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Representation of finks by braids: A new algorithm 

PIERRE VOGEL 

w Introduction 

If a is a braid with n components, the closure of  a, denoted #, is constructed by 
connecting the endpoints at the top level to the bottom endpoints with n standard 
curves. This procedure yields an oriented link ~ having the same number of 
crossings as a. A classical result of Alexander [I], [2], [3] states that every oriented 
link is isotopic to a closed braid #. In his proof  Alexander modifies the diagram of 
an oriented link by a sequence of elementary operations to obtain a closed braid. 
During this transformation the "geometry of  the picture" is completely changed. In 
many applications of Alexander's algorithms links with few crossings yield closed 
braid with a large number of crossings. 

On the other hand many algebraic invariants of links are first defined on braids. 
If we wish to compute these invariants for a "small" link L, it will be very useful 
to have the following principle: 

"A 'small' oriented link is isotopic to a 'small' closed braid". 

Unfortunately Alexander's proof  cannot be used to check this principle. Re- 
cently Yamada [4] proposed another proof  which is much more economical. He 
uses two types of elementary operations which don't  change the number of Seifert 
circles and for which the change in the number of  crossings is not too large. 

In this paper we will give another proof  which use only one type of elementary 
operation. This operation is very easy to describe. It preserves the number of Seifert 
circles and adds only two crossings to the diagram (by a type II Reidemeister 
move). Moreover there is an explicit (small) bound for the total number of 
operations. This procedure is more economical as Yamada's construction. It is 
much simpler and can be easily programmed on a computer. 

w Description of the elementary operation 

Let L be an oriented link in R 3 represented by a regular projection D of L in the 
plane. Near each crossing x of  D, the diagram D has one of the following form: 

104 
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X X 
depending on the signe of x (positive in the first case and negative in the second 
one). By making the following transformation near all crossings of  D: 

X X >( 
one obtains a new picture S which is a union of disjoint circles in the plane. These 
circles are called the Seifert circles of  D and S will be called the Seifert picture 
of  D. 

Consider D as a graph in the plane. The vertices of D are the crossings and the 
edges are arcs in L (and in S). Let f be a face of  D (i.e. a component  of  the 
complement of  D in the plane) and 0~ and fl two edges of  D contained in Of. Suppose 

that (f ,  ~, r)  satisfy the following conditions: 

(i) a and fl are contained in different Seifert circles 
(ii) a and fl have the same orientation with respect to any orientation of Of 

Such a triple will be called an admissible triple. 
So we have one of the following picture: 

0t o~ 

f or f 

In this situation the elementary transformation T(f, a, r)  will transform D by a type 
II Reidemeister elementary move as in the following picture: 

T H E O R E M  1-1. There exists a function Z from the set of isotopy classes of link 
diagrams to N, with the following properties: 
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(i) I f  D is a diagram of  an oriented link, with n Seifert circles, then: 

2n + 1 < z(D) < 
(n + l)(n + 2) 

Moreover, i f  D & connected then z(D) is not less than 3n. 
(ii) I f  D" is obtained from a diagram D by an elementary transformation T, then: 

x(D) < )~(D') 

(iii) I f  D is a connected diagram with n Seifert circles such that: 

(n + l ) ( n  + 2 )  
z(D) < 

2 

an elementary operation T can be performed on D. 
(iv) I f  D is a connected diagram with n Seifert circles, then the diagram D is 

isotopic in the Riemann sphere to the closure of  a braid if  and only if: 

(n + l ) ( n  + 2 )  
z ( D ) =  

2 

R E M A R K  1-2. Let D be a connected diagram of a link L. To modify D in 
order to obtain a closed braid, it suffices to perform an elementary transformation 
T(f ,  ~, fl) each time we can find an admissible triple ( f ,  ~, fl). When no operations 
are possible we have a diagram of a closed braid. If D has n Seifert circles and p 
crossings, the number of elementary operations we must do is at most 

(n + l ) ( n  + 2 )  
3 n -  

2 2 

( n -  1)(n - 2 )  

and we obtain a word in the braid group B, of length at most p + (n - 1)(n - 2). 
And, if the number x(D) is greater than 3n, the number of elementary transforma- 
tions needed will be smaller. 

w Construction of the map Z 

Let D be the diagram of  a link L. The oriented Seifert circles of D separate the 
plane into many components which we will call the faces of the Seifert picture S. 
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Moreover each oriented Seifert circle C bounds two faces of S: a face fo on the left 
hand side of C and a face f~ on the right hand side of  C. We construct an oriented 
graph F as follows: Each vertex of F corresponds to a face of  S and each Seifert 
circle C represents an oriented edge from the vertex corresponding to )Co to the 
vertex corresponding to f~. The graph F is clearly a tree. 

D 

2 

4 

J 

S F 

An oriented tree isomorphic to a subdivision of an oriented interval will be 
called a chain. A chain has n edges (n > 0) and n + 1 vertices. 

