Duality and minimality in Riemannian foliations

Xosé Masa

In this work we prove that a Riemannian foliation \mathscr{F} defined on a smooth closed manifold M is *minimal*, in the sense that there exists a Riemannian metric on M for which all the leaves are minimal submanifolds, iff \mathscr{F} is *unimodular*, that is, the basic cohomology of \mathscr{F} in maximal dimension is nonzero. This result has been conjectured by Y. Carrière. We use the structure theorem for Riemannian foliations (Molino, [12]) to reduce the problem to transitive foliations, and a parametrix constructed by Sarkaria [15], that permits him to prove a finiteness theorem for transitive foliations. We also prove a duality theorem for the foliated cohomology conjectured in [8].

A good description of the theory of duality and minimality is given in Appendix B, by V. Sergiescu, in the book by P. Molino "Riemannian foliations" [12].

We thank J. A. Álvarez López for very helpful conversations and A. Fugarolas for his guidance through the Riesz theory.

1. The cohomology of transitive foliations

Let *M* be a smooth closed manifold of dimension n + m, which carries a smooth foliation \mathscr{F} of dimension *m*. We denote by $\Omega(M)$ the algebra of all smooth differential forms on *M*. A smooth form of degree *i* is said to be of filtration $\ge p$ if it vanishes whenever i - p + 1 of the vectors are tangent to the foliation. We shall denote the subalgebra of all forms of filtration $\ge p$ by $F^{p}\Omega$. In this way, the de Rham complex of smooth forms becomes a filtered complex and we have the spectral sequence $E_{r}(\mathscr{F})$ which converges to the real cohomology of *M*. $E_{1}^{0,q}(\mathscr{F}) \cong H_{\mathscr{F}}^{q}$, the cohomology of *M* with coefficients in the sheaf of germs of locally constant differentiable functions along the leaves of the foliation.

We can define a differential operator

 $d_{\mathscr{F}}:\Omega^{i}(M)\to\Omega^{i+1}(M)$

as follows: we consider a Riemannian metric on M and an orthogonal complement

 $v(\mathcal{F})$ of $T\mathcal{F}$; we have

$$\Omega^{i}(M) \cong \sum_{r+s=i} \Gamma(\Lambda^{r}(v(\mathscr{F}))^{*} \otimes \Lambda^{s}(T\mathscr{F})^{*}).$$

We say that a differential form α is of "type" (r, s) if $\alpha \in \Omega^{r,s}(M) = \Gamma(\Lambda^r(v(\mathcal{F}))^* \otimes \Lambda^s(T\mathcal{F})^*)$, and the exterior differential decomposes as

$$d = d_{0,1} + d_{1,0} + d_{2,-1}$$

 $d_{\mathscr{F}}$ is $d_{0,1}$ and $d^2_{\mathscr{F}} = 0$. We define the basic forms $\Omega^p_B(M)$ by

 $\Omega^p_B(M) = (F^p \Omega^p) \cap \operatorname{Ker} d_{\mathcal{F}}.$

 $(\Omega_B^p(M), d)$ is a differential complex, and $E_2^{p,0}(\mathscr{F}) \cong H^p(\Omega_B^*(M))$ is called the *basic* cohomology of the foliation.

The terms $E_2^{*,m}(\mathscr{F})$ of the spectral sequence are isomorphic to the \mathscr{F} -relative cohomological groups introduced by Rummler (see [14] for the definition, [9] or [10] for the isomorphism).

Let $\chi(M)$ be the algebra of vector fields on M, $\Gamma(\mathscr{F})$ the Lie sub-algebra of vector fields tangent to the foliation. Let us denote by $\chi(M, \mathscr{F})$ the Lie algebra of the foliated vector fields, that is, the normalizer of $\Gamma(\mathscr{F})$ in $\chi(M)$. At each point $x \in M$, we get a subspace $\chi(M, \mathscr{F})(x)$ of the tangent space T_xM , by evaluating the vector fields at x. The foliation is called *transitive* if $\chi(M, \mathscr{F})(x) = T_xM$ for all x.

