Hochschild 
sequence did in (0.2). In fact, H~(B/A;HC, )  = HC,(k) for this example. 
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w HH and HC for schemes 

As motivation for the ideas of this section, let X be a scheme over k, and 
consider the (reindexed) cochain complex J~;'~'X/k of Hochschild homology sheaves 
on X (see 0.4): 

d d d 
0--'} " ~ 0  "-'} ~ 1  ~ ~ 2  . . . .  

The de Rham cohomology of X is the hypercohomology H~tR(X) = H*(X; Jcg)~'3~/,). 
When X is smooth over k, this recovers the definition of [GdR] because in that case 
~Jcg,  = f2~./k. As in op. cit., the hypercohomology spectral sequence 

E~ q = HP(X, ~ , ~ q )  =:. HPa~ q(x)  

converges for all X. Using Corollary 0.4, we see that if X = Spec (A) then the 
spectral sequence degenerates, showing that H*R(Spec (A)) is the cohomology of 
the complex 

d d d 
O--*A ~ HH~(A) ~ HH2(A ) --* . . . ,  

which is H*R(A), a s  one might naYvely think. 
All this works well because the cochain complex Jg~'~'X/k is bounded below. 

Now consider the problem of defining the Hochschild homology of any scheme X. 
Let C, (A)  be a functoriat chain complex whose homology is the Hochschild 
homology H H , ( A )  of a k-algebra A, and let (~, be the chain complex of sheaves 
on X associated to the presheaf C , ( U )  = C,(F(ql,  (gx)). Note that the ~ ,  are not 
in general quasicoherent sheaves, and that the corresponding cochain complex ~ - *  
is not bounded below. We define the Hochschild homology of the k-scheme X to be 
the Zariski hypercohomology 

H H , ( X )  = Hz~(X, ~ , )  ~ Hza~(X, ~'-*).  

The definition of hypercohomology we have given in the appendix differs slightly 
from the usual hypercohomology of  [EGA, 0m]. If X were also noetherian of finite 
Krull dimension, H*(X; C - * )  would agree with the hypercohomology [EGA, 0111] 

by the device of [M, pp. 311-312] or [Hart, 1.5.38]. Although HH,  is a contravari- 
ant functor of X, we have indexed it with subscripts in order to have the following. 

THEOREM 4.1. I f  X = S p e c ( A )  is an affine scheme over k, then 
HH, (X )  ~ HH,(A)  for all n. In particular, HH , (X )  = 0 for n < O. 
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Proof This is a consequence of (0.4) and the following more general result. 

T H E O R E M  4.2. There is a fourth quadrant (cohomology) spectral sequence with 

E~q = H ~ a r ( X ;  ~176 q) ~ H P i s ( X ;  "k~Oct~ q) ~ H~Pt( X; 9r162 q) 

which approaches HH : u(X), and converges if the spectral sequence is bounded, i.e., 
for each n there are only finitely many nonzero groups HP(X;Jgg~u) with 
- p + q = n .  

Proof This is the hypercohomology spectral sequence (A.2), once we observe 
that the homology sheaf H , ( ~ , )  is the sheaf ~ Y g , .  This observation follows from 
the exactness of the sheafification functor ([M, p. 63]). The alternate characteriza- 
tions of the E~ q term come from (0.4). [] 

C O R O L L A R Y  4.2.1. HH,(X)  ~- HN~(X; C , )  ~ Hetn(X; ~,).  

Proof This follows from 4.2 and the Comparison Theorem A.3. [] 

EXAMPLE 4.3. I f  X is noetherian of dimension d, then H H , ( X ) = 0  for 
n < - d ;  HH d(X) = Ha(X; e)x), and there is a short exact sequence 

Hd-2(X; Cx) ----)Ha(X; OX/k) ~ H H I  d(X) ~ H  a- t(X, Cx) ~ 0 .  

In general, there will be infinitely many n > 0 with HH,(X)  r O. 

