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Minimal isometric immersions of spherical space forms in spheres 

DENNIS DETURCK AND WOLFGANG ZILLER 

Introduction 

A number of  authors [C], [DW1], [DW2], [L], [T] have studied minimal 
isometric immersions of Riemannian manifolds into round spheres, and in particu- 
lar of  round spheres into round spheres. As was observed by T. Takahashi [T], if 

: M ~ SS(r)  c R s § 1 is such a minimal immersion, then the components of 
must all be eigenfunctions of  the Laplace operator on M corresponding to the same 
eigenvalue. Conversely, if ~ is an isometric immersion such that all the components 
are eigenfunctions of  the Laplace operator for the same eigenvalue, then �9 is a 
minimal isometric immersion into a round sphere. Takahashi also observed that if 
M is an isotropy-irreducible Riemannian homogeneous space, i.e., if the isotropy 
group of a point acts irreducibly on the tangent space, then an orthonormal basis 
of each eigenspace automatically gives rise to a minimal isometric immersion into 
a round sphere. These are called the standard minimal immersions. 

In particular, if M = S"(1) one obtains a sequence of such standard minimal 
isometric immersions, one for each nonzero eigenvalue. For the first such eigen- 
value one obtains the standard embedding into ~" § ~, and for the second eigenvalue 
an immersion into S"("+3) /2-1(4n/ (2(n  + 1))), which gives rise to the Veronese 
embedding of RP n. For odd-numbered eigenvalues the images of  the standard 
minimal immersions are all embedded spheres and for even-numbered eigenvalues 
the images are all embedded real projective spaces. E. Calabi [C] showed that every 
minimal isometric immersion of the two-dimensional sphere into SU(r) is congruent 
to one of these standard eigenspace immersions. On the other hand, M. Do Carmo 
and N. Wallach [DW2] showed that in higher dimensions there are in general many 
minimal isometric immersions of S"(1) into SU(r), and that they are parametrized 
by a compact convex body in a finite-dimensional vector space. 

P. Li [L] generalized this result to arbitrary isotropy-irreducible homogeneous 
spaces and also claimed that the image of a minimal isometric immersion of an 
isotropy-irreducible homogeneous space is still an isotropy-irreducible homoge- 
neous space. He went on to apply this theorem to the case where M is also a sphere, 
and ultimately concluded that the image of  a minimal isometric immersion of a 
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sphere into a sphere must be either a sphere or a real projective space. This would 
of course imply that there exists no minimal isometric immersion of a lens space or 
any other more complicated spherical space form into a sphere. 

That this is indeed not correct was first observed by K. Mashimo [Mal], who 
gave an example of  a minimal isometric immersion of $3(1) into $6(1), whose image 
is at least a 6-fold subcover of S 3 (but he did not identify the image completely). 
Later, in [WZ], M. Wang and the second author showed that certain quotients of 
S 3 (by the so-called polyhedral groups) are in fact isotropy irreducible, and so by 
the above-mentioned theorem of Takahashi, the polyhedral manifolds S3/T *, 
$3/0 * and $3/I * admit minimal isometric immersions into spheres. Also, the first 
author obtained some explicit minimal isometric embeddings of certain three-di- 
mensional lens spaces. This then raises the question of just which spherical space 
forms do admit minimal isometric imersions or embeddings into spheres. The 
purpose of the present paper is to give a partial answer to this question. We will 
show 

THEOREM A. Every homogeneous spherical space form admits a minimal 
isometric embedding into a standard sphere (of sufficiently high dimension and 
appropriate radius). 

Spherical space forms, i.e. compact manifolds of constant curvature + 1, have 
been completely classified [W]. Only few of them are homogeneous, see [W], 
Theorem 2.7.1, for a description. It seems likely that most if not all spherical space 
forms admit a minimal isometric immersion into a sphere. 

The interior points of the compact convex body parametrizing minimal isomet- 
ric immersions of spheres into spheres correspond to immersions which use a full 
basis of the eigenspace corresponding to a given eigenvalue as the coordinates of 
the immersion. In [WZ] it was observed that these immersions are SO(n + 1)- 
equivariant immersions into R N+I (although they are not equivariant into SN(r)), 
and hence their images must be embedded spheres or real projective spaces. The 
minimal immersions in the above Theorem must therefore correspond to boundary 
points in the convex body. They are still equivariant immersions, but only with 
respect to a proper subgroup G c SO(n + 1) that acts transitively on S n. Their 
images are therefore G-homogeneous embedded submanifolds. We doubt that there 
are any minimal isometric immersions whose image is not embedded. 

Such equivariant immersions, in the case of  G = SU(2) acting transitively on 
$3(1), are examined in some detail by K. Mashimo [Mal], [Ma2], but he does not 
attempt to identify their images. In [P] F. J. Pedit constructs U(n)-equivariant 
isometric embeddings of (2n - l)-dimensional lens spaces into spheres, but they are 
not minimal. 
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One should also mention a theorem by Hsiang and Lawson [HL] which states 
that every homogeneous space G/H admits a minimal isometric immersion (not 
necessarily an embedding!) into a sphere of sufficiently high dimension, with respect 
to some G-invariant metric. But in this result, the metric cannot be chosen apriori. 
In particular, for a homogeneous space form, there are in general many G-invariant 

metrics. 
Another question that is interesting in this context was asked by DoCarmo and 

Wallach [DW2], Remark 1.6: For  a given n, what is the smallest dimension N for 
which there exist minimal isometric immersions of  S"(1) into SS(r) which are not 
totally geodesic? In this question one can also specify r, i.e. fix the eigenvalue one 
wants to consider. A lower bound was given by J. D. Moore [Mr] who showed that 
no such immersions exist if N < 2n -- 1. In [DW2] they guessed the probable answer 
to be N = n(n 4- 3)/2 - 1, which is achieved by the Veronese embedding. That this 
is false, at least for n = 3, was first observed by N. Ejiri [E] who showed that there 
exists a minimal isometric immersion of $3(1) into $6(�88 which is not totally 
geodesic. He also showed that the immersion is totally real with respect to the 
natural almost-complex structure on S 6. Notice though that his construction is not 
explicit, since it uses the fundamental theorem for isometric immersions to prove 
existence. In [Mall  Mashimo constructed this immersion more explicity as an 
SU(2)-equivariant immersion. In [Ma2] he shows that it is also an orbit of a 
subgroup of G2 acting on S 6 and proves that every totally real immersion of $3(1) 
into $6(~) is congruent to this example. In [DVV] it was observed that the 
immersion is a 24-fold cover onto its image. In our paper we will be able to identify 
the image as the tetrahedral manifold S3/T ". We can also easily describe it explicitly 
as follows. We start with an isometric immersion of $3(1) obtained by sending 
(a, b) ~ S 3, [a[ 2 4- [b[ 2 = 1, into: 

(~ x /~(~5~-g tS~) '  ~64(51a[2-lb[ z) -]- ~ 1~4(5[b12 -- [a]2), 

1 1 x /q -  ~ (ta[ 2 _ tb[2 ) Im (a2b n ) )  a x/q-~ [ab-3( 2[a12 - 1612) + a3b(la[Z - 2[b12)]' 2 

One easily shows that this isometrically immerses $3(1) into sr(�88 c 
C 3 ~ ~ = R 7 and hence is a minmal isometric immersion. This map is clearly invar- 
iant under ~(a, b) = (ia, - ib) ,  [3(a, b) = ( - b ,  a), and 7(a, b) = (�89 (1 + i)(a - b), 
�89 ( 1 - i)(a + b)). or, fl, and 7 generate a group of  order 24 isomorphic to the binary 
tetrahedral group T* and we will see that the immersion defines an embedding of  
S3/T * into $6(�88 We will also prove the following uniqueness property of this 

immersion: 
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THEOREM B. Every SU( 2)-equivariant minimal isometric immersion of  $3(1) 
into Sr(r) which is not totally geodesic, is congruent to the above immersion of  $3(1) 
into $6(�88 whose image is an embedded S3/T *. 

We suspect that this result may be true without the assumption of equivariance. 
Notice also by Moore's theorem, six is the smallest ambient dimension for which 
$3(1) admits a non-totally-geodesic minimal isometric immersion. 

In w we give some geometric preliminaries, in w we prove Theorem A in the 
three-dimensional case and in ~4, w in the higher-dimensional cases. In w we discuss 
the moduli space of SU(2)-equivariant minimal isometric immersions of $3(1) and 
prove Theorem B. 

Both authors acknowledge the support of the National Science Foundation. The 
first author would also like to thank the Institute for Advanced Study for its 
hospitality during the course of the research for this work. We would also like to 
thank Christine Escher for pointing out several mistakes in an earlier version of this 
paper. 

1. Geometric preliminaries 

Let M be an n-dimensional compact Riemannian manifold, and A be the 
Laplacian on LZ(M). If ~b : M ~ R N is an isometric immersion of M into Euclidean 
space, then the mean curvature vector H of the immersion satisfies 

Adp = nH. 

If furthermore, the coordinate functions of the immersion are all eigenfunctions of 
A corresponding to the same eigenvalue 2, then we have H =nc~/2. Since 
(H,  d~b)= 0, this implies that (~b, dq~)= 0, and hence I~bl 2 is constant. Thus 4~ is 
actually an immersion of M into the sphere S s -  ~ whose radius must be x/Cn-~ 
because of  the value of H. Furthermore the immersion is a minimal immersion into 
the sphere, since the mean curvature vector is orthogonal to the sphere. Reversing 
the reasoning shows the converse: if q ~ : M " ~ S  N-l(r)  is a minimal isometric 
immersion, then Aq~ = (n/r2)c~. These results were obtained by Takahashi [T] (see 
also [DW1]). 