In [15] Sarkaria constructs a 2-parametrix for a transitive foliation. We shall topologise $\Omega(M)$ with the usual C^{∞} topology. In this way it becomes a Hausdorff locally convex topological vector space. If E and F are Hausdorff LCTVSes a linear map $s: E \to F$ is called *compact* if it maps some neighbourhood U of 0 to a set s(U) with compact closure. A 2-parametrix will be a pair of linear maps $s, h: \Omega(M) \to \Omega(M)$ satisfying

$$\begin{cases}
(a) s \text{ is compact,} \\
(b) 1 - s = dh + hd, \\
(c) s(F^{p}\Omega) \subseteq F^{p}\Omega \text{ for all } p, \\
(d) h(F^{p}\Omega) \subseteq F^{p-1}\Omega \text{ for all } p.
\end{cases}$$
(1)

In order to define s and h, let us fix a finite dimensional vector space $V \subseteq \chi(M, \mathcal{F})$ such that $V(x) = T_x M$ for all $x \in M$. Since M is compact and \mathcal{F} is transitive, we can always extract such a finite dimensional vector subspace. Furthermore, one chooses a Riemannian metric g on V, of volume element |g|, and a

smooth function f on V supported in a compact neighbourhood of 0. One defines a map $s: \Omega^{i}(M) \to \Omega^{i}(M)$ by

$$(s\alpha)(x) = \int_{\mathcal{V}} (\phi_X^* \alpha)(x) \cdot f(X) \cdot |g|,$$

where $\phi_{tX}: M \to M$ denotes the flow of the vector field $X \in V$, and ϕ_X is the diffeomorphism corresponding to t = 1. Sarkaria constructs the smooth kernel K(x, y) of s, such that

$$(s\alpha)(x) = \int_{\mathcal{M}} K(x, y)\alpha(y),$$

and so s is a compact operator of trace class.

One normalises the function by $\int_V f(X)|g| = 1$ and one defines h by

$$(h\alpha)(x) = \int_{V} \int_{0}^{1} (i_{X}\phi^{*}_{tX}\alpha)(x) \cdot f(X) \cdot dt \cdot |g|.$$

Now we can use the Riesz theory of compact operators ([6], [13]). Let

$$K = \bigcup_{r} (1-s)^{-r}(0), \qquad I = \bigcap_{r} (1-s)^{r}(\Omega(M)).$$

Then K and I are topological supplements stable under s and 1-s, K finite dimensional. Moreover, 1-s induces a nilpotent operator in K and a TVS automorphism in I. In fact, the sequences $(1-s)^{-r}(0)$ and $(1-s)^{r}(\Omega(M))$ are stationary starting from the same rank v. In this case, we say that (1-s) has finite ascent (and finite descent) v [13].

 $F^{p}\Omega$ is a closed subspace of $\Omega(M)$, and s defines a compact operator $s: F^{p}\Omega \to F^{p}\Omega$ for each $p, 0 \le p \le n$. Let k be the maximum of the ascents of each $(1-s)|_{F^{p}\Omega}, 0 \le p \le n$. K and I are filtered differential algebras: we define $F^{p}K$ as $K \cap (F^{p}\Omega)$, and $F^{p}I$ as $\bigcap_{r} (1-s)^{r}F^{p}\Omega$.

Let $u = \{(1-s)^k |_I\}^{-1}$. We have a split exact sequence

 $0 \to K \to \Omega(M) \to I \to 0$

of filtered differential complexes, where $\Omega(M) \to I$ is $u \circ (1-s)^k$. In this way, we have

 $F^p\Omega \cong F^pK \oplus F^pI$

as a topological differential complex. We can define two spectral sequences $E_2(K)$ and $E_2(I)$, and we obtain

 $E_2(\mathscr{F}) \cong E_2(K) \oplus E_2(I).$

But now the inclusion $E_2(I) \rightarrow E_2(\mathscr{F})$ is zero, because the homotopy h satisfies the condition (d) in (1).

