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Extremal functions for the Trudinger-Moser inequality in 2 dimensions 

MAR-tIN FLUCHER 

Abstract. We prove that the Trudinger-Moser constant 

sup { f exp (4rcu2) dx: u c H~'2(t2), f IVul2 dx ~ l t 

is attained on every 2-dimensional domain. For disks this result is due to Carleson-Chang. For other 
domains we derive an isoperimetric inequality which relates the ratio of the supremum of the functional 
and its maximal limit on concentrating sequences to the corresponding quantity for disks. A conformal 
rearrangement is introduced to prove this inequality. 

I would like to thank Jiirgen Moser and Michael Struwe for helpful advice and criticism. 

1. Introduction 

C o n s i d e r  f u n c t i o n a l s  o f  the  f o r m  

Fo(u) = ;of(x,  u(x)) dx 

oll  a b o u n d e d  d o m a i n  t2 c R". T h e  f u n c t i o n  u is s u p p o s e d  to lie in  the  un i t  ba l l  

W e  ask  fo r  c o n d i t i o n s  u n d e r  w h i c h  t he  s u p r e m u m  

sup  F o  "= sup  Fo(u) 
u ~  Bt2 

is a t t a i n e d .  T h e  p a r t i c u l a r  f u n c t i o n a l  we h a v e  in  m i n d  is 

F~(u) = fo exp (~u 2) dx. 
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Trudinger [15] proved that the latter is bounded on B a for sufficiently small ~. 
Moser [9] found that it is bounded for ct < 4re and unbounded for ct > 4re, i.e. 
~t = 4 n  is the critical exponent. Later, Car leson-Chang [4] found that the 
supremum is attained even for the critical exponent, if the domain is the unit disk 
D. Unfortunately their method is limited to disks. However, our main result 
(Corollary 7) says that the supremum is attained on arbitrary domains. This is in 
striking contrast to the fact that for bounded domains of  dimension n > 3 the 
supremum of  

Fo(u) = f .  lug" ax 

on Ba is not attained for the critical Sobolev exponent p = 2n/(n - 2 ) .  
Moreover Pohozaev's non-existence result [ 10] and the results of  Bahr i -Coron  

[3] show that the solvability of  the corresponding Euler equation depends on the 
topology of the domain. In contrast to this, Adimurthi [1] shows that the Euler 
equation 

Au + 2u exp (0~U 2) = 0 in t2 

u = 0 on Or2 

has a positive solution for any ~ > 0 and 0 < 2 < 21 on any domain (see [2] for the 
proof). All the same we cannot deduce anything about the existence of maximizers 
for F~(u) = So exp (4nu 2) from Adimurthi 's result. 

2. Preliminaries 

The difficulty in finding a maximizer for the Trudinger -Moser  functional stems 
from its lack of  compactness, i.e. its discontinuity with respect to weak convergence 
in H~'E(Q). To see this consider the sequence 

u k ( x )  = 

k if 0 ~ Ix[ < exp ( - 2 x k 2 ) ,  

~log 
[x-----~l if exp ( - 2 n k  2) -< Ixl < l, 

2nk 

0 otherwise. 
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We assume D c f2. Then (uk) is a sequence on OBt~ tending weakly to 0, but 

lira Fa(uk) > Fa(O). 
k ~ cx~ 

Thus the functional is not compact up to the boundary of Bo. However it is 
compact in its interior. 

D E F I N I T I O N  (Compactness in the interior of Bo). We say that a general 
functional Fo(u) = So f ( " , u )dx  is compact in the interior of  Bo if lim sup [Iv~ II <1  
and v;--~ v weakly implies f ( . ,  v ; ) ~ f ( . ,  v) in Ll(f2) for a subsequence. 

For the Trudinger-Moser  functional this property follows from its boun- 
dedness on Ba via Vitali's theorem. In contrast, for n > 3 the functional 
Fa(u) =Sa [ul 2"/~ 2)dx is not compact in the interior of  Ba. 

In order to find a maximizer for a general functional F~(u)= Sn f ( ' ,  u)dx 
consider a maximizing sequence (u;) and extract a weakly converging subsequence 
ut--~ u such that the measures ]17u;12dx tend weakly to some Borel measure d/~. 

D E F I N I T I O N  (Concentration). We say that a sequence (u~) concentrates at x 
if ui ~ Ba and ]Vuil 2 dx ~ 06x. Clearly x ~ O and 0 < 0 < 1. 

By the following theorem it suffices to exclude this phenomenon. 

T H E O R E M  1 (Concentration-compactness alternative). Assume t2 is a bounded 
domain in R n of  dimension n > 2. I f  Fo is compact in the interior of  Bo, then for 

every sequence (ui) in Bo with ui ~ u and I Vuil2dx--~ d# there is a subsequence 
such that either (ui) concentrates at a point x ~ ~ and u = 0  or compactness 

holds in the sense f ( . ,  u i ) ~ f ( ' ,  u) in Ll(12). I f  (ui) concentrates at x, then 

f (  ", ui) dx -- '-f(  ", O) dx + ybxfor  some ? ~ ~. 

For Fa(u) = Sa exp (4nU 2) dx this result is due to P. L. Lions [8]. Unlike Lions' 
proof  our proof  is based on capacity methods. Thus we do not need any informa- 
tion about the structure of  Fa except the compactness in the interior of  Bt~. 
Compactness does not imply convergence in H~'2(I2). In particular concentration 
and compactness can hold simultaneously. This is the case for compact functionals. 
Compactness in the interior of  Ba implies continuity up to the boundary by 
application of  the alternative to converging sequences. Another simple application 
is to domains with symmetry. 
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C O R O L L A R Y  2. I f  f2 is invariant under a group G of diffeomorphisms without 
fixed points in ~ and Fe is compact in the interior of Be, then for G-invariant 
sequences only compactness occurs. 

