Comment. Math. Helvetici 67 (1992) 17-27 0010-2571/92/010017-1151.50 + 0.20/0

Duality and minimality in Riemannian foliations

Xosé Masa

In this work we prove that a Riemannian foliation $\mathscr F$ defined on a smooth closed manifold M is *minimal,* in the sense that there exists a Riemannian metric on M for which all the leaves are minimal submanifolds, iff $\mathscr F$ is *unimodular*, that is, the basic cohomology of $\mathcal F$ in maximal dimension is nonzero. This result has been conjectured by Y. Carrière. We use the structure theorem for Riemannian foliations (Molino, [12]) to reduce the problem to transitive foliations, and a parametrix constructed by Sarkaria [15], that permits him to prove a finiteness theorem for transitive foliations. We also prove a duality theorem for the foliated cohomology conjectured in [8].

A good description of the theory of duality and minimality is given in Appendix B, by V. Sergiescu, in the book by P. Molino "Riemannian foliations" [12].

We thank J. A. Álvarez López for very helpful conversations and A. Fugarolas for his guidance through the Riesz theory.

1. The cohomology of transitive foliations

Let M be a smooth closed manifold of dimension $n + m$, which carries a smooth foliation $\mathcal F$ of dimension m. We denote by $\Omega(M)$ the algebra of all smooth differential forms on M. A smooth form of degree i is said to be of filtration $\geq p$ if it vanishes whenever $i - p + 1$ of the vectors are tangent to the foliation. We shall denote the subalgebra of all forms of filtration $\geq p$ by $F^p\Omega$. In this way, the de Rham complex of smooth forms becomes a filtered complex and we have the spectral sequence $E_r(\mathscr{F})$ which converges to the real cohomology of M. $E^{0,q}(\mathscr{F}) \cong H^q_{\mathscr{F}}$, the cohomology of M with coefficients in the sheaf of germs of locally constant differentiable functions along the leaves of the foliation.

We can define a differential operator

 $d_{\mathscr{F}} : \Omega^{i}(M) \rightarrow \Omega^{i+1}(M)$

as follows: we consider a Riemannian metric on M and an orthogonal complement

 $v(F)$ of $T\mathscr{F}$; we have

$$
\Omega^{i}(M) \cong \sum_{r+s=i} \Gamma(\Lambda^{r}(v(\mathscr{F}))^{*} \otimes \Lambda^{s}(T\mathscr{F})^{*}).
$$

We say that a differential form α is of "type" (r, s) if $\alpha \in \Omega^{r,s}(M)$ = $\Gamma(A'(v(\mathscr{F}))^* \otimes A^s(T\mathscr{F})^*)$, and the exterior differential decomposes as

$$
d = d_{0,1} + d_{1,0} + d_{2,-1}.
$$

 $d_{\mathcal{F}}$ is $d_{0,1}$ and $d_{\mathcal{F}}^2 = 0$. We define the *basic forms* $\Omega_R^p(M)$ by

 $\Omega^p_B(M) = (F^p \Omega^p) \cap \text{Ker } d_{\#}.$

 $(\Omega^p_B(M), d)$ is a differential complex, and $E^{p,0}(\mathscr{F}) \cong H^p(\Omega^*_B(M))$ is called the *basic cohomology* of the foliation.

The terms $E^{*,m}(\mathscr{F})$ of the spectral sequence are isomorphic to the \mathscr{F} -relative cohomological groups introduced by Rummier (see [14] for the definition, [9] or [10] for the isomorphism).

Let $\chi(M)$ be the algebra of vector fields on M, $\Gamma(\mathscr{F})$ the Lie sub-algebra of vector fields tangent to the foliation. Let us denote by $\chi(M, \mathcal{F})$ the Lie algebra of the foliated vector fields, that is, the normalizer of $\Gamma(\mathscr{F})$ in $\chi(M)$. At each point $x \in M$, we get a subspace $\chi(M, \mathscr{F})(x)$ of the tangent space T_xM , by evaluating the vector fields at x. The foliation is called *transitive* if $\chi(M, \mathcal{F})(x) = T_xM$ for all x.

