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Duality and minimality in Riemannian foliations

XO0SE MASA

In this work we prove that a Riemannian foliation & defined on a smooth
closed manifold M is minimal, in the sense that there exists a Riemannian metric on
M for which all the leaves are minimal submanifolds, iff # is unimodular, that is,
the basic cohomology of # in maximal dimension is nonzero. This result has been
conjectured by Y. Carriére. We use the structure theorem for Riemannian foliations
(Molino, [12]) to reduce the problem to transitive foliations, and a parametrix
constructed by Sarkaria [15], that permits him to prove a finiteness theorem for
transitive foliations. We also prove a duality theorem for the foliated cohomology
conjectured in [8].

A good description of the theory of duality and minimality is given in Appendix
B, by V. Sergiescu, in the book by P. Molino “Riemannian foliations™ [12].

We thank J. A. Alvarez Lopez for very helpful conversations and A. Fugarolas
for his guidance through the Riesz theory.

1. The cohomology of transitive foliations

Let M be a smooth closed manifold of dimension n + m, which carries a smooth
foliation # of dimension m. We denote by (M) the algebra of all smooth
differential forms on M. A smooth form of degree i is said to be of filtration =p
if it vanishes whenever i — p + 1 of the vectors are tangent to the foliation. We shall
denote the subalgebra of all forms of filtration =p by F?Q. In this way, the de
Rham complex of smooth forms becomes a filtered complex and we have the
spectral sequence E,(¥#) which converges to the real cohomology of M.
E%(#) = H%, the cohomology of M with coefficients in the sheaf of germs of
locally constant differentiable functions along the leaves of the foliation.

We can define a differential operator

dg : QM) - Q'+ (M)

as follows: we consider a Riemannian metric on M and an orthogonal complement



i8 XOSE MASA
W(F) of T ; we have

QM= Y TAMF)N*RA(TF)).

r+s=i

We say that a differential form a is of “type” (r,s) if axeQ™(M)=
F(AT(W(F)*Q A(TF)*), and the exterior differential decomposes as

d = dO,l + dl,O + d2’_1 .

dg is dy, and d% =0.
We define the basic forms Q%(M) by

QM) =(FrQ?)nKer ds .

(Q%(M), d) is a differential complex, and E2°(F) = HP(Q%(M)) is called the basic
cohomology of the foliation,

The terms E¥"(#) of the spectral sequence are isomorphic to the & -relative
cohomological groups introduced by Rummler (see [14] for the definition, [9] or
[10] for the isomorphism).

Let y(M) be the algebra of vector fields on M, I'(#) the Lie sub-algebra of
vector fields tangent to the foliation. Let us denote by y(M, %) the Lie algebra of
the foliated vector fields, that is, the normalizer of I'(#) in y(M). At each point
x € M, we get a subspace y(M, #)(x) of the tangent space T M, by evaluating the
vector fields at x. The foliation is called fransitive if (M, #)(x) = T, M for all x.

In [15] Sarkaria constructs a 2-parametrix for a transitive foliation. We shall
topologise (M) with the usual C* topology. In this way it becomes a Hausdorff
locally convex topological vector space. If E and F are Hausdorff LCTVSes a linear
map s : E — F is called compact if it maps some neighbourhood U of 0 to a set s(U)
with compact closure. A 2-parametrix will be a pair of linear maps s, h : QM) —
Q(M) satisfying

(a) s is compact,

(b) 1 —s=dh+hd, (1)
(c) s(FrQd) < FPQ for all p,

(d) h(FFQ) < FF~'Q for all p.

In order to define s and A, let us fix a finite dimensional vector space
V (M, ) such that V(x) = T, M for all x e M. Since M is compact and & is
transitive, we can always extract such a finite dimensional vector subspace. Further-
more, onc chooses a Riemannian metric g on ¥, of volume element |g|, and a
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smooth function f on V supported in a compact neighbourhood of 0. One defines
a map s : Q(M) - Q'(M) by

(s2)(x) = L (P30() - f(X) - |gl,

where ¢,, : M > M denotes the flow of the vector field X € ¥, and ¢, is the
diffcomorphism corresponding to ¢ = 1. Sarkaria constructs the smooth kernel
K(x, y) of s, such that

(s2)(x) =f K(x, y)a(y),
M

and so s is a compact operator of trace class.
One normalises the function by [, f(X)|g| =1 and one defines 4 by

(ha)(x) = j

Vv

J. (iyd o) (x) - f(X) - dt - |g|
o

Now we can use the Riesz theory of compact operators ([6], [13]). Let
K={)(1=-9770), I={}(1-5"(2M)).