EXAMPLE 4.3.1. I f  X is a smooth projective curve of genus g over a field k, 
then ) f f ~ ,  =12%/k, which is zero for n 2 2 .  Hence H H _ ~ ( X ) ~ - H ~ ( X ; C x ) ~ - k  g, 
HHo(X ) _~ k 2 via an extension 

0--* Hi(X; f2X/k) --* HHo(X ) --* H~ Cx ) -'* 0, 

and HHI (X) ~- H~ I2X/k) ~ k s. HH, (X)  = 0 for n :~ 0, 1, - 1. 

DENNIS  TRACE MAP (4.4). The Dennis trace map D:K, (A) - -*HH, (A)  
induces a map for every scheme X: 

K,(X)  --* H-" (X;  K)--* H-" (X ;  C , )  = HH,(X).  

Here )7 is the augmentation map of [AKTEC, 1.33]. The Dennis trace map induces 
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a map of  spectral sequences from the Brown-Gersten spectral sequence of algebraic 
K-theory to the spectral sequence of 4.2. 

D E F I N I T I O N  4.5 (LODAY [L, 3.4]). Let B , ( A )  be any functorial chain 
complex whose homology is the cyclic homology, HC,(A) ,  of a k-algebra A, and 
let /~, be the chain complex of sheaves on X associated to the presheaf 
B , ( U )  = B, (F(U,  Cx)). The homology sheaf H , ( B , )  is the sheaf )~'qq, associated 
to the presheaf U ~, HC,(F(U, (gx)). We define the cyclic homology of the k- 
scheme X to be the Zariski hypercohomology 

HC,(X)  = H z ~ ( X , / ~ , )  ~ Hz~(X, /~ -* ) .  

Our first job is to show that if X is affine then we recover the usual definition of 
cyclic homology. A proof  of the formula H C , ( S p e c  (A) )=  H C , ( A )  for arbitrary 
k-algebras A is beyond the scope of this paper. In this paper we shall only prove 
this if A is noetherian and finite-dimensional. For this we need: 

SBI SEQUENCE (4.5.1). There is a long exact sequence 

S B 1 S 
. . . ~ H C . + ~ ( X )  ~ HC. ~(X) ---, HH. (X )  --. HC. (X)  - . . . .  

Proof. This is the hypercohomology exact sequence (see A.4) of  the exact 
S 

sequence 0 ~ C ,  t B ,  ~ B , [ - 2 ]  ~ 0  of chain complexes in [LQ, 1.6]. [] 

LEMMA 4.6. I f  X is a noetherian k-scheme of  dimension d, then HC, (X)  = O for 
n < - d  and HC_a(X) ~- HH a(X) ~- Ha(x; Cx). 

Proof. The hypercohomology spectral sequence of (A.2), 

E pq - -  H ~ a r ( X ;  o~c6~_q)  =~ HC_p q ( X ) ,  

converges, showing that HC,(X)  = 0 for n < - d .  [] 

C O R O L L A R Y  4.6.1. I f  X = Spec (A) is affine, noetherian and finite dimensional, 
then HCn(X) _~ HCn(A) for all n. In particular, HCn(X) = O for n < O. 

Proof. Using Theorem 4.1, the SBI sequence (4.5.1), and induction on n, we see 
that it suffices to show for some d > 0 that HC,(X)  = 0 for n < - d .  [] 

QUESTION 4.6.2. I f  X = Spec (A), is HP(X; . ~ q )  = 0 for p > q (p # 0)? The 
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proo f  o f  (4.6) and (A.2.1) show that an affirmative answer to this question would 
yield the formula H C , ( S p e c  (A)) = H C , ( A )  for arbitrary k-algebras A)  

Remark 4.6.3. I f  A is smooth  over a field k of  characteristic zero, we know by 
[LQ] that HC,,(A)=I2~/k/dI '2~j~,IHH~t~2~H~R4~ . . .  . Let X = S p e c ( A ) .  By 

Bloch-Ogus ([BO, 2.2]), we know that He(X; ~ R )  = 0 for p > q. It follows that 
HP(X; ~cgq)  = 0 for p > q, except for H~ ~r = A, so the question has an 
affirmative answer in this case. 