In fact,

$$E_1^{p,q}(\mathscr{F})\cong H^q\left(\frac{F^p\Omega^{p+q}}{F^{p+1}\Omega^{p+q}}\right),$$

and

 $d_1^{\cdot}: E_1^{p,q}(\mathscr{F}) \to E_1^{p+1,q}(\mathscr{F})$

is induced by the connecting of the exact sequence

$$0 \to \frac{F^{p+1}\Omega^{p+q}}{F^{p+2}\Omega^{p+q}} \to \frac{F^p\Omega^{p+q}}{F^{p+2}\Omega^{p+q}} \to \frac{F^p\Omega^{p+q}}{F^{p+1}\Omega^{p+q}} \to 0.$$

We shall see that if $[\eta] \in E_2^{p,q}(\mathscr{F})$, then $\eta - s(\eta)$ is a coboundary in $E_1^{p,q}(\mathscr{F})$: $\eta \in F^p\Omega$ represents a class in $E_2^{p,q}(\mathscr{F})$ if $d\eta = \alpha + d\beta$, with $\alpha \in F^{p+2}\Omega$ and $\beta \in F^{p+1}\Omega$. So, $h\alpha \in F^{p+1}\Omega$ and $hd\beta = d(-h\beta) + (\beta - s\beta)$, with $(\beta - s\beta) \in F^{p+1}\Omega$. Hence,

$$\eta - s(\eta) = dh(\eta - \beta) \bmod F^{p+1}\Omega.$$

Since $(1 - s)_2 : E_2(I) \to E_2(I)$ is an isomorphism, we have proved

$$E_2(\mathscr{F})\cong E_2(K).$$

With the C^{∞} topology the quotients $E_1(\mathscr{F})$ are not always Hausdorff. As the exterior differential *d* is continuous, we can define a new differential complex $\mathbb{E}_1(\mathscr{F})$ with

 $\mathbb{E}_1(\mathscr{F}) = E_1(\mathscr{F})/\bar{O}_{\mathscr{F}},$

where $\bar{O}_{\mathscr{F}}$ is the closure of $\{0\}$ in $E_1(\mathscr{F})$, and $\mathbb{E}_2(\mathscr{F}) = H(\mathbb{E}_1(\mathscr{F}))$. We have $E_1(\mathscr{F}) \cong E_1(K) \oplus E_1(I)$, and $E_1(K)$ is Hausdorff. Then,

 $\mathbb{E}_1(\mathscr{F}) \cong E_1(K) \oplus \mathbb{E}_1(I),$

where $\mathbb{E}_1(I) \cong E_1(I)/\bar{O}_I$, and \bar{O}_I is the closure of $\{0\}$ in $E_1(I)$. Finally,

$$\mathbb{E}_2(\mathscr{F})\cong E_2(K)\oplus\mathbb{E}_2(I),$$

and $\mathbb{E}_2(I) = H(\mathbb{E}_1(I)) = 0$ for the same reason that $E_2(I) = 0$. So, we have proved $E_2(\mathscr{F}) \cong \mathbb{E}_2(\mathscr{F})$.

2. The cohomology of Riemannian foliations

(A reference for this section, with very detailed calculus, is [2]. For the cohomology of operations and related spectral sequences, see [5]).

Let us consider now a Riemannian foliation \mathscr{F} on M. If \mathscr{F} or M are not orientable we can work in a convenient covering space. We shall use throughout a bundle-like metric on M. Let (P, π, M) be the principal SO(n)-bundle of oriented orthonormal transverse frames, associated to \mathscr{F} and the metric. Let \mathscr{F} be the lifted foliation in P, which is transitive (it is transversally parallelizable [12]). \mathscr{F} is invariant by the right action of SO(n) on P.

If $\xi \in so(n)$, the Lie algebra of SO(n), we denote by $\theta(\xi)$ the Lie derivative with respect to the fundamental vector field associated to ξ . Let $\Omega(P)_{\theta=0}$ be the subalgebra of $\Omega(P)$ of the differential forms satisfying

 $\theta(\xi)\eta = 0, \qquad \xi \in \mathbf{so}(n).$

Analogously, we denote by $i(\xi)$ the interior product with respect to fundamental field associated to ξ , and $\Omega(P)_{i=0}$ the subalgebra of the differential forms satisfying

 $i(\xi)\eta = 0, \qquad \xi \in \mathbf{so}(n).$

The existence of a connection on P permits to set up an isomorphism

 $\Omega(P) \cong \Omega(P)_{i=0} \otimes \Lambda \operatorname{so}(n)^*.$

The induced filtration on $\Omega(P)_{i=0}$ defines a spectral sequence $E_r(\Omega(P)_{i=0})$, and we have