In [15] Sarkaria constructs a 2-parametrix for a transitive foliation. We shall topologise $\Omega(M)$ with the usual C^{∞} topology. In this way it becomes a Hausdorff locally convex topological vector space. If E and F are Hausdorff LCTVSes a linear map $s : E \to F$ is called *compact* if it maps some neighbourhood U of 0 to a set $s(U)$ with compact closure. A 2-parametrix will be a pair of linear maps s, $h : \Omega(M) \rightarrow$ $\Omega(M)$ satisfying

$$
\begin{cases}\n(a) \ s \text{ is compact,} \\
(b) \ 1 - s = dh + hd, \\
(c) \ s(F^p\Omega) \subseteq F^p\Omega \text{ for all } p, \\
(d) \ h(F^p\Omega) \subseteq F^{p-1}\Omega \text{ for all } p.\n\end{cases}
$$
\n(1)

In order to define s and h , let us fix a finite dimensional vector space $V \subseteq \chi(M, \mathscr{F})$ such that $V(x) = T_x M$ for all $x \in M$. Since M is compact and \mathscr{F} is transitive, we can always extract such a finite dimensional vector subspace. Furthermore, one chooses a Riemannian metric g on V, of volume element $|g|$, and a smooth function f on V supported in a compact neighbourhood of 0. One defines a map $s: \Omega^{i}(M) \to \Omega^{i}(M)$ by

$$
(s\alpha)(x) = \int_V (\phi_X^* \alpha)(x) \cdot f(X) \cdot |g|,
$$

where $\phi_{\alpha}: M \to M$ denotes the flow of the vector field $X \in V$, and ϕ_X is the diffeomorphism corresponding to $t = 1$. Sarkaria constructs the smooth kernel $K(x, y)$ of s, such that

$$
(s\alpha)(x) = \int_M K(x, y)\alpha(y),
$$

and so s is a compact operator of trace class.

One normalises the function by $\left[\frac{y f(X)}{g}\right] = 1$ and one defines h by

$$
(h\alpha)(x) = \int_{V} \int_0^1 (i_X \phi_{tX}^* \alpha)(x) \cdot f(X) \cdot dt \cdot |g|.
$$

Now we can use the Riesz theory of compact operators ([6], [13]). Let

$$
K = \bigcup_{r} (1-s)^{-r}(0), \qquad I = \bigcap_{r} (1-s)^{r}(\Omega(M)).
$$

Then K and I are topological supplements stable under s and $1-s$, K finite dimensional. Moreover, $1-s$ induces a nilpotent operator in K and a TVS automorphism in *I*. In fact, the sequences $(1-s)^{-r}(0)$ and $(1-s)^{r}(\Omega(M))$ are stationary starting from the same rank v. In this case, we say that $(1 - s)$ has finite ascent (and finite descent) ν [13].

 $F^p\Omega$ is a closed subspace of $\Omega(M)$, and s defines a compact operator $s : F^p \Omega \to F^p \Omega$ for each $p, 0 \leq p \leq n$. Let k be the maximum of the ascents of each $(1-s)|_{FPR}$, $0 \le p \le n$. *K* and *I* are filtered differential algebras: we define *FPK* as $K \cap (F^p \Omega)$, and $F^p I$ as $\bigcap_r (1-s)^r F^p \Omega$.

Let $u = \{(1 - s)^k | t \}$. We have a split exact sequence

 $0 \rightarrow K \rightarrow \Omega(M) \rightarrow I \rightarrow 0$

of filtered differential complexes, where $\Omega(M) \rightarrow I$ is $u \circ (1 - s)^k$. In this way, we have

 $F^p\Omega \simeq F^pK \oplus F^pI$

as a topological differential complex. We can define two spectral sequences $E_2(K)$ and $E_2(I)$, and we obtain

 $E_2(\mathscr{F}) \cong E_2(K) \oplus E_2(I).$

But now the inclusion $E_2(I) \to E_2(\mathscr{F})$ is zero, because the homotopy h satisfies the condition (d) in (1).

