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Duality and minimality in Riemannian foliations 

Xosl~ MASA 

In this work we prove that a Riemannian foliation ~- defined on a smooth 
closed manifold M is minimal, in the sense that there exists a Riemannian metric on 
M for which all the leaves are minimal submanifolds, iff ~" is unimodular, that is, 
the basic cohomology of  ~,~ in maximal dimension is nonzero. This result has been 
conjectured by Y. Carrirre. We use the structure theorem for Riemannian foliations 
(Molino, [12]) to reduce the problem to transitive foliations, and a parametrix 
constructed by Sarkaria [15], that permits him to prove a finiteness theorem for 
transitive foliations. We also prove a duality theorem for the foliated cohomology 
conjectured in [8]. 

A good description of the theory of  duality and minimality is given in Appendix 
B, by V. Sergiescu, in the book by P. Molino "Riemannian foliations" [12]. 

We thank J. A. Alvarez L6pez for very helpful conversations and A. Fugarolas 
for his guidance through the Riesz theory. 

1. The cohomology of transitive foliations 

Let M be a smooth closed manifold of dimension n + m, which carries a smooth 
foliation ~- of  dimension m. We denote by I2(M) the algebra of  all smooth 
differential forms on M. A smooth form of degree i is said to be of  filtration >p  
if it vanishes whenever i - p  + 1 of the vectors are tangent to the foliation. We shall 
denote the subalgebra of  all forms of  filtration >p  by PI2 .  In this way, the de 
Rham complex of smooth forms becomes a filtered complex and we have the 
spectral sequence E r ( ~ )  which converges to the real cohomology of  M. 
E~ '~ Hq~, the cohomology of M with coefficients in the sheaf of  germs of 
locally constant differentiable functions along the leaves of  the foliation. 

We can define a differential operator 

d~ : f2~(M) - - .0  '+ ~(M) 

as follows: we consider a Riemannian metric on M and an orthogonal complement 
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v(#-) of T#-; we have 

f2'(M) ~ ~., r(A~(v(~)) * | 
r + s = i  

We say that a differential form a is of "type" (r,s) if ~ e f2r'~(M)= 
F(Ar(v(g~r)) * | AS(T:~)*), and the exterior differential decomposes as 

d=do, l + dl,0 + d2,_l. 

d~ is d0,~ and d ~  = 0. 
We define the basic forms 12~(M) by 

f2~(M) = (FPf2 p) n Ker d~. 

(f2~(M), d) is a differential complex, and E~'~ -) ~ HP(f2*(M)) is called the basic 
cohomology of the foliation. 

The terms E*,"(8~-) of the spectral sequence are isomorphic to the J~-relative 
cohomological groups introduced by Rummier (see [14] for the definition, [9] or 
[10] for the isomorphism). 

Let )~(M) be the algebra of vector fields on M, F(~, ~ )  the Lie sub-algebra of 
vector fields tangent to the foliation. Let us denote by )~(M, ~ )  the Lie algebra of 
the foliated vector fields, that is, the normalizer of F(~')  in x(M). At each point 
x e M, we get a subspace z(M, :~)(x) of the tangent space TxM, by evaluating the 
vector fields at x. The foliation is called transitive if x(M, ~) (x)  = TxM for all x. 

In [ 15] Sarkaria constructs a 2-parametrix for a transitive foliation. We shall 
topologise 12(M) with the usual C ~ topology. In this way it becomes a Hausdorff 
locally convex topological vector space. If E and F are Hausdorff LCTVSes a linear 
map s : E--, F is called compact if it maps some neighbourhood U of 0 to a set s(U) 
with compact closure. A 2-parametrix will be a pair of linear maps s, h : f2(M) - ,  
f2(M) satisfying 

f ( a )  s compact, 
is 

(b) 1 - s = d h + h d ,  
(c) s(FVf2)~FVf2 for all p, (1) 
(d) h(FPI2) ~ F p- 112 for all p. 