Then K and I are topological supplements stable under s and 1 —s, K finite
dimensional. Moreover, 1 —s induces a nilpotent operator in K and a TVS
automorphism in /. In fact, the sequences (1 —s) "(0) and (1 - s5)"(Q(M)) are
stationary starting from the same rank v. In this case, we say that (1 — s) has finite
ascent (and finite descent) v [13].

FPQ is a closed subspace of Q(M), and s defines a compact operator
s FPQ — FPQ for each p, 0 < p < n. Let k& be the maximum of the ascents of each
(1 = 5)|ra, 0 < p <n. K and I are filtered differential algebras: we define FPK as
Kn(FrQ), and Fl as (), (1 —s)"FrPQ.

Let u={(1—9)*|,} '. We have a split exact sequence

0-K-QM)>1-0

of filtered differential complexes, where Q(M) =1 is u o (1 — 5)*. In this way, we
have

FrQ =~ FPK @ F?I
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as a topological differential complex. We can define two spectral sequences E,(K)
and E,(I), and we obtain

Ey(F) = E)(K) @ Ey(I).
But now the inclusion E,(I) — E,(#) is zero, because the homotopy # satisfies

the condition (d) in (1).
In fact,

Q)P +4q
Bre) = (5 )

and
di: EY9(F) = E;* M(F)
is induced by the connecting of the exact sequence

FrriQr+a FrQr+a FPQr+4q
0

—F - - —U.
Frpr2Qp+a  pp+2Qp+aq  pp+lOp+g

0

We shall see that if [#] € E59(F), then n — s(n) is a coboundary in EZ9(F): n € FFQ
represents a class in E29(F) if dy = a + dp, with a € FP*2Q and f € FP+'Q. So,
ha e FP+'Q and hdf =d(—hp) + (B — sB), with (B — sp) € FF *'Q. Hence,

n — s(n) = dh(n — B) mod F7+'Q.

Since (1 —s),: E;(I) - E,(I) is an isomorphism, we have proved

E,(#) = E,(K).

With the C* topology the quotients F,(%#) are not always Hausdorff. As the
exterior differential 4 is continuous, we can define a new differential complex [, (¥)
with

El(f) = El('g:)/o_fs

where O is the closure of {0} in E (%), and E,(F) = H(E,(¥)).
We have E\(¥) = E,(K)® E,(I), and E,(K) is Hausdorff. Then,

E(F) =E(K)@E (),
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where E,(I) = E,(I)/0,, and O, is the closure of {0} in E,(I). Finally,
E,(#) = E;(K) @ E,()),

and E,(I) = H(E,(I)) =0 for the same reason that E,(I) = 0. So, we have proved
E,(F) = E,(#).

2. The cohomology of Riemannian foliations

(A reference for this section, with very detailed calculus, is [2]. For the
cohomology of operations and related spectral sequences, see [5]).

Let us consider now a Riemannian foliation & on M. If & or M are not
orientable we can work in a convenient covering space. We shall use throughout a
bundle-like metric on M. Let (P, n, M) be the principal SO(n)-bundle of oriented
orthonormal transverse frames, associated to % and the metric. Let & be the lifted
foliation in P, which is transitive (it is transversally parallelizable [12]). & is
invariant by the right action of SO(n) on P.

If £ € so(n), the Lie algebra of SO(n), we denote by (&) the Lie derivative with
respect to the fundamental vector field associated to £. Let Q(P),_, be the
subalgebra of Q(P) of the differential forms satisfying

8 =0, & eso(n).