Proof I f  a G-invariant sequence would concentrate at some point x e ~, then it 
would concentrate on the whole orbit Gx. This is a contradiction. [] 

The concentration-compactness alternative provides the subsequent criterion for 
the existence of maximizers. 

D E F I N I T I O N  (Concentration-function). For x e ~ we denote by 

F~(x)"=sup Ilim sup Fe(u~): (ui) c~ at ~ 

the concentration-function of Fa at x and call sup F~ ,= supx~ a F~(x) the critical 
level of Fe. 

T H E O R E M  3 (General existence theorem). Assume the compactness of Fa in 
the interior of Be and suppose the compactness-criterion 

sup F~ < sup Fa 

holds. Then sup Fe is attained. 

Proof From a maximizing sequence (ui) for Fe choose a subsequence such that 
ui ~ u e Be and ]Vuil2dx---~d#. The case of  concentration is excluded by hypo- 
thesis. Therefore Ft~(ui)--* Fe(u) and u realizes sup Fe. D 

For 2-dimensional domains and space homogeneous f we will prove that F~ is 
a continuous function on f2 with F~ = Fe(0) on Or2 and we will see that the critical 
level depends sensitively on the geometry of  the domain. 

Remark. The above theorem does not apply to Fe(u)= So [u[ 2"/(" 2)dx with 
n > 3 for two reasons: the lack of compactness in the interior of  Be and the failure 
of  the compactness-criterion. The first objection is not serious because every 
maximizing sequence of this functional automatically concentrates at a single point 
as follows from a concentration-compactness lemma due to P. L. Lions [8] (Lemma 
1.1). To see that the compactness-criterion fails choose u ~ B e such that Fe(u) is 
close to s u p F e  = S n/(2-n). (Sn denotes the best Sobolev constant in ~"). For 
fixed x e l2  set u,(x+y),=t("-2)/2u(x+ty) .  Then for t large enough u, e Be, 
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Fa(u,) = Fa(u) and (u,) concentrates at x as t ~ oo. This proves F~(x )=  sup Fa 
which is fatal. 

Several authors tried to describe the asymptotic behavior of maximizing se- 
quences for this functional consisting of solutions of  a subcritical problem. The 
most precise description was recently given by Han [6]. He considers maximizing 
sequences consisting of solutions of 

Au + n(n - 2)u (" + 2)/~,, - 2) - ,  = 0 

and proves concentration of a subsequence of (u~) at a critical point of  Tr H a 
(defined in Section 4.2 of this paper). A similar problem has been studied by O. Rey 
[12]. The maximizing sequences in the results of Han and Rey concentrate at 
specific points because they are chosen in a particular way. But of course there are 
maximizing sequences which concentrate at any given point x e 0. 

3. Main results 

Throughout the remaining sections except Section 4. I a domain will be an open, 
bounded and connected subset of ~2 with smooth boundary. To every domain 12 
associate its symmetrized domain 12",= {x e ~2: ix I < g a }  having the same area as 
12, i.e. Ra = x / ~ / l r .  As a reference domain we take D .-={x e R2: Ixl < 1} on which 
we consider the space of radially symmetric functions. 

D E F I N I T I O N  (Frad). Denote by 1.2 Ho,~aa(D ) the space of radially symmetric 
functions in H~,2(D) which are non-increasing in radial direction and by Brad, 

Era d :Bra  d ~ ~ and Fra  d " /~  --~ ~ the corresponding unit ball, functional and concen- 
tration-function. 

As to f we make the following general assumptions. 

(A) f is space homogenous, i.e. independent of  x, continuous and f (0 )  = 0. 

(B) f(lt[)  >-f(t). 
(C) f is non-decreasing on R +. 

(D) sup Era d < o0. 

The function f ( t ) =  exp (4rtt 2) - 1  satisfies ( A ) . . .  (D). For the radially sym- 
metric case on the unit disk Car leson-Chang have computed the critical level of 
this functional and - in the case of  a disk - found a function u with Frad(u) above 
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this level. In our terms their result reads as follows. 

LEMMA 4 (Carleson-Chang [4]). For f ( t )  = exp (4rot 2) - 1 one has 

Fra  d = he,  sup a 

sup F~.d > xe. 

The general existence theorem implies that the Trudinger-Moser  constant is 
achieved for disks. By stability of the compactness-criterion under small perturba- 
tions of the domain this result carries over to domains which are close to a disk in 
measure (see Struwe [14]). However, in general replacing D by another domain 
with the same area decreases both sides of the compactness-criterion by a factor 
which is not necessarily close to 1. Thus the compactness-criterion might fail. 
Fo r tuna te ly -  and this is our main p o i n t -  the ratio sup Fa/sup F~ can only 
increase. 

THEOR EM 5 (Functional isoperimetric inequality). Assume ( A ) . . .  (D). Then 

sup Fa sup Fr.d 
sup F~ sup Frad 

for every domain 1-2. 

Thus sup Fo/sup F~ is minimal for disks and this case is worst with respect to 
the compactness-criterion. Equality holds if and only if t2 is a disk. The functional 
isoperimetric inequality makes the general existence theorem much more applica- 
ble, because verifying the compactness-criterion in the radially symmetric case is a 
l-dimensional problem. 

COROLLARY 6 (Special existence theorem). Assume ( A ) . . .  (D), the com- 
pactness of Fa in the interior of Ba and the radial compactness-criterion 

sup Fraad < sup Era d , 

Then sup Fo is attained. 

Together with the result of  Carleson-Chang this answers our main question. 
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C O R O L L A R Y  7. The Trudinger-Moser  constant 

sup f exp (41tu 2) dx 
ue  Bfl d~ 

is attained on every bounded domain [2 c R 2. 

477 

4. Tools and proofs 

4.1. Concentration-compactness alternative 

D E F I N I T I O N  (Capacity). For  every set A c f2 define its capacity with respect 
to ~2 

Ca(A) ,=  inf I~ Ivul2 dx 
u e t t l '2(a) 
u = l o n A  

The key to the p roof  o f  Theorem 1 is the following observation. (As norm on 

H~2(O) we use Ilull~,=Ia IVut=dx.) 