In order to minimally isometrically immerse a manifold M into a sphere, we 
must therefore find eigenvalues of the Laplacian of M of sufficiently high multiplic- 
ity to provide the coordinate functions of  the immersions. 

Another result of Takahashi [T] is that certain homogeneous Riemannian 
manifolds M = G / H  do admit such immersions, namely those for which the 
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isotropy group H acts irreducibly on the tangent space. To see this, we consider the 
eigenspace E~ to a fixed eigenvalue 2 ~ 0. On E~ we have the inner product induced 
by the one on L2(M) ,  and the group G acts on E~ by isometries. I f  we let 
{~bl . . . . .  ~N } be an orthonormal basis of  E~, then Z d~b~ must be a multiple of  the 
metric on M since both are invariant under G and hence at every point they are 
invariant under the irreducible action of H. Therefore, after multiplying the metric 
on M by a constant, ~b = (~bl . . . . .  ~N) : M ~ •N is an isometric immersion, which 
by the above comments give rise to a minimal isometric immersion into a sphere. 
This immersion is called the standard minimal immersion o f  degree d iT ,;. is the dth 
nonzero eigenvalue. Notice that a different choice of  orthonormal basis for E~ gives 
rise to a congruent immersion. 

An obvious example of such a homogeneous Riemannian manifold is the 
n-dimensional sphere, realized as the homogeneous space SO(n + 1)~SO(n). The 
eigenfunctions of S n are simply the restrictions of harmonic homogeneous polyno- 
mials on R n+~ to Sn(1). All the harmonic homogeneous polynomials of  degree d 
restrict to eigenfunctions on S n with the same eigenvalue 2 a = d(d + n - 1) and the 
dimension of this eigenspace is equal to Nd = (2d + n - 1)(d + n - 2)!/(d!(n - 1)!). 
For  odd d, the standard minimal isometric immersion is a minimal isometric 
embedding of S n into S N~- 1( nx//~d ). For even d, all the components of  the 
immersion are invariant under the antipodal map, and we get a minimal isometric 
embedding of RP n into S N~ - l(x//~;ta). 

In [DW2] the space of all minimal isometric immersions of  S~(1) into SN(r) was 
examined in some detail, and it was shown that for n > 2 there are many minimal 
isometric immersions other than the ones described above. I f  we fix r = nx /~d ,  or 
equivalently if we only consider harmonic homogeneous polynomials of  degree d, 
then these minimal isometric immersions (up a rotation of the ambient space) are 
parametrized by a convex body in a finite-dimensional vector space, which we will 
now describe. 

Let ~b0 : S " ( 1 ) ~  S Na -1(/'/%//~dd ) be the standard minimal isometric imersion of 
degree d. Then any other isometric immersion ~b of  degree d is given by ,4 o ~b0 
where A is an Nd x Na matrix. Since we can write A = R o p where R is orthogonal 
and P symmetric and positive semidefinite, `4 o ~bo is congruent to P o ~b0. More- 
over, one easily checks that P o 40 is an isometric immersion if and only if p2 _ Id 

is orthogonal to Sym 2 ((q~0).(TSn)) c Sym 2 R N~. I f  we let Wd be the vector space of  
all symmetric matrices with this property and Bd = {P E W d [ P  + ld  > 0}, then 
P o ~b0 is an isometric immersion precisely when p2 _ Id ~ B d. One easily shows that 
P ~ Wd implies tr P = 0 and hence Bd is a compact convex body which parametrizes 
all congruence classes of minimal isometric immersions of  degree d. An explicit 
parametrization is given by P ~ Bd ~-~ X / ~  + Id o Cko. In [DW2] it is shown that for 
n = 2 and any d and for d = 2, 3 and any n, the space B d is a point, i.e. any such 



Minimal isometric immersions 433 

minimal isometric immersion is congruent to the standard one ~b0. For any other 
value of n and d it is shown that dim Bd ~ 18 and that dim Bd grows very quickly 
with n or d. It seems to be a very difficult problem to determine the dimension of 
Bd exactly. In [Mu] Y. Muto showed that dim B d = 18 if n = 3 and d = 4. 

From this description it follows immediately that the interior points of the 
convex body B d correspond to isometric immersions which use a full basis of E~ 
as their components. For these immersions it was observed in [WZ] that they 
are S O ( n  + 1)-equivariant immersions into R Na and hence are embeddings of  S" 
for d odd and of RP" for d even. On the other hand, it seems that immersions 
using only a subspace of E~, which correspond to boundary points of  the convex 
body, have not been systematically studied before in the literature. These 
boundary-type immersions produce the minimal isometric embeddings in Theorem 
A. 

There is also a "gauge group" acting o n  B d. If  g ~ O(n + 1) and if P o ~b0 is an 
isometric immersion, then P o q5 o o g is another one. The equivariance properties of  
~b o imply that P o dpo o g = p o p(g)  o C~o where p(g)  is the orthogonal matrix of the 
isometry g acting on the eigenspace E~a with respect to the orthonormal basis 
defining ~bo. Since P o p(g)  o Cko is congruent to p(g) - 1 o p o p(g)  o C~o , we have that 
O(n + 1) induces an action on Bd given by T ~ Bd ~ p(g)  - ~ o T o p(g).  It follows 
that g ~ O(n + 1) lies in the isotropy group of this action at T ~ Ba if and only if the 
corresponding immersion x / T  + Id  o dpo is equivariant with respect to g. Since p 
induces an absolutely irreducible representation of SO(n  + 1) on Eaa, the only 
matrix T which commutes with every p(g)  are the multiples of  the identity, but 
a Id E B d if and only if a = 0. Hence the origin is the only fixed point of  the 
O(n + 1) action, corresponding to the fact that ~b0 is the only O(n + 1)-equivariant 
immersion. 

I f  we fix a subgroup G c S O ( n  + 1), then the set of all G-equivariant minimal 
isometric immersions corresponds to the set of all T ~ Bd which commute with 
every g ~ G. This set is a convex sub-body of Bd. Of course, G is contained in the 
isotropy group of every point of this sub-body. But notice that if P o ~o is 
G-equivariant and if g ~ SO(n  + 1)\G, then P o ~b o o g is in general no longer 
G-equivariant unless g is in the centralizer of  G. On the other hand, P o ~b0 o g is 
equivariant with respect to gGg - 1 c S O ( n  + 1). 

Our construction of  minimal isometric embeddings for space forms will use 
G-equivariant immersions, where G is a subgroup of S O ( n  + 1) that still acts 
transitively on S ". Given such a group G, we have that S " =  G / H  and we let 
V n c  E~a be the subspace on which H ~ G acts trivially. For every v e V n we 
obtain a map q~v : G / H ~ E a a  given by ~ ( g H ) = g v .  The image of this map is 
obviously contained in the sphere of radius [Iv [[, and if we pull back the metric on 
E~,  we get a left-invariant symmetric two-tensor on S" which may or may not 
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agree with the constant-curvature metric. Our goal is therefore to find a vector v 
such that this pull-back metric has curvature 1. Then 4~ v will be an isometric 
immersion, which by the previous remarks, must be a minimal isometric immersion 
of Sn(1) into S N- '(xfn-/2a). Here N is the smallest integer such that ~,;(M) lies in 
an N-dimensional subspace E c E~d. 

The image r c E must of  course be an embedded submanifold, namely the 
orbit of  v under the action of G on E. Hence ~ ( M )  = G/H*, where H* is the 
isotropy group of  v. Of  course H c H* and H*/H is finite. Therefore, G/H* is a 
subcover of S n and ~v gives rise to a minimal isometric embedding of G/H* into 
S j r -  l(~/-n-/).d). Thus, to find an isometric embedding of a given space form G/H* 
we need to find a v ~ V ~ such that H* is the full isotropy group of v. We call this 
process of manufacturing an isometric minimal embedding the "equivariant con- 
struction" since the embedding is indeed G-equivariant. 

We can usually guarantee that N < Nd by the following remark. Although 
SO(n + 1) acts irreducibly on Ead, the subgroup G c SO(n + 1) usually does not. 
Indeed, if v ~ V H is a vector which lies in a subspace invariant under G, then the 
whole orbit lies in this subspace. Hence, to produce equivariant immersions of 
smallest codimension, we choose v in a G-invariant subspace of smallest dimension. 
Equivalently we could also consider a class-one representation of G with respect to 
H, i.e. a representation of G which has a fixed vector when restricted to H, and then 
take the orbit of  G through such a fixed vector. 

Before we proceed, we will need an explicit expression of the metric on Eaa, the 
space of homogeneous harmonic polynomials on R" § 1 of  degree d. We first remark 
that the action of A ~ SO(n + 1) on p e R[x, . . . . .  Xn§ is given by A .p(x)= 
p ( A - ' x )  =p(A'x) where x e R ~+' .  Since this action is irreducible, the metric is 
uniquely determined up to a multiple. Now we define 

which must be a real number since both p and q have the same degree. One easily 
verifies that this inner product is invariant under the action of SO(n + 1) (see [V] 
for details) and hence is our desired inner product. 

When n + 1 is even, we can also express polynomials in E~  using complex 
notation as p(zi, ii) and, to within a factor 2 a, the above inner product is the same 
as the one given by 

q q zi } 
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This last inner product  is the one we will use. Note  that  this inner product  is easy 
to work  with: for monomials ,  we have 

unless k~-= m~ and ,1,. = n~ for all i, in which case we have 

< f i  k,:ti l~[ ~ , % \  Zi Zi , /=1 i=l Zi Zi / i=lfi ki!li!" 