In fact,

$$
E_1^{p,q}(\mathscr{F}) \cong H^q\left(\frac{F^p \Omega^{p+q}}{F^{p+1} \Omega^{p+q}}\right),\,
$$

and

 $d_i: E^{p,q}(\mathscr{F}) \to E^{p+1,q}(\mathscr{F})$

is induced by the connecting of the exact sequence

$$
0 \to \frac{F^{p+1}\Omega^{p+q}}{F^{p+2}\Omega^{p+q}} \to \frac{F^p\Omega^{p+q}}{F^{p+2}\Omega^{p+q}} \to \frac{F^p\Omega^{p+q}}{F^{p+1}\Omega^{p+q}} \to 0.
$$

We shall see that if $[\eta] \in E_2^{p,q}(\mathscr{F})$, then $\eta - s(\eta)$ is a coboundary in $E_1^{p,q}(\mathscr{F})$: $\eta \in F^p\Omega$ represents a class in $E_2^{p,q}(\mathscr{F})$ if $d\eta = \alpha + d\beta$, with $\alpha \in F^{p+2}\Omega$ and $\beta \in F^{p+1}\Omega$. So, $h\alpha \in F^{p+1}\Omega$ and $h d\beta = d(-h\beta) + (\beta - s\beta)$, with $(\beta - s\beta) \in F^{p+1}\Omega$. Hence,

$$
\eta - s(\eta) = dh(\eta - \beta) \bmod F^{p+1}\Omega.
$$

Since $(1 - s)_{2}: E_{2}(I) \rightarrow E_{2}(I)$ is an isomorphism, we have proved

$$
E_2(\mathscr{F})\cong E_2(K).
$$

With the C^{∞} topology the quotients $E_1(\mathscr{F})$ are not always Hausdorff. As the exterior differential d is continuous, we can define a new differential complex $\mathbb{E}_1(\mathscr{F})$ with

 $\mathbb{E}_1(\mathscr{F}) = E_1(\mathscr{F})/\overline{O}_{\mathscr{F}}$,

where $\overline{O}_{\mathscr{F}}$ is the closure of $\{0\}$ in $E_1(\mathscr{F})$, and $\mathbb{E}_2(\mathscr{F}) = H(\mathbb{E}_1(\mathscr{F}))$. We have $E_1(\mathscr{F}) \cong E_1(K) \oplus E_1(I)$, and $E_1(K)$ is Hausdorff. Then,

 $E_1(\mathscr{F}) \cong E_1(K) \oplus E_1(I),$

where $\mathbb{E}_1(I) \cong E_1(I)/\overline{O}_I$, and \overline{O}_I is the closure of $\{0\}$ in $E_1(I)$. Finally,

$$
\mathbb{E}_2(\mathscr{F})\cong E_2(K)\oplus \mathbb{E}_2(I),
$$

and $\mathbb{E}_2(I) = H(\mathbb{E}_1(I)) = 0$ for the same reason that $E_2(I) = 0$. So, we have proved $E_2(\mathscr{F}) \cong \mathbb{E}_2(\mathscr{F}).$

2. The cohomology of Riemannian fofiations

(A reference for this section, with very detailed calculus, is [2]. For the cohomology of operations and related spectral sequences, see [5]).

Let us consider now a Riemannian foliation $\mathscr F$ on M. If $\mathscr F$ or M are not orientable we can work in a convenient covering space. We shall use throughout a bundle-like metric on M. Let (P, π, M) be the principal $SO(n)$ -bundle of oriented orthonormal transverse frames, associated to $\mathscr F$ and the metric. Let $\tilde{\mathscr F}$ be the lifted foliation in P, which is transitive (it is transversally parallelizable [12]). $\tilde{\mathscr{F}}$ is invariant by the right action of *SO(n)* on P.

If $\xi \in so(n)$, the Lie algebra of *SO(n)*, we denote by $\theta(\xi)$ the Lie derivative with respect to the fundamental vector field associated to ζ . Let $\Omega(P)_{\theta=0}$ be the subalgebra of $\Omega(P)$ of the differential forms satisfying

 $\theta(\xi)n = 0, \qquad \xi \in so(n).$

Analogously, we denote by $i(\xi)$ the interior product with respect to fundamental field associated to ξ , and $\Omega(P)_{i=0}$ the subalgebra of the differential forms satisfying

 $i(\xi)\eta = 0, \qquad \xi \in so(n).$

The existence of a connection on P permits to set up an isomorphism

 $\Omega(P) \cong \Omega(P)_{i=0} \otimes A$ **so** $(n)^*$.