In order to define s and h, let us fix a finite dimensional vector space 
V ~_ x(M, ~ )  such that V(x) = T,,M for all x e M. Since M is compact and ~ is 
transitive, we can always extract such a finite dimensional vector subspace. Further- 
more, one chooses a Riemannian metric g on V, of volume element [gl, and a 
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smooth  function f on V supported in a compact  ne ighbourhood  o f  O. One defines 
a map s : Oi(M) --* f2i(M) by 

(s~)(x) = f v  (c~ *ot)(x) �9 f ( X )  �9 Ig[, 

where ~b,x : M--* M denotes the flow of  the vector field X e V, and ~x  is the 

diffeomorphism corresponding to t = 1. Sarkaria constructs  the smooth  kernel 
K(x,  y) of  s, such that 

(s~)(x) = fta K(x,  y)a(y) ,  

and so s is a compact  opera tor  o f  trace class. 

One normalises the function by ~v f (X) [g  I = 1 and one defines h by 

(ha)(x) = (ixC~*rx~)(x) " f ( X )  " at .[gl. 

N o w  we can use the Riesz theory o f  compact  operators  ([6], [13]). Let 

K = 0 (1 - s) - ' (0 ) ,  I = ('] (1 - s)'(f2(M)). 
r r 

Then K and I are topological supplements stable under s and 1 - s ,  K finite 

dimensional. Moreover ,  1 -  s induces a nilpotent opera tor  in K and a T V S  
au tomorph i sm in L In fact, the sequences ( l -  s)--r(0) and ( l -  s)r(12(M)) are 

stat ionary starting from the same rank v. In this case, we say that  (1 - s) has finite 

ascent (and finite descent) v [13]. 

FPO is a closed subspace o f  12(M), and s defines a compac t  opera tor  

s : FPf2 ~ FPf2 for each p, 0 < p < n. Let k be the max imum of  the ascents o f  each 

( l - s)IF,O, 0 ~ p < n. K and I are filtered differential algebras: we define FPK as 
K c~ (FPO), and FPI as N ,  ( 1 - s) rFPO. 

Let u = {(! - s )  k I t}  1. We have a split exact sequence 

O ~  K - - * ~ ( M )  --* I ~ 0  

of  filtered differential complexes, where O(M) --. I is u o ( 1 - s) k. In this w a y ,  w e  

have 

FPI2 ~_ FPK ~ FPl 
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as a topological diffcrcntial complex. Wc can dcfinc two spectral sequences E2(K) 
and E2(1), and we obtain 

E2(#-) ~ E2(K) ~ E2(I). 

But now the inclusion E2(I) - ,  E2(~) is zero, because the homotopy h satisfies 
the condition (d) in (1). 

In fact, 

/: FPQP + 7 q) 
E{,q(.~) ~_ nq~F-T7 , 

and 

di : El 'q(# -) ~ E {  + l,q(#-) 

is induced by the connecting of the exact sequence 

Fp+ lQp+q FpbQp+q Fpt2p+q 
O--~FI,+2Qv+ q , p+2f2p+q  *Fp+lQp+q ~0. 

We shall see that if[el ~ E{ 'q(~) ,  then ~ / -  s(r/) is a coboundary in E{'q(~-): r/~ FPfJ 
represents a class in E{ 'q (~)  if d r / = a  +tiff, with :t E Fp+2f2 and fl ~ P+~f2.  So, 
ha E Fp+ lo  and h dfl = d ( - h f l )  + (fl - sfl), with (fl - sfl) e FP+1f2. Hence, 

rl - s ( r l )  = d h ( r l  - fl) mod F p+ ~f2. 

Since (1 - s ) 2 : E 2 ( I ) - ,  E2(I) is an isomorphism, we have proved 

E2(~-) ~ E~(K). 