We will refer to this as the "uni tary  metr ic"  on the space of  homogeneous  
polynomials .  

Finally, we list the homogeneous  space forms. Each homogeneous  spherical 
space form must  belong to one of  the following classes: 

(i) M = S3/F, where F is a finite subgroup of  S 3 = SU(2) = Sp(1); 
(ii) M = S 2" l/C a, where Ca is generated by e 2~i/a and acts on 1t~2" = C" by 

multiplication on each complex coordinate;  
(iii) M = S 4n - 1/F, where F is any finite subgroup of  Sp(1) acting on R an = ~-fl n 

by multiplication on each quaternionic coordinate  f rom the left. 

Minimal  isometric embeddings for space forms in the first class are produced in 
w the second one in w and the third one in w 

2. The three-dimensional case 

The case of  quotients o f  the three-sphere S 3 is separated f rom the rest because 
S 3 is itself a group, rather than simply a homogeneous  space. We may  consider S 3 
either as the group of  unit imaginary quaternions Sp(1), or as the special unitary 
group SU(2).  The homogeneous  three-dimensional  spherical space forms can all be 
written a s  S3/F where F is an arbi t rary  finite subgroup of  S 3. The homogeneous  
lens spaces can also be written as quotients o f  U(2), but the minimal  isometric 
embeddings one obtains in this fashion (see w have higher codimension. 

We start  by listing the possible groups F. As is well-known [W], [Mo], the 
following is an exhaustive list o f  the finite proper  subgroups o f  Sp(1): 

(i) the cyclic groups Cd = {e2'~ki/d: k = 0, 1 . . . . .  d - 1} for d > 2; 
(ii) the binary dihedral groups D* = C2d w C2dJ where j is the usual generator  

o f  the quaternions over C, for d -> 1 (note that  d = 1 gives a cyclic group 
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(iii) 

(iv) 

(v) 

isomorphic to C4, and d = 2 gives what is usually called the "quaternionic 
group", { + l ,  _ i ,  __j, _+k}); 
the binary tetrahedral group T* = D* u {�89 ( + 1 + i _+ j _+ k) } of order 24 
(this is the double cover of  the group of symmetries of the tetrahedron); 
the binary octahedral group O * = T * u e " i / 4 T  * of order 48 (this is the 
double cover of the group of symmetries of the octahedron); 
the binary icosahedral group I* = T* u x T *  Ljx2T * u x 3 T  * u x 4 T  *, where 
x = a + i + (1/a)j and a is the golden ratio (1 + x/5)/2.  This group has 
order 120 and is the double cover of  the group of symmetries of  the 
icosahedron. 

Furthermore, any pair of finite subgroups of Sp(1) which are isomorphic are in fact 
conjugate to each other in Sp(1). 

Corresponding to each of these finite subgroups of Sp(1), we get a homogeneous 
three-dimensional spherical space-form: 

(i) the lens spaces L(d; 1) = Sp(1)/Ca for d > 2 (note that L(2; 1) is the real 
projective space RP3); 

(ii) the "prism manifolds" Sp(1)/D* for d > 2; 
(iii) the "tetrahedral manifold" Sp(1)/T*; 
(iv) the "octahedral manifold" Sp(1)/O*; 
(v) the "icosahedral manifold" Sp(1)/I*. 

For later purposes, we list here all possible inclusions among these groups: 

(i) Ca c C~a; 
(ii) Ca c C2a c C2.a ~ D'a; D* c D'a; 

(iii) C2 c C4 c T*; C3 ~ C6 c T*; D* c T*; 
(iv) C 2 ~ C 4 ~ C 8 ~ O * ; C  3 C C  6 c O*; D* ~ D* ~ O*; D* c O*; T* ~ O*; 
(v) C2 ~ C4 ~ I*; C3 ~ C6 ~ I*; C5 ~ Clo c I*; D* ~ I*; D 3 c: I , D5 ~ I*. 

To verify these inclusions for the subgroups of  the binary polyhedral groups, one 
first determines the subgroups of the polyhedral groups T, O, I in SO(3) by 
observing that T and I are isomorphic to the alternating groups A4 and A5 and that 
O is isomorphic to the symmetric group $4. Under the projection from Sp(1) to 
SO(3) the inverse image of  a polyhedral group is the corresponding binary 
polyhedral group, the inverse image of  a dihedral group Da is a binary dihedral 
group D~', and the inverse image of a cyclic group Ca is the cyclic group C2a. In 
addition, for a cyclic group of  odd order in SO(3), there exists a cyclic group of  the 
same order in Sp(1), for which the projection gives rise to an isomorphism. All this 
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follows from the fact that all subgroups of Sp(1)  contain the center { ___ 1 } of Sp(1) ,  

except for the cyclic subgroups of odd order. 
To see the subgroups of Sp(l) as subgroups of SU(2), we simply identify the 

quaternion a + bj with the matrix 

I ra  + bj ~ Sp(1), i.e. [a[ 2 + Ib[ 2 = 1, then the corresponding matrix is in SU(2). Thus 
the action of the quaternion a + bj on the polynomial p(z,  w, ~, ~,) is given by 

((a + bj)  �9 p)(z,  w, ~., ~)  = p((tz - bw, 6z + aw, aY. - ~ ,  bY, + a-ff ). 

Instead of looking at the action of Sp(1)  on the full space of homogeneous 
harmonic polynomials in four real variables, we only consider the following 
subspace. Let W d be the space of homogeneous complex polynomials of degree d in 
two complex variables z, w. If we regard W d as a real vector space by taking real and 
imaginary parts, we obtain a 2(d + 1)-dimensional subspace of the (d + 1)2-dimen - 
sional space of homogeneous harmonic polynomials in four real variables. The 
natural action of Sp(1) on z and w induces an action of Sp(l) on Wd which is the 
same as the action of Sp(1)  on E~a restricted to Wd. Hence we only need to find 
polynomials p(z,  w) in W d such that F is the stabilizer group o f p  and such that the 
orbit S p ( l )  -p has constant curvature 1. 

We can reduce the codimension of the embedding in some cases, by observing 
that, if the degree is even, say 2d, then the irreducible representation of Sp(1)  on W2d 

is the complexification of a real representation of dimension 2d + 1. The conjugation 
which gives rise to this real subspace is given by the complex antilinear map which 
sends z k w  d * to ( -  l)k2 d kwk. Hence the real subspace R2d C W2a has as a basis 

zZd + W2a, i(z2d _ w2a), z2a -  1 w _ z w 2 a -  l, i(z2d-- I w + z w 2 a -  1) . . . . .  idzdw a 

and Sp(1)  leaves this subspace R2d invariant. Hence i fp  is a polynomial in R2d, then 
the orbit Sp(1)  .p also lies in R2d. 

It is a fact (see [Mi] for a r6sum6 and [K] for a beautiful classical exposition) that 
the subalgebra of C[z, w] left invari~int by the action of any finite subgroup of Sp(1)  

is generated by three homogeneous polynomials which satisfy one algebraic relation. 
We list these polynomials and relations for each of the above groups: 

(i) For the cyclic group Ca the algebra of invariant polynomials is generated 
by p = z d, q = w d, and r = zw,  with the obvious relation pq = r d. 
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(ii) For the binary dihedral group D*, the algebra of  invariant polynomials is 
generated by P = z 2 d + w  2d, Q = z  2 a §  2a+lz, and R = z 2 w  2. The 
relation is given by P2R - Q2 _ 4Rd  + l = O. 

(iii) For the binary tetrahedral group T*, the algebra of invariant polynom- 
ials is generated by c t = z w S - w z  5, f l = z S q - 1 4 z 4 w a + w  8 and ), = z  12- 
33zSw 4 - 33z4w 8 + w 12. The relation is 108~t 4 - r3 + ),2 = 0. 

(iv) For the binary octahedral group O*, we can express the generators in terms 
of those of  T*, since T* c O*. The generators are r,  ~t 2 and ~),, and the 
relation is (0~2)(fl) 3 -  108(Gt2) 3 -  (~t),) 2 =  0. 

(v) Finally, for the binary icosahedral group we discover that the realization of 
I* as a subgroup of S p ( l )  given above, while easy to describe, is not so 
convenient for computing the invariant polynomials. For  example, the 
generator of  lowest degree has degree 12, and is 22(5 + 8a)a z - ( 11 + 18a)),, 
in terms of  the generators of  T* given above. For convenience later, we 
perform a conjugation in Sp(1) (which places a vertex of the icosahedron 
on the z-axis in R 3, as opposed to a vertex of the dual dodecahedron), to 
realize the binary icosahedral group as the following set of  quaternions: 

{ +__E',+E'j: # = 0 . . . . .  4} 

f + E v  } w ) . ~  ((,4 __ , ) ,  ~ + (,2 __, 3), - ,j):/z, v = 0 . . . .  , 4 

f ..~_ , V]' 4 } 
w . ~ - ~ -  t t '  - ' ) ' "  + (,2 _ ,3). - . j ) :  u. v = 0 . . . . .  4 

where , = e 2~/5. For this presentation of I*, the algebra of  invariant 
polynomials is generated by A = zw(z  l~ + l l z S w  5 - wl~ B = (z 2~ + w a~ 
-228(zlSw 5 - zSw ~5) + 494z l~ 1~ and C = (z 3~ + w 3~ + 522(z25w 5 - zSw 25) 

- 10,005(z2~ l~ + z l~176 These are algebraically related by the equation 
C2--B3+ 1728A 5 =0 .  