The induced filtration on $\Omega(P)_{i=0}$ defines a spectral sequence $E_r(\Omega(P)_{i=0})$, and we have

 $E_1(\widetilde{\mathscr{F}}) \cong E_1(\Omega(P)_{i=0}) \otimes A$ so(n)^{*}

because the d_0 -differential is induced by $d_{\tilde{\mathscr{F}}}$, and the forms in Λ so(n)^{*} are $d_{\tilde{\mathscr{F}}}$ closed. As a consequence, we have $E_1(\tilde{\mathscr{F}})_{i=0} \cong E_1(\Omega(P)_{i=0})$. Let $j : \Omega(P)_{\theta=0} \to \Omega(P)$ be the inclusion. Since $SO(n)$ is compact and connected, there exist linear maps

$$
\rho : \Omega^{i}(P) \to \Omega^{i}(P)_{\theta=0}; \qquad h : \Omega^{i}(P) \to \Omega^{i-1}(P)
$$

compatible with the action of *SO(n),* and satisfying

$$
\rho \circ j = id; \qquad id - j \circ \rho = dh + hd.
$$

The homotopy h has the property that $h | \Omega(P)_{i=0} = 0$. Moreover, as $\tilde{\mathscr{F}}$ is invariant by the right action of *SO(n)* on P,

$$
h(F^p\Omega(P)) \subseteq F^{p-1}\Omega(P); \qquad \rho(F^p\Omega(P)) \subseteq F^p\Omega(P),
$$

$$
\rho \circ d_{\tilde{\#}} = d_{\tilde{\#}} \circ \rho; \qquad h \circ d_{\tilde{\#}} = d_{\tilde{\#}} \circ h.
$$

So, the action of $so(n)$ on $\Omega(P)$ defines also an action on $E_1(\tilde{\mathscr{F}})$, and we have:

LEMMA. $E_1(\tilde{\mathscr{F}})_{i=0,\theta=0} \cong E_1(\mathscr{F})$. In fact, let $[\alpha] \in E_1(\tilde{\mathcal{F}})_{i=0,\theta=0}$. We can write $d\alpha = d_{\tilde{\mathscr{F}}} \alpha + d_{1,0} \alpha + d_{2,-1} \alpha.$

But $d_{\tilde{\mathscr{F}}} \alpha = 0$ and $d_{2,-1} \alpha \in F^{p+2}\Omega(P)$, $hd_{2,-1} \alpha \in F^{p+1}\Omega(P)$ and it is zero in E_1 . Finally, $d_{1,0} \alpha$ has two parts. One of them belongs to $\Omega(P)_{i=0}$, and their image by h is zero. The other, $d_{\pi} \alpha$, the derivative along the fibres of π , is as follows: if $\{\xi_i\}$ is a basis of the fundamental vector fields and $\{\xi_i^*\}\$ is the dual basis of differential forms, we have

$$
d_{\pi}\alpha=\sum_{i}\xi_{i}^{*}\wedge\theta(\xi_{i})\alpha.
$$

But $\theta(\xi)[\alpha] = 0$, i.e., $\theta(\xi)\alpha = d_{\tilde{\mathscr{F}}} \beta$, $\beta \in F^p\Omega(P)_{i=0}$, and $d_{\tilde{\mathscr{F}}} \xi_i^* = 0$, then, if we put $\theta(\xi_i)\alpha = d_{\tilde{\mathcal{F}}} \beta_i$, then

$$
hd_{\pi}\alpha=hd_{\tilde{\mathscr{F}}}\sum_{i}\xi_{i}^{*}\wedge\beta_{i}=d_{\tilde{\mathscr{F}}}h\sum_{i}\xi_{i}^{*}\wedge\beta_{i},
$$

with $h(\xi_i^* \wedge \beta_i) \in \Omega(P)_{i=0}$ and

$$
\alpha-j\circ\rho(\alpha)=d_{\tilde{\mathscr{F}}}h\sum_i\xi_i^*\wedge\beta_i.
$$

Now, to compute $E_2^{\ast,q}(\tilde{\mathscr{F}})$ we construct the spectral sequence $E(q)$ associated to the action of so(n) on $E_1(\tilde{\mathscr{F}})$,

$$
E_2^{r,s}(q) = E_2^{s,q}(\mathscr{F}) \otimes H^r(\text{so}(n), \mathbb{R}) \Rightarrow H(E_1^{*,q}(\tilde{\mathscr{F}})_{\theta=0}) \cong E_2^{*,q}(\tilde{\mathscr{F}}).
$$

All the maps that we have used are continuous, then we also have a spectral sequence

$$
\mathbb{E}_{2}^{r,s}(q)=\mathbb{E}_{2}^{s,q}(\mathscr{F})\otimes H^{r}(\text{so}(n),\mathbb{R})\Rightarrow \mathbb{E}_{2}^{*,q}(\tilde{\mathscr{F}}).
$$

Finally, the Zeeman's comparison theorem permits us to conclude:

THEOREM. Let \mathscr{F} be a Riemannian foliation. Then $E^{\rho,q}(\mathscr{F}) \cong \mathbb{E}^{\rho,q}(\mathscr{F})$.