 $E_1(\widetilde{\mathscr{F}}) \cong E_1(\Omega(P)_{i=0}) \otimes A$ so $(n)^*$

because the d_0 -differential is induced by $d_{\mathcal{F}}$, and the forms in Aso(n)* are $d_{\mathcal{F}}$ closed. As a consequence, we have $E_1(\mathcal{F})_{i=0} \cong E_1(\Omega(P)_{i=0})$. Let $j: \Omega(P)_{\theta=0} \to \Omega(P)$ be the inclusion. Since SO(n) is compact and connected, there exist linear maps

$$\rho: \Omega^{i}(P) \to \Omega^{i}(P)_{\theta=0}; \qquad h: \Omega^{i}(P) \to \Omega^{i-1}(P)$$

compatible with the action of SO(n), and satisfying

$$\rho \circ j = id;$$
 $id - j \circ \rho = dh + hd.$

The homotopy h has the property that $h \mid \Omega(P)_{i=0} = 0$. Moreover, as \mathscr{F} is invariant by the right action of SO(n) on P,

$$h(F^{p}\Omega(P)) \subseteq F^{p-1}\Omega(P); \qquad \rho(F^{p}\Omega(P)) \subseteq F^{p}\Omega(P),$$

$$\rho \circ d_{\mathscr{F}} = d_{\mathscr{F}} \circ \rho; \qquad h \circ d_{\mathscr{F}} = d_{\mathscr{F}} \circ h.$$

So, the action of so(n) on $\Omega(P)$ defines also an action on $E_1(\tilde{\mathscr{F}})$, and we have:

LEMMA. $E_1(\mathscr{F})_{i=0,\theta=0} \cong E_1(\mathscr{F}).$ In fact, let $[\alpha] \in E_1(\mathscr{F})_{i=0,\theta=0}$. We can write $d\alpha = d_{\mathscr{F}} \alpha + d_{1,0} \alpha + d_{2,-1} \alpha.$

But $d_{\mathfrak{F}}\alpha = 0$ and $d_{2,-1}\alpha \in F^{p+2}\Omega(P)$, $hd_{2,-1}\alpha \in F^{p+1}\Omega(P)$ and it is zero in E_1 . Finally, $d_{1,0}\alpha$ has two parts. One of them belongs to $\Omega(P)_{i=0}$, and their image by h is zero. The other, $d_{\pi}\alpha$, the derivative along the fibres of π , is as follows: if $\{\xi_i\}$ is a basis of the fundamental vector fields and $\{\xi_i^*\}$ is the dual basis of differential forms, we have

$$d_{\pi}\alpha = \sum_{i} \xi_{i}^{*} \wedge \theta(\xi_{i})\alpha.$$

But $\theta(\xi)[\alpha] = 0$, i.e., $\theta(\xi)\alpha = d_{\tilde{\mathscr{F}}}\beta$, $\beta \in F^p\Omega(P)_{i=0}$, and $d_{\tilde{\mathscr{F}}}\xi_i^* = 0$, then, if we put $\theta(\xi_i)\alpha = d_{\tilde{\mathscr{F}}}\beta_i$, then

$$hd_{\pi}\alpha = hd_{\mathscr{F}} \sum_{i} \xi_{i}^{*} \wedge \beta_{i} = d_{\mathscr{F}} h \sum_{i} \xi_{i}^{*} \wedge \beta_{i},$$

with $h(\xi_i^* \wedge \beta_i) \in \Omega(P)_{i=0}$ and

$$\alpha - j \circ \rho(\alpha) = d_{\mathscr{F}} h \sum_{i} \xi_{i}^{*} \wedge \beta_{i}.$$

Now, to compute $E_2^{*,q}(\mathscr{F})$ we construct the spectral sequence E(q) associated to the action of so(n) on $E_1(\mathscr{F})$,

$$E_2^{r,s}(q) = E_2^{s,q}(\mathscr{F}) \otimes H^r(\mathbf{so}(n), \mathbb{R}) \Rightarrow H(E_1^{*,q}(\widetilde{\mathscr{F}})_{\theta=0}) \cong E_2^{*,q}(\widetilde{\mathscr{F}}).$$

All the maps that we have used are continuous, then we also have a spectral sequence

$$\mathbb{E}_{2}^{r,s}(q) = \mathbb{E}_{2}^{s,q}(\mathscr{F}) \otimes H^{r}(\mathbf{so}(n), \mathbb{R}) \Rightarrow \mathbb{E}_{2}^{*,q}(\mathscr{F}).$$

Finally, the Zeeman's comparison theorem permits us to conclude:

THEOREM. Let \mathscr{F} be a Riemannian foliation. Then $E_2^{p,q}(\mathscr{F}) \cong \mathbb{E}_2^{p,q}(\mathscr{F})$.