Armed with the generators of  the algebras of invariant polynomials for each of 
the finite subgroups of Sp(1) ,  we are now in position to carry out the "equivariant 
construction" of  minimal isometric embeddings. One should be careful in applying 
the above description of invariant polynomials since it depends completely on the 
embedding of the subgroup F chosen. If  we change the embedding by a conjugacy 
in Sp(1), then the description of  the set of  invariant polynomials changes corre- 
spondingly. This applies in particular when we claim that a given group F is the full 
isotropy group of  a polynomial p: It  is not enough that p is simply not on the list 
of  invariant polynomials for a bigger group; rather, we must check that p is not 
conjugate  to anything on the bigger group's list. 
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CASE I: THE CYCLIC GROUPS Ca. The quotients S3/Cd  a re  the lens spaces 
L(d; 1). By the results of  the previous section, we need to find a homogeneous 
polynomial p(z,  w), invariant under the action of Ca, so that the metric induced by 
the "unitary metric" on the orbit of  p agrees with the constant-curvature 1 metric 
at p. The tangent space to SU(2) at the identity is the Lie algebra ~u(2), and an 
orthonormal basis for ~u(2) in the constant-curvature 1 metric is given by the 
matrices: 

0 

If  q~p " SU(2) --* C[z, w] is the map cbp(a + bj) = p ( S z  - bw, ~z + aw), then one easily 
computes that for p(z,  w) = z "w  b, 

q~p , (Z)  = q~p,(i) = i(b - a)z~w ~, 

Cl)p,( U)  = ci.)p,(j) = _ a z  a Iwb + l ..}._ bza + lwb 1, 

~ t , * ( V )  = q~p*(O') = -- i( a z ~ -  lWb + I + b z , +  lwb 1). 

Any invariant polynomial for Ca consists of sums and products of  z d, w d, and zw. 

One easily checks that none of the polynomials cz kd, cw kd, c(zw) k, c~ zd + C2W d give 

rise to an isometric immersion. If  we set f2d(Z, W) = Cl Z2d+ C2ZdW a, then 

q~f2d* ( Z )  = - 2cl diz TM, 

~ f 2 u , ( U )  = _ 2 c l d z 2 a -  I w + c2d(z,~+ lw,t 1 _ z a -  Jwa+ 1), 

q)fza,(V ) = _ i ( 2 c l d z 2 a  i w + c2d(z a -  lwa+ i + zd+ i w a -  l)). 

Provided d > 3, these three polynomials are orthogonal with respect to the "unitary 
metric". I f  d > 3 we have 

II ~ 2 ~ , ( z ) I I  2 = 41c112d2(2d)!,  

I1 ~ 2 ~ , ( U ) I t  = = II ~ 2 d , ( V ) I I  2 = 41c112d2(2d - 1)t + 2lc212d2(d - l ) ! (d  + 1)!.  

If  we set 

1 2 d -  l 
ICl 12 = 4d2(2d)! and Ic212 = 4a2(a!)( a + 11!' 
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then the push-forwards of Z, U and V will be orthonormal, and the Sp(1) orbit of 
f2d will provide an isometric minimal immersion of the lens space L(d; 1) into the 
4d + 1-dimensional sphere of radius x/3/(4d(d + 1)). The polynomial f2d is of 
course also invariant under C2d and by equating the coefficients of w 2d and zw 2d- 1 

in gf2d =f2d for g e SU(2), a calculation shows that the isotropy group off2d is in 
fact equal to C2d. Hence ~f~ gives rise to a minimal isometric embedding of 

L(2d; 1), d ~ 3, into S 4a+ l(x/3/(4d(d+ 1))). As we will see shortly, the codimen- 
sion can actually be improved if d > 4. 

Since we only need the absolute value of c~ and c2, it seems that we have a 
two-parameter family of solutions. But one parameter is due to the ambient 
congruence of W2d which takes ce to 

that if f2d is a solution, then so is 

solutions give rise to a one parameter 

ei~ The other parameter is due to the fact 

IO O(l]f2d..~--((12aCl)z2d-~-c2zdwd. Hence t h e  

family of orbits of constant curvature one, all 
of  which are congruent to each other. Each of these orbits corresponds to the same 
three-parameter family of solutions in the moduli space B2d, where all the members 
of  this family are equivalent to each other with respect to the gauge group. 

For d = 2 not all of  the terms in the polynomials ~ I ~ , ( U )  and ~ i ~ , ( V )  are 
orthogonal to each other. In fact, for L(4; 1) we will see in w that we cannot 
define an isometric embedding using degree 4 or (real) degree 6 polynomials. But 
one can easily find one using degree 8 polynomials. In fact, the polynomial 
ps=CIZS"-t-C2Z2W 6 gives rise to an isometric embedding if and only if [cl[= 
1/(480x//~) and Ic=l = x/~/(240x/~) �9 m calculation again shows that the isotropy 
group of Ps is equal to C4 and hence we obtain a minimal isometric embedding of 
L(4; 1) into $17(x/~0 ). One can also improve the codimension by using real degree 
10 polynomials. 

To obtain a minimal isometric embedding of L(d; 1) for d odd, we must use a 
polynomial of degree 3d. In particular, if we set 

k3d = CIz3d..~ C2z2dw d 

one shows as above that the orbit through k3d has constant curvature 1 if and only 
if 

d + l  3 d - 1  
1c112 - 4d2(3d + 2)(3d)! and Ic=l = -  4d2(3d + 2 ) (a ! ) (2a) !  

Furthermore, the stabilizer group of  k3d is equal to Ca and hence we get a minimal 
isometric embedding of L(d; 1), for odd d > 3, into S 6d§ ~(x/1/(d(3d + 2))). 
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CASE II: THE BINARY D I H E D R A L  GROUPS D*. The quotients S3/D * 

are usually called "prism manifolds" (see [Mo]). One easily checks that powers of  
the invariant polynomials P, Q and R do not give rise to isometric immersions, 
hence we need to take linear co~abinations. If  d is even, then the polynomial 
g2d(Z,  W) = C 1 (Z 2d "]- W 2d) "~ c2zdw d is invariant under the dihedral group action, and 
we calculate: 

~g2a* (Z )  = - 2ct di(z 2d - w2a), 

~g2a,(U) = _ 2 c l d ( z 2 d -  1 w _ w2d-- lZ) _ c 2 d ( z  a -  lwd + I __ za+ lwa-1),  

~g2a,(V)  = - - i (2c ld(z  TM lw + w TM lz) + c 2 d ( z d - l w  a+l + za+lwa- l ) ) .  

Provided d > 3, these three polynomials are clearly orthogonal. This is the case even 
for d = 2, but notice that for d = 2 not all of the polynomials in the image of U (or 
V) are orthogonal to each other. Hence if d > 3 we compute 

[ [~g~, , , (Z)  1[ 2 = 8lc ~ 12d2(2d)!,  

II = = II = 81c, rd2(2d - 1)! + 21c212d2(d - l)!(d + 1)!. 

If  we set 

1 2 d -  1 
L ,ic, i 2_8d2(2d)  ! and ' 'it212=4d2(d!)( d + l ) ! ,  

then the push-forwards of  Z, U and V will be orthonormal, and the Sp( 1)-orbit of  
g2u will provide an isometric minimal immersion of the prism manifold S3/D *, d 

even > 4. If  cl and c2 are real, the polynomial g2u also lies in the real subspace 
R2u c W2a (since d is even) and hence 4,,2 d provides a minimal isometric immersion 
into the 2d-dimensional sphere. We now need to see whether D* is the full isotropy 
group of g2u. I f  d = 4, this is actually not the case, since the polynomial is identical 
to one of the invariant polynomials of O*. To see whether there exists an invariance 
group K for g2a with D* c K in any of  the other cases, we use, besides the list of  
possible inclusions among the finite subgroups of Sp(1), the fact that the orders of  
D* must divide the order of  K, that K must have an invariant polynomial of  degree 
2d, and that the invariant polynomials for K must occur in a degree for which D~ 
also has an invariant polynomial. These conditions already exclude all but the 
possibility that K = D'a,  but this can easily be excluded since the only invariant 
polynomial for D*u in degree 2d is zaw a and we already saw that this polynomial 
does not give rise to an isometric immersion. Hence ~g~ provides a minimal 
isometric embedding of  S3/D * into S2d(x/3/(4d(d + 1))) for even d > 6. 
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To obtain an isometric embedding for S3/D *, instead of choosing ci and c2 real 
in the polynomial g8, we can choose e.g. Cl real and c2 imaginary. Indeed, one 

shows, by equating the coefficients of z8 and wSin [ _ ~  bgz]gs=gs, thatcl/c2 

must be real if ab ~ 0 for some element of  F, and that ab = 0 for all elements of F 
implies that the invariance group is D*. Hence, if Cl/C2 is not real, the invariance 
group of g8 is equal to D4*. Of course, in this case the polynomial no lgnger lies in 
a real subspace and hence we obtain an minimal isometric embedding of S3/D * into 
S 1 7 ( ~ 0 ) .  

If d = 2, then the correct formula for the lengths of the images of Z, U and V 
is given by 

II  g4,(z)II 2 = 32 -4![c  ~ 12, 

11  4,(u) 112 = 2 �9 4!12c, - c2[ 2, I I G 4 , ( v ) I I  2 = 2.4!12c , + cz] 2. 