L E M M A  8. Assume n > 2 and u �9 H~'2(12). Then 

t2Ca({U > t})-~o,  

inf Ilvll-~o 
v e Hol '2(a)  

v = u o n { u > t }  

as t ~ .  
Proof. Assume the contrary of  the first claim, i.e. t2Ca({u > ti}) > e for some 

e > 0  and a sequence o f  levels 0 = to < tl < t2 < ' "  " ~ m .  For  a subsequence 
(ti - ti 1)2Ca({u > t~}) > e/2 wl~ich leads to the contradict ion 

ya lVul~dx= ~ s IVul~dx~ ~ (t,-t, ,)~Ca(tU>t,D =oo. 
i = 1  I t _ l ~ u . < l i }  i = 1  

As to the second claim fix e > 0 and choose t so large that S{->t} ]Vul 2< e and 
t2Ca({u > t } ) <  e. By definition o f  capacity there is a function w �9 H~'2(~2) such 
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that w = 1 on {u > t} and t 2So IVwl 2dx  <~.  Thus 

v ..: {tu w on {u <_ t}, 
on {u > t} 

is in H{'2(f2) and So IVY[ 2 dx < 2a. This completes the p roo f  o f  the Lemma. [] 

N o w  we come to the p roo f  o f  Theorem 1. Let f ,  (u~), u and /z be as in the 
theorem. We show that if # is not  a Dirac measure of  mass 1, then compactness 

holds. 

STEP 1. I f  (u,) concentrates at a point x, then it tends weakly to O. 

Proof. For  every test function ~b and r > 0 use Cauchy 's  inequality to estimate 

+o u +x 
\B(x,r) c~ B(x , r )  

-< I1~[I . / I  IVu, I ~ dx + 
~/da \B(x,r) 

which is arbitrary small if we choose r small and i large enough. Thus u~ ~ 0 in 
~ql,~(~). [] 

One can show that ]Ful 2 dx <- d~ (see P. L. Lions [8]) which also yields the 

claim. 

STEP 2. I f  # is not a Dirac measure o f  mass 1, then compactness holds. 

Proof. We distinguish the cases u ~ L ~ ( O )  and u C L ~ ( ~ ) .  First assume 
u ~ L~(Q).  Since # is not  a Dirac measure o f  mass 1, there is a radius R > 0  
such that It(B(x, R)) < 1 for every x ~ 1]. Fix 7 > 0 and choose r ~ (0, R) such 
that a function q exists which is harmonic  on B(0, R)\B(O,  r) with r / = 0  on 

~" \B(0 ,  R), q = 1 on B(0, r) and Sin-117q] 2 dx < ?. With qX(y)..= q(y  _ x) we get 

lira sup f IV(qXu,)] 2 dx 
i ~ o o  3Q 

_< ~, + ~)lim sup [ r.xl21~u,12 dx + c~)lim sup [ I~.xJ 2 lu, r2 d+ 
d~ 

<- Ct + ~)u~BCx, R)) + eC~) [ Ivnx[~lul: dx 
32 
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because u~ ~ u in L2(O) and q ~ H l'~176 Since u is bounded we can make  the above 
< l by choosing e and 7 small enough. Compactness  in the interior of  Ba provides 
a subsequence for which f (  . , tl~ui) ~ f (  �9 , tl~u) in L l(fl) hence f (  �9 , ui) ~ f (  �9 , u) 
in L l ( B ( x , r )  c~g2). Covering ~ by finitely many  balls B(x , r )  yields 
f (  ", ui) --*f( ", u) in L1(12). 

I f  u r L ~ ( ~ )  we can assume that  ess sup u = + oo. Otherwise consider ~ = - u ,  
~, = -u~  and ] ' (x ,  t) = f ( x ,  - t ) .  By L e m m a  8 there is a function v ~ H~'2(O) such 
that  v = u on {u > t} for some t and ]lvll < l[ull. For  the convergence on {u > t} 
set v~ .-= ui - u + v. Then v~ ~ v and 

lim sup IIv, 112= lim sup II(v,-  v)ll 2 + Ilvlt2 = lim sup Ilu, II 2 -  Ilull 2 + Ilvlt < 1, 

Compactness  in the interior of  Ba yields f ( . ,  v ~ ) - * f ( . ,  v) in L'(~2) for a subse- 
quence, hence f (  - ,  ug) - - * f ( . ,  u) in L ' ( { u  > t}). For  the convergence on {u < t} 
set v ( x ) , = m i n { u ( x ) , t } .  Then ]tvll < Ilull since e s s s u p u  = +oo .  The same argu- 
ment  as above shows f ( . ,  u ~ ) ~ f ( . ,  u) in Ll ({u-< t}). Together  compactness  is 
proved. 

STEP 3. I f  (u~) concentrates at x, then for  a subsequence 

f ( . ,  u,) dx - - ~ f ( . ,  0) dx + 76~ 

with some 7 E ~. 

Proof. For  a subsequence the limit ?. .=lim ~a ( f ( - ,  u ~ ) - f ( . ,  0 ) )dx  exists in 
~. For  r > 0  choose a cut-off function 1/ e C ~ ( R  ") with r / ( x ) = 0 ,  q = 1 on 
~"\B(x ,  r). Then 

; a  IV('u ')I2 dx -< 2 f~ [r/12 [Vu,[ 2 dx + 2 f~ [Vrll2[uil 2 dx 

which tends to 0 because r / (x )=  0 and u~--,0 in L2(~2). Compactness  in the 
interior of  Ba provides a subsequence for which f (  " , u i ) ~ f ( . , 0 )  in 
Ll ( f2 \B(x ,  r)). Fur the rmore  ~B~x.r)(f( �9 u~) - f ( . ,  0)) dx --*7 by definition of  y. 
Thus ( f  ( . ,  ui) - f ( ", u)) dx ~ 76~ since r was arbitrary.  [] 

This completes  the p r o o f  of  Theorem 1. We add a stronger version of  Step 3. 