We can also conclude that $E_2^{p,q}(\mathscr{F})$ is finite dimensional, which is the principal theorem in [2].

3. A criterion for minimality

For a Riemannian foliation of codimension *n* on a compact manifold, we have $E_2^{n,0}(\mathscr{F}) = 0$ or $E_2^{n,0}(\mathscr{F}) = \mathbb{R}$ [4]. It is a well known fact that $E_2^{n,0}(\mathscr{F}) \neq 0$ is a necessary condition for minimality (vid., for instance, [12, Appendix B]). This is a consequence of the following Rummler-Sullivan criterion [14], [16], [7]:

"Let g_0 be a smooth scalar product on $T\mathcal{F}$. It is induced by a Riemannian metric g on M for which the leaves are minimal submanifolds iff the volume m-form χ_0 on the leaves defined by g_0 (and the orientation) is the restriction to the leaves of an m-form χ on M which is relatively closed, namely, $d\chi(X_1, \ldots, X_{m+1}) = 0$ if the first m vector fields X_i are tangent to the leaves."

So, we shall assume that $E_2^{n,0}(\mathscr{F}) = \mathbb{R}$.

Now, we consider the star operator * associated to the bundle-like metric on M and the scalar product

$$\langle \alpha, \beta \rangle = \int_M \alpha \wedge *\beta.$$

The star operator takes forms of type (p, q) into forms of type (n - p, m - q). If we denote $\delta_{\mathcal{F}} = *d_{\mathcal{F}}*$, we have

$$\operatorname{Im} d_{\mathscr{F}} = (\operatorname{Ker} \delta_{\mathscr{F}})^{\perp}, \tag{2}$$

where \perp denotes the orthogonal complement with respect to the scalar product. Obviously, $\overline{\operatorname{Im} d_{\mathscr{F}}} \subseteq (\operatorname{Ker} \delta_{\mathscr{F}})^{\perp}$ and $(\overline{\operatorname{Im} d_{\mathscr{F}}})^{\perp} \subseteq \operatorname{Ker} \delta_{\mathscr{F}}$. We have also $\Omega = (\operatorname{Ker} \delta_{\mathscr{F}})^{\perp} \oplus \operatorname{Ker} \delta_{\mathscr{F}} = \overline{\operatorname{Im} \delta_{\mathscr{F}}} \oplus \operatorname{Ker} \delta_{\mathscr{F}}$. In fact, if $\alpha \notin \overline{\operatorname{Im} d_{\mathscr{F}}} \oplus \operatorname{Ker} \delta_{\mathscr{F}}$, by the Hahn-Banach theorem there exists a closed hyperplane L that contains $\overline{\operatorname{Im} d_{\mathscr{F}}} \oplus \operatorname{Ker} \delta_{\mathscr{F}}$ and such that $\alpha \notin L$. If β is orthogonal to L, $\beta \in (\overline{\operatorname{Im} d_{\mathscr{F}}})^{\perp}$ and $\beta \notin \operatorname{Ker} \delta_{\mathscr{F}}$, contradition. Now, an analogous argument finishes the proof of (2).

We are assuming, first, that \mathscr{F} is transversally parallelizable, that is, there exist foliated vector fields Z_1, \ldots, Z_n such that their images generate $T_x M/T_x \mathscr{F}$ for all $x \in M$. The closures of the leaves of the foliation are the fibres of the *basic fibration* associated to \mathscr{F} [12],

 $\pi: M \to W,$

and the foliation defines by restriction to each of the fibres a Lie g-foliation, where g is the *structural Lie algebra*.