Define z(F) to be the number of  chains included in F and let ~((D) = x(F). 

w Properties of l 

I f  the diagram D has n Seifert circles, the picture S has n circles and the tree F 
has n edges and n + 1 vertices. Hence F contains 2n -t- 1 chains of  length less than 

2 and we have: 

2 n + l  ~ ( ( D )  

Now suppose that D is connected. Then the boundary of each face of  D is 
connected. Let F be a face of  S which is not a disk. The boundary of F is 
disconnected and F is not a face of  D. Hence F is the connected sum of, at least, two 
faces of  D and somewhere in the diagram we have the following picture: 

o XorU  s 
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Therefore there are two circles with opposite orientations in the boundary of F. 
Furthermore the picture S has this property for each face with disconnected 
boundary. This means that F satisfies the following property (P): each vertex of  F 
which is not an isolated vertex (i.e. a vertex of valence 1) is contained in the interior 
of a chain. 

L E M M A  3-1. I f  F is a tree with n edges (n ~ 1) satisfying the property (P) then: 

z(F) > 3n 

Proof. (Induction on n). The inequality is obvious if n = 1. Suppose n > 2 and 
F~ is the tree obtained from F by removing all free edges and their isolated vertices. 
Suppose that FI is not a point and a is a free edge of F~ with a and n the vertices 
of tr and a is the isolated vertex of tr. By reversing the orientation of F, if necessary, 
we may assume that tr is oriented from a to b. In this situation F has p edges with 
terminal vertex a (p  > 0) and q + 1 edges with initial vertex a (q > 0). Since F 
satisfies the property (P), we have: 

q #O=~ p ~O 

Now let F '  be the tree obtained from F by removing the free edges of F 
containing a. It is easy to see that F '  has n - p - q edges and satisfies the property 
(P). On the other hand F has exactly p + q vertices and p + q edges not contained 
in F ' ,  and p(q + l) chains of  length 2 passing through a. Therefore we have: 

z(F) ~ z(F')  + 2(p + q) +p(q  + 1) > 3(n - p  - q) + 3p + 2q +pq  

=~ z(F) > 3n + (p - 1)q > 3n 

I f  the graph F~ consists of  a single vertex a, F has p edges with terminal vertex 
a and q edges with initial vertex a. Because F satisfies the property (P), p and q are 
positive. We have: 

z ( F ) = p + q + l + p + q + p q = 3 n + ( p - l ) ( q - l ) > 3 n  

w The map Z and the operation T 

L E M M A  4-1. Let ( f ,  ~t, r)  be an admissible triple of  a diagram D, F the tree 

associated to D and tr and z be the edges o f  T corresponding to the Seifert circles 

containing a and b (respectively). Let u be the vertex o f  F corresponding to the face 
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o f  S containing f .  Denote by D '  the diagram obtained f rom D by the operation 

T ( f ,  ct, fl) and by F '  the tree corresponding to D'.  

Then a and z have both u as initial or as terminal vertex and F" is obtained f rom 

F by identifying tr and z and by adding a new free edge 0 such that: 

- i f  a and z have u as initial vertex in F, the initial vertex o f  0 is the terminal 

vertex o f  both a and z. 
- i f  tr and z have u as terminal vertex in F, the terminal vertex o f  0 is the initial 

vertex o f  both tr and z. 

REMARK 4-2. This elementary operation on F depends only on a and z and 
can be defined on every tree. The only condition on a and z is the following: 

a c ~ z r  and a w ~ i s n o t a c h a i n  

Such an operation will be denoted by T(a, z). 

Proof  o f  4-1. Let (f ,  ~t, fl) be an admissible triple of  D. By reversing the 
orientation of D and F, if necessary, we may assume that the orientations of ~ and 
fl are compatible with the orientation of Of So the transformation T( f ,  or, fl) is as 

follows: 

0if ~ ~ I l .... 

The transformation T ( f ,  ct, fl) modifies the Seifert picture S in the following 

way: 

C 
2 A ~ [ . 4 ]  Ar.B 

lI 1 ~ 1 1 

B A=B 2 = 3  
3 

Since ~ and fl are not in the same Seifert circles A and B, the new picture S '  has 
the same number of  components. Moreover the circles A and B and faces 2 and 3 
become the same circle and the same face. However, we create a new circle C and 
a new face 4. The corresponding transformation on the tree F is: 
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~'O~u xy ~ a ,. H 
X X 

In the picture X, Y and Z are subtrees of  F and u, x, y and z are vertices 

corresponding to faces 1, 2, 3 and 4. The tree F is the union of X, Y, Z, a and r 
and the tree F' is the union of X, Y, Z, tr = r and 0. In this manner, we have 

constructed the equivalent transformation T(a, z) on F. 

LEMMA 4-3. I f  a tree F' is obtained from a tree F by a transformation 
T(a, z), z(F') is greater than ~(F). 

Proof. Using the preceding notations with u the common vertex of  tr and z and 

x and y the other vertices of a and T (in F). The extra edge in F '  is 0 with isolated 
vertex z and the images of x and a by the obvious map ~ : F --* F '  will be denoted 

by x '  and tr' respectively. Let C and C'  be the set of chains contained in F and F' .  