They will be orthonormal if Cl = 1/(16x/~ ) and c2 = i/8. By equating coefficients 
again, one shows that the invariance group of g4 is equal to D* and so we get a 
minimal isometric embedding of  S3/D * into sg(v/~). 

One can actually improve the codimension of  the latter embedding somewhat. 
The orbit of the polynomial ~8 = c~ (z 8 + w 8) + C2(Z6W 2 ~'- Z2W 6) "t- tZ4W 4 has con- 

stant curvature one if we set c~ = -  1/(512x//~) and c2 = w/7/(384w/5) and t =  
x/~/(768x/~). The only possible invariance groups for this polynomial are D* and 
O* (since T* and D4* have the same invariant polynomials in degree 8), but then the 
orbit of r would have to go through the "standard" invariant polynomial for O* 
and one easily shows that this is not the case. Hence one obtains a minimal 
isometric embedding of S3/D * into SS(w/~0). 

In the case of d even > 4, we can consider the orbit through g2a for all allowable 
values of c~ and cz to obtain a two-parameter family of  solutions. One parameter 
is again due to the ambient congruence which takes ci to ei~ But changes in the 
other parameter, namely Cl/c2, cannot be accounted for by congruences, or the fact 
that the polynomials lie on the same orbit. In fact, we obtain a one-parameter 
family of distinct orbits parametrized by c~/cz (note that ]c~/c21 is fixed). The orbits 
of  the polynomials with c~/c2 real lie in a 2d-dimensional sphere, and those for c~/c2 
not real lie in a (4d + 1)-dimensional sphere. Furthermore for d = 4, the orbit for 
cl/c2 real is actually an embedded $3/O*. 

More generally, we can consider the orbit through CIZ2d+c2w2d+c3zaw a. 
It has constant curvature one if and only if Ic, 12+ 1c212 = 1/(4d2(2d)!) and Ic312 = 
( 2 d -  l)/(4d2(d!)(d + 1)!), and one shows that this gives rise to a two parameter 
family of non-congruent orbits. For Ic,1=1c21, we  can assume that cl=c2 and 
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recover the previous solutions. For Ic, I ~ 1('21 one can show that the orbits are 
embedded lens spaces in a (4d + 1)-dimensional sphere. 

We can consider the polynomial g2a for d odd > 3. With the above values for c~ 
and c2, g2a still gives rise to an isometric immersion, but the invariance group is no 
longer D* (at least not for our chosen embedding of D* in Sp(1)). g2d is clearly 
invariant under C2a. If  d = 3, we will see in w that the invariance group is equal to 
T* (but with respect to a different embedding of T* than the one chosen earlier) 
since there is only one orbit of constant curvature one in R 6. On the other hand, if 

d odd > 5, we can exclude a bigger invariance group than C2a as we did in the case 
of g2a, for even d > 6. If we choose c~ real and c2 purely imaginary, g2a lies in R2a 
and so we get a minimal isometric embedding of L(2d; 1), for odd d > 5, into 
S2a(x/3/( 4d(d + 1))). 

If d is odd, then the polynomial h2a+ 2( -7, w) --- r 22a+ lw - w2d+ 1-7) q- 

C2Z a+ ~W d+~ is invariant under the dihedral group D*, and one easily shows that 
the pushforwards of Z, U and V are orthonormal if and only if 

1 12 _ ( 2 d  + 1)(d - 2) ]c'12-8dZ(2d+ 1)! and [('2 4d2(d+ 1)(d+ 1)! (d+2)!"  

Hence the Sp(1) orbit of h2d + 2 will provide an isometric minimal immersion of the 
prism manifold S3/D *, for d odd and > 3. If d = 5 and cl/c2 is real, then the 

polynomial h12 is actually the same as the one for I* and if d = 3 there exists an 
invariant polynomial for O* of the same degree as hs. But if d odd > 7, and if we 
choose Cl and c2 real, then we obtain a minimal isometric embedding of S~/D * into 
S 2d+ 2(x/3/(4(d + 1)(d + 2))). For d = 3 and d = 5 we can again choose cl real and 

cz imaginary to obtain a minimal isometric embedding of S3/D * into a (4d + 1)- 
dimensional sphere. 

For w it will actually be of interest to look at the case d = 3 in more detail. 
We will show that D* is the full invariance group of hs. Indeed, we only need to 
exclude the possibility that the invariance group of h8 is O*. But the only 
invariant polynomial for O* (with respect to the standard embedding) is equal to 
q = c(z8+ wS+ 14z4w 4) which for an appropriate choice of  c gives rise to a 

constant curvature one orbit. If  the invariance group for ha were g O * g - ~  for 
some g ~ SU(2), then gh8 would have invariance group O* and hence gh8 = q. 
But, by equating coefficients of zVw, z6w 2, and zSw 3 in gh8 = q, one can show that 

there exists no such g. Hence we obtain three distinct curvature one orbits among 
the degree 8 polynomials in Rs, an embedded S3/D *, an embedded $3/O * and an 

embedded S3/D *. Hence they cannot be congruent to each other and we obtain 
three distinct orbits in the moduli space. 
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Finally, we can consider the polynomial hza+ 2 for d even. For d = 2 this 
polynomial is the same as the invariant polynomial for T*, but for even d -> 4 one 
can show, by choosing el real and c2 imaginary, that this gives rise to a minimal 
isometric embedding of  L(2d; 1) into S 2a+ 2(x/3/(4(d + l)(d + 2))). 

CASE III: THE POLYHEDRAL GROUPS T*, O* and I*. Because the 
three-dimensional polyhedral manifolds are isotropy irreducible (i.e., the adjoint 
actions of T*, O* and I* are irreducible on .the Lie algebra sp(l),  see 
[WZ]), Takahashi's result tells us that the orbit of any nonconstant homogeneous 
harmonic polynomial invariant under a polyhedral group will yield a minimal 
isometric immersion of  the corresponding polyhedral manifold. However, for later 
purposes we need the exact polynomial that induces a constant curvature 1 metric. 
With a calculation similar to the lens spaces one easily verifies the following 
assertions. 

For  the binary tetrahedral group T*, the SU(2) orbit through the polynomial 
= ( 1 / ( 1 6 V / ~ ) ) ( z w  5 -  wz 5) gives rise to a minimal isometric embedding of S3/T * 

into $6(�88 This example realizes the smallest codimension of all our examples. 
For the binary octahedral group O*, the orbit through the polynomial /~= 

(1/(384w/~))(z8 + 14z4w4+ w s) gives rise to a minimal isometric embedding of 
5 3 / 0  * into SS(w/~8~). 

Finally, for the binary icosahedral group I*, the orbit through 

1 .~ ~ ( z l lw  + llz6w 6 - z w  11) 
7200x/154 

gives rise to a minimal isometric embedding of $3/I * into S12(Cr-~5~). 
To see that these immersions are actually embeddings, we observe that O* and 

I* are maximal subgroups in SU(2). Furthermore, for T* we are using a degree 6 
polynomial and, although T* is contained in O* and I*, they have no invariant 

polynomial of degree 6. 
To obtain the explicit form of  the isometric embedding of  S3/T * mentioned 

in the introduction, we take the map which sends (a,b)  to ~ ( a + b j ) =  
~ ( ~ z - b w ,  Sz + a w )  for ~ = ( 1 / ( 1 6 w / ~ ) ) ( z w S - w z  5) and express the result as a 
linear combination of the orthonormal basis 

{(z 6 + wr)/12n/q-6, i(z 6 - w6)/12x/~,  (zSw - z w S ) / 4 x / ~ ,  i(zSw + z w S ) / 4 x / ~ ,  

( z 'w  2 + z2wg)/4w/6, i ( z 'w  2 - z2w' ) /4x /~ ,  iz3w3/6}. 

The coefficients are then the components of  the embedding. 
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To summarize the results of  this section, we present the following table. For 
each homogeneous  three-dimensional spherical space form, we list the polynomial 
whose orbit provides the minimal isometric embedding of  smallest codimension. 
The constants c~ and c2 are real. 

Space 

L(d; 1), 

L(d; I), 

L(d; 1), 

L(4; l) 

L(6; 1) 

s3/o~, 

S~/D~, 

S3/D~ 

S3/D* 

d = 4s 

d ~ 8  

d = 4 s + 2  

d 2 1 0  

d odd 

d e v e n  

d 2 6  

d odd 

d > 7  

P o l y n o m i a l  C o e ~ c i e n t s  T a r g e t  

ha+2 = cl (  za+ lw + wa+ tz) 

_}_ ] s  I w 2 s +  1 

ga = e~(za+ wa) 

~_ ]C2Z2S+ IW2S+ 1 

k3d = CIZ3d j V C2z2dw d 

1 2 
ci- 2d2(d+  1)! 

8s 2 - -  6s - 2 

c2 = d2(2s + l)(2s + 1)!(2s + 2)! 

1 
c~ = 2d2d ! 

4s + 1 

c~ = d2(2 s + 1)!(2s + 2)r 

( d +  I) 
c~ = 4d2(3d + 2)(3d)! 

3 d -  1 
C 2 -- 

2 - 4d2( 3d + 2)d!(2d) ! 

1 

,, 4,0  

g2a = cl( z2a+ w2a) 

c2zdw d 

1 
c 2 _ 8d2(2d)! 

2d - 1 
C2 - -  

2 - 4 d 2 ( d + l ) ! d !  

1 2 
c i  = 8d2(2d + 1)! 