Let v be an invariant transverse volume for $\mathscr{F}, v \in \Omega_B^n(M)$, defining the nonzero class in $E_2^{n,0}(\mathscr{F})$. We can choose the form v to be orthogonal to $d(\Omega_B^{n-1}(M))$. This is trivial if the leaves of \mathscr{F} are dense, as then $d(\Omega_B^{n-1}(M)) = 0$. The general case requires the use of the structure of the fibration $\pi : M \to W$ defined by the closures of the leaves of \mathscr{F} . Consider the filtration defined in Section 1, but now associated to the fibration π , and so we can speak about the forms of type $(p, q)_{\pi}$, and differentials $d_{\pi}, \pi d_{1,0}$, and so on.

Let ω be the image by π of the volume form on W. The condition $E_2^{n,0}(\mathscr{F}) \neq 0$ is equivalent to the following [4]: **g** is unimodular and there exists a form λ such that $v = \lambda \wedge \omega$ is an invariant transverse volume for \mathscr{F} and satisfying

- (1) λ is of type $(0, s)_{\pi}$, $s = \dim \mathbf{g}$, and
- (2) $d_{\pi}\lambda = 0$ and $_{\pi}d_{1,0}\lambda = 0$.

Let $f = \int_{\pi} *(\lambda \wedge \omega) \wedge \lambda$, where \int_{π} is the integral along the fibres. Then $f \in C^{\infty}(W)$ and $f(x) \neq 0$ for all x. Now, the volume $v_0 = (\lambda \wedge \omega)/f$ is orthogonal to $d(\Omega_B^{n-1}(M))$. In fact, a form $\gamma \in \Omega_B^{n-1}(M)$ can be written as

$$\gamma = \sum_{k=1}^{n} \{ (i_{Z_k} \lambda) \wedge f_k \omega + \lambda \wedge g_k i_{Z_k} \omega \}$$

where $f_k, g_k \in C^{\infty}(W)$. Then,

$$d\gamma = \pm \lambda \wedge d\left(\sum_{k=1}^{n} g_{k} i_{Z_{k}} \omega\right) = \lambda \wedge d(\pi^{*}\eta)$$

with $\eta \in \Omega^*(W)$, and

$$\left\langle \frac{1}{f}(\lambda \wedge \omega), d\gamma \right\rangle = \left\langle \frac{1}{f}(\lambda \wedge \omega), \lambda \wedge d(\pi^*\eta) \right\rangle$$
$$= \pm \int_M \left\{ *\frac{1}{f}(\lambda \wedge \omega) \right\} \wedge \lambda \wedge d\pi^*\eta$$
$$= \int_W \frac{1}{f} d\eta \int_\pi *(\lambda \wedge \omega) \wedge \lambda = \int_W d\eta = 0$$

With this choice of v_0 , the form $\chi = *v_0$ is positive along the leaves and defines a nonzero class in $\mathbb{E}_2^{0,m}(\mathscr{F})$, i.e., $d_1(\chi) \in \overline{O}_{\mathscr{F}}^{1,m}$. In fact, let γ be a (n-1)-basic form. We have

$$\langle d_{1,0}(\chi), *\gamma \rangle = \langle d(\chi), *\gamma \rangle = \pm \langle v_0, d\gamma \rangle = 0$$

and, by (2),

$$d_{1,0}(\chi)\in \overline{d_{\mathscr{F}}\Omega^{1,m-1}(M)}.$$

Let $[\Gamma] \in E_2^{0,m}(\mathscr{F})$ be the class corresponding to χ by the isomorphism $E_2^{0,m}(\mathscr{F}) \cong \mathbb{E}_2^{0,m}(\mathscr{F})$. We have

$$\Gamma = \chi + \eta$$
, with $\eta \in \bar{O}_{\mathscr{F}}^{0,m}$.

Since χ is positive along the leaves, we can take some form $\alpha \in d_0(E_0^{0,m-1}(\mathscr{F}))$ such that $\Gamma + \alpha$ is close enough to χ so that $\Gamma + \alpha$ is also positive along the leaves. But $\Gamma + \alpha$ also defines $[\Gamma]$ and then \mathscr{F} is minimal by the criterion of Rummler-Sullivan.