P R O P O S I T I O N  9. Assume f is space homogenous and (ui) concentrates at x. 

Then ~{lu,I < ,} f ( u i )  dx --, ~Q f (O)  dx for  every t > O. 
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Proof. Observe that I{lui] > t}l--,o because ui--*0 in L2(O). Thus 

f~t,,,t < t) f(ui) dx - fof(O ) dx 

= f~I,,,I < ,) (f(u~) dx -f(O)) dx 

<- f~,.,.<,)~,Br + fo\,~r r) ( f ( u , )  dx - f ( O ) )  dx . 

The first term is <c(t)r 2. By the previous step the second term tends to 0 as 
i -~ or. [] 

4.2. Green's function, conformal radius 

In 2 dimensions the Green's function has the form 

1 
G~,x(y) = -~-~ log Ix - y[ - H~,x(y  ). 

The regular part  H~,x is a harmonic function with the same boundary data as the 
singular part. By 

Tr H o : x ~ H~,x(x) 

we denote its trace on the diagonal. On the unit disk Ho,o = O. 

D E F I N I T I O N  (Approximately small disks). We say that the sets (Bi) form 
a sequence of approximately small disks of  radii Pi at x if B(x, pi - 6~) c Bi 

B(x,  Pi + 6i) with 6~/Pi ~ O. 

LEMMA 10 (Asymptotic analysis of  the Green's function). For every t > 0 

f~ IVG'~.xl2 dx = t' 
Go,  x < t} 

[VGo,xlds= l. 
G~,~ = t} 
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As t--+ ~ the sets {Ga.x > t} form a sequence o f  approximately small disks o f  radii 
p, = ra(x) exp ( - 2xt) and 

1 
qVG,,,,(y)[ = ~ § o(1) 

uniformly for  y ~ {G~,x = t}. In particular 

lim I{G'~'x >- t}] 2 - ~ r , ~ ( x ) ,  
. . . .  exp ( - 4 x t )  

exp (2gt) 
lim ]VGa.~(y)]-  2xr,~(x). 

Proof. By definition o f  the Green's  function ~ VG~.x V fdx  = f ( x )  for all test 
functions f .  Choosing a smooth approximation o f f ( y )==in f {Ga . x ( y ) ,  t} the first 

claim follows. Integration by parts yields the second identity. Solving G~2.x(Y) = t 
for [3,' - x[ yields [y - x ~, = exp ( -2 r tHa ,x (y ) )  exp ( - 2 x t ) .  By smoothness o f  Ha,,~ 
the corresponding level set is close to a circle. As to the gradient on this level 

1 (y  -- x) VH~.x(y) 1 
IVG .x(y)l = l Y - x l  2 =2- pt +O(1)  

by the previous claim, r~ 

D E F I N I T I O N  (Conformal  radius and conformal incenters). For  x ~ f2 define 

q~(x) ,= exp ( - 2 x  Tr H~2(x)). 

The points where the conformal radius is maximal - i.e. where Tr Ha is minimal - 

are called conformal incenters of f2. 

On simply connected domains the conformal  radius has a simple geometric 

interpretation�9 In this case the Riemann mapping theorem provides for given x ~ 12 

a conformal  diffeomorphism ha,x �9 D ~ f2 with ht2,x(O) = x. 

h~'x I~ 
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This map is unique up to rotations of  D. Thus ]hb.~(O)] is a well defined 
number ( '  denotes the complex derivative). We claim 

rQ(x) = Ih'~,~(O) l. 

This is the standard definition of the conformal radius on simply connected 
domains. It is consistent with the above definition by conformal invariance of the 
Green's function: GD,o(z) = Ge,x(he,x(z)), i.e. 

1 log [z[ = 1 log Ih.,x(O) -ha.x(z) [ -  H,~,.~(h,;,~(z)) 
2x 2n 

which is equivalent with 

1 log h~ - -  h~,~(z) 
H~2,.~(ha,x(z)) = - ~  z " 

In the limit as z--* 0 this equality tends to what we claimed. The conformal radius 
of the unit disk is r o ( x )=  1 - ] x l  2 as can be seen from appropriate M6bius 
transformations. More generally ra . ( x )=  R e ( 1 -  [x12/R2~). The conformal radius 
of  any simply connected domain can be computed from a single conformal 
diffeomorphism h :D-*E2  via re(h(z))= [ h ' ( z ) l ( l -  Iz[2). For polygons the confor- 
ma] radius can be computed from the Schwarz-Christoffel map 

z K 

h(z) = c  l-[ (3 --z~)-~kd~ + d  
k = l  

which provides a conformal transformation of the unit disk to a polygon. 

h(Zk+l) ~k  h(z k) 
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Combining this with a M6bius transformation of the unit disk yields 

r.(h(z)) = r ~ ( h ( O ) )  
l - I z I  2 

K 

I1  Iz - zk I rk 
k = l  

The conformal radius is small near the boundary and large at points which are far 
from the boundary. All the same it can attain several maxima, i.e. multiple 
conformal incenters, as it does on the domain below. 

We have plotted the conformal radius for this domain parameterized over D, i.e. 
the function re c, h. 

i 

m 

It shows 2 maxima on the same level. They correspond to 2 different conformal 
incenters of  ~2. However, there is a single conformal incenter if the domain is strictly 

convex. 
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PROPOSITION 11. Assume f2 is strictly convex. Then 

2 
ATr  H o - - e x p ( 4 z t  Tr H e ) = O  in 

7Z 

Tr H e ( x )  --* oc uniformly as x --* ~3f2. 

In particular f2 has a single conformal incenter. 