We can also conclude that $E_2^{p,q}(\mathscr{F})$ is finite dimensional, which is the principal theorem in [2].

3. A criterion for minimality

For a Riemannian foliation of codimension n on a compact manifold, we have $E^{n,0}(\mathscr{F})=0$ or $E^{n,0}(\mathscr{F})=\mathbb{R}$ [4]. It is a well known fact that $E^{n,0}(\mathscr{F})\neq 0$ is a necessary condition for minimality (vid., for instance, [12, Appendix B]). This is a consequence of the following Rummier-Sullivan criterion [14], [16], [7]:

"Let g₀ be a smooth scalar product on TF. It is induced by a Riemannian metric g on *M* for which the leaves are minimal submanifolds iff the volume m-form χ_0 on the *leaves defined by go (and the orientation) is the restriction to the leaves of an m-form* χ on M which is relatively closed, namely, $d\chi(X_1,\ldots,X_{m+1})=0$ if the first m vector *fields* X_i *are tangent to the leaves.*"

So, we shall assume that $E_{2}^{n,0}(\mathscr{F}) = \mathbb{R}$.

Now, we consider the star operator $*$ associated to the bundle-like metric on M and the scalar product

$$
\langle \alpha, \beta \rangle = \int_M \alpha \wedge * \beta.
$$

The star operator takes forms of type (p, q) into forms of type $(n - p, m - q)$. If we denote $\delta_{\mathscr{F}} = *d_{\mathscr{F}}*,$ we have

$$
\overline{\operatorname{Im} d_{\mathscr{F}}} = (\operatorname{Ker} \delta_{\mathscr{F}})^{\perp},\tag{2}
$$

where \perp denotes the orthogonal complement with respect to the scalar product. Obviously, $\overline{\text{Im }d_{\mathscr{F}}} \subseteq (\text{Ker }\delta_{\mathscr{F}})^{\perp}$ and $(\overline{\text{Im }d_{\mathscr{F}}})^{\perp} \subseteq \text{Ker }\delta_{\mathscr{F}}$. We have also $\Omega = (\text{Ker }\delta_{\mathscr{F}})^{\perp} \oplus \text{Ker }\delta_{\mathscr{F}} = \overline{\text{Im }\delta_{\mathscr{F}} \oplus \text{Ker }\delta_{\mathscr{F}}}$. In fact, if $\alpha \notin \overline{\text{Im }d_{\mathscr{F}} \oplus \text{Ker }\delta_{\mathscr{F}}}$, by the Hahn-Banach theorem there exists a closed hyperplane L that contains $\overline{\text{Im }d_{\mathscr{F}}} \oplus \text{Ker } \delta_{\mathscr{F}}$ and such that $\alpha \notin L$. If β is orthogonal to $L, \beta \in (\overline{\text{Im }d_{\mathscr{F}}})^{\perp}$ and $\beta \notin \text{Ker } \delta_{\mathcal{F}}$, contradition. Now, an analogous argument finishes the proof of (2).

We are assuming, first, that $\mathcal F$ is transversally parallelizable, that is, there exist foliated vector fields Z_1, \ldots, Z_n such that their images generate $T_xM/T_x\mathscr{F}$ for all $x \in M$. The closures of the leaves of the foliation are the fibres of the *basic fibration* associated to \mathscr{F} [12],

 $\pi: M \rightarrow W$.

and the foliation defines by restriction to each of the fibres a Lie g-foliation, where g is the *structural Lie algebra.*

Let v be an invariant transverse volume for $\mathscr{F}, v \in \Omega_B^n(M)$, defining the nonzero class in $E_2^{n_0}(\mathscr{F})$. We can choose the form v to be orthogonal to $d(\Omega_R^{n-1}(M))$. This is trivial if the leaves of $\mathscr F$ are dense, as then $d(\Omega_n^{n-1}(M)) = 0$. The general case requires the use of the structure of the fibration $\pi : M \to W$ defined by the closures of the leaves of $\mathscr F$. Consider the filtration defined in Section 1, but now associated to the fibration π , and so we can speak about the forms of type $(p, q)_{\pi}$, and differentials d_{π} , $_{\pi}d_{1,0}$, and so on.