(2d + 1)(d - 2) 
c~ = 4d2( d + l)(d + l)!(d + 2)! 

1 

c - 1 5 3 6 , ~  

1 i ~ / 7  
c, - 7 2 , J ~  ' c2 = 2 8 8 ~ 5  

h2d+ 2 = CI( Z2d+ Iw -- w2d+ IZ) 

_~_ s Iwd+ I 

~s = c{ 14z4w4 + 28( z6w2 + z2w6) 

- 3(: + w")} 

h 8 : c l ( z 7 w  - w 7 z )  Jc r 4 

k x/4d( d + 1) ) 
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Space Polynomial  Coefficients Targe t  

S3/D~ gs = c( z s  + 14iz 4w4 + wS) c = 3 8 4 x / ~  S 17 

I 

c = 7200x/154  
S 3 / D  * h~2 = c ( z N w -  w l l  z + l l iz6w 6) 

= ~ (zw ~ - wz  ~) S 6 
1 6 x / t 5  

$3 /O  * jff = c(z s + 14z4w 4 + w s) 

.~ = c ( z H w  + l l z f w  6 - z w  11) $3 / |  * 

1 

c = 3 8 4 x / ~  

1 

c = 7 2 0 0  lx/154 

S2': 
\ x ~ 5 6 )  

3. The equivariant moduli space for S 3 

The moduli space of  equivariant minimal isometric immersions has some special 
features in the case of the 3-sphere. The isometry group of S 3 can be described by 
the action of Sp(1) x Sp(1) via left and right multiplication of unit quaternions. 
Any minimal isometric immersion which is equivariant with respect to some 
transitive group action is also equivariant with respect to either the left or right 
action of  Sp(1) on S 3. The two actions are equivalent to each other under the 
orientation reversing isometry given by quaternionic conjugation, and hence it is 
sufficient to look at all minimal isometric immersions equivariant with respect to 
the left-Sp(1) action. In this section we will examine this set in some detail. As 
explained above, if p is some polynomial, then the immersion corresponding to p 
(i.e., the orbit of p) is given by g e SU(2) ~-~ gp. The gauge group SO(4) acts on 
these immersions in two ways. The left multiplication by a unit quaternion h gives 
rise to the immersion g ~ hg ~ hgp which is clearly congruent to the original one. 
The right multiplication by h gives rise to the immersion g ~ gh ~ ghp which is the 
same as the immersion given by the polynomial hp. 

As was mentioned in w the SU(2)-equivariant minimal isometric immersions of 
S 3 and of  degree d forms a convex sub-body of  the set Ba of  all isometric minimal 
immersions of degree d. Let us first examine what the possible codimensions of such 
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equivariant minimal immersions are. To see this, we need to determine the 
respresentations of SU(2) on the full eigenspaces E~a. The full isometry group, 
SO(4), is locally isomorphic to SU(2) • SU(2) and the representation of SO(4) on 
E~.a is isomorphic to [Wa| Wa]R. Here Wa is the irreducible representation of 
SU(2) of  (complex) dimension d + 1 and the tensor product, being a representation 
of real type, is the complexification of a real representation (denoted by [ ]R) of real 
dimension (d + 1) 2. Hence the restriction from SO(4) to SU(2) is isomorphic to 
(d + 1)[Wa]~ = (d + I)Rd if d is even and to (k + 1)W a if d = 2k + 1 is Odd. Recall 
that Wa is a representation of  real type if d is even and a representation of 
quaternionic type if d is odd. If  we consider a polynomial p ~ E~a whose orbit 
SU(2) - p lies in a subspace E c E~ of smallest possible dimension, then E must 
also be invariant under SU(2). Hence the possible ambient dimensions of  full 
minimal isometric SU(2)-equivariant immersions are s(d + 1), 1 < s < d + 1 if d is 
even and equal to 2s (d+l ) ,  1 < s - < k + l  i f d = 2 k + l  is odd. 

We first discuss, for each d, the smallest possible ambient dimensions. If  d = 2 
or 3, then there exists a unique minimal isometric immersion, which is equivariant 
with respect to the action of SO(4) (and hence SU(2)-equivariant), but only goes 
into the full eigenspace (ambient dimensions 9 and 16, respectively). I f  d = 4, then 
there exists no minimal immersion with ambient dimension 5, as follows from 
Moore's  theorem, but we saw in w that there exists one (for p = g4) with ambient 
dimension 10 (and image S3/D*). If  d even > 6, we saw in w that there exist 
minimal immersions (with p = g  a) with ambient dimension d + 1 (whose images are 
S3/T *, $3/O *, $3/D*/2, or L(d; 1) depending on the value of d). If  d is odd and 
divisible by 3, we gave examples of minimal immersions with ambient dimension 
2(d + 1) for certain values of d in w (embeddings of the lens spaces L(d/3; 1) via 
kd). To give examples for all odd d = 2k + 1 > 5, let ~ba = clz 2k+ l + c2zkwk+ 1. One 
easily shows that the orbit through q~a has constant curvature one if and only if 

2k 2 + 5k + 2 

ICll= -- (k + 1)(2k + 3)(2k + 1)2(2k + 1)r '  
1 

' '1c212- (2k + 3)[(k + 1)!] 2. 

The image in this case turns out to be always an embedded sphere. Hence the 
smallest ambient dimension N of  a degree d minimal SU(2)-equivariant immersion 
s a t i s f i e s : N = 9 i f d = 2 ,  N = 1 6 i f d = 3 ,  N = 1 0 i f d = 4 ,  N = 2 k + l  i f d = 2 k 2 6 ,  
and N = 4k + 4 if d = 2k + 1 -> 5. "That these are the smallest ambient dimensions 
for SU(2)-equivariant minimal isometric immersions was already observed in 
[Ma2], but he did not discuss the nature of the image. 

We will now prove some uniqueness theorems for equivariant minimal immer- 
sions. For this purpose we first derive the general equations that such immersions 
satisfy. Let p = Eka~O CkZ d *W k be a general polynomial in the representation W a. 
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One easily shows, with the methods  developed in w that  the orbi t  th rough  p has 

cons tan t  curvature  iff the fol lowing equat ions  are satisfied 

d 

Z (2k -- d )2(d- -k) !k! lCkl  ~ = 1, 
k = O  

d 3 
Y' (d - k)!k!lc  k 12 = a (d  + 2-----~' 

k = O  

d - - 2  

(k + 2)!(d - k)!Ck?k+2 = O, 
k = O  

d - - 1  

~, ( d - 2 k  - 1)(k + 1)!(d-k)!cke,+l  =0.  
k = 0  

These are six real equat ions  in the 2(d + 1) real unknowns  Re (Ck), Im (Ck). 

F o r  d even, i f  we want  the orbi t  SU(2)  �9 p to lie in the real subspace R2d c WEd, 
then we also need to assume that  

C2d=?0, C 2 d - 1 = - - 7 1  . . . . .  C d + ~ = ( - - 1 )  a + l ? d - l ,  Ca =id t  

where t is real. Hence the orbi t  th rough  

p = C o Z 2 d j f f  ~ o W 2 d j f _  c 1 2 2 a -  1 w _ ~ I z W 2 d  - 1 . .~ . . . "Jl- iatzdw d 

has cons tant  curvature  1 if and  only if 

d - I  

2 
k = 0  

2(2k --  2d)Z(2d  - k)!k!lc k [2 = 1, 

d--I 3 
Y 2(2d-k)!k!lckl2 +d!d!t2 4d(d+ 1)' 

k = 0  

d - - 3  

y, 
k ~ 0  

2(k + 2)!(2d - k)!Ck?k+ 2 + ( --  1) d+ 1( d + t ) ! (d  + l)!c  2_ l 

+ ( - i ) a 2 d ! ( d  + 2)!ca_2t  = O, 

d - - 2  

y 
k = 0  

(2d  - 2k - 1)(k + 1)!(2d - k)!Ck~k + 1 + ( -- i )dd!(  d + 1)!Ca_ It = O. 

These are six equat ions  in the 2d - 1 unknowns  Cl . . . . .  ca_ 1, t. 
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We first examine these equations for d = 4 and show: 

P R O P O S I T I O N  1. Up to congruences of the ambient space, among the SU(2)-  
orbits of  polynomials in ~1o = W4 there exists a unique one of constant curvature one, 
which is isometric to S3/D *. 

Proof. The equations for p = Co z4 +.  �9 �9 + c4 W4 become: 

1 
161e012 + Ic112 + Ic31= + 161c4 r = ~ ,  

241co12 + 6lcll ~ + 41c21 ~ + 6tc312 + 241Cn[ 2 =  ~, 

4c0g2 + 3clc3 + 4c2~'4 = 0, 

6Cog 1 + c 1 ( ~ '  2 - t~2/~3 - 6C3C 4 = O .  

To simplify the equations we use the following observation from [Ma2]. If  

01 = S U ( 2 )  "Pl is one orbit  in R 1~ let N be the linear subspace o f  ~10 normal to the 

tangent space o f  O1 at p~. Then any other orbit 02 must pass through N. Indeed, 
all orbits are constant  distance apart,  and hence there exists a minimal geodesic o f  
~10 from Ol to 02 perpendicular to 0 ,  at pt. Hence 02c~N 4: f~. In our  case let 
p~ = z 4. Then the tangent space to SU(2) �9 Pl at Pt is spanned by iz 4, z3w, and iz3w, 
and so the condition that P2 E N in particular implies c~ = 0. By multiplying p with 

I ;  0~] we can als~ change the variables c~ c~' c2' c3' ca t~ ~4c~ d2cl' c2' a2c3' a4c4 

and we can also apply the ambient congruence which takes cf to ei~ Both 
operations preserve the condit ion c, = 0 and hence we can assume, in addition to 

Cl - -0 ,  that two of  the remaining variables are real. 