Proo f  Since f2 is simply connected there is a conformal bijection f :  12---,D 
from which the conformal radius can be computed as re(x)  = (1 -If(x)12)/If ' (x)l .  
Equivalently Tr Ha = - (2~) ~(log ( 1 - f) r )  - �89 log ( f ' f ' ) ) .  With A Tr Ho = 
4~?ea~ Tr H e the claim follows after a simple computation. I thank G. Philippin for 
this remark. As to the boundary condition see Proposition 12 below. A theorem due 
to A. Kennington (see Kawohl [7], Theorem 3.13) implies that on strictly convex 
domains the solutions of such boundary value problems are strictly convex. In 
particular they attain their minimum at a single point. [] 

Some properties of the conformal radius follow immediately by application of 
the maximum principle to the regular part of the Green's function. 

PROPOSITION 12. The conformal radius o f  any domain satisfies 

1. r~ E C(f2, g~+). 

2. re(x)  ~ 0 as x ~ ~f2. 

3. sup re <- sup re, = re,(0) = RQ. 

Proof  1. We show that Tr He is continuous. Using the symmetry of the regular 
part of the Green's function in its arguments we can estimate 

ITr H e ( x )  - Tr I Ie (y ) l  -< 2 max log Ix - z I log lY - zl 
zEOe - - ~  

by application of the maximum principle to the harmonic function 

z ~ g e , x ( Z )  - g e , y ( z ) .  

Thus 

ITr H e ( x )  - Tr He(y)l < Ix - y J  
n min {Ix - Of 2 l, [y - a o l }  

2. The following argument is similar to that used by O. Rey [12] (2.8) showing 
that in the higher dimensional case T r H e  grows like Ix-c~O[ 2 - "  as x -*dO.  
Denote by R the minimal curvature radius of the arc ~3f2. Then to every point x ~ f2 
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within distance r < R of  Of 2 there is a reflected point x '  at distance r f rom d12 such 
that B(x' ,  r) c~ Of  2 = ~ .  

For  fixed x the function z ~ - ( 2 ~ ) - 1  log Ix' - z[ - Ha.x(z) is harmonic in f2. Thus 

(1  1 ) 
1 l o g [ x ' - x  I - T r H a ( x  ) < m a x  - ~ l o g l  x ' - z [ + ~ l o g [ x - z  I 

2rt z ~ 0a 

by the maximum principle. This means 

Ix - z I 
r~(x) < [x -- x'l zEo~max ix  ' - -z[  

and implies ra(x) <-6[x -  dr21 because 

I x - x ' l = 2 [ x - ~ , f 2 [  and { z : [ x - z l / I x ' - z l > 3 } c B ( x ' , r )  

which is not  hit by df2. 
3. We show that to(x) < ra . (0)  for any x e f2. This yields the claim because rn. 

is maximal at the origin. If  f2 is simply connected then the mean value theorem for 
holomorphic  functions implies 

[h~,x(O)12 <_ _~1 f,~ [h, x(Z)[2 d x 

via Jensen's inequality. (This inequality is strict if h~,x is not a constant,  i.e. if f2 is 
not  a disk.) The integral on the right is just the area of  ~ and we get 

rea(x) < [f2--j[ = R~ = r~.(O) 
7z 

from the definition of  the conformal  radius for simply connected domains. In the 
general case we make use of  Lemma 10, in particular S(G,~.~<t~ [VGa,x[ 2dx = t. 
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Symmetrization does not increase the Dirichlet integral. Replace G*x on {G*x < t} 
by the harmonic function v with the same boundary data. Then ~(v < t~ IVy [2 dx < t. 
The function v has to be a multiple of  the Green's function at the origin: v = 2Ga,.o. 
Therefore 

t > f IVv[2 dx = 22 f{ [VGa.,ol2 dx  = t). 
v < t} GO',O < t/Z} 

by Lemma 10. Hence 2 < 1. Using I{Ga,x >- t}l = I{v -> t}[ = [{Ga, o -> t/2}l and 
Lemma 10 we find 

r~(x) = lim I{Ga'~ ~ t}) N lim I{G"'~ < t/2}) = r~.(O). 
, ~  7z exp ( - 4 ~ t )  ,~ o~ ~z exp ( - -4nt /2)  

[] 

The last inequality is equivalent with Tr Ha(x) > - ( 2 ~ ) -  1 log (Ra). I t  is strict if f2 
is not a disk. I f  in addition [QI=IDI it implies i n f T r H a  > 0  which can be 
considered as a positive mass theorem for 2-dimensional domains. 

4.3. Concentration -formula 

Surprisingly the concentration-function is related with the conformal radius r a 
via a simple formula. 

T H E O R E M  13 (Concentration-formula). Assume ( A ) . . .  (D). Then 

F~ (x) = r ~ (X)Fr~ad (0) 

for every x ~ [2. 

In particular the concentration-formula says that 

lim sup Fa(ui) < (sup r~)F~.d(0) 

whenever the sequence (ui) concentrates somewhere and that this inequality is 
optimal. Furthermore a maximizing sequence which concentrates has to concentrate 
at a point where the conformal radius is maximal. Clearly these points are 
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independent off .  Observe that Fr6~a(0) = sup F~,d = sup F~ by Schwarz symmetriza- 
tion. Now we can give a precise generalization of the result of  Car leson-Chang to 
arbitrary domains. (Use Lemma 4, Theorem 5 and Theorem 13). 

C O R O L L A R Y  14. For f ( t )= exp (4m 2) - I  one has 

sup F~ = (sup r~)ne, 

sup Fa > (sup r2)ne. 

The concentration-formula allows to deduce non-trivial properties of  the con- 
centration-function from those of the conformal radius (Proposition 12). 

C O R O L L A R Y  15. Under the general assumptions ( A ) . . .  (D) the concentra- 
tion-function satisfies 

1. F~ ~ C(O, ~+ ). 
2. F~ [ ~  =0 .  
3. Either F~ ~ 0 or F~ > 0 on O. 
4. The concentration-functions on a fixed domain but for different functions f are 

scalar multiples of each other. 
5. sup F~ <- sup Faa.. 