Analogously, we denote by i(¢) the interior product with respect to fundamental
field associated to ¢, and Q(P),_, the subalgebra of the differential forms satisfying

i =0, ¢ eso(n).
The existence of a connection on P permits to set up an isomorphism
Q(P) = Q(P);-o® Aso(n)*.

The induced filtration on Q(P),_, defines a spectral sequence E,(2(P),_,), and
we have

E\(F) = E\(QP); ) ® Aso(n)*

because the d,-differential is induced by dgz, and the forms in Aso(n)* are dgz-
closed. As a consequence, we have E,(F),_ o= E,(QP),_,). Let j : QP)y_ o — QP)
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be the inclusion. Since SO(n) is compact and connected, there exist linear
maps

piQ(P)>Q(P)y_o;  h:Q(P)->Q"(P)
compatible with the action of SO(n), and satisfying
p oj =id; id—jo p=dh+ hd

The homotopy h has the property that 4 | Q(P), ., = 0. Moreover, as Z is invariant
by the right action of SO(n) on P,

h(FFQ(P)) = FP~'Q(P); p(FPQ(P)) < FrQ(P),
pedg =dg op; hodg =dg oh.
So, the action of so(#) on Q(P) defines also an action on E,(#), and we have:
LEMMA. E(#),_os_0= E\(F).
In fact, let [o] € E\(%);_0g-0. We can write
de=dga+doa+d,_ o
But dzo =0 and d, _,a € FP*2Q(P), hd, _,a € FP*'Q(P) and it is zero in E,.
Finally, d, oo has two parts. One of them belongs to €(P),_,, and their image by
h is zero. The other, d,a, the derivative along the fibres of x, is as follows: if {¢,}

is a basis of the fundamental vector fields and {¢}} is the dual basis of differential
forms, we have )

dn = Y EF A O ).

But 6(&)[a] =0, ie., 0 =dzP, pe FFQ(P);_o, and dzE* =0, then, if we put
0(¢;)x = dgz f;, then

hd.=hdg Y E¥ AB,=dzh Y EF A B,
with A} A B;) € Q(P);_, and

a—jop@)=dgh} i¥ A B,
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Now, to compute E¥9(F) we construct the spectral sequence E(q) associated to
the action of so(n) on E, (%),

E%*(q) = E5"(F) ® H'(s0(n), R) = H(E}(F)s-0) = EPI(F).

All the maps that we have used are continuous, then we also have a spectral
sequence

E3*(g) = B%(%F) ® H'(so(n), R) = E3(F).
Finally, the Zeeman’s comparison theorem permits us to conclude:
THEOREM. Let & be a Riemannian foliation. Then E59(F) = E59(F).

We can also conclude that E4%(%) is finite dimensional, which is the principal
theorem in [2].

3. A criterion for minimality

For a Riemannian foliation of codimension n on a compact manifold, we have
E(F)=0 or E2°%(F) =R [4]. It is a well known fact that EZ°(%) #0 is a
necessary condition for minimality (vid., for instance, [12, Appendix B}). This is a
consequence of the following Rummler—Sullivan criterion [14], [16], [7]:

“Let g, be a smooth scalar product on T# . It is induced by a Riemannian metric
g on M for which the leaves are minimal submanifolds iff the volume m-form y, on the
leaves defined by g, (and the orientation) is the restriction to the leaves of an m-form
¥ on M which is relatively closed, namely, dy(X,, ..., X, . ) =0 if the first m vector
fields X, are tangent to the leaves.”

So, we shall assume that E2°(#) = R.
Now, we consider the star operator * associated to the bundle-like metric on M
and the scalar product

<<x,,B>=J\ o A xf.

The star operator takes forms of type (p, g) into forms of type (n — p, m — q). If we
denote 65 = *dg*, we have

Imd; = (Kerdg)*, (2)
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where 1 denotes the orthogonal complement with respect to the scalar pro-
duct. Obviously, Imdy = (Kerdz)* and (Imd;)* cKerd,. We have also
Q=(Kerds)"®Kerdy, =Im oy ®Kerdy. In fact, if « ¢ Imdy @ Ker dz, by
the Hahn-Banach theorem there exists a closed hyperplane L that contains
Im d; ®Ker 6, and such that « ¢ L. If § is orthogonal to L, f € (Im dz)* and
p ¢ Ker 05, contradition. Now, an analogous argument finishes the proof of (2).