I f  Cl = 0 the last two equations become Cog2 = -c2c4 ,  c2c3 = -6c394.  If  c2 4: 0, 
c3 r 0 we can assume that  c2 and c3 are real and obtain co = - G ,  c2 = - 6 G .  The 
first two equations then become ]c312+ 321c41 z = 1  and 21c,1=+ 641c412 - - ~  which 
clearly has no solutions. 

I f  c3 = 0, we can assume that c4 is real and c2 is imaginary. Then Co = c4 and one 
obtains the solution g4 = (1/(16x//3))(z4 + w 4 ) +  (i/8)z2w 2 the orbit o f  which, is, 

according to w the dihedral manifold S3/D *. 
I f  c 2 = 0  and c34 :0  we need C a = 0  and the first two equations become 

161c0] = + Ic31 z = ~ and 81col = + 21e312 = ~,. Since we can assume that Co and c3 are 
real, we obtain the solution q = ~ z4+ (1/(6~/c2))zw 3. We claim that the SU(2)-or-  
bit through q is congruent  to the SU(2)-orbi t  through g4. To see this consider 
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E a - b -  " q" By looking at the coefficients o f  Z3W and zw 3 one easily shows that 

there exists a polynomial  in the orbit  o f  q whose coefficients of  z3w and zw 3 are 0 
and is hence o f  the form CoZ4+ c4w4+ c2z2w 2. But the argument  in the case o f  

c~ = c3 = 0 now implies that, up to congruence, the orbit through this polynomial  is 

the same as the orbit  through g4. [] 

P R O P O S I T I O N  2. Among the SU(2)-orbits  o f  polynomials in R 7 = [I4:6] R there 
exists a unique one o f  curvature one, which is isometric to S 3 / T  *. 

Proof. The equations for p = CoZ 6 4- ?o w6 + ClZSW - ?~zw 5 + . . . .  itz3w 3 be- 

come 

1 
1351Co[ 2 4- 10[cll 2 4- 1c212 = 384, 

2 3 2 1 
601Co12 + 101c, I = + 41c= [ + ~ t - 384 '  

lOc0t?2 + 2c 2 + 5icz t = o, 

25Co?1 4- 5cz72 4- ic2t = o. 

As in the p roof  o f  Proposit ion l, we first simplify the equations. This time we 
consider the orbit  through z3w 3. The tangent space o f  this orbit is spanned 
by z4wE-~zEw 4 and i ( z 4 w 2 - z 2 w 4 ) ,  and so the normal  space coincides with 

c2 = 0. Since every orbit  intersects the normal  space, we can assume c2 = 0. 
With this assumption, the last two of  the above equations become c0~1 = 0 and 
Cl t = 0. I f  Cl = 0, they are automatically satisfied. By modifying the polynom- 
ial, we can assume that Co is real and hence we obtain the solution q = 
( 1 / ( 7 2 x / ~ ) ) ( z  6 4- w 6) - i(x/~/72 )z3w 3. 

I f  cl q: 0 we need Co = t = 0 and we get the solution ~ = ( 1 / ( 1 6 v / ~ ) ) ( z S w  - zw 5) 

whose orbit  is the tetrahedral manifold S3/T *. We now claim that q lies in the 

S U ( 2 ) - o r b i t o f ~ . I n d e e d ,  c o n s i d e r i n g r = I _ a  6 bti] �9 ~ one easily shows that one 

can choose a and b so that the coefficients o f  zSw and z4w 2 in r are 0 and hence r 
is o f  the form CoZ 6 + ~0 w6 - itz3o) 3. We can furthermore assume that Co is real, but  

since the orbit  must  have constant  curvature one, it must agree with q. [] 

Finally, we give some (partially) heuristic arguments  as to the dimension of  the 
set o f  SU(2)-equivar iant  minimal isometric immersions. We start with degree 4. As 

explained earlier, the first time we can expect solutions is if the ambient  space is 
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2R4 = W4. One obtains 6 equations in 10 unknowns and hence a 4-dimensional 
soution set. (In fact, at a specific solution one easily checks that the equations have 
maximal rank). But one has a one-dimensional family of ambient congruences 
coming from ci-..*.ei~ and so there is at most a three-dimensional family of 
solutions in the moduli space B4, which agrees with the result in Proposition 1 that 
there is only one orbit up to congruence. If  we consider orbits in kR4, 3 < k < 5 of 
constant curvature 1, we obtain 6 equations in 5k unknowns giving rise to a 
( 5 k -  6)-dimensional solution set. However, we obtain a large group of ambient 
congruences from the group of orthogonal transformations on kR4 which commute 
with the representation of SU(2) on kR 4. This group is isomorphic to SO(k) since 
R4 is absolutely irreducible. Hence in 3 R  4 w e  obtain a 6-dimensional solution set, in 
4R4 an 8-dimensional solution set, and in 5 R  4 = E~4 a 9-dimensional solution set of 
equivariant solutions in B4. Recall that dim B4 = 18. 

For d =  5, we consider orbits in kWs, 1 < k < 3. In this case the group of 
orthogonal transformations commuting with the action of SU(2) is isomorphic to 
Sp(k) since W5 is a quaternionic representation. Hence a calculation as above shows 
that among the orbits in W5 we obtain a 3-dimensional solution set, in 2W5 an 
8-dimensional solution set, and in 3W 5 =E).5 a 9-dimensional solution set. This 

argument at least shows that the orbit of q~5 in W5 discussed at the beginning of this 
section is isolated among all equivariant solutions. 

Similar calculations can be carried out for larger values of d. The only other 
cases where one obtains a 3-dimensional solution set and hence an isolated (if not 
unique) orbit is for d = 6 and orbits in R 6 (corresponding to the unique solution in 
Proposition 2) and for d = 8 and orbits in R8. In the latter case we have three 
solutions from w the orbit $3/O * of if, the orbit S3/D~ of hs, and the orbit S3/D~ 
of ~b 8. One easily checks the maximal rank condition at these three solutions and 
hence it follows that they are isolated among the equivariant immersions. They 
cannot be congruent since their images are distinct. We doubt that there are any 

other solutions for d = 8. 
We suspect that in general the only congruences that one obtains between orbits 

of the same representation are orthogonal transformations which commute with the 

representation. It would then follow that the set of SU(2)-equivariant minimal 
isometric immersions of degree d form a convex body of dimension 2k 2 + 3k - 5 if 

d = 2 k + l  or d = 2 k .  

4. Higher-dimensional lens spaces 

To realize the higher dimensional lens spaces as homogeneous spaces we write 
S2n- 1 as U(n)/U(n - 1) where U(n - 1) is the subgroup of n by n unitary matrices 
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with a 1 in the upper left hand corner. The subgroup Ca generated by 

- e  2ni/d 0 ... 0 

0 

; In_ l 

0 

commutes  with U ( n -  1) and the homogeneous  space U(n) / (Cd X U ( n -  1)) is 
the lens space L(d; 1 . . . . .  1) = S 2~- l /C a where Ca acts on ~ 2 , =  C ~ by multi- 

plication on each coordinate.  This homogeneous  space is reductive, i.e. there 
is an ad-u(n - 1)-invariant subspace of  u(n), namely, the subspace m o f  skew- 
hermitian matrices whose only nonzero entries are in the first row and column. 
We can identify m with the tangent space to S 2"-1 at (1 ,0  . . . . .  0) and a 
left-invariant metric on the lens space with an a d - u ( n -  1)-invariant inner 

product  on m. One easily verifies that  for the inner product  on m which gives 
rise to the constant  curvature 1 metric on the lens space, the following is 
an or thonormal  basis (each of  the vectors in the basis is a skew-hermitian 
matrix A, and only the nonzero entries of  A are given, the rest being assumed to 

vanish): 

Z :  a l l  = i, 

Xk : alk = --akl = 1, k = 2  . . . . .  n, 

Yk : alk = akl = i, k = 2  . . . . .  n. 

The homogeneous  harmonic  polynomials in the 2n real variables we write again 

as polynomials in the complex variables z, ,  ~k (k = 1 . . . . .  n). As before, for  any 
polynomial  in the variables zi, the real and imaginary parts are automatically 
harmonic,  and the action o f  U(n) c SO(2n)  on the space o f  harmonic  polynomials 
restricts to the action o f  U(n) on C[z~ . . . . .  z.] where A ~ U(n) acts on 
p ~ C[zl . . . . .  z,]  by replacing zi by A - l acting on z,.. 

Fo r  any Ca x U ( n -  1)-invariant homogeneous  polynomial  p e C[z~ . . . . .  z,,  

~ . . . .  , ~,] we define the map 

~p : U ( n ) / ( C  d x U(n - 1 ) ) ~ C [ z  I . . . . .  z , , ,  z l  . . . . .  zT,,] 

given by 

~ p ( g ( C  d x U(n - 1))) = g p  

which we will try to make into an isometric embedding. 
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One easily shows that  for p~(zl  . . . . .  z , )  = ( 1 / ( a ~ ) ) z 7  we have 

- i  
O;o,(Z) = ~ zT, 

- 1  
( ~ p a , ( X k )  ~- - -  Z ~ -  l Z k ,  k = 2 , . . . , n ,  

- i  
q ~ p a , ( Y k ) -  7 z ~  l z  k, k = 2  . . . . .  n. 