Proof. The conformal radius is continuous on f2, hence so is F~. Since ro(x ) ~ 0  
as x ~ dO the same holds for F~. By definition F~ is lower semi continuous. Thus 
F~ = 0  on ~f2. Since ra > 0 one has F~ > 0 in the interior of  f2 if F~ad(0) > 0  
and F~ - 0  if F~ad(0) = 0. All concentration-functions on I2 are scalar multiples 
of r~. From the last item of  Proposition 12 we get sup F~ = (sup ra)2F~d(0) < 
(sup r~,)2F~rad(O) = sup F~,. [] 

We give an alternate, more geometric proof  of the fact that the concentration- 
function vanishes at the boundary. It can be generalized easily to H0~'n(Q) on 
n-dimensional domains and it requires only that 0 satisfies the exterior ball 
condition. 

Choosing a subsequence (ui) of a sequence which concentrates at a boundary 
point x we can assume that F~(u i )~ l im sup Fa(ui). Since f2 satisfies the exterior 
ball condition there is a ball B such that B n O  = {x}. Choosing B small enough 
some translate tB is entirely contained in ~. Special conformal diffeomorphisms are 
circle reflections. The circle itself is a fixed point set. If  two circles intersect 
orthogonally, then each of them is invariant under the reflection with respect to the 
other. The reflection r with respect to the circle dB maps I2 into B. The sequence 
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ui ~ r concentrates at r(x) = x and lim FB(ui o r) = lim Fa(u,) s i n c e  I r ' ( x ) l  2 --- 1 (see 
Lemma 16 below). 

Next choose circle reflections r k with respect to circles t3B, mapping B onto itself 
having their center so close to x that I ( r ; ' ) ' ( x ) l  2 2k. On some neighborhood Uk 
of x we still have I(rs 2 > k. By Step 3 

lim f f (u~ o r) dx = lim f f (u~ o r) dx 
i ~ o o  i ~ o o  k 

for every fixed k. Thus for a subsequence of  (u~) 

;t~ 1 lim fnf(ui o r) dx. f(ui o r) dx > ~,~ 
i 

Set w~:= u~ o r o r~ o t - ~. It's support is contained in tB c ~. Therefore w~ e B~ and 

sup Fo 2 i~o~lim Fa(w,)= ,~lim FB(u,o r o r,) = ,~lim fBf(u,o r)l(r;- '  )'12 dx 

> l i m ; v f ( u i ~  l i m ( i ; v f ( u t ~  dx ). 
i ~ o O  i i ~ o o  i 

But since sup Fa < oo by (D) this is only possible if Sv, f(ui o r) dx ~ O. Together we 

conclude Fa(ui) ~ O. 

4.3.1. Proof of Theorem 13 on simply connected domains. In the simply con- 
nected case tools from complex analysis provide a particularly simple proof. In 
order to exploit the conformal equivalence of  the domain with the unit disk we need 
a transformation rule for concentrating sequences. 
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L E M M A  16. Assume h " f2 '~  f2 is a conformal diffeomorphism and h(x') = x. I f  
a sequence (ug) in Bo concentrates at x, then (ui o h) is a sequence in Ba, concentrating 
at x ' and 

lim F~2(ui)= Ih ' (x ' ) l  z lim Fo,(u, o h) 
i~oc i ~  

if  the limits exist. 

Proof. In two dimensions the Dirichlet integral is invariant  under  conformal  
t ransformat ions .  Therefore  ui o h e B~,. For  every r > 0 

f. IV(u, o h)1  dx = f. lVu, r dx 
' \ B ( x ' , r )  \ h B ( x ' , r )  

which tends to 0 as i ~ ~ because hB(x', r) is a neighborhood of  x. This means that 
(u~ o h) concentrates at x ' .  Applying Step 3 to the sequence (ui o h) yields 

lim Fa,(u~ o h ) =  lim fB f ( u ~ o h ) d x =  lim fh f(u')l(h-~)'12dx 
i ~ oc  i ~ oo  ( x ' , r )  i ~ ~ B ( x ' , r )  

= ([(h - ' ) ' (x)12 + O(r)) i~lim~ fhs(x,,,)f(u') dx 

as r ~ 0 .  Step 3 yields the claim. [] 

Now we can prove Theorem 13 for simply connected domains.  First we 
construct  a sequence showing that  r2(x)F~,d(O) is a lower bound for F~(x). Then 
we have to show that  this is indeed the worst  what  happens.  

Choose a sequence (vi) realizing a Frad(0), i.e. a sequence in Brad concentrat-  
ing at 0 such that  Fr~o(v~)~F~ad(0). Then u~,=v~ o h6.~ concentrates at x and 
lim F ,~(u , )=  r~(x)l im F~,d(Vi) by the previous lemma. Thus  F~a(x) > r2(x)F~r,d(O). 
For  the opposi te  inequality choose a sequence (ui) realizing F~(x). By (B) we can 
assume ui > 0. Set v, .= u~ o ho,~, then by the previous l emma 

F~(x) = l i m  Fa(ui) = r~(x) l i m  FD(V,) < rZ~(x)F~ad(O) 

because (vi) concentrates at 0. This proves Theorem 13 for simply connected 
domains.  