Let ω be the image by π of the volume form on W. The condition $E_2^{n,0}(\mathscr{F}) \neq 0$ is equivalent to the following [4]: **g** is unimodular and there exists a form λ such that $v = \lambda \wedge \omega$ is an invariant transverse volume for $\mathscr F$ and satisfying

(1) λ is of type $(0, s)_{\pi}$, $s = \dim g$, and

(2)
$$
d_{\pi}\lambda = 0
$$
 and $d_{1,0}\lambda = 0$.

Let $f=\int_{\pi}*(\lambda \wedge \omega) \wedge \lambda$, where \int_{π} is the integral along the fibres. Then $f \in C^{\infty}(W)$ and $f(x) \neq 0$ for all x. Now, the volume $v_0 = (\lambda \wedge \omega)/f$ is orthogonal to $d(\Omega_B^{n-1}(M))$. In fact, a form $\gamma \in \Omega_B^{n-1}(M)$ can be written as

$$
\gamma = \sum_{k=1}^n \left\{ (i_{Z_k} \lambda) \wedge f_k \omega + \lambda \wedge g_k i_{Z_k} \omega \right\}
$$

where $f_k, g_k \in C^{\infty}(W)$. Then,

$$
d\gamma = \pm \lambda \wedge d\left(\sum_{k=1}^n g_k i_{Z_k} \omega\right) = \lambda \wedge d(\pi^* \eta)
$$

with $\eta \in \Omega^*(W)$, and

$$
\left\langle \frac{1}{f}(\lambda \wedge \omega), d\gamma \right\rangle = \left\langle \frac{1}{f}(\lambda \wedge \omega), \lambda \wedge d(\pi^*\eta) \right\rangle
$$

=
$$
\pm \int_M \left\{ * \frac{1}{f}(\lambda \wedge \omega) \right\} \wedge \lambda \wedge d\pi^*\eta
$$

=
$$
\int_W \frac{1}{f} d\eta \int_{\pi} *(\lambda \wedge \omega) \wedge \lambda = \int_W d\eta = 0.
$$

With this choice of v_0 , the form $\chi = v_0$ is positive along the leaves and defines a nonzero class in $\mathbb{E}_2^{0,m}(\mathscr{F})$, i.e., $d_1(\chi) \in \overline{O}_{\mathscr{F}}^{1,m}$. In fact, let γ be a $(n-1)$ -basic form. We have

$$
\langle d_{1,0}(\chi), *\gamma \rangle = \langle d(\chi), *\gamma \rangle = \pm \langle v_0, d\gamma \rangle = 0,
$$

and, by (2),

$$
d_{1,0}(\chi) \in \overline{d_{\mathscr{F}}\Omega^{1,m-1}(M)}.
$$

Let $[I] \in E_2^{0,m}(\mathscr{F})$ be the class corresponding to χ by the isomorphism $E_2^{0,m}(\mathscr{F}) \cong \mathbb{E}_2^{0,m}(\mathscr{F})$. We have

$$
\Gamma = \chi + \eta, \quad \text{with } \eta \in \overline{O}_{\mathscr{F}}^{0,m}.
$$

Since χ is positive along the leaves, we can take some form $\alpha \in d_0(E_0^{0,m-1}(\mathscr{F}))$ such that $\Gamma + \alpha$ is close enough to χ so that $\Gamma + \alpha$ is also positive along the leaves. But $\Gamma + \alpha$ also defines $[\Gamma]$ and then $\mathscr F$ is minimal by the criterion of Rummier- Sullivan.