These polynomials  are orthogonal ,  but  their norms are not equal, in part icular  

[[~p.,(z) I12 = 1, 

1 
= = v 4 .  

Note  that  ~po,(Xj) and ~po,(Yj) are shorter  than ~po,(Z) .  
We need another  Cd • U(n -- 1)-invariant polynomial .  To  be U(n - 1)-invari- 

ant, the only way it can depend upon z: . . . . .  z ,  is to be a function of 
~ - - I z 2 1 2 + . .  + l z ,  I 2. We thus search for harmonic  homogeneous  polynomials  
which are functions of  tr and p = IZ112. A calculation shows that  the unique such 
polynomial  (up to scaling) of  degree 2c is given by 

F2,,(z I . . . . .  z.)= ~ ( - - l ) l " a k t r C - k p  k, 
k = O  

where ak = (f , )( ,+~-2).  We then calculate that 

r , ( Z )  = O, 

c - - 1  

~F2~,(Xj) = ~ ( -- l)ktr ~ - k -  lpk(zkY.l + ZlZk)((ak(c -- k)  + ak+ l ( k  + 1)), 
k = 0  

c - - I  

~rz.. * ( Y1 ) = ~.  ( -- 1) *tr c - k l p ki(zk el -- Z, Zk)((ak (C -- k)  + ak +t (k + 1)), 
k = O  

and hence 

11  2c,(z)fl =0 ,  I[o :c,(x )ll = Ilo  c,(rJ)ll t 0 .  
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Using this, we see that the three polynomials ~F2do(Z), ~F2dO(Yk) and 
~r2a,(Xk)  are orthogonal, and they are orthogonal to the images under ~p2a*' 
Since ~F2a, (Z)  = 0, we see that we can make up for the deficiency in the length of 
q~p2a,(Xk) and q~p2a,(Yk) by adding the appropriate multiple of  F2d to P2d. The 
correct choice of  scale factors will then provide us with a minimal isometric 
immersion of L(2d; 1 . . . . .  1) = U(n)/(C2d X U(n -- 1)) into the N2d--  l-dimen- 
sional sphere of radius x/(2n - l ) / (4d(d  + n - 1)). One also easily shows that C2d 
is the full isotropy group of  this polynomial and hence this immersion is an 
embedding. 

We can improve our measure of the codimension of the embedding if we recall 
that the representation of U(n) on the space Hn of homogeneous harmonic 
polynomials in zl . . . . .  z,, ;71 . . . . .  ~, is reducible. In fact, the irreducible pieces are 
the spaces Hkj  (with k + l = n) of  harmonic polynomials which are bihomogeneous 
of  degree k in Zl . . . . .  z, and degree l in ;71 . . . . .  :?, (see [G]). The real dimension of 

Hkj  is 2(( " + k -  i ) ( .+~- i )  _ (.~k72)(.~-_ti Z)) ' Since P2d ~ H2a.o and F2a �9 Hal, j ,  the 
orbit of their weighted sum is contained in H2a.o • Hu, a. 

For d odd one shows that the orbit through the harmonic homogeneous 

polynomial 

c,z  k=o ( -  1)k 2) Iz112'"-'>(Iz21 + . . .  + Izo 12) * 

provides, for appropriate choice of  cl and c2, a minimal isometric embedding of 
L(d; 1 . . . . .  1) into sphere of  radius x/(2n - 1)/(3d(3d + 2n - 2 ) )  in H3d,0 0)Hzd, d. 

5. Space forms of  dimension 4n - 1 

Finally, we turn to the spherical space forms which are realized as homogeneous 
spaces of  the symplectic group Sp(n). Recall that the sphere S 4"- 1 can be realized 
as the homogeneous space Sp(n)/Sp(n - 1), where Sp(n - 1) acts on the last n - 1 
variables. Then, any finite subgroup F of Sp(1) (these were listed in w can act on 
the first component  of  the quaternionic Euclidean space H", yielding a homoge- 
neous space Sp(n)/(F x Sp(n - 1)), This manifold is also equal to S 4"- 1/F where F 
acts on H n in each variable by multiplication on the left. 

The Lie algebra ~p(n) has the ad-~ta(n-1)- invar iant  splitting ~p(n)= 
~p(n - 1) ~3 m, where an orthonormal basis of  m is given by the following set of 
4n - 1 quaternionic matrices (in each case, the matrix is given in the form A + Bj, 
where A is a skew-hermitian and B is a symmetric complex matrix. Only the 
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nonzero  elements o f  A or  B are listed, and  all o ther  elements of  A and B are taken 

to be zero):  

Zk : aik = akl = i, k = l . . . . .  n, 

Uk : blk = bkl = 1, k = 1 . . . . .  n, 

Vk: blk = b k l = i ,  k = l . . . . .  n, 

Wk : alk = --akl = 1, k = 2  . . . . .  n. 

Ident i fying C 2" with H" via 

(z, . . . . .  z . ,  wl . . . . .  w . )  - , ( z l  + wlL  . . . .  z .  + w . j ) ,  

Sp(n) becomes a subgroup  of  U(2n) where A + Bj  e Sp(n) becomes 

- B  

We now need to find F x Sp(n - 1)-invariant  po lynomia ls  in the 2n complex 

variables Zk and Wk (k = 1 . . . . .  n), where of  course, an element A + Bj  of  Sp(n) acts 

on p(Zk, Wk) by replacing zk and wk with 

act ing on (Zl . . . . .  z . ,  w~ . . . . .  w.). Given such a po lynomia l  p, we get a map  

�9 . : S p ( n ) / ( r  • Sp(n - 1)) ~ C[Zk, Wk] 

and we compute  that ,  for Pab(Zk, Wk) = ZTW~, 

q~P~b *( Z1)  = i(b - -  a)z~ w~, 

�9 p .~. (Z~)  = - i (azkwi -- b w k z , ) z ~ - '  w b -  1, 

~Pab *(U1)  = - a z ' ~ -  l wb+ I + bzT+ l w ~ -  l, 

~p~b.(Uk) = - - (awkwl  -- b z k z , ) z T - l w b  l, 

@pa~.(V,) = - - i ( a z T -  ~w b+ ' + bzT+ ~w b -  ' ) ,  

~Pob *(Vk) = --i(awkw~ + b z k z , ) z ~ -  l W ~ - l ,  

~po~ . ( W k )  = -- (azk w, + bzl wk)z 7 - ' w ~ - 1, 
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where k always runs from 2 to n. It turns out, as for the lens spaces, that we will 
need a polynomial that depends on p =]Zl[2+ Iw, l 2, and a =1z212§ Iw212 § + 
[zn[2+ iw nl2. A calculation shows that a harmonic polynomial of degree 2d that 
depends on p and tr is 

d 

F ~ =  ~ (--l)ka, pd-ka k, 
k = 0  

where 

(,9(~ I ') 
a ~  - (~. +~_ ~). 

As in the case of  the lens spaces, one now easily checks that ~ru,(Zk),  ~r2,,(Uk), 
r  and r are orthogonal to each other and to the images under any 
�9 p~,  as long as a + b = 2d. Furthermore ~r~ , (Z , )  = ~ r ~ , ( U l )  = ~F2a,(Vl) = 0 
and 

the latter simply following from the fact that F2a is invariant under the action of 
Sp(n - 1) and Sp(n - 1) acts transitively on the subspace generated by Zk, Uk, Vk, 
Wk, k > 2 .  

We now need to add to the polynomial F2d one of the polynomials q(zl, w,) 
invariant under F, as described in w Since all such q are linear combinations 
of Pab with a + b  =2d,  it follows from the above that all the images under 
Ova ,  and r are still orthogonal to each other and by the construction in w 
we have I I ~ q , ( Z , ) l l  = II~q,(U,)ll = I I ~ q , ( v , ) l l  = 1. Hence we only need to check 
that 

I I ~ , ( z ~ ) l l =  = i i~q , (U~) l l~  = I I ~ , ( v , ) l l =  = I I ~ , ( w , ) l l  = < 1. 

(The equality of  the length of these vectors is again clear from the fact that q is 
invariant under Sp(n - 1).) It will then follow that, for appropriate choice of cl 
and c2, ClF2a + c2q provides a minimal isometric immersion of S 4"- l/F into the 
N2d-  1-dimensional sphere of radius x / ( 4 n -  l)/(4d(d+ 2 n -  I)). The fact that 
this immersion is an embedding then follows as in w 
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We now check the deficiency in length of the images under ~q,. One easily 
shows, using the explicit formulas for q in w that the length squared L 2 of these 
images is as shown in the following table. 

Space Polynomial L 2 

L(d;l), d = 4 s ~ 8  ha+2 3/(d+4) 
L(d;l), d = 4 s + 2 ~  10 gd 3/(d+2) 
L(d; 1), d odd k3d 3/(3d+2)  
L(4; 1) Ps 3/10 
L(6; 1) f6 3/8 
S3/D *, even d 2 6 gza 3/(2d + 2) 
S3/D *, odd d ~ 7 hzd+2 3/(2d+4)  
S3/D~ if8 3/10 
S3/D~ h 8 3/10 
$3/D* g8 3/10 
S3/D~ hi2 3/14 
S3/T * ~ 3/8 
$3/0 * /~ 3/10 
S3/I * A]" 3/14 

T h u s  in all cases,  L 2 < 1, w h i c h  a l so  f in ishes  th is  case  a n d  f in i shes  the  p r o o f  o f  

o u r  T h e o r e m .  
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