P R O P O S I T I O N  4.7. Let X be a finite dimensional noetherian k-scheme and ql a 
Zariski cover of  X by open subsets. Then the descent spectral sequence for ~ech 
cohomology converges: 

E~ q = I~P(~t/, HC_q) =~ HC_p_ q(X). 

Proof See (A.5) or  [AKT E C,  1.47]. []  

There are other topologies to use other than the Zariski topology,  such as the 

&ale topology ([M]) or  the Nisnevich topology ([Nis]). I f  X is a noetherian scheme 

of  dimension d, then H~is(X; - )  = 0 for n > d, so the argument  in (4 .5) - (4 .7)  goes 
through verbatim for the Nisnevich site. There is a map from the Zariski SBI 

sequence to the Nisnevich SBI sequence. As in 4.6, H)a r (X ; /~ , )  = H~is(X; B , )  = 0 

for n > dim (X). Since H~ar(X; (~,) = H~i~(X; (~,) by (4.2.1), we may apply induc- 
tion on n and the 5-1emma to prove the following result. 

P R O P O S I T I O N  4.8. Let X be a finite dimensional noetherian k-scheme. Then 
HCn(X) -~ H~i](X; B , ) .  Moreover, i f  ~ is a Nisnevich cover of  X, then the descent 
spectral sequence for ~ech cohomology converges: 

E~q =/-~(c~/; HC_q) =~ HC_e_q(X) .  

We now compare  our Zariski hypercohomology  to an 6tale hypercohomology  

construction. For  simplicity, we shall assume that Q __q k, noting that, as in[AK- 

TEC,  1.48], our  methods would also apply to 

(a) schemes o f  finite type over an algebraically closed field, and 

(b) schemes o f  finite type over Z[�89 or Z[i]/n. 

1Note added in proof. L. Barbi6ri-Viale has shown that this question has a negative answer for q = 1, 
because HP(X; ,'~qr is sometimes isomorphic to HP+2(X; k), which can be nonzero if X is not 
irreducible. If A is of finite type over a field k then Remark 4.6.3 shows that HP(X, ~rCq) = 0 ifp 2 max 
(q, 2 + dim(Sing X)). 
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PROPOSITION 4.9. Let X be a finite dimensional noetherian k-scheme, and 
assume that Q ~_ k. Then the Zariski and ktale hypercohomologies agree: 

HC, (X )  ~ Hz~(X; /~ , )  ~ Het"(X;/~,) .  

Moreover, i f  ql is an ktale cover of  X, then the descent spectral sequence for ~ech 
cohomology converges: 

E p q = H ( q / ; H c  q) = H C  p q(X). 

Proof We replay the above tape for the &ale site. There is an 6tale hypercoho- 
mology SBI sequence as in (4.5.1) and a map from the Zariski SBI sequence to the 
6tale SBI sequence. By (4.2.1), H'at(X; ~ , )  and H*t(X; ~ , )  agree with H H , ( X ) .  
As in (4.6), H~t(X;/~,) = 0  for n >d im(X) .  We complete the proof by using 
induction and the 5-1emma. [] 

w K-theory of seminormal curves 

In the proof of Theorem 0.5 we need the following special case of  the "KABI 
conjecture" of [GRW]: 

PROPOSITION 5.1. Let l c l~ be fields of  characteristic zero, A = l ~) tll[t], and 
I = tl I [t]. Then the map 

v ' K , ( A , B , I ) ~ H C  Q I ( A , B , I )  

is an isomorphism for all n. 