With the C ~ topology the quotients E~(#') arc not always Hausdorff. As the 
exterior differential d is continuous, wc can define a new differential complex ~ (#-) 
with 

~1 (.~r) = E, (~-)/Oa,, 

where Oa, is the closure of {0} in El(#-), and Q:2(~:) = H(~:z(~ 
We have El (#') ~ El (K) ~ El (I), and El (K) is Hausdorff. Then, 

~_, (::) ~- E, (K) ~ ~_~ (1), 
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where El(l) ~ E~(I)/O~, and Or is the closure of  {0} in El(l).  Finally, 

Y_2(,~) _~ E2(K) t~ ~-2(I), 

and 172(1 ) = H(s = 0 for the same reason that E2(I) = 0. So, we have proved 

E2(.~) ~ [E2(~). 

2. The cohomology  of  Riemannian fofiations 

(A reference for this section, with very detailed calculus, is [2]. For the 
cohomology of operations and related spectral sequences, see [5]). 

Let us consider now a Riemannian foliation ~ on M. I f  ~- or M are not 
orientable we can work in a convenient covering space. We shall use throughout a 
bundle-like metric on M. Let (P, re, M) be the principal SO(n)-bundle of oriented 
or thonormal  transverse frames, associated to ~- and the metric. Let a~ be the lifted 
foliation in P, which is transitive (it is transversally parallelizable [12]). ~ is 
invariant by the right action of  SO(n) on P. 

If  ~ ~ so(n), the Lie algebra of  SO(n), we denote by 0(~) the Lie derivative with 
respect to the fundamental vector field associated to ~. Let f2(P)0= 0 be the 
subalgebra of  f2(P) of  the differential forms satisfying 

0(~)~ = 0, ~ e so(n).  

Analogously, we denote by i(~) the interior product with respect to fundamental 
field associated to 3, and f2(P)i = o the subalgebra of  the differential forms satisfying 

i(~)r/ = 0, ~ e so(n). 

The existence of a connection on P permits to set up an isomorphism 

f2(P) ~- f2(P)i=o | Aso(n) *. 

The induced filtration on f2(P)i = o defines a spectral sequence E,(12(P)t= o), and 
we have 

E,(,~) ~- E,(O(P)i=o) | Aso(n)* 

because the do-differential is induced by d~,  and the forms in Aso(n)* are d # -  
closed. As a consequence, we have E, (~ ) i  = 0 -~ E, (f2(P)i = 0). L e t j  : t2(P)o ~ 0 -'* g(P)  
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be the inclusion. Since SO(n) is compact  and connected, there exist linear 

maps 

p :12i(P)--*f2i(p)o=o; h :f2'(P)--*Y2'-I(P) 

compatible with the action of  SO(n), and satisfying 

p oj  = id ;  i d - j o  p = d h + h d .  

The homotopy  h has the property that h ] O(P)~ = o = 0. Moreover,  as ~ is invariant 
by the right action of SO(n) on P, 

h(FPO(P)) ~_ FP- 'o(e); p(F~a(P)) ~_ F~O(P), 

p od~  = d ~  op;  h od~  = d ~  oh. 

So, the action of so(n) on Q(P) defines also an action on El ( ~ ) ,  and we have: 

LEMMA.  E, ( ~ ) ,  = o,o = o ~- E, (~-). 

In fact, let [a] ~ E1 (~ ) i  = o,o = o. We can write 

d~ = d~a  + dl,oa + d2 _la. 

But d~a  = 0  and d2_ la  ~FP+2Q(P),  hd2,_~a eFP+tQ(P) and it is zero in E~. 