4.3.2. Proof of  Theorem 13 on general domains. To estimate F~ f rom below 
choose (vi) realizing F~d(0).  The conformal ly  rearranged sequence (via.x) (Section 
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4.4) concentrates at x and lim Fe(v,~.) = r~(x) lim Frad(Vi) by Theorem 18. Thus 
F~(x) > 2 ro(x)Fr,d(O). For  the opposite inequality choose a sequence (ui) realizing 
F~(x). We will show that there is a sequence (ui) also realizing F~(x), r, ~ 0  and 
2, ~ ov such that: 

1. t~, is harmonic for values < 1 and {t~ i > 1} c B(x, ri). 
2. f f i ~ 0  in Ckoc(O\{X}) for all k >0 .  
3. 2,ai ~ GO.x in C~or for all k > 0. 
4. The sets {t2~ -> 1} form a sequence of  approximately small disks of  radii 

p~ = ro(x) exp ( - 2 n 2 i )  at x. 
Once the sequence (ti,) is constructed proceed as follows. Replace 2~ by the least 
level t, ~ 2, for which {Go.x > t,} = {fi~ > 1}. By Lemma 10 the sets {Go.~ > t,} are 
also approximately small disks o f  radii p, at x. By Dirichlet's principle 

I 2 G o , x l t  i < 1 } I~ i < 1 } 

The left side is independent o f  s and x. In particular we can replace (O, x) by 
(D, 0). Set 

I G o.o(Z) 
ti 

v'(z)'= 

L", t,,, z ) 

for values < 1, 

for  values > l, 

where p,.* denotes the radius of  the disk {~i > 1}* and r~* . '=exp ( - 2 n t , )  is chosen 
such that the two pieces o f  v, fit together. 

D 

\ 
0 II x 

By construct ion []vil[ < ]lu;[[ < 1, i.e. v ,~  Brad. AS to the functional observe 
that  p* = p, + o(pi) and r~* -- exp ( - 21r2i) + o(exp ( - 2 n 2 i ) ) ,  hence p~*/r* ~ro(x) .  
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By Proposit ion 9 

lim F~(ti~) lim s f ( ~ )  dx lira f P * ~ 2 s  = = f ( v i )  dx 

r2a(x) lim F,~d(vi) < 2 ,~ = - ro(x)F~d(O) 
i ~ o 0  

because (v,) concentrates at 0. This completes the p roof  of  Theorem 13 up to the 
construction of  the sequence (ti~). Now we make up for this. 

1. Fix r > 0 and assume there is a point y~ e {u~ > 1}\B(x, 2r). 

If  Yi could be connected with B(x ,  r) by an arc which is entirely contained in 
{u,. > 1}, then (ui) could not concentrate at x because in 2 dimensions the capacity 
of  a connected set of  diameter r is bounded below by a positive number  which only 
depends on r and f2. This contradiction implies that for i large enough every 
component  of  {ui -> 1} which intersects B(x,  r) is contained in B(x,  2r). It allows to 
replace ui by a function ti~ e H01'2(Q) which coincides with u~ on the connected 
components  o f  {u~ > 1} which intersect B(x,  r) and is harmonic otherwise. Thus 
llti, II -< Ilu, II by Dirichlet 's principle. Since r was arbitrary we can choose r i ~ 0  and 
a subsequence of  (ti~) such that {ti~ > l} ~ B(x,  r~). By Step 3 and Proposit ion 9 
there is a subsequence o f  (ui) such that ~(a\mx.r , ))~{u,<l}f(u~)dx~O. The same 
holds for the sequence (ti~) which also concentrates at x. Therefore the limit of  the 
functional remains unchanged. 

2. The following argument is similar to that given by Schoen [13] (Theorem 3.3) 
for the Yamabe functional. Fix r > 0 such that O\B(x ,  r) is connected and a 
compact  subset K c t2\B(x,  r). For  i large enough ti~ is a positive harmonic function 
on O\B(x ,  r). Since infK ti~ ~ 0 also supr  t~ ~ 0 by Harnack 's  inequality. Schauder's 
estimate implies supx ]izfi, I "-+ 0. By iterative application of  Schauder's estimate the 
same follows for all derivatives of  ti,., since they are harmonic on 12\{x} as well. 
Since r was arbitrary we find ti t ~ 0  in Cko~(f2\{x}) for all k. 
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3. Fix y C x  and set 2,"=Ga,x(y)/ut(y) and u;.'=2,.t2 v Then 2;--.00. For K as 
before but containing y, Harnack 's  inequality and Schauder's estimate imply that 
(u~) is bounded in all Ck(K). By Ascoli's compactness theorem and since K was 
arbitrary there is a subsequence of (u~) which converges in all C[oc(O\{x}) to a 
function u'. By uniform convergence u '  has to satisfy 

Au'=O on f2\{x} 

u ' =  0 on O~ 

and u'(y) = Ga,x(y). The only function with these properties is u' = Ga,x itself. 
4. By Lemma 10 the sets {Ga,x -> 2;} form a sequence of approximately small 

disks of  radii p;. Since 2;fii ~ Ga,~ in C~oc(f2\{x}) a subsequence of {2ifii -> ;~; } also 
consists of  approximately small disks of radii p; at x. 

4.4. Conformal rearrangement, mean value inequality 

On simply connected domains the mean value theorem implies what we call the 
mean value inequality 

2~r J~l = d 
Ihb,x(Z)12 ds ~ Ihb.x(0)l 2. 

We prove a generalization of this inequality to arbitrary domains. It will be 
essential in the proof  of  the functional isoperimetric inequality. 

T H E O R E M  17 (Mean value inequality). For any r e (0, 1] 

(2rrr) 2 aa,x = -(2~)-' log(,)} IVGa,x ~ ]  > r2a(x)" 
\ 

This inequality tends to an equality as r--* O. 

Proof. The isoperimetric inequality for planar domains implies 
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In our case 

{ ' } f 4~ Ga,x > - ~  log (r) 
ds > 

IvG ,xl ; IVG ,xl 
G a .  x = - -  ( 2 7 t )  - I l o g  ( r ) }  

The denominator  is = 1 by Lemma 10. As to the numerator  set 

~2r-'= {Go,, > - (27z) - '  log (r)}. 