Finally, if $\mathcal F$ is an arbitrary Riemannian foliation, we consider the principal bundle (P, π, M) and the transversally parallelizable foliation $\tilde{\mathscr{F}}$, as in Section 2. Integration along the fibres of π : $P \rightarrow M$, after exterior multiplication with the invariant volume form along the fibres, assigns m -forms on M positive along the fibres of $\mathscr F$ to *m*-forms on *P* positive along the leaves of $\tilde{\mathscr F}$. The computations in Section 2 permits us to conclude the

MINIMALITY THEOREM. Let M⁺ be a smooth closed orientable manifold and *an oriented Riemannian foliation. There exists a Riemannian metric on M for* which the leaves are minimal submanifolds iff the basic cohomology of maximal *dimension is nonzero.*

26 xost masa

4. Duality theorem

DUALITY THEOREM. If M is a smooth closed orientable manifold and $\mathcal F$ is *a Riemannian foliation, then*

 $E_2^{p,q}(\mathscr{F}) \cong E_2^{n-p,m-q}(\mathscr{F}).$

This Theorem reduces now to the Duality Theorem proved by J. A. Alvarez López [1], [3]. He defines a filtration in the complex of currents (Ω', d') in M, obtaining a spectral sequence (E', d') which converges to $H(\Omega', d')$, and he proves that there exist regularization operators which are adjoint of continuous filtrationpreserving operators in $\Omega(M)$, resulting in an isomorphism between E_2 and E^2 . *finally, he has duality isomorphisms* $\mathbb{E}^{p,q}(\mathscr{F}) \cong \mathbb{E}^{n-p,m-q}(\mathscr{F})$.

REFERENCES

- [I] ALVAREZ-L6PEZ, J. A., "Sucesi6n espectral asociada a foliaciones Riemannianas". Publ. del Dpto. de Geometria y Topologia de Santiago de Compostela *72 (1987).*
- [2] ALVAREZ-LÓPEZ, J. A., A finiteness theorem for the spectral sequence of a Riemannian foliation. Illinois J. of Math. *33 (1989),* 79-92.
- [3] ÁLVAREZ-LÓPEZ, J. A., *Duality in the spectral sequence of Riemannian foliations*. Amer. J. of Math. *111* (1989) 905-926.
- [4] EL KACIMI-ALAOUI, A. and HECTOR, G., *Decomposition de Hodge basique pour un feuilletage Riemannien.* Ann. Inst. Fourier de Grenoble *36 (1986),* 207-227.
- [5] GREUB, W., HALPERIN, S. and VANSTONE, R., "Connections, Curvature and Cohomology". Academic Press, New York, 1976.
- [6] GROTHENDIECK, A., "Topological Vector Spaces". Gordon and Breach, London, 1973.
- [7] HAEFLIGER, A., *Some remarks on foliations with minimal leaves.* J. Diff. Geom. *15* (1986), 269 -284.
- [8] KAMBER, F. and TONDEUR, Ph., *Foliations and metrics.* Proc. of the 1981 1982 Year in Differential Geometry, Univ. Maryland, Birkhäuser. Progress in Math. 32 (1983), 103-152.
- [9] MACIAS, E., "Las cohomologias diferenciable, continua y discreta de una variedad foliada". Publ. del Dpto. de Geometria y Topologia de Santiago de Compostela 60 (1983).
- [10] MACIAS, E. and MASA, X., *Cohomologia diferenciable en variedades foliadas.* Actas de las IX Jornadas Matemáticas Hispano-Lusas. Universidad de Salamanca, 1982, vol. II, pp. 533-536.
- [11] MASA, X., *Cohomology of Lie foliations.* Research Notes in Math. vol. 32. Differential Geometry. Pitman Advanced Publishing Program (1985), pp. 211-214.
- [12] MOUNO, P., *Riemannian foliations.* Progress in Mathematics, Birkh/iuser, 1988.
- [13] ROBERTSON, A. P. and ROBERTSON, W. J., "Topological Vector Spaces". Cambridge Univ. Press, 1973.
- [14] RUMMLER, H., Quelques notions simples en géométrie Riemannienne et leurs applications aux *feuilletages compacts.* Comment. Math. Helvetici *54* (1979), 224-239.
- [15] SARKARIA, K. S., *A finiteness theorem for foliated manifolds.* J. Math. Soc. Japan *30* (1978), 687-696.

[16] SULLIVAN, D., *A homological characterization of foliations consisting of minimal surfaces.* Comment. Math. Helv. 54 (1979), 218-223.

Departamento de Xeometria e Topoloxia Faculdade de Matemfiticas Universidade de Santiago de Compostela 15771-Santiago de Compostela Galiza (Spain)

Received January 17, 1990