Finally, if \mathscr{F} is an arbitrary Riemannian foliation, we consider the principal bundle (P, π, M) and the transversally parallelizable foliation \mathscr{F} , as in Section 2. Integration along the fibres of $\pi: P \to M$, after exterior multiplication with the invariant volume form along the fibres, assigns *m*-forms on *M* positive along the fibres of \mathscr{F} to *m*-forms on *P* positive along the leaves of \mathscr{F} . The computations in Section 2 permits us to conclude the

MINIMALITY THEOREM. Let M be a smooth closed orientable manifold and \mathcal{F} an oriented Riemannian foliation. There exists a Riemannian metric on M for which the leaves are minimal submanifolds iff the basic cohomology of maximal dimension is nonzero.

XOSÉ MASA

4. Duality theorem

DUALITY THEOREM. If M is a smooth closed orientable manifold and \mathcal{F} is a Riemannian foliation, then

 $E_2^{p,q}(\mathscr{F})\cong E_2^{n-p,m-q}(\mathscr{F}).$

This Theorem reduces now to the Duality Theorem proved by J. A. Álvarez López [1], [3]. He defines a filtration in the complex of currents (Ω', d') in M, obtaining a spectral sequence (E', d') which converges to $H(\Omega', d')$, and he proves that there exist regularization operators which are adjoint of continuous filtrationpreserving operators in $\Omega(M)$, resulting in an isomorphism between E_2 and E^2 . Finally, he has duality isomorphisms $\mathbb{E}_2^{p,q}(\mathscr{F}) \cong \mathbb{E}_2^{n-p,m-q}(\mathscr{F})$.

REFERENCES

- ALVAREZ-LÓPEZ, J. A., "Sucesión espectral asociada a foliaciones Riemannianas". Publ. del Dpto. de Geometría y Topología de Santiago de Compostela 72 (1987).
- [2] ÅLVAREZ-LÓPEZ, J. A., A finiteness theorem for the spectral sequence of a Riemannian foliation. Illinois J. of Math. 33 (1989), 79–92.
- [3] ÁLVAREZ-LÓPEZ, J. A., Duality in the spectral sequence of Riemannian foliations. Amer. J. of Math. 111 (1989) 905-926.
- [4] EL KACIMI-ALAOUI, A. and HECTOR, G., Decomposition de Hodge basique pour un feuilletage Riemannien. Ann. Inst. Fourier de Grenoble 36 (1986), 207-227.
- [5] GREUB, W., HALPERIN, S. and VANSTONE, R., "Connections, Curvature and Cohomology". Academic Press, New York, 1976.
- [6] GROTHENDIECK, A., "Topological Vector Spaces". Gordon and Breach, London, 1973.
- [7] HAEFLIGER, A., Some remarks on foliations with minimal leaves. J. Diff. Geom. 15 (1986), 269-284.
- [8] KAMBER, F. and TONDEUR, Ph., Foliations and metrics. Proc. of the 1981-1982 Year in Differential Geometry, Univ. Maryland, Birkhäuser. Progress in Math. 32 (1983), 103-152.
- [9] MACIAS, E., "Las cohomologias diferenciable, continua y discreta de una variedad foliada". Publ. del Dpto. de Geometría y Topologia de Santiago de Compostela 60 (1983).
- [10] MACIAS, E. and MASA, X., Cohomología diferenciable en variedades foliadas. Actas de las IX Jornadas Matemáticas Hispano-Lusas. Universidad de Salamanca, 1982, vol. II, pp. 533-536.
- [11] MASA, X., Cohomology of Lie foliations. Research Notes in Math. vol. 32. Differential Geometry. Pitman Advanced Publishing Program (1985), pp. 211-214.
- [12] MOLINO, P., Riemannian foliations. Progress in Mathematics, Birkhäuser, 1988.
- [13] ROBERTSON, A. P. and ROBERTSON, W. J., "Topological Vector Spaces". Cambridge Univ. Press, 1973.
- [14] RUMMLER, H., Quelques notions simples en géométrie Riemannienne et leurs applications aux feuilletages compacts. Comment. Math. Helvetici 54 (1979), 224–239.
- [15] SARKARIA, K. S., A finiteness theorem for foliated manifolds. J. Math. Soc. Japan 30 (1978), 687-696.

[16] SULLIVAN, D., A homological characterization of foliations consisting of minimal surfaces. Comment. Math. Helv. 54 (1979), 218–223.

Departamento de Xeometria e Topoloxia Faculdade de Matemáticas Universidade de Santiago de Compostela 15771-Santiago de Compostela Galiza (Spain)

Received January 17, 1990