We are assuming, first, that & is transversally parallelizable, that is, there exist
foliated vector fields Z,, ..., Z, such that their images generate T, M /T, # for all
x € M. The closures of the leaves of the foliation are the fibres of the basic fibration
associated to & [12],

n:M->W,

and the foliation defines by restriction to each of the fibres a Lie g-foliation, where
g is the structural Lie algebra.

Let v be an invariant transverse volume for &, v € Q% (M), defining the nonzero
class in E2°(#). We can choose the form v to be orthogonal to d(2%'(M)). This
is trivial if the leaves of # are dense, as then d(Q% '(M)) = 0. The general case
requires the use of the structure of the fibration n : M — W defined by the closures
of the leaves of &#. Consider the filtration defined in Section 1, but now associated
to the fibration n, and so we can speak about the forms of type (p, q),, and
differentials d,, ,d,;,, and so on.

Let w be the image by = of the volume form on W. The condition EZ%(#) #0
is equivalent to the following [4]: g is unimodular and there exists a form A such
that v =1 A @ is an invariant transverse volume for &# and satisfying

(1) Ais of type (0, 5),, s =dim g, and
(2) d,A=0and ,d,,A=0.

Let f= j',, (4 A w) A A, where j,, is the integral along the fibres. Then
fe C®(W) and f(x) # 0 for all x. Now, the volume v, = (1 A w)/f is orthogonal to
d(Q%'(M)). In fact, a form y € Q% ' (M) can be written as

b4 =kZ {iz ) A few + 4 A griz 0}
=1
where f;, g, € C*(W). Then,

dy =+ A d< Y gkizkw)=l A d(mt*n)
k=1
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with n € Q*(W), and

<}(A A ), dy>

<}(,{ A@), A A d(n*n)>

iJM{*}(l /\w)}/\}t A dn*y

=J‘W%dn J; *(1 A w) A/I=L/d11=0.

With this choice of v,, the form y = #v, is positive along the leaves and defines
a nonzero class in E3™(#), i.e., d;(y) € O4™. In fact, let y be a (n — 1)-basic form.
We have

dio(0), *y> =<d(¥), *y> = £<vo, dy) =0,
and, by (2),
dio(x) € de Q' Y(M).

Let [I'l € ES™(#) be the class corresponding to x by the isomorphism
ES™(F) =~ B3 (#). We have

'=y+n, with n e 0%

Since y is positive along the leaves, we can take some form a € dy(EY™ ~ '(F))
such that I' +« is close enough to y so that I' +a is also positive along the
leaves. But I' + o also defines [I'] and then % is minimal by the criterion of
Rummler--Sullivan.

Finally, if & is an arbitrary Riemannian foliation, we consider the principal
bundle (P, 7, M) and the transversally parallelizable foliation #, as in Section 2.
Integration along the fibres of = : P —» M, after exterior mulitiplication with the
invariant volume form along the fibres, assigns m-forms on M positive along the
fibres of # to m-forms on P positive along the leaves of #. The computations in
Section 2 permits us to conclude the

MINIMALITY THEOREM. Let M’ be a smooth closed orientable manifold and
F an oriented Riemannian foliation. There exists a Riemannian metric on M for
which the leaves are minimal submanifolds iff the basic cohomology of maximal
dimension is nonzero.
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4. Duality theorem

DUALITY THEOREM. If M is a smooth closed orientable manifold and F is
a Riemannian foliation, then

E§UF) = B3P U(F).

This Theorem reduces now to the Duality Theorem proved by J. A. Alvarez
Lopez [1], [3]. He defines a filtration in the complex of currents (Q’,d’) in M,
obtaining a spectral sequence (E’, d”) which converges to H(Q’, d’), and he proves
that there exist regularization operators which are adjoint of continuous filtration-
preserving operators in (M), resulting in an isomorphism between E, and E2
Finally, he has duality isomorphisms E§9(#F) = E; ~»" ~ 4(F).
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