Proof  Choose a Galois extension L of I containing l~, and note that, as on p. 
74 of [GRW], 

A | L ~- L[xo . . . . .  x,] /(xix  j = O, i r  

and 

B | L ~ HL[xi] 

where n = [l~ : l]. By Theorem A.2 of [WA], the natural map 

v L : K . ( A  |  B |  I |  Q_I(A |  B |  I |  
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is an isomorphism. By naturality, vL is compatible with the action of  the Galois 
group G of  L/l; so the G-invariant subgroups are also isomorphic. By [vdK, 1.10] 
it follows that 

K.(A, B, I) _~ K~(A |  B |  I |  

while by Galois descent for cyclic homology (0.3), it follows that 

HCm(A, B, I) ~- HCm(A | L, B | L, I | L) ~ 

The result is now evident. [] 

Proof of  Theorem 0.5. Choose a Galois extension L of l with group G and 
containing all of the li. Then B = A |  is a Galois extension of A with Galois 
group G, and B "~ L[xo . . . . .  Xb]/{XjXj = 0 for i :~j}. The calculation of H C . ( B )  in 
[GRW, 3.12] and (0.3) gives the cyclic homology of A. We may now copy the proof 
of [GRW, 8.4]. [] 

Appendix: Hypercohomology 

If K" is a cochain complex of  sheaves on a site X, the hypercohomology of K" 
is well-known as long as K" is bounded below or if X has finite cohomological 
dimension ([Hart], [EGA, 0m], [M, Appendix C]). Unfortunately, we need the 
hypercohomology when K" is bounded above, as is the case with the Hochschild 
complex, and we could find nothing in the literature more explicit than the sheaves 
of spectra approach of Thomason [AKTEC]. This appendix is largely a translation 
of [AKTEC] into the language of  homological algebra, and is included for the 
convenience of the reader. 

Because there are enough injective sheaves, we can form an injective Cartan- 
Eilenberg resolution I'" of K', i.e., a right half-plane cochain double complex of 
injective sheaves I pq together with an augmentation K" --, I ~ so that each K" --. I ~ is 
an injective resolution and the conditions of  [CE, p. 363], [Hart, p. 76] or [EGA, 
0111, 11.4.2] are met. If L" is another complex, with injective Cartan-Eilenberg 
resolution J",  every morphism K" ~ L" lifts to a map I'" ~ J'" of double complexes, 
which is unique up to chain homotopy [CE, XVII.1.2]. 

The total complex Tot (I"), which is the product IIp + q = n Ipq in degree n, is a 
cochain complex of sheaves. Since Tot converts chain homotopy equivalent maps of 
double complexes to chain homotopy equivalent maps of complexes, it follows that 
Tot  (I") is well-defined up to chain homotopy equivalence, and that the lift 
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Tot ( /")--*Tot (J") of a map K'-- ,L"  is unique up to chain homotopy. Taking 
global sections yields hypercohomology. 

DEFINITION A.i. The hypercohomology group H"(X; K') is the n th cohomol- 
ogy group of the complex Tot (H~ ~ H~ Tot (P')) of global sections of 
Tot (/"). The above remarks show that, up to isomorphism, H"(X; K') is indepen- 
dent of the choice o f / " .  Moreover, every map K" ~ L" gives rise to a unique map 
H"(X; K') -~ H"(X; L'). If K" is bounded below, this is the usual definition of [EGA, 
0m] or [Hart]. 

VARIANT. If C. is a chain complex of sheaves on X, we form the usual 
cochain complex K" with K" = C , and set H~(X; C.) = H"(X; K'). 

Remark.  The Godement double complex TPK q of [AKTEC, 1.31] is not a 
Cartan Eilenberg resolution, but there is a map T'K'-- , /" ,  unique up to chain 
homotopy, which induces a quasi-isomorphism from Tot ( T r K  u) to Tot (/") and 
isomorphisms from Thomason's n_ ,  H'(X; K') to our H"(X; K'). This may be seen 
using the Eilenberg-Moore Comparison Theorem (see [EM] or A.3 below). 