Then Gar,x=Ga,x+(2g ) l log(r)  and Ha, ,x=Ha,x - (2g) - l log(r )  and therefore 
rar(x)=ra(x)r. From Proposit ion 12 we know that gR~>Tzr2(x), hence 
[t2r[ >-~rZQ,(x). Plugging this into the above inequality yields the first claim. By 

Lemma 10 

{ , } GQ,x -- 2-zt log (r) = 2gra(x)r + O(r 2) 

and 

1 
I VG~,x [ = 2 ~ r a ( x ) r  + O(r 2) 

on this level set. Thus 

1 ~ ds _ 1 (2nra(x)r + O(rZ)) 2 
(2~r) 2 J{Ca,x= (2.)-,log~)} IVGa,x[ (2nr) 2 

which tends to r2o(x) as r ~ 0 .  [] 

This inequality is a generalization o f  the mean value inequality for simply 

connected domains as can be derived from the conformal  invariance o f  the Green's  
function. For  simply connected domains the p roof  of  the functional isoperimetric 
inequality uses the conformal  t ransformation of  radially symmetric functions into 

functions on (2. For  the general case we introduce a rearrangement which general- 
izes this t ransformation and also preserves the Dirichlet integral. 

1 , 2  D E F I N I T I O N  (Conformal  rearrangement). To every v E H0,rad(O ) and x e t2 

associate its conformal rearrangement on t2 at x 

ve,x '= v o G~.~ o G~,x. 
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The function va,~ is a constant  on each level set o f  Ga,x namely the same constant  
as v takes on the corresponding level set o f  Go,o. Equivalently,  if v = 49 o Go,o, then 

Vo,x = 4 9 o Go,x. 

~GD, 0 = G~, x [ 
v = v  , ~  

I f  f2 is simply connected,  then va,x = v o h~, 1 by conformal  invariance of  the Green ' s  
function. 

1,2 T H E O R E M  18. Assume v e Ho,rad(D ). Then 

1. va, x e Hl'Z(~2) and II , ,x II = I1~1f. 
2. For every f ~ C( ~, ~ § 

faf( va,x) dx > r~(x) fz f ( v )  dx. 

3. I f  ( v i )  c o n c e n t r a t e s  at O, then (via,..) concentrates at x and 

lim Fa(vi~x) = r~(x) lim Fr,o(vi) 
i ~ oO ' i ~ oo 

i f  the limits exits. 

Proof. For  simplicity we assume Vv # 0 except at the origin. 
1. For  simply connected domains  this is just the conformal  invariance of  the 

Dirichlet integral. For  the general case choose y e [2 and z e D  such that  

Ga,x(Y) = GD,o (z). Then VVa,x (y)  = ([ Vv(z)1/[ gGo,o (z)[) VGa,x (y). By the co-area  for- 
mula  (Federer  [5] Theorem 3.2.12) 

fo ; Ilv~.x I[ 2 =  ]Vvt~,x[ ds dt 

[VGQ,x [ds dt 
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where z(t) ~ v-~(t). By Lemma 10 the inner integral is = 1 independently of  f2 and 
x. In particular we can replace (f2, x) by (D, 0) which yields the analogous 

expression for I1~,oll = Ilvll. 
2. This inequality follows from the mean value inequality using the radial 

symmetry o f  v. By the co-area formula 

f fvo,x) dx = f ( t )  [Vva: ] at 
{~,~ > t} 

= f ( t )  [Vv(z(t))t {e~,~>~n,o(;(o)} ]VGa:] 
- -  d t .  

Using IVGo,o(Z( t ) ) ]  : ( 2 ~ ] z ( t ) l ) - '  and ( tVv(z ( t ) ) [ )  ~ = ( 2 r t l z ( t ) [ )  - ~  .[o~>,)IVY[ -~ ds 
we can write this as 

f0 .s 1 f ( t )  Iwt  2~l~t)l)  ~ IVGoxl at. (v > t} {Go, x > GD,o(zft))} , 

By the mean value inequality the expression in square brackets is > r2(x) and the 
claim follows. 

3. F rom the first item we already know that v~o: ~ Bo. Fur thermore  

f I~%~1 = dx = f tVv, I ~ dx 
Gf~,x < t} ' G D ,  0 < t} 

which tends to 0 for every t > 0. This shows that (vio:) concentrates at x. As in the 

previous item the limit o f  Fo(vio,x) can be written as 

lim f ( t )  Iv~,l (2~lzT(t)[) = i ~  {~,>t} (aa,x>ao,o(z,(,))} IVG-a,x dt. 

The expression in square brackets tends to r~(x) uniformly in t > 1, since 

]z,(t)[ <_ ]zi(l)l---~0 as i ~  ~ .  The claim follows Proposit ion 9. [] 

4.5. Functional isoperimetric inequality 

The p roo f  of  Theorem 5 is our  main application o f  the conformal  rearrange- 
ment just introduced. It allows the construct ion of  a function u e Ba on an 
arbitrary domain with FQ(u) above the critical level f rom a function with this 



496 M A R T I N  F L U C H E R  

p r o p e r t y  in the rad ia l ly  s y m m e t r i c  case.  In  the  s imply  c o n n e c t e d  case c h o o s e  
- -1  V E Bra d and  x e t2 and  set u .'= v o h o.x. T h e n  

Fa(u) f D f ( v )  [h'a,x [ 2 dx 

F ~ ( x )  2 ra(x)Fr.d(O) 

by  T h e o r e m  13. By rad ia l  s y m m e t r y  o f  v the  n u m e r a t o r  can  be wr i t t en  as 

fo 1 1 ~ [hkx(z)l 2 ds dr ~ rZa(X)Frad(V) 2gr( f o v) ~nr Izl = r} 

us ing  the m e a n  va lue  inequa l i ty .  The  c o n f o r m a l  f ac to r  cancels  and  we get 

sup F a  Frad (V) Frad (V) 

F~(x~ > Fr6ad (0) sup 6 Frad 

fo r  every  x E t2. T h e o r e m  5 fo l lows  by t a k i n g  the  i n f imum ove r  x ~ f]  ( fo r  x e dr2 

the  left  side is infinite)  and  the s u p r e m u m  ove r  all  v e Bra d. O n  genera l  d o m a i n s  set 

u .'= va,x a n d  T h e o r e m  18 yields the s a m e  inequa l i ty .  
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