As usual we may suppose that u is the initial vertex of tr and T. We have a map 

from C to C'  defined by: 

$(U) = fq~(U) w 0 if y is the terminal vertex of U 

[~o(U) otherwise 

It is easy to see that ~, is injective and that {z} is not in the image of ~b. 

Therefore x(F')  is greater than x(F). 

R E M A R K  4-4. Suppose that the trees Y and Z have no edges with terminal 

vertex x or y. In this case x(F') = x(F) + 1. In particular this occurs if F satisfies: 

(P1) - -every  subtree of F with only two isolated vertices is the union of one or 

two chains. 

Moreover if F satisfies (P1) then so does F' .  

C O R O L L A R Y  4-5. I f  F is a tree with n edges, then: 

(n + 1)(n + 2) 
x(r) 

2 

Equality holds i f  and only i f  F is a chain. 
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Proof. If F is not a chain, an elementary operation T(a, 3) is possible on F. We 
obtain a sequence of trees Fp such that Fo = F and each Fp + 1 is obtained from Fp 
by an elementary operation T. This procedure stops at the p th  stage if Fp is a chain. 
Therefore 

(n + 1)(n + 2) 
x ( r )  < x ( r p )  - 2 

with equality if F is a chain. 

w End of the proof 

This section proves parts (iii) and (iv) of the main theorem. 

5-1. Proof of (iii) 

Let D be the diagram of a link L. The diagram is assumed to be connected with 
n Seifert circles. If z(D) is less than ((n + 1)(n + 2))/2, then the associated tree F is 
not a chain and F has two edges ~r and ~ with a common initial or terminal vertex 
u. Equivalently the Seifert picture S has a face F and two Seifert circles in OF with 
the orientations agreeing with the induced orientation of OF. 

Let C be a Seifert circle in OF. This circle will be called positive (or negative) 
when the orientation of C is compatible (not compatible) with the orientation of OF. 
Denote by p (resp. q) the number of  positives (resp. negatives) Seifert circles in OF. 
By assumption either p or q is greater than 1. Up to a change of orientation of D, 
we may assume that p > 1. 

Let x be a crossing of D. Denote by ~x a line segment near the crossing joining 
the two Seifert circles as in the following picture: 

XorX 
D S 

These line segments are all disjoint and each segment joins, in a face of S, two 
Seifert circles with opposite orientations. Let K be the set of  line segments Yx 
contained in the face F. If we cut F along these segments we get a subspace P of  F 
with many components, each corresponding to a face of D. 
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Suppose that, for each such face f ,  there is no admissible triple (f ,  ~, fl). That 
means that each component f of ff meets exactly one positive and one negative 
Seifert circle in c~F. Let f §  be the positive Seifert circle meetingf. If two components 
f and f '  intersect, the associated Seifert circles f§  and f~, are the same. Therefore 
the m a p f  ~-~f+ is locally constant, hence constant. This means that c~F has only one 
positive Seifert circle contradicting the assumption p > 1. 

Therefore an admissible triple exists and an elementary operation T can be 
performed on D. 

5-2. Proof of (iv) 

If )e(D) = ((n + 1)(n + 2))/2 the tree F is a chain and the Seifert picture S is, up 
to an isotopy in the sphere, the union of n circles with standard orientation and 
same center. With a second isotopy, we may also assume that each segment 7x is 
contained in a radius. Now each edge of  the diagram D is transverse to every radius 
and D is the closure of a braid. 

R E M A R K  5-3. The number of elementary operations T needed to transform a 
diagram D in a closure of a braid is not completely clear. It depends on the 
sequence of admissible triples. The same situation holds for a tree. Another problem 
is the fact that not every elementary operation on the tree F can be lifted to an 
operation on the diagram D. The only result we can verify is the following: for every 
elementary operation T(a, z) on F there exists an elementary operation T(cr', z') 
corresponding to the same vertex of  F and the same direction of edges of F as 
T(cr, z) which lifts in an elementary operation T(f ,  a, fl). 

An interesting case is the following: suppose that the associated tree F of  a link 
diagram D satisfies property (P1) (see Remark 4-4). Then each transformation T 
produces a new diagram D'  with the following properties: 

- the associated tree F '  of  D'  satisfies the property (P1) 
- x ( D ' ) = z ( D ) + I  
Therefore, if D has n Seifert circles, the number of transformations needed to 

transform D into a closed braid is exactly ((n + 1)(n + 2))/2 - z(D). An example of 
such a diagram is: 
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The number  o f  crossings is n = 2p and the number  of  Seifert circles is also 2p. 

The  Seifert picture is: 

) 

with p posi t ive circles and  p negative circles. The graph F is: 

1 2 . . . .  P 

1 2 . . . .  P 

The number  z (F)  is exactly 1 + 4p + p 2 .  Then,  after exactly p 2 _ p  e lementary  

t rans format ions ,  we get a closed bra id  with 2p 2 =  n2/2 crossings.  
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