Finally, d~,o~ has two parts. One of  them belongs to f2(P)i = o, and their image by 
h is zero. The other, d~a, the derivative along the fibres of  n, is as follows: if {~i} 
is a basis of  the fundamental vector fields and {r } is the dual basis of  differential 
forms, we have 

d.~ = Z r ^ 0(~,)~. 
i 

But 0(~)[~] = 0 ,  i.e., 0(r =d~fl, fl~FPO(P)i=o, and d~r  = 0 ,  then, if we put 

O(~i)a = d~fl~, then 

ha.~ = ha~ E r ^ #, = a~h E r ^ ~i, 
i i 

with h(r ^ fl~) ~ f2(P)~ = o and 

--j  o p(ot) = d~h ~ r ^ fl,. 
i 
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Now, to compute E*'q(~) we construct the spectral sequence E(q) associated to 
the action of so(n) on E1(~) ,  

ErR's(q) = E~'q(o ~ )  ~ H'(so(n), R) =~ n(E* ,q(~)o  = o) -~ E* 'q(~)  �9 

All the maps that we have used are continuous, then we also have a spectral 
sequence 

E['~(q) = ~:~'q(.~-) ~)n'(so(n), ~) =~ E*'q(~). 

Finally, the Zeeman's  comparison theorem permits us to conclude: 

T H E O R E M .  Let ~ be a Riemannian foliation. Then E~'q(,~) _~ [F~,q(~-). 

We can also conclude that EP'q(~) is finite dimensional, which is the principal 
theorem in [2]. 

3. A criterion for minimality 

For  a Riemannian foliation of codimension n on a compact  manifold, we have 
E~ '~  = 0 or E ~ , ~  ~ [4]. It  is a well known fact that E ~ ' ~  0 is a 
necessary condition for minimality (vid., for instance, [12, Appendix B]). This is a 
consequence of the following Rummier-Sul l ivan  criterion [ 14], [ 16], [7]: 

"Let  go be a smooth scalar product on T~ It & induced by a Riemannian metric 

g on M for  which the leaves are minimal submanifolds i f f the volume m-form go on the 

leaves defined by go (and the orientation) is the restriction to the leaves o f  an m-form 

Z on M which is relatively closed, namely, d g ( X l , . . . ,  X,, + I) = 0 i f  the first m vector 
fields Xi are tangent to the leaves." 

So, we shall assume that E~'~176 -) = ~. 

Now, we consider the star operator  �9 associated to the bundle-like metric on M 
and the scalar product 

(~, fl)--- fM~ ^ ,/3. 

The star operator  takes forms of type (p, q) into forms of type (n - p, m - q). I f  we 
denote &~ - - , d~ - , ,  we have 

Im d~ -- (Ker  6~r 1, (2) 
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where _L denotes the orthogonal complement with respect to the scalar pro- 
duct. Obviously, Im--m---d~___(Ker6~) • and (Im--m-a~)• We have also 
t2 = (Ker  6~) • ~ Ker 6~ = ~ ~) Ker 6~-. In fact, if ~t r  ~ t~ Ker 6~,  by 
the Hahn-Banach  theorem there exists a closed hyperplane L that contains 
Im--~-d~ ~ Ker 6~- and such that 0t e L .  If fl is orthogonal to L, fl e (Im-//-~) • and 
f l r  Ker 6~, contradition. Now, an analogous argument finishes the proof  of  (2). 

We are assuming, first, that ~- is transversally parallelizable, that is, there exist 
foliated vector fields Z ~ , . . . ,  Z ,  such that their images generate TxM/Tx~ for all 
x e M. The closures of the leaves of  the foliation are the fibres of  the basicfibration 
associated to ~.~ [12], 

n : M ~ W ,  

and 1he foliation defines by restriction to each of  the fibres a Lie g-foliation, where 
g is the structural Lie algebra. 

Let v be an invariant transverse volume for ~-, v e f27~(M), defining the nonzero 
class in E~'~ We can choose the form v to be orthogonal to d(t27~ ~ (M)). This 
is trivial if the leaves of ~- are dense, as then d(f2]-  ~ (M)) = 0. The general case 
requires the use of the structure of  the fibration rc : M --* W defined by the closures 
of  the leaves of  ~-. Consider the filtration defined in Section 1, but now associated 
to the fibration re, and so we can speak about the forms of type (p, q),, and 
differentials d~, ~d~.0, and so on. 