We could also define the hypercohomology complex H'(X; K') to be the cochain 
complex H~ Tot (/")), considered as an object in the derived category of cochain 
complexes of abelian groups. The map from Thomason's H'(X; K') to ours is a 
quasi-isomorphism but probably not an isomorphism in general. However, we will 
have no use for this notion. 

By choosing a fixed Cartan-Eilenberg resolution for every K" in whichever small 
category we have under consideration, we see that the H " ( X ; - )  may be made 
functorial. Of course, Thomason's choices are already functorial ([AKTEC, 1.33]). 

HYPERCOHOMOLOGY SPECTRAL SEQUENCE (A.2). There is a right 

half-plane hypercohomology spectral sequence 

E~ ~ = HP(X; Hq(K')) =~ H p + q(x; K') 

which converges strongly under any o f  the following conditions: 
(a) K" is cohomologically bounded below; 

(b) X has finite cohomological dimension; 
(c) The spectral sequence is bounded, i.e., each diagonal p + q = n o f  E** 

contains only finitely many nonzero terms. 
(d) For each p and q, lim t E~ q = O. 
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Proof. This is the usual hypercohomology spectral sequence of [EGA, 0m, 12.4] 
obtained by filtering the double complex H~ Tot (I")) by columns. Boardman 
([B, Theorem 8.1]) proved that the spectral sequence converges strongly if and only 
if (d) holds. Since (a), (b), and (c) all imply (d), we are done. [] 

ADDENDUM A.2.1. More precisely, for each n, the spectral sequence con- 
verges completely to H"(X; K') if lim ~ EP~ q = 0 for all p and q with p + q = n or 
p + q = n - l .  

COMPARISON THEOREM (A.3). I f  K" --* L" is a morphism o f  chain complexes 
such that HP(X; Hq(g'))  ~ HP(X; nq(L ' ) )  is an isomorphism for every p and q, then 

for  all n: 

H"(X; K') - H"(X; L'). 

Proof. [EM, Theorem 7.4]. [] 

We conclude with two results of Thomason, phrased in the language of 
homological algebra for ease of reference. 

HYPERCOHOMOLOGY EXACT SEQUENCE (A.4). Hypercohomology is a 

cohomological 6-functor. That is, i f  O ~ K" --* L" ~ M" --* 0 is a short exact sequence of  
complexes of  sheaves on X, then there is a long exact sequence 

6 6 

�9 " ~ H  "+ ~(X; M ' )  --} H " ( X ;  K')  --} H " ( X ;  L ' )  - }  H " ( X ;  M ' )  ---} - �9 �9 

Proof. [AKTEC, 1.35]. Note that the usual result from [EGA, 0m.11.5.2] does 
not apply unless the complexes are bounded below, which is emphatically not our 
case. [] 

CARTAN-LERAY DESCENT SPECTRAL SEQUENCE (A.5). Let K" be a 

presheaf o f  cochain complexes on X, and write a q for the presheaf U ~ H q ( u ,  g ' ) .  

Then for every cover ql o f  X, there is a spectral sequence 

E~q =/~r(o//; H q) =~ Hp+q(x;/,~.) 

which converges i f  there is a bound d such that i f  p > d then for all q, HP(X; ~ q )  = 0 

and HP(U; ~ q )  = 0 for all U ~ ql. 

Proof. [AKTEC, 1.46]. The following is a sketch of the proof. If K" is bounded 
below, we cite the classical result, say from [EGA, 0m, 12.4.6]. Now let K ' ( n )  
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denote the "good"  bounded  below truncat ions of K and  observe that for q < n - d, 

the sheaves ,,~ffq( - ;  K') and ~ q (  - ;  K ' ( n ) )  agree, and Hq(,u g ' )  _-__ ,.~,r ", g ' ( n ) )  as 

well. A use of the Compar ison  Theorem (A.3) completes the proof. [] 
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