Let to be the image by 7r of  the volume form on W. The condition E~.~ -) # 0 
is equivalent to the following [4]: g is unimodular and there exists a form ). such 
that v = 2 ^ to is an invariant transverse volume for ~- and satisfying 

(1) 2 is of  type (0, s)~, s = dimg, and 
(2) d~2 = 0 and ,dl.02 = 0. 

Let f = ~ ,  .(2 ^ t o )^  2, where ~, is the integral along the fibres. Then 
f ~  C~176 and f (x )  # 0 for all x. Now, the volume v0 = (2 A co)/fis orthogonal to 
d(t27~- ~ (M)). In fact, a form 7 e t2~- ~ (M) can be written as 

7 = ~ {(izk A) ALto  + 2  Agkizkto } 
k = l  

where f , ,  gk e C ~(W). Then, 
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with r/~ Y2*(W), and 

A 09), d T / = / f ( ~ .  A t~), ,~ A d(Tt*r/) / 

= -t-;M {*f('~, A (,0)} A,~, A d/IT*r/ 

= dr/ *(). A O2) A ~ = d r /=  0. 

With this choice of  %, the form Z = *v0 is positive along the leaves and defines 
a nonzero class in E0,m(~-), i.e., dl(z) e O~ -m. In fact, let Y be a (n - 1)-basic form. 
We have 

(d,.o(Z), *~,) = (d (z ) ,  *~,) = +(Vo,  d r )  = O, 

and, by (2), 

d,,o(Z) ~ d~12 ' "  '(M). 

Let [F] E E~ be the class corresponding to X by the isomorphism 
E0.,,(~-) = ~o.,, (~-). We have 

F = X + r/, with r/~ O~ '~. 

Since X is positive along the leaves, we can take some form a ~ do(E~ 

such that F + ~t is close enough to Z so that F + ~ is also positive along the 
leaves. But F + ~ also defines [F] and then ~ is minimal by the criterion of  
Rummier -  Sullivan. 

Finally, if ~- is an arbitrary Riemannian foliation, we consider the principal 
bundle (P, rt, M) and the transversally parallelizable foliation ~ ,  as in Section 2. 
Integration along the fibres of  rc : P ~ M, after exterior multiplication with the 
invariant volume form along the fibres, assigns m-forms on M positive along the 
fibres of  o~- to m-forms on P positive along the leaves of ~ .  The computations in 
Section 2 permits us to conclude the 

MINIMALITY THEOREM.  Let M ~ be a smooth closed orientable manifold and 

an oriented Riemannian foliation. There exists a Riemannian metric on M for  

which the leaves are minimal submanifolds iff the basic cohomology of  maximal 
dimension is nonzero. 
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4. Duality theorem 

D U A L I T Y  T H E O R E M .  I f  M is a smooth  closed orientable man i fo ld  and ~ & 

a R iemannian  fo l ia t ion ,  then 

EP2'q( a.a.a.a.a.a.a.a.a.~ V) ~- E~ - p,m - q ( : ) .  

This Theo rem reduces now to the Dua l i t y  Theorem proved  by  J. A. Alvarez  

L6pez  [1], [3]. He  defines a f i l t ra t ion in the complex  o f  currents  (f2', d ' )  in M, 

ob ta in ing  a spectral  sequence (E r, d r) which converges  to H(f2 ' ,  d') ,  and  he proves  

that  there exist regular iza t ion  ope ra to r s  which are  ad jo in t  o f  con t inuous  f i l t rat ion-  

preserving ope ra to r s  in f2(M), resul t ing in an i somorph i sm between E2 and  E 2. 
fish --  p , rn  --  q ( ~ ) .  Final ly ,  he has dua l i ty  i somorph i sms  EP'q(ff) ~